
High Dimensional Yield Curves: Models and Forecasting

Clive G. Bowsher∗ and Roland Meeks

Nuffield College, University of Oxford, Oxford, OX1 1NF, U.K.

clive.bowsher@nuffield.ox.ac.uk

roland.meeks@nuffield.ox.ac.uk

October 2, 2006

Abstract

Functional Signal plus Noise (FSN) models are proposed for analysing the dynamics of
a large cross-section of yields or asset prices in which contemporaneous observations are
functionally related. The FSN models are used to forecast high dimensional yield curves for
US Treasury bonds at the one month ahead horizon. The models achieve large reductions
in mean square forecast errors relative to a random walk for yields and readily dominate
both the Diebold and Li (2006) and random walk forecasts across all maturities studied. We
show that the Expectations Theory (ET) of the term structure completely determines the
conditional mean of any zero-coupon yield curve. This enables a novel evaluation of the ET
in which its 1-step ahead forecasts are compared with those of rival methods such as the
FSN models, with the results strongly supporting the growing body of empirical evidence
against the ET. Yield spreads do provide important information for forecasting the yield
curve, especially in the case of shorter maturities, but not in the manner prescribed by the
Expectations Theory.
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JEL classification: C33, C51, C53, E47, G12.

1 Introduction

In this paper we develop a novel econometric framework for modelling and forecasting high

dimensional yield curves consisting of the yields on a large number of discount bonds with

different maturities. Forecasting one month ahead, we are able to improve upon the forecasting

performance of all other existing methods, including a new method introduced here in which

the forecasts implement the conditional mean implied by the expectations theory of the term

structure. Two obvious lacunae exist in the term structure literature: the vast majority of

empirical dynamic studies concentrate on a small subset of maturities rather than entire term

structures; and there is a relative paucity of work concerned primarily with forecasting the yield

∗Corresponding author: tel: +44 1865 278969, fax: +44 1865 278621. Comments are welcome and should
be directed to the above e-mail address. Functional Signal plus Noise (FSN) models were first introduced in the
earlier working paper, Bowsher (2004).
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curve. The first stems from the econometric difficulties involved in modelling the dynamics of

a high dimensional cross-section of interest rates that are functionally related to one another.

The second exists despite the considerable importance of forecasting the term structure for bond

portfolio management, derivatives pricing and monetary policy. The methods introduced here

address both areas and can also readily be applied to time series of other economically important

functions such as the supply and demand curves of the limit order book of a financial exchange

(see Bowsher 2004).

The main contributions of the paper may be summarised as follows. First, Functional Signal

plus Noise (FSN) time series models are introduced for analysing the dynamics of a large cross-

section of yields or asset prices in which contemporaneous observations are functionally related.

The FSN models specify the evolution over time of stochastic functions, a problem that has

received relatively little attention in the econometrics and statistics literature, and the models

may conveniently be written in linear state space form. Second, we show that the Expectations

Theory (ET) of the term structure completely determines the conditional mean of any zero-

coupon yield curve, given an information set that includes the currently observed, complete

yield curve of adequate dimension. We are thus able to derive and implement the minimal mean

square error point forecasts implied by the theory. Third, FSN models are used to forecast

high-dimensional yield curves for US Treasury bonds at the 1 month ahead horizon and their

performance compared in an out-of-sample experiment to the ET forecasts and the Diebold and

Li (2006) dynamic Nelson-Siegel model. The preferred FSN models achieve large reductions in

mean square forecast error (MSFE) relative to a random walk for the yield curve, especially at

the shorter maturity end, and readily dominate the ET, Diebold and Li (2006), and random

walk forecasts in terms of MSFE across all maturities studied. A novel and particularly direct

evaluation of the ET is thus also provided in which its 1-step ahead forecasts are compared with

those of rival models. Our results, obtained using two different datasets, strongly support the

growing body of empirical evidence against the ET.

In the Functional Signal plus Noise models developed here, the information about the func-

tional, cross-sectional relationship between contemporaneously observed yields is captured by

modelling the observed curves as the sum of a smooth ‘signal function’ or latent yield curve,

S(τ), and noise. The signal function used is a cubic spline uniquely determined by the yields
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that correspond to the knots of the spline, the knot-yields. The state equation of the FSN model

then determines the stochastic evolution of the spline function by specifying that the knot-yields

follow a vector autoregression which may be written as an equilibrium correction model (ECM)

in which the spreads between the knot-yields appear as regressors. We find that yield spreads

provide important information for forecasting the yield curve, especially in the case of shorter

maturities, but not in the manner prescribed by the ET.

The work presented is also a contribution to applied functional time series analysis. Each

yield curve may be regarded as a finite dimensional vector, albeit of very high dimension. How-

ever, the standard approaches of multivariate time series or panel data econometrics are of little

help in this setting, owing to the high dimensionality of the curves and the close, functional

relationship between the yields. Indeed, the analysis of time series of stochastic functions is

in a state of relative infancy.1 Previous work in the statistics literature includes the use of

Functional AutoRegressive (FAR) models for forecasting entire smooth, continuous functions by

Besse and Cardot (1996) and Besse, Cardot, and Stephenson (2000). The FSN models may be

interpreted as a special type of dynamic factor model (see Stock and Watson 2006, pp. 524) in

which the knot-yields are the factors and the factor loadings are determined by the requirement

that the latent yield curve (i.e. the vector of ‘common components’) be a natural cubic spline

function, rather than the factor loadings being parameters for estimation. The semiparametric

FSN approach thus allows quasi-maximum likelihood estimation using the state space form and

the Kalman filter even when the cross-sectional dimension of the data is very large.

Two previous studies examine out-of-sample forecasting of high dimensional yield curve

functions. Diebold and Li (2006) introduce a dynamic version of the Nelson and Siegel (1987)

yield curve in which the three parameters or factors describing the curve each follow an AR(1)

process. They report only comparable forecasting performance to that of a random walk for

the yield curve (denoted RWY C) in terms of MSFEs at the 1 month ahead forecast horizon, but

substantial improvement in MSFEs over the RWY C and other benchmark forecasting models at

a horizon of 12 months. Kargin and Onatski (2004) forecast approximate forward rate curves

(derived from Eurodollar futures rates) 1 year ahead using a functional autoregression and their

new predictive factor decomposition. They uniformly outperform the MSFEs of the Diebold and

1Functional Data Analysis by Ramsay and Silverman (1997) is a landmark in this area but does not consider
the time series case in which the functions are dependent.
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Li (2006) and RWY C procedures across all maturities, but report small reductions in MSFEs

relative to the forecast based on the average yield curve observed to date.

The two studies reflect a common theme in the term structure literature, namely the difficulty

of outperforming näıve forecasting devices, particularly the RWY C or ‘no change’ forecast. Duffee

(2002) documents that forecasts made using the standard class of (‘completely’) affine term

structure models typically perform worse than the RWY C at horizons of 3, 6 and 12 months

ahead. His ‘essentially affine’ models produce forecasts somewhat better than the RWY C for the

three maturities reported and at all 3 horizons. Ang and Piazzesi (2003) present a VAR model

in the affine class for yields of 5 different maturities which imposes no-arbitrage restrictions

and performs slightly better than the RWY C at the 1 month ahead forecast horizon for 4 of

the 5 maturities used. Incorporating macoreconomic factors in the model further improves the

forecast performance for those 4 maturities. Finally, Swanson and White (1995) show that the

premium of the forward rate over the 1 month short rate, and lags thereof, can be used to

improve the 1-step ahead MSFE of the 1 month rate relative to a random walk with drift.

For the first time in the literature, we present forecasting models whose 1 month ahead

forecasts strongly outperform a random walk for the yield curve. Furthermore, the models are

for high dimensional yield curves rather than for a small subset of maturities. The structure of

the paper is as follows. Section 2 develops two new methods for modelling and forecasting high

dimensional yield curves – FSN models and forecasts based on the Expectations Theory of the

term structure. Theorem 1 contains our result on the conditional expectation of yield curves

under the ET. A procedure for evaluating the ET based on Theorem 1 is also proposed and

previous empirical work in this area reviewed. Section 3 applies both methods to the task of

forecasting high dimensional US Treasury zero-coupon yield curves, whilst Section 4 focuses on

forecasting a complete set of US Treasury bill yields. Section 5 then concludes. The Appendix

provides the necessary mathematical details on cubic spline functions. These are denoted here,

as a function of maturity τ , by S(τ).

2 Models for High Dimensional Yield Curves

A zero-coupon or discount bond with face value $1 and maturity τ is a security that makes a

single payment of $1 τ periods from today. Its yield to maturity, yt(τ), is defined as the per
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period, continuously compounded return obtained by holding the bond from time t to t + τ , so

that

yt(τ) = −τ−1pt(τ ), (1)

where pt(τ ) is the log price of the bond at t. The (zero-coupon) yield curve consists of the

yields on discount bonds of different maturities and is denoted generically here by the vector

yt(τ ) := (yt(τ1), yt(τ2), ..., yt(τN ))′. The purpose of the current paper is to develop forecasting

methods for the empirically relevant case where the cross-sectional dimension N of the observed

yield curve is large. In Section 3 the task will be to forecast one month ahead a 36×1 yield curve

with τ = (1.5, 2, 3, ..., 11, 12, 15, 18, ..., 81, 84) and where maturities are measured in months. A

3-dimensional plot of the dataset used there may usefully be previewed at this stage by examining

the first panel of Figure 2. The plot strongly suggests the suitability of treating each observed

yield curve as a smooth function perturbed by noise. Taking the contemporaneous pairwise

correlations of yields for adjacent maturities using the dataset shown there gives correlations

that all lie between 0.9964 and 0.9997.

In this section we present two new approaches to such a forecasting problem. First we

describe the flexible, semiparametric family of Functional Signal plus Noise models. Second,

we ask what the Expectations Theory of the term structure implies about forecasting yields

when a history of complete yield curves is available upon which to base the forecasts. An n-

dimensional yield curve is said to be complete here when yields are observed for all maturities

τ ∈ {1, 2, ..., n}. In the dataset of Section 3, complete yield curves are available with n = 85.

It turns out that the ET completely determines the conditional mean of any yield curve yt(τ ),

no matter how large its dimension, given an information set that includes the current, complete

(τN +1)-dimensional yield curve. In a comparison of the forecast performance of the FSN model

and ET forecasts in Section 3, we find that the FSN models prove very effective in forecasting

high dimensional yield curves, whilst the conditional mean implied by the ET does not give the

MSFE-minimising point forecasts of the yields.

2.1 Functional Signal plus Noise Models

In the semiparametric Functional Signal plus Noise models proposed here, the information about

the functional, cross-sectional relationship between contemporaneously observed yields is cap-
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tured by modelling the observed curves as the sum of a smooth latent ‘signal function’, S(τ ),

and noise. The exposition below is given in terms of yield curves. However, the FSN models

can also readily be applied to time series of other economically important functions such as the

supply and demand curves of an electronic limit order book (see Bowsher 2004).

The signal function used is a cubic spline uniquely determined by the yields that correspond

to the knots of the spline, the knot-yields. The state equation of the FSN model then determines

the stochastic evolution of the spline function by specifying that the knot-yields follow a vector

autoregression which may be written as an equilibrium correction model (ECM) in which the

spreads between the knot-yields appear as regressors. It is shown how to write the FSN-ECM

model in linear state space form, thus allowing the use of the Kalman filter to compute both the

Gaussian quasi-likelihood function and one-step ahead point predictions.2 Harvey and Koopman

(1993) were the first to describe a linear state space model with a state equation determining

the stochastic evolution of a cubic spline function. There, as in Koopman and Ooms (2001),

the stochastic spline is used to model the latent, time-varying periodic pattern of a scalar time

series. This contrasts the present work in which the stochastic splines are used as a tool in

functional time series analysis and assume the role of smooth approximations to the observed

functional data.

2.1.1 FSN-ECM models

The FSN-ECM model consists of a dynamically evolving, natural cubic spline signal function

denoted by Sγt
(τ ), plus a noise process. A cubic spline is essentially a piecewise cubic function

with pieces that join together to form a smooth function overall.3 The spline signal function

or latent yield curve, Sγt
(τ ) := (Sγt

(τ1), ..., Sγt
(τN ))′, has m knots positioned at the maturities

k = (1, k2, ..., km), which are deterministic and fixed over time. The notation Sγt
(τ ) is used to

imply that the spline interpolates to the latent yields γt = (γ1t, ..., γmt)
′ – i.e. Sγt

(kj) = γjt for

j = 1, ...,m. We refer to the vector γt as the knot yields of the spline. An illustrative spline

signal function is shown in Figure 1. Another terminology is to refer to Sγt
(τ ) as a natural

cubic spline on (k; γt), since the spline passes through the points (kj , γjt)
m
j=1, which together

2The term Kalman filter should always be taken here to refer to the recursions as they are conveniently stated
in Koopman, Shephard, and Doornik (1999, Section 4.3, pp. 122-123). For a textbook exposition of the Kalman
filtering procedure, see Harvey (1989, Ch. 3).

3The essential aspects of cubic spline theory and related definitions needed here are described in the Appendix.
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Figure 1: An illustrative spline signal function or latent yield curve, Sγt
(τ). The yields at the

knots, γjt, are labelled and plotted using filled circles; the knots are given by k = (1, 2, 4, 18, 24, 84).

determine the remainder of the spline function uniquely.

A formal definition of the FSN-ECM model now follows.

Definition 1 FSN-ECM Model. The model for the time series of N -dimensional observed

yield curves, {yt(τ )}, is given by

yt(τ ) = Sγt
(τ ) + ǫt

= W (k, τ )γt + ǫt, (2)

∆γt+1 = α(β′γt − µs) + Ψ∆γt + νt, (3)

for t = 1, ..., T . Here Sγt
(τ ) is a natural cubic spline on (k; γt), the N ×m deterministic matrix

W (k, τ ) is given by Theorem 2 of the Appendix, the m × (m − 1) matrix α has full rank, and

the matrix β is defined uniquely by β′γt = (γj+1,t− γjt)
m−1
j=1 . The initial state (γ ′

1, γ
′
0)

′ has finite

first and second moments given by µ∗ and Ω∗ respectively. The series {ut := (ǫ′t, ν
′
t)
′} has a finite

second moment for all t and satisfies, for all t, E[ut] = 0, E[ǫtǫ
′
t] = Ωǫ, E[νtν

′
t] = Ων , E[ǫtν

′
t] = 0,

E[utu
′
s] = 0 ∀s 6= t, and E[ut(γ

′
1, γ

′
0)] = 0. Note that {ut} is a vector white noise process.
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The Gaussian FSN-ECM Model is the FSN-ECM model with the additional condition

imposed that both ut and (γ ′
1, γ

′
0)

′ have multivariate Normal distributions.

The state equation (3) is motivated by the cointegration-based yield curve literature discussed

in Section 2.2.1 and is consistent with the case where the knot yields γt are I(1) and the (m−1)

spreads between them are cointegrating relations.4 In that case, E[∆γt+1] = 0 which excludes

deterministic trends, and µs = E[β′γt], the stationary mean of the spreads. Furthermore the

N -dimensional latent yield curve, Sγt
(τ ), is in that case I(1) and itself has (N − 1) linearly

independent, stationary yield spreads which are cointegrating relations.

Under the conditions of Definition 1, the FSN-ECM model can be written in linear state space

form, as defined by Harvey (1989, pp. 100-104). It is important to note that the deterministic

matrix W (k, τ ) depends only on the vector of maturities τ and the knot positions k thus allowing

the spline signal function Sγt
(τ ) to be written as the linear function, W (k, τ )γt, of the knot

yields. The state vector at t can be taken to be (γ′
t, γ

′
t−1)

′ or, in an isomorphic representation, to

be (γ1t, (β
′γt)

′, γ1,t−1, (β
′γt−1)

′)′ – see also equation (10). We use the latter in our computational

work. The choice of a cubic spline as the signal function in FSN models has two advantageous

features. First, the stochastic evolution over time of the signal function is determined completely

by the time series properties of the m-dimensional vector γt, where m is relatively small (e.g.

m = 5), thus allowing the construction of a parsimonious model when the dimension of the

yield curve is very much larger. Second, since the model has the linear state space form, the

Kalman filter may be used to perform both quasi-maximum likelihood estimation (QMLE) and

1-step ahead, linear point prediction. These two features, together with the flexibility of cubic

splines as approximating functions, make the cubic spline framework adopted here a particularly

attractive one.

In Sections 3 and 4, the parameters of the various FSN-ECM models are estimated by max-

imising the likelihood of the corresponding Gaussian FSN-ECM model, which may be computed

using the Kalman filter and widely available software for state space time series models. This

procedure gives the QMLEs for the parameters. The FSN-ECM forecasts for the models used

in Sections 3 and 4 are the 1-step ahead point predictions given by the Kalman filter, [ŷt(τ )|

4However, we prefer a broader definition of the FSN-ECM model and thus do not impose additional conditions
on the roots of the characteristic polynomial of the VAR in (3) and on det[α′

⊥(I − Ψ)β
⊥

].
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yt−1(τ ), ..., y1(τ ); θ]KF , with the parameter vector of the model set equal to some estimated

value, θ. Note that [ŷt(τ )| yt−1(τ ), ..., y1(τ ); θ]KF is a linear function of the past observations

(yt−1(τ ), ..., y1(τ )) and has minimum MSFE amongst the class of such linear predictors when θ

is equal to the true parameter vector.5

2.2 Expectations Theory Forecasts

Complete n-dimensional yield curves are denoted here by yt(1 : n) := (yt(1), yt(2), ..., yt(n))′.

The vector of spreads between the yields and the short rate is written as snt := (st(2, 1), ...,

st(n, 1))′, where st(τ j , τ i) is defined as the spread yt(τ j)−yt(τ i). The Expectations Theory states

that a longer-term τ -period yield differs only by a time-invariant constant from the conditionally

expected per period log return obtained by successively rolling over 1-period discount bonds for

τ periods.6 A formal definition is as follows.

Definition 2 The Expectations Theory (ET) is the statement that

yt(τ ) =

{

τ−1
τ−1
∑

i=0

E[yt+i(1)|Ft]

}

+ ρ(τ ), τ = 1, 2, ..., (4)

where the constants ρ(τ ) ∈ R are known as term premia, ρ(1) = 0, and {Ft} denotes the filtration

of publicly available information which includes the natural filtration of the yield curve.

Note that in Definition 2 the physical units of time used to measure bond maturity and the time

interval between observations are necessarily the same.

Theorem 1 below states that the ET fully determines the conditional expectation of the

(n − 1)-dimensional yield curve, yt+1(1 : n − 1), given any information set that includes the

current n-dimensional yield curve, yt(1 : n). Furthermore, that conditional expectation is an

affine function of the current spread vector, snt. The key result is that

E[∆yt+1(τ)|Ft] =
τ + 1

τ
{st(τ + 1, 1) − ρ(τ + 1)} − {st(τ , 1) − ρ(τ)}, τ = 1, 2, ... (5)

which in matrix form yields the following theorem.

5Recall that when θ is equal to the truth, [ŷt(τ )| yt−1(τ ), ..., y1(τ ); θ]KF is only guaranteed to equal
Eθ[yt(τ )|yt−1(τ ), ..., y1(τ )] for the Gaussian FSN-ECM model.

6Campbell, Lo, and MacKinlay (1997, Ch.10) provide a useful summary of different forms of the ET. We follow
the majority of the empirical literature by examining the logarithmic form, rather than working with bond prices
in dollars and the associated gross yields to maturity.
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Theorem 1 (Conditional Expectation of Yield Curve) Let n ≥ 2 and suppose that the

Expectations Theory (Definition 2) is satisfied. Then,

yt+1(1 : n − 1) = yt(1 : n − 1) + ᾱET
n−1(snt − ρn) + νt+1, (6)

where E[νt+1|Ft] = 0 and ρn = (ρ(2), ..., (ρ(n))′. The (n−1)× (n−1) matrix ᾱET
n−1 is, for n > 2,

given by

ᾱET
n−1 =















2 0 0 0 . . . 0 0
−1 3/2 0 0 . . . 0 0
0 −1 4/3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 n
n−1















, (7)

and ᾱET
1 = 2. It follows from the definition of excess returns on a τ period bond, denoted here

by rxt+1(τ), that under the Expectations Theory

E[rxt+1(τ )|Ft] = τρ(τ) − (τ − 1)ρ(τ − 1), τ = 2, 3, ... (8)

We prove Theorem 1 elsewhere (see the proof of Theorem 1 of Bowsher and Meeks 2006).

The important point to note here is that when one works with a complete term structure of

maturities, τ = (1, 2, ..., n), the matrix ᾱET
n−1 and hence the conditional mean of the (n − 1)-

dimesional yield curve are both entirely determined by the ET. This has not previously been

recognised. Put another way, under the null of the ET alone (i.e. Definition 2), the MSFE-

minimising, 1-step ahead forecasts are a known linear function of the difference between the

spread and term premia vectors. Note from equation (8) that conditionally expected excess

returns from holding a τ period bond for 1 period (that is, in excess of the 1 period yield, yt(1),

and realised at time t + 1), are deterministic and constant over time under the ET.

2.2.1 Evaluating the ET

Theorem 1 gives an alternative, theory-based approach to forecasting high dimensional yield

curves. Note that these yield curves need not be complete. Since E[∆yt+1(τ )|Ft] involves the

spread st(τ + 1, 1), the method is feasible provided that the data used to form the forecasts

contains the yields for the required maturities (see equation 5). However, this will not usually

create any difficulty. In Sections 3.4 and 4 below, the FSN-ECM model forecasts are compared

to these ET forecasts, with the results strongly favouring the former. This not only subjects
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the proposed FSN-ECM models to comparison with a broader set of models, but also provides

a new method of evaluating the ET.

Under the null of the ET the forecasts implied by (6) have smaller MSFE for each maturity

τ than any other forecasting method since they are based on the conditional mean. Models that

outperform the forecasting equation (6) in terms of MSFE thus constitute evidence against the

ET. The proposed evaluation method in which the forecasts implied by (6) are compared with

those of rival models has several advantages. First, the method is applicable to any dimension

of yield curve, N , no matter how large. Second, if the ET is taken to hold no matter what the

physical units of time t are in Definition 2, then forecasting equation (6) holds under the null of

the ET for any time series frequency (e.g. weekly, monthly or yearly time series). Third, unlike

tests of the stationarity of yield spreads which assume that the yield curve is I(1) and hence that

the spreads are cointegrating relations under the null of the ET, the method is free of auxiliary

‘nuisance’ assumptions concerning the order of integration of the yield curve.

In contrast to our approach here, the cointegration-based literature seeks to evaluate the ET

by analysing the monthly time series of a low dimensional N -vector of zero-coupon yields, where

N is typically less than 10. Attention usually focuses on inference concerning the cointegration

rank and cointegrating relations, with different studies reaching varying conclusions that are

sensitive to a largely unknown degree on the subset of maturities chosen. Hall, Anderson, and

Granger (1992) find that three linearly independent spreads are cointegrating relations when

T-bills with maturities of 1, 2, 3, and 4 months are modelled. Pagan, Hall, and Martin (1996)

work with a 5-dimensional yield curve and report rejection of the standard hypothesis test that

4 linearly independent spreads are cointegrating relations. They note however that the point

estimates are quite close to the situation where such cointegrating relations hold. These authors

also highlight the major impact on the critical values of the test of a levels effect of the short rate

in the disturbance of the VAR, which may result in the test rejecting erroneously. Shea (1992)

reaches a variety of conclusions depending on which maturities are modelled, finding both cases

with 2 common trends and a single common trend. He reports that the cointegrating relations

can often be written as linear combinations of the yield spreads.

It is possible to construct DGPs inconsistent with the ET (for example using FSN-ECM

processes with Ωǫ = 0) in which the N -dimensional yield curve is I(1) and there are (N −
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1) linearly independent spreads that are stationary cointegrating relations, but in which the

conditional expectations of the yields do not satisfy Theorem 1. The evaluation method proposed

here thus utilises the implications of the ET more fully than cointegration-based approaches

which test only a weak implication of the theory, namely that (N − 1) linearly independent

spreads are cointegrating relations when the yield curve is I(1).

The important regression studies of Fama and Bliss (1987), Campbell and Shiller (1991) and

Cochrane and Piazzesi (2005) all find evidence that, contrary to the ET, conditional expected

excess returns E[rxt+1(τ)|Ft] are stochastic and time varying (cf equation 8). Campbell and

Shiller (1991) can be interpreted as finding a strong positive effect on E[rxt+1(τ )|Ft] of the

spread st(τ , 1) for τ ranging from a few months to 10 years, where the time series frequency is

monthly. Fama and Bliss (1987) and Cochrane and Piazzesi (2005) work instead with yearly

time series. The important finding is that conditional expected excess returns depend on (one

period) forward rates at t, which may be expressed as a linear combination of spreads plus the

one period interest rate. Indeed, Cochrane and Piazzesi (2005) find that a single, ‘tent-shaped’

linear combination of forward rates predicts excess returns on 2 to 5 year maturity bonds realised

in 1 year’s time with an R2 of up to 0.44. In order to see the connection of these regression

studies with our approach, note that the definition of excess returns implies the identity

E[∆yt+1(τ)|Ft] =
τ + 1

τ
st(τ + 1, 1) − st(τ , 1) −

1

τ
E[rxt+1(τ + 1)|Ft], τ = 1, 2, ... (9)

Thus, if for example spreads or lagged changes in yields enter E[rxt+1(τ +1)|Ft], the conditional

expected change in the yield E[∆yt+1(τ )|Ft] then deviates from the one implied by the ET in (5).

Indeed, the above regression studies lead us to expect that spreads will be useful in forecasting

the yield curve but not in the way prescribed by the ET.

We show later in Sections 3.4 and 4 that the 1-month ahead, out-of-sample forecasts of certain

FSN-ECM models have much smaller MSFEs than the ET forecasts based on equation (6), for

all maturities forecast in the two datasets examined there (36 different maturities ranging from 1

month to 7 years). The ET forecast errors are also positively autocorrelated at a lag of 1 month,

with an average sample autocorrelation of approximately 0.3. We conclude that the conditional

mean of Theorem 1 implied by the ET is far from being the optimal MSFE predictor and that

the ET is very wide of the mark. Our findings can be interpreted as evidence that conditional
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expected excess returns for the one month ahead horizon, E[rxt+1(τ )|Ft], are stochastic and

time varying for maturities τ ranging widely from 1 month to 7 years. The findings are thus

complementary to the results reported for the one year ahead horizon in Cochrane and Piazzesi

(2005).

3 Forecasting High Dimensional Yield Curves

This section presents the results of an out-of-sample forecasting exercise in which the new FSN-

ECM models and ET forecasts are used to forecast high dimensional yield curves and their

performance compared to that of the main competing models. The task set is a difficult one,

namely to forecast one month ahead a 36 × 1 dimensional zero-coupon yield curve. The data

are first described in detail before moving on to discussion of the specification and selection of

the FSN-ECM models used, and the forecasting results obtained.

3.1 Data

We use the same dataset of Unsmoothed Fama Bliss (UFB) forward rates as Diebold and Li

(2006), running from November 1984 to December 2000 inclusive. The dataset is available from

and has been constructed by Robert Bliss using data from the CRSP government bond files.7

Zero-coupon UFB yields are then obtained by averaging the appropriate UFB forward rates.

As is discussed below, the set of maturities for which yields are observed is not the same for

every t. Although our FSN-ECM models can readily accommodate this feature using a time-

varying but deterministic matrix W (k, τ t) in the observation equation (3), we work here with

the fixed vector of maturities τ = (1.5, 2, 3, ..., 11, 12, 15, 18, ..., 81, 84), where maturities are in

months and 1 month is taken to equal 30.4375 days. This approach enables the disaggregation by

maturity of forecast performance over time and facilitates comparison with earlier work. Where

a yield yt(τ i) is not directly observed, a linear interpolation between the two nearest maturity

observations is performed, as in Diebold and Li (2006). Note that we include a greater number

of maturities between 1.5 months and 7 years than these authors (36 maturities compared to

14).

A 3-dimensional plot of the final dataset is shown in Figure 2, together with a plot in

7For further details see Bliss (1997) and the notes accompanying the “Bliss Term Structure Generating Pro-
grams.” The latter may be obtained together with our dataset, ufb2full.dat, by request to Robert Bliss.
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the lower panel of the maturities directly observed at each date. The latter highlights the

clear time-variation in the set of directly observed maturities. The minimum and maximum

maturities of 1.5 and 84 months respectively were chosen in order mostly to avoid interpolations

using observations separated by a relatively large maturity span. Note in particular that it is

difficult to construct a reliable 1 month yield using this dataset since there is frequently no

observed maturity less than or equal to 30.4375 days.8 Diebold and Li (2006, Table 1) provides

descriptive statistics for a subset of our maturities.

Amongst US government bonds, only Treasury Bills are pure discount bonds whilst others are

coupon bearing. Thus the zero-coupon yield curve must first be constructed from the observed

bond prices. Bliss (1997) discusses and compares the leading term structure estimation methods

and finds that the Unsmoothed Fama Bliss (UFB) method used here performs best overall. The

UFB method (see Fama and Bliss 1987, p.690) essentially constructs a piecewise constant forward

rate curve, constant over the intervals between the maturities of the included bonds, that exactly

prices each bond (under the assumption that coupon bonds are priced as bundles of synthetic

discount bonds). All existing studies of yield curve dynamics employ such a cross-sectional

estimation of the yield curve prior to and separate from modelling its dynamics.

This is somewhat unsatisfactory from the econometric viewpoint of wishing to model and

forecast observable data within a single inferential framework. The FSN framework is ideally

suited to this task since it consists of a latent yield curve and data observed with measurement

error. One possibility would be to retain the ECM state equation (3) for the latent knot-yields,

transform these using the relation in (1) to obtain latent knot-prices, and then form a latent

discount function as the natural cubic spline interpolating to those knot-prices. The observation

equation is then non-linear, and expresses the observed prices of coupon bonds as a function

of the future coupon payments for each included bond, the latent discount function and the

measurement error, ǫt. Fitting such a non-linear FSN-ECM model results in estimation of the

discount function using a cubic spline, as in the widely used McCulloch (1971) procedure, but

does so by making coherent use of both the time series and cross-sectional information in the

data. This extension of our approach would allow forecasting of future coupon bond prices and

8In the absence of such an observation, there is no valid point to use as the lower maturity point in a linear
interpolation. An alternative, not adopted here, would be to derive a 1 month yield by assuming yields are
constant for all maturities up to and including the first observed maturity.
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Figure 2: Zero-coupon, Unsmoothed Fama Bliss yields on US Treasury bonds. The upper panel

shows a 3-dimensional plot of the dataset used in Section 3; yields are measured in percentage points per

annum. The lower panel plots as circles the maturities observed at each date.
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is left to future research.

3.2 FSN-ECM forecasting models

The model nomenclature FSN(m)-ECM(p) is used to denote a model in which the spline, Sγt
(τ ),

has knots positioned at m different maturities (i.e. the knot vector k has dimension m) and the

maximum lag entering the ECM state equation (3) is the pth lag of γt+1. We consider models

here with m ∈ {5, 6} and p ∈ {1, 2}. The following non-singular transformation of the state

equation is useful in what follows. The transformed vector, ϕt := Qγt, consisting of the (latent)

short rate and inter-knot (latent) yield spreads is given by

ϕt :=
(

γ1t, γ2t − γ1t, ..., γmt − γm−1,t

)′
=

(

1 01×(m−1)

β′

)

γt = Qγt, (10)

where β′ is defined as in (3). The state equation may then be written equivalently as the VAR

∆ϕt+1 = Qα(β′Q−1ϕt − µs) + QΨQ−1∆ϕt + ηt, (11)

where ηt = Qνt, and we define Ωη =Var[ηt] = QΩνQ
′.

For all of the FSN(m)-ECM(p) forecasting models used in Sections 3 and 4, the covariance

matrix Ωη is diagonal and Ωǫ = σ2
ǫIN has the one free parameter, σ2

ǫ . In all cases the Kalman

filter is initialised using (γ′
1, γ

′
0)

′ ∼ (µ∗,Ω∗), where Ω∗ = 0 and µ∗ is set equal to the yields,

(y0(k)′, y−1(k)′)′, that correspond to the knot maturities and are observed in the data for the two

periods prior to our estimation period (i.e. 1984:11 and 1984:12).9 FSN(m)-ECM(1) models

are obtained by setting Ψ = 0, whilst we impose that QΨQ−1 is diagonal in all FSN(m)-

ECM(2) models. The latter restriction means that only own lagged changes of the short rate

and spreads enter each equation in (11). The matrix α in (3) determines the loadings on the

spread regressors, β′γt. The FSN(5)-ECM(p) models considered always employ an unrestricted

α, whilst the FSN(6)-ECM(p) models use a restricted α in which the first 5 rows form an upper

triangular matrix and the last row consists entirely of zeros. We dub this form, which draws

on the empirical findings of Hall, Anderson, and Granger (1992), ‘triangular α’ and adopt the

nomenclature T-FSN(m)-ECM(p) for models with the restriction imposed. In such triangular

9The initialisation procedure used legitimately conditions on pre-sample information and avoids augmenting
the parameter vector of the model with the initial state vector. Diffuse initialisation was found not to perform
well in forecasting in this context. The motivation is the use of the approximation that the observed knot-yields
follow a random walk for the 2 periods in question. Note that in Section 3.4 it is necessary to use γ

1t
= yt−1(1.5)

for t = 0, 1 as 1 month yields are not observed in the dataset used there.
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models the change in a given knot-yield, ∆γj,t+1, depends only on time t spreads involving

knot-yields of the same and longer maturities, i.e. on (γj+1,t − γj,t, ..., γm,t − γm−1,t)
′). Thus,

when Ψ = 0, ∆γm,t+1 follows a random walk.

3.3 Model selection procedure

The data from 1985:1 to 1993:12 inclusive was used as ‘training’ data for the purpose of an

in-sample model selection stage in which the number of knots (m) and their positions (k) were

determined. One-step ahead forecasts of the data for each month from 1994:1 to 2000:12 inclusive

were then made using a small subset of models carried forward from the in-sample stage, and the

forecasts compared across those models. It was felt that there was insufficient data to hold back

some time periods for additional evaluation of a single forecasting model or procedure selected

after the second stage.

The in-sample stage for knot selection is based on assessing the cross-sectional fit for a large

number of different knot vectors, k. Specifically, we fit using OLS a natural cubic spline with

knot vector k to each observed yield curve, yt(τ ), and then compute the mean across time of the

residual sum of squares (RSS) from each of the cross-sectional regressions. For m = 5 and m = 6,

the top twenty knot vectors in terms of minimisation of the mean RSS amongst all possible k with

end knots at 1 and 84 months and internal knots lying in the set (2, 3, ..., 11, 12, 15, 18, ..., 78, 81).

This is the same set of maturities used in the dataset described above, but excluding the shortest

and longest maturities.10 Other values of m were not considered. The procedure has the

advantage that it is computationally feasible to search over a very large model space in the

manner described (46,376 knot vectors for m = 6, and 5984 for m = 5). The criterion is cross-

sectional fit rather than dynamic forecasting, but the ability to mimic the shape of observed

yield curves is a preliminary desideratum for the FSN-ECM model to perform well in forecasting.

Three knot vectors for m = 6 and one for m = 5 were then carried forward to the second

stage, avoiding k’s in which neighbouring knots occupied adjacent positions in the ordered set

(2, 3, ..., 11, 12, 15, 18, ..., 81, 84). It was found that in-sample estimation using such knots and

the training data alone resulted in poorly behaved estimates of Ωη that involved zero variances.

10We present models with the first knot positioned at 1 month, i.e. k1 = 1, rather than at the first maturity
present in the dataset, i.e. k1 = 1.5, for two reasons: k1 = 1 is a more natural, generally applicable choice and its
use here allows the estimation of a 1 month base rate using the smoothed estimates, γ̂

1t
, if desired.
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3.4 Forecast Evaluation

The forecast performance of the FSN-ECM models selected from the first stage is compared here

to three rival models: a RW for the yield curve (i.e. the ‘no change’ forecast, RWY C), the Diebold

and Li (2006) dynamic Nelson-Siegel model (henceforth DNS) and the ET forecast derived in

Theorem 1. Two different estimation schemes are used in forecasting: either the parameters are

updated recursively (R) by adding an observation to the data used for estimation each time a

new forecast is made, or parameters are held constant (C) at the in-sample estimates obtained

using the 1985:1 to 1993:12 training data. Implementation of the second and third rival models

is described before proceding to a discussion of the forecasting results.

We implement the version of the DNS model preferred by Diebold and Li (2006) in which

each of the three latent factors follows an AR(1) process. The three factors parametrise the

Nelson and Siegel (1987) latent yield curve at each time t and may be interpreted as the ‘level,

slope and curvature’ of the latent yield curve. Rather than use the 2-stage OLS estimation

procedure of Diebold and Li (2006), we use the state space form of the model and the Kalman

filter to perform QML estimation (as with the FSN-ECM models). The DNS model specification

is almost identical to the ‘yields-only’ model in Diebold, Rudebusch, and Aruoba (2006), with

unrestricted and diagonal covariance matrices for the disturbances of the state and observation

equations respectively. The only difference is that for the observation disturbance, the elements

of the diagonal of the covariance matrix are restricted to be equal within 8 different maturity

groupings, owing to the higher dimension of the yield curve in this setting.11 The state equation

was intialised using the unconditional mean and variance of the state vector, as in Diebold,

Rudebusch, and Aruoba (2006).

Since our dataset does not include a 1 month yield, we produce ET forecasts of yt(3 : 84)

based on equation (6) with the first two rows excluded, where yt(3 : 84) := (yt(3), yt(4), ...,

yt(84))
′. Twenty five additional yields, namely (yt(13), yt(16), ..., yt(85))

′, are thus included in

the information set on which the ET forecasts are based, compared both to the FSN-ECM and

DNS forecasts.12 The vector of term premia, ρ(3 : 85) := (ρ(3), ..., ρ(85))′, is estimated by OLS

11Each maturity in (1.5, 2, 3, 4) has its own parameter; a single parameter then corresponds to each of the
maturity groupings (5, 6, ..., 10), (11, 12, 15, ..., 24), (27, ..., 79), and (79, ..., 84).

12Clearly the FSN-ECM and DNS forecasts can be interpreted, for purposes of assessing whether the ET
forecasts of yt(τ ) are MSFE minimising forecasts, as being conditional on this broader information set even
though use is not made of the additional yields.
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using the following regression derived from equation (6)

∆yt+1(3 : 84) = ᾱET
3:84[st(3 : 85) − ρ(3 : 85)] + νt+1, (12)

where st(3 : 85) := (st(3, 1), ..., st(85, 1))
′, ᾱET

3:84 denotes the 3rd to 84th rows inclusive of ᾱET
84

in equation (6), and the term premia are assumed to lie on a cubic spline with knot vector

(1, 3, 4, 27, 85) and ρ(1) = 0. The parameters estimated by OLS are thus the term premia for

the knot maturities (3, 4, 27, 85) – see Theorem 2 of the Appendix and Poirier (1973).

Figure 3 plots by maturity the percentage increase in MSFE relative to the RWY C (negative

values thus representing superior performance compared to the RWY C) for the following models:

the T-FSN(6)-ECM(2) model with triangular alpha and k = (1, 2, 4, 18, 24, 84); the DNS model;

and the ET forecasting equation in (12). In all cases estimation is performed recursively, except

for the additional line plotted for the ET case with parameters held constant (C) throughout

the forecast evaluation period. Not only does the triangular FSN(6)-ECM(2) model outperform

all of the rival models (including the RWY C) at all maturities, but the percentage reductions

obtained in MSFE compared to the RWY C are also substantial, particularly at the shorter

maturity end of the yield curve. Considered across the entire span of maturities, the gains over

the DNS model are large, with DNS performing particularly poorly and worse than the RWY C

for maturities between 12 and 32 months. The Diebold and Li (2006) DNS method is the only

previously published method for forecasting high dimensional yield curves. The authors report

better performance for the method at forecast horizons of 6 and 12 months ahead than at the 1

month ahead horizon.

Strikingly, the ET forecasts perform worse than the RWY C for the majority of the 82 ma-

turities forecast. ET forecasts produced holding the term premia parameters constant (C) have

higher MSFE for all maturities than those produced using recursive estimation (R). Presumably

recursive estimation improves the forecasts by enabling a degree of variation over time in the

term premia, ρ(3 : 85), which are of course assumed to be time-invariant constants under the

ET. The average MSFEs across the 82 maturities are 113% and 121% of that for the RWY C

in the recursive and constant parameter cases respectively. It is clear from Figure 3 that the

conditional mean of Theorem 1 implied by the ET is far from being the optimal MSFE predictor

since the MSFEs of the T-FSN(6)-ECM(2) model are much smaller than those for either the
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Figure 3: Percentage reduction in model MSFEs by maturity relative to those of the RWY C .
Shown are the results for the triangular (T-) FSN(6)-ECM(2) model with k = (1, 2, 4, 18, 24, 84), the

Diebold and Li (2006) DNS model and the Expectations Theory (ET) forecasting equation (12). (R)

stands for recursive estimation and (C) for forecasts produced using constant parameters. The horizontal
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Figure 4: Percentage reduction in FSN(6)-ECM(p) model MSFEs by maturity relative to those
of the RWY C . The knot vector used in all cases is k = (1, 2, 4, 18, 24, 84). (a) FSN(6)-ECM(2) models

with triangular (T-) and unrestricted (U-) α matrices. (b) Z- stands for a model with α = 0. (c) R

stands for recursive estimation and C for forecasts produced using constant parameters. The horizontal

axes are maturity measured in months.

ET (R) or ET (C) cases for all maturities included. In line with this conclusion, the average

across maturities of the absolute value of the first order autocorrelations of the forecast errors

are 0.295 (R) and 0.288 (C), compared to a value of zero under the null that the conditional

mean of Theorem 1 is the true one. The new method for evaluating the ET proposed in Section

2.2.1 thus finds that the ET is very wide of the mark. We reach the same conclusion using a

differently constructed dataset consisting of the yields on a complete set of T-Bills in Section 4.

Figure 4 presents analagous plots for FSN(6)-ECM(p) models, all of which have k = (1, 2, 4, 18,

24, 84) and are estimated recursively unless indicated otherwise. In each panel the T-FSN(6)-

ECM(2) model of Figure 3 is shown as a thick solid line for ease of comparison. Panel (a)

compares that triangular model with an otherwise identical specification in which α is unre-
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stricted (U). The enormous benefit of the triangular restriction on α is clearly evident and is

thought to stem from imprecise estimation of the large number of parameters in an unrestricted

α with m = 6 and time series of this length. Panel (b) highlights the impact of the restrictions

Ψ = 0 and α = 0. Imposing Ψ = 0 on the T-FSN(6)-ECM(2) model to obtain the T-FSN(6)-

ECM(1) model is very costly in terms of MSFE for all but the shortest maturities. Imposing

α = 0 (to obtain the Z- or Zero model) is somewhat less costly for maturities greater than or

equal to 7 months, but is drastically costly for the shortest maturities. Thus inclusion of the

spreads β′γt as regressors in the state equation (3) is crucially important for forecasting the

short end of the yield curve, but also continues to play a role at the long end (witness that the

line for the T-FSN(6)-ECM(2) model is still below that for the Z-FSN(6)-ECM(2) model for the

longer maturities in panel (b)). It is important for forecasting (in terms of MSFEs by maturity)

to retain both spreads and lagged changes in knot-yields as regressors in the ECM state equa-

tion. Finally in panel (c) and for the triangular FSN(6)-ECM(2) model, recursive estimation (R)

produces similar MSFEs to holding the parameters constant (C), the largest differences being

for the shorter maturities and in favour there of recursive estimation. This observation suggests

that parameter non-constancy is not a significant problem when forecasting the data used here

with FSN-ECM models.

Table 1 reports measures of forecast performance both for the models considered in Figures

3 and 4, and for a broader range of specifications and estimation schemes. The focus is on

summary MSFE-based measures, although the average across maturity of the absolute value

of some sample autocorrelations of the forecast errors and of the mean forecast errors are also

reported. Although the average across maturity of the MSFEs, or equivalently the trace of

the MSFE matrix (denoted mMSFE), is an intuitively reasonable measure it is not invariant

to non-singular linear transformations of the data even when linear predictors are used. For

example, the model ordering implied by the tr(mMSFE) can in principle change when the

data to be forecast is expressed as a vector consisting of the shortest rate and spreads relative to

that rate, rather than as a yield curve. Also reported therefore is the determinant of the MSFE

matrix, which has the desired invariance property (see Clements and Hendry 1993).13

13To see this, let the transformed data y∗

t (τ ) = Pyt(τ ) for some non-singular P , and denote the corresponding
MSFE matrices of the forecast errors by mMSFE∗ and mMSFE. Provided that the forecast ŷ∗

t (τ ) = P ŷt(τ ),
then det(mMSFE∗) = det(P ) det(mMSFE) det(P ′). It then follows immediately that model rankings do not
depend on the choice of P . Furthermore, restricting attention to cases where det(P ) = 1, as is the case for
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Model type R/C α tr/N MSFE(1.5) det1/N mean |ρ(1)| |ρ(6)| |ρ(12)|

FSN(m)-ECM(p)

k = (1, 2, 4, 18, 24, 84)
FSN(6)-ECM(2) R T 85.9 73.9 86.7 0.018 0.106 0.060 0.065

FSN(6)-ECM(2) C T 86.6 77.8 87.4 0.027 0.096 0.060 0.061

FSN(6)-ECM(2) R U 120.3 89.9 87.3 0.028 0.209 0.058 0.047

FSN(6)-ECM(2) R Z 93.5 103.7 88.2 0.014 0.204 0.057 0.126

FSN(6)-ECM(1) R T 95.7 73.9 85.2 0.021 0.300 0.050 0.118

k = (1, 2, 4, 12, 30, 84)
FSN(6)-ECM(2) R T 86.8 75.2 87.6 0.018 0.090 0.062 0.061

k = (1, 2, 4, 15, 24, 84)
FSN(6)-ECM(2) R T 85.9 74.6 87.1 0.018 0.099 0.061 0.066

k = (1, 2, 4, 27, 84)
FSN(5)-ECM(2) R U 91.6 78.4 88.0 0.017 0.147 0.091 0.050

FSN(5)-ECM(2) R T 88.9 73.3 88.3 0.021 0.093 0.060 0.051

FSN(5)-ECM(1) R U 101.3 78.4 85.7 0.030 0.331 0.062 0.106

FSN(5)-ECM(1) R T 96.6 73.9 86.6 0.022 0.295 0.046 0.120

Rival Models

RWY C - - 64.9×10−3 73.4×10−3 1.02×10−3 0.013 0.305 0.061 0.132

Diebold Li (2006) R - 97.9 79.1 86.6 0.026 0.318 0.056 0.125

Diebold Li (2006) C - 97.2 73.9 86.6 0.034 0.309 0.054 0.120

Table 1: Forecasting high dimensional yield curves: summary measures of forecast performance.
The FSN(m)-ECM(p) models are grouped according to the knot vector k; the parameter α is either
unrestricted (U), triangular (T) or equal to zero (Z). The estimation procedure used is either recursive
(R) or holds parameters constant at their in-sample estimates (C). The MSFE-based measures are de-
noted tr/N for the average MSFE, MSFE(1.5) for the MSFE of the 1.5 month yield, and det1/N for
[det(mMSFE)]1/N . With the exception of the RWY C for which the measures are reported directly, all 3
MSFE-based measures are expressed as a percentage of the corresponding measure for the RWY C . The
average across maturity of the mean forecast errors and of the absolute values of the sample autocorre-
lations of the forecast errors at lag h, |ρ(h)|, are also reported.
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The reported average MSFEs are reflective of the comments made above concerning Figures

3 and 4. Note that the average MSFE of the triangular FSN(6)-ECM(2) models is 86 to 87 per

cent of that for the RWY C forecast, compared to 89 per cent for the triangular 5 knot FSN(5)-

ECM(2) model and 97 to 98 per cent for the DNS model. For triangular m = 6 and m = 5

models, the average MSFE is higher for the ECM(1) models than for the ECM(2) ones. Unlike

the m = 6 case, the FSN(5)-ECM(2) model with an unrestricted α matrix performs quite well,

presumably due to the reduction in the number of estimated model parameters.

Large reductions compared to the RWY C of about 25 per cent in the MSFE of the shortest

(1.5 month) yield are achieved by all of the triangular FSN(m)-ECM(p) models with m ∈ {5, 6}

and p ∈ {1, 2}. Thus, very substantial gains over the random walk forecast of a short rate can

be realised using the FSN models and the information contained in the yield curve alone. Inter-

estingly, all of the models included in Table 1 perform similarly and better than the RWY C in

terms of the det(mMSFE) measure, the best performer being the triangular FSN(6)-ECM(1)

model. The triangular FSN(m)-ECM(2) models have substantially lower average absolute au-

tocorrelations at lags of 1 and 12 months than the RWY C and DNS models.

The triangular FSN(6)-ECM(2) models (e.g. the one with k = (1, 2, 4, 18, 24, 84) featured in

Figures 3 and 4) are strong performers across the entire range of summary measures considered in

Table 1. These T-FSN(6)-ECM(2) models dominate the rival forecasts of the RWY C and Diebold

and Li (2006) DNS methods in terms of MSFE across all maturities (recall Figure 3); have a

much lower average MSFE than the DNS forecasts; achieve very large reductions in the MSFE

of the short rate, conditioning on the information in past yield curves alone; and perform better

than the RWY C and very similarly to the DNS methods in terms of the det(mMSFE) measure.

Having considered a broad range of measures of forecast performance, we conclude that such

T-FSN(6)-ECM(2) models outperform the existing methods for forecasting high dimensional

yield curves.

3.5 Parameter estimates for the T-FSN(6)-ECM(2) model

We report here the QMLEs used to produce the constant parameter (C) forecasts of the trian-

gular FSN(6)-ECM(2) model with k = (1, 2, 4, 18, 24, 84), whose MSFEs are reported in Figure

transformation to ‘short rate and spreads’, the numerical value of the loss for a given model is also invariant to
P .
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µs Qα diag(QΨQ−1) diag(Ωη)
0.2188 1.223 0.0568 -0.2440 0.9495 -0.0347 0.3405 0.0979

0.1757 -1.223 0.6665 0.1461 -0.4561 0.0003 0.4623 0.0172

0.7146 0 -0.7233 0.2535 -0.5864 0.0340 0.4364 0.0073

0.2093 0 0 -0.1556 0.2685 -0.0028 0.1533 0.0267

1.048 0 0 0 -0.1757 0.0286 0.2309 0.0009

0 0 0 0 -0.0255 0.1090 0.0196

σ2
ǫ

0.0032

Table 2: QMLEs of the triangular FSN(6)-ECM(2) model with k = (1, 2, 4, 18, 24, 84) obtained
using the training data from 1985:1 to 2000:12 inclusive as the estimation data. The operation
diag(X) gives the diagonal of the matrix X as a column vector.

4(c). This choice stems from the fact that this model specification performs well across the

range of measures of forecast performance considered above, and the MSFEs for constant and

recursive estimates in Figure 4(c) are very similar.

With the parameters of the state equation (3) set equal to their QMLEs, the knot-yields {γt}

follow an I(1) process and the (m− 1) spreads between them, β′γt, are stationary cointegrating

relations. This follows since the ranks of α̂ and α̂β′ are both equal to 5, the roots z of the

characteristic polynomial of the VAR in (3) then satisfy either z = 1 or |z| > 1, and the

determinant of [α′

⊥
(I −Ψ)β⊥] is non-zero (see Johansen 1996, Theorem 4.2). The characteristic

polynomial of the VAR in (3) thus has exactly one unit root.

Table 2 reports the QMLEs of the transformed state equation (11), together with σ̂2
ǫ . Recall

that the state vector in (11) is ϕt = [γ1t, (β
′γt)

′], the vector consisting of the latent short rate

and inter-knot yield spreads. The estimates of the stationary means of the spreads β′γt are all

positive, implying that the latent yield curve is ‘upward sloping’ on average. It follows from (11)

that

∆γ1,t+1 = Qα[1](β
′γt − µs) + ∆γ1,t + η1t, (13)

where Qα[1] denotes the first row of the matrix Qα. Bearing in mind that k = (1, 2, 4, 18, 24, 120),

the estimates of the row Qα[1] in Table 2 are largest in absolute value for the spreads between

the first and second, third and fourth, and fourth and fifth knot-yields. Notice that all elements

of the last column of Qα are close to zero, indicating that the spread between the fifth and six

knot-yields is unimportant as a regressor in (11). It also follows from (11) that the vector of
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spreads follows the VAR

∆(β′γt+1) = Qα[2:6](β
′γt − µs) + (QΨQ−1)[2:6]∆(β′γt) + η[2:6],t, (14)

where X[2:6] denotes the 2nd to 6th rows of some matrix, X. With parameters set equal to the

QMLEs in Table 2, this VAR is stationary. Furthermore, a given spread at (t+1) then depends

only on time t spreads involving the same and longer maturities (since Qα[2:6] is upper triangular

and (QΨQ−1)[2:6] is diagonal) and the same spread at time (t − 1). Note that all elements of

the estimate of QΨQ−1 are positive and of the estimate of the diagonal of Qα[2:6] are negative.

4 Forecasting Treasury Bill Yields

The focus of this section is on forecasting a complete set of Treasury (T-) bills with maturities

ranging from 1 to 11 months inclusive. The dataset used is taken from the widely available and

studied ‘Fama Treasury Bill term structure files’ contained in the CRSP monthly US Treasury

database. Since zero-coupon yields on T-bills are directly observable, the analysis in this section

is free of any initial method used to estimate the zero-coupon yield curve prior to analysing its

dynamics. A further advantage is that the use of a yield curve dataset constructed differently

to the one in Section 3 allows a check on the robustness of the findings there concerning the

Expectations Theory. The results presented demonstrate the flexibility of the FSN-ECM models

in forecasting different portions of the yield curve. The information set on which the forecasts

are based is smaller since current and past yields with maturities greater than 11 months are

excluded. Nevertheless, the use of less heavily parametrised FSN-ECM models with a smaller

number of knots, m, provides an effective forecasting method in this setting. Less computation-

ally burdensome models and datasets such as these are helpful when, for example, using particle

filtering to form predictive densities.

The dataset is constructed by selecting for each month the T-bill closest in maturity to

12 months and then following that bill to maturity. The assumption is that the yield curve

is constant over the interval between the maturity that is actually observed and the ‘target’

maturity, so the method chooses not to use linear interpolation. For a given month our dataset

consists of the 11 monthly yields to maturity of T-bills, yt(1 : 11), and covers the period 1984:11

to 2000:3 inclusive. This is the same period as covered by the dataset used in Section 3, except
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that the last 9 months of the year 2000 are omitted.14 A month is taken to equal 30.4 days

when computing the yields.

The five best performing knot vectors in terms of cross-sectional fit, with m = 4 knots and

first and last knots at 1 and 11 months respectively, were selected using the same in-sample

procedure as that described in Section 3.3. The two internal knots of each knot vector were

chosen from the set (2, 3, ..., 10). Only FSN(4)-ECM(p) models are considered here, again with

p ∈ {1, 2}. The 2 knot vectors (1, 2, 3, 11) and (1, 2, 5, 11) were then carried forward to the

forecast evaluation stage. The restrictions on Ωη, Ωǫ, α, and QΨQ−1 are exactly as described

in Section 3.2. As there, the Kalman filter is initialised using (γ′
1, γ

′
0)

′ ∼ (µ∗,Ω∗), where Ω∗ = 0

and µ∗ is set equal to the yields, (y0(k)′, y−1(k)′)′, that correspond to the knot maturities and

are observed in the data for the two periods prior to our estimation period (i.e. 1984:11 and

1984:12). The estimation or ‘training data’ period is again 1985:1 to 1993:12 inclusive, and

forecasts are made for each period from 1994:1 to 2000:3 inclusive.

Figure 5 plots by maturity the percentage increase in MSFE relative to the RWY C (negative

values thus representing superior performance compared to the RWY C) for the FSN(4)-ECM(2)

model with unrestricted (U-) alpha and k = (1, 2, 3, 11), and for the ET forecasts of yt(1 : 10)

from equation (6) for both recursively estimated (R) and constant (C) parameters.15 The vector

of term premia, ρ11, is as before estimated by OLS using the regression derived from (6), with

the term premia assumed to lie on a cubic spline with knot vector (1, 2, 3, 11) and ρ(1) = 0.

As in Section 3, the FSN-ECM model outperforms the rival RWY C and ET forecasting

methods at all maturities in terms of MSFEs. The average MSFE of the U-FSN(4)-ECM(2)

model is 77.6 per cent of that of the RWY C . The ET forecasts perform worse than the RWY C

for all but the 1 month yield, and ET forecasts produced holding the term premia parameters

constant (C) have higher (or equal) MSFE for all maturities than those produced using recursive

estimation (R). The average MSFEs across the 10 maturities are 102.3% and 109.6% of that for

the RWY C in the recursive and constant parameter cases respectively. It is clear from Figure 5

that the conditional mean of Theorem 1 implied by the ET is not the optimal MSFE predictor

14The 12 month yield and the last 9 months of the year 2000 are omitted from the dataset analysed in this
section as the inclusion of either results in missing observations. Further details concerning the Fama T-Bill term
structure files may be found in the CRSP monthly US Treasury database guide (pp. 29-31).

15Comparison is not made with the Diebold and Li (2006) DNS method in this section. Since one of the dynamic
factors (the ‘level factor’) of the model is equal to the limit of the latent yield curve as the maturity tends to
infinity, it seems that the model is not well suited to modelling the short end of the yield curve alone.
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Figure 5: Percentage reduction in model MSFEs by maturity relative to those of the RWY C .
Shown are the results for the FSN(4)-ECM(2)model with unrestricted (U-) α matrix and k = (1, 2, 3, 11),

and for the Expectations Theory (ET) forecasting equation (6). (R) stands for recursive estimation

and (C) for forecasts produced using constant parameters. The horizontal axis is maturity measured in

months.

since the MSFEs of the U-FSN(4)-ECM(2) model are much smaller than those for either the ET

(R) or ET (C) cases for all maturities included. In line with this conclusion, the average across

maturities of the positive, first order autocorrelations of the forecast errors are 0.278 (R) and

0.281 (C), compared to a value of zero under the null that the conditional mean of Theorem 1

is the true one. As in Section 3, we find that the ET is very wide of the mark.

Figure 6 presents analogous plots for various FSN(4)-ECM(p) models. The models are

estimated recursively unless indicated otherwise. In each panel the U-FSN(4)-ECM(2) model of

Figure 5 is shown as a thick solid line for ease of comparison. Panel (a) compares that model

with an otherwise identical specification in which α is triangular (T) instead of unrestricted. In

contrast to Figure 4(a), the triangular restriction results in higher MSFEs for most of the T-bill

maturities. Of course the inter-knot spreads, β′γt, involved are between different maturities in

the two cases. Panel (b) shows the impact of imposing the restrictions Ψ = 0 or α = 0 on

the U-FSN(4)-ECM(2) model. As in Figure 4(b), the α = 0 restriction is extremely costly for

short maturities such as those of T-bills, supporting the earlier conclusion that inclusion of the

spreads, β′γt, as regressors in the state equation (3) is very important for forecasting the short
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Figure 6: Percentage reduction in FSN(4)-ECM(p) model MSFEs by maturity relative to those
of the RWY C . (a) FSN(4)-ECM(2) models with triangular (T-) and unrestricted (U-) α matrices, and

k = (1, 2, 3, 11). (b) All models shown are for k = (1, 2, 3, 11); Z- stands for a model with α = 0. (c) U-

FSN(4)-ECM(2) models with the 2 different knot vectors indicated. (d) R stands for recursive estimation

and C for forecasts produced using constant parameters. The horizontal axes are maturity measured in

months.
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Model type R/C α tr/N MSFE(1) det1/N mean |ρ(1)| |ρ(6)| |ρ(12)|

k = (1, 2, 3, 11)
FSN(4)-ECM(2) R U 77.6 62.0 59.8 0.051 0.155 0.089 0.111

FSN(4)-ECM(2) C U 78.8 68.3 60.3 0.056 0.170 0.101 0.115

FSN(4)-ECM(2) R T 79.4 55.1 65.2 0.053 0.204 0.108 0.140

FSN(4)-ECM(2) R Z 114.1 86.7 68.9 0.047 0.461 0.137 0.161

FSN(4)-ECM(1) R U 80.9 62.0 59.6 0.058 0.230 0.088 0.105

FSN(4)-ECM(1) R T 81.5 54.5 65.2 0.055 0.288 0.119 0.126

k = (1, 2, 5, 11)

FSN(4)-ECM(2) R U 92.1 57.7 66.6 0.062 0.187 0.087 0.130

FSN(4)-ECM(2) R T 124.4 80.5 88.1 0.057 0.121 0.075 0.220

FSN(4)-ECM(2) R Z 111.5 83.6 70.2 0.045 0.465 0.145 0.168

FSN(4)-ECM(1) R U 84.8 72.2 60.5 0.059 0.247 0.098 0.111

FSN(4)-ECM(1) R T 83.1 57.1 65.5 0.049 0.318 0.135 0.112

RWY C - - 57.9×10−3 0.217 5.55×10−3 0.037 0.352 0.152 0.132

Table 3: Forecasting T-Bills: summary measures of forecast performance. The FSN(4)-ECM(p)
models are grouped according to the knot vector k; the parameter α is either unrestricted (U), triangular
(T) or equal to zero (Z). The estimation procedure used is either recursive (R) or holds parameters
constant at their in-sample estimates (C). The MSFE-based measures are denoted tr/N for the average
MSFE, MSFE(1) for the MSFE of the 1 month yield, and det1/N for [det(mMSFE)]1/N . With the
exception of the RWY C for which the measures are reported directly, all 3 MSFE-based measures are
expressed as a percentage of the corresponding measure for the RWY C . The average across maturity of
the mean forecast errors and of the absolute values of the sample autocorrelations of the forecast errors
at lag h, |ρ(h)|, are also reported.

end of the yield curve. Panel (c) compares two U-FSN(4)-ECM(2) models with k = (1, 2, 3, 11)

and k = (1, 2, 5, 11), with the poor performance of the latter knot vector clearly evident for

maturities greater than 4 months. The knot selection procedure described in Section 3.3, whilst

a very useful tool for searching over a large model space, does not ensure good forecasting

performance.16 Finally, panel (d) shows that for the U-FSN(4)-ECM(2) model of Figure 5

with k = (1, 2, 3, 11), recursive estimation produces similar MSFEs to holding the parameters

constant.

Table 3 reports the summary measures of forecast performance used earlier for the two

selected knot vectors and a range of model specifications, including those in Figure 6. Concen-

trating on the k = (1, 2, 3, 11) case, the U-FSN(4)-ECM(p) models achieve a very large reduction

of 38 per cent in the MSFE of the 1 month yield relative to that of RWY C , whilst the T-FSN(4)-

16One possibility not explored here would be to compare the in-sample, 1-step ahead prediction errors for
selected knot vectors using the training data alone, prior to out-of-sample forecasting.
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µ′
s 0.2361 0.1043 0.3902 diag(QΨQ−1) 0.0994 0.0935 0.1531 0.1592

Qα 2.4258 -4.0320 0.8578 diag(Ωη) 0.1002 0.0484 0.0044 0.0215

-2.1054 3.9191 -0.6196

-0.2904 0.0584 0.0012 σ2
ǫ 0.0023

-0.1431 0.0435 -0.1482

Table 4: QMLEs of the U-FSN(4)-ECM(2) model with k = (1, 2, 3, 11) obtained using the
training data from 1985:1 to 2000:3 inclusive as the estimation data. The operation diag(X) gives
the diagonal of the matrix X as a row vector.

ECM(p) models show an even larger reduction of about 45 per cent. As in Section 3, very

substantial gains over the random walk forecast of a short rate can be realised using the FSN-

ECM models and the information contained in the yield curve alone. The U-FSN(4)-ECM(p)

models are the best performers in terms of the det(mMSFE) measure, with large reductions of

40 per cent compared to the RWY C . The U-FSN(4)-ECM(2) model with k = (1, 2, 3, 11) fea-

tured in Figure 5 is thus a strong performer across the range of summary measures considered

in Table 3. For completeness, Table 4 reports for this model the QMLEs used to produce the

constant parameter (C) forecasts whose MSFEs are reported in Figure 6(d). As in Section 3.5,

with the parameters of the state equation (3) set equal to these QMLEs, the knot-yields {γt}

follow an I(1) process and the (m− 1) spreads between them, β′γt, are stationary cointegrating

relations.

5 Conclusion

This paper has developed Functional Signal plus Noise (FSN) time series models for analysing

the dynamics of a large cross-section of yields in which contemporaneous observations are func-

tionally related. The FSN models specify the evolution over time of stochastic functions, a

problem that has received relatively little attention in the econometrics and statistics literature,

and the models may conveniently be written in linear state space form. The functional, cross-

sectional relationship between contemporaneously observed yields is captured by modelling the

observed curves as the sum of a smooth, cubic spline ‘signal function’ and noise. The state

equation of the FSN-ECM model determines the stochastic evolution of the spline function by

specifying that the yields corresponding to the knots of the spline follow a vector autoregression

which may be written as an Equilibrium Correction Model in which the spreads between the
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knot-yields appear as regressors.

We prove a new theorem establishing that the Expectations Theory of the term structure

completely determines the conditional mean of any zero-coupon yield curve, given an information

set that includes the current, complete yield curve of adequate dimension. We are thus able

to derive and implement the minimal mean square error point forecasts implied by the theory.

This provides a novel means of evaluating the Expectations Theory in which its 1-step ahead

forecasts are compared with those of rival models. Our results, obtained using two different

datasets, strongly support the growing body of empirical evidence against the theory.

The FSN-ECM models are used to forecast high-dimensional, zero-coupon yield curves of US

Treasury bonds at the one month ahead horizon, and their performance compared in an out-of-

sample experiment to several important rival models. The triangular FSN(6)-ECM(2) models

achieve large reductions in mean square forecast error relative to a random walk for yields,

especially at the shorter maturity end of the yield curve, and readily dominate the Diebold

and Li (2006), Expectations Theory and random walk forecasts across all maturities. These

models achieve very large reductions in the MSFE of the short rate (i.e. the 1 or 1.5 month

yields), conditioning on the information in current and past yield curves alone, and also perform

well in terms of the forecast evaluation measure which is the determinant of the mean square

forecast error matrix. It turns out that (latent) yield spreads provide important information for

forecasting the yield curve, especially in the case of shorter maturities, but not in the manner

prescribed by the Expectations Theory. It is also important for forecasting to retain lagged

changes in knot-yields as regressors in the ECM state equation. The constant parameter FSN-

ECM forecasting models examined performed well and use an ECM state equation in which the

knot-yields are I(1) and the spreads between them are stationary, cointegrating relations.

Overall, we find that the proposed FSN-ECM models readily outperform all other existing

methods of which we are aware for forecasting high dimensional yield curves. For the first time

in the literature, we present forecasting models whose one month ahead forecasts strongly out-

perform a random walk for the yield curve. Furthermore, the models are for high dimensional

yield curves rather than for a small subset of maturities. Two topics in particular merit inves-

tigation in future research. First, whilst we have concentrated on demonstrating how much can

be achieved in forecasting the yield curve using the information in current and past yield curves
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alone, macroeconomic factors can readily be included as regressors in the state equation of the

FSN-ECM models. Second, the use of non-linear FSN-ECM models in which the observation

equation expresses coupon bond prices as the sum of a cubic spline discount function and noise

would remove the need to estimate zero-coupon yield curves in an initial stage separate from

modelling the dynamics of the term structure.
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APPENDIX

A A primer on cubic spline theory

A cubic spline is essentially a piecewise cubic function in which the pieces join together to form

a smooth function overall.

Definition 3 Cubic spline on (k; γ). Consider an interval of the real line [a, b], subdivided by

a vector, k, of points

k = (kj)
m
j=1,

where k1 = a, km = b, and kj+1 > kj for j = 1, ...,m− 1. Each point kj is referred to as a knot,

and for m ≥ 3, the (kj)
m−1
j=2 are called the internal knots. Denote by γ a vector of real-valued

ordinates, (γj)
m
j=1. A function S(x) with domain [a, b] is a cubic spline interpolating to γ

with knots k, or more concisely a cubic spline on (k; γ), if and only if:

(i) S(kj) = γj (j = 1, ...,m);
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(ii) S(x) coincides with a polynomial of degree at most three on the sub-intervals [kj , kj+1]

(j = 1, ...,m − 1); and

(iii) S(x) is twice continuously differentiable on [a, b].

If, in addition, the second derivatives at the end knots, S′′(k1) and S′′(km), are both zero, S(x)

is said to be a natural cubic spline on (k; γ).

In this context since the knots are positioned at deterministic maturities that are fixed

throughout the analysis, whereas the states γ to which the spline interpolates are stochastic,

a cubic spline S(x) on (k; γ) is denoted by Sγ(x). The object of interest here is usually the

restriction of Sγ(x) to a finite vector of points τ = (τ1, ..., τN ). The cubic spline is then written

as the finite dimensional vector Sγ(τ ) := (Sγ(τ 1), ..., Sγ(τN ))′.

A well known result that arises by combining conditions on S′′(k1) and S′′(km) with the

conditions (i), (ii) and (iii) of Definition 3 is that Sγ(τ ) is a linear function of the ordinate

vector γ. This result, stated for the case of a natural cubic spline in the theorem below, allows

the FSN-ECM models to be written in linear state space form.

Theorem 2 Let Sγ(x) be a natural cubic spline on (k; γ), with k and γ vectors of dimension m.

Also let τ = (τ 1, ..., τN ) be a finite vector of points in [a, b], and Sγ(τ ) := (Sγ(τ 1), ..., Sγ(τN ))′.

Then

Sγ(τ ) = W (k, τ )γ,

where the N × m interpolation matrix, W (k, τ ), depends only on τ and the knot positions k.17

Details of how to compute W (k, τ ) may be found in equations (2.5),(2.6),(2.11),(2.12) and

(2.14) of Poirier (1973, pp. 517-518), where π0 and πk are set to zero in the case of a natural

cubic spline.

Proof. See, for example, Poirier (1973, pp. 517-518).
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