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Abstract: The empirical process of the residuals from general autoregressions
is investigated. If an intercept is included in the regression, the empirical process
is asymptotically Gaussian and free of nuissance parameters. This contrasts the
known result that in the unit root case without intercept the empirical process is
asymptotically non-Gaussian. The result is used to establish asymptotic theory
for the Kolmogorov-Smirnov test, Probability-Probability plots, and Quantile-
Quantile plots. The link between sample moments and the empirical process of
the residuals is established and used to establish the properties of the cumulant
based tests for normality referred to as the Jarque-Bera test.
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1 Introduction

In this paper, the asymptotic theory of the empirical process of autoregressive
residuals is analysed. This can then be used to establish formal tests on the dis-
tribution of the autoregressive innovations using a Kolmogorov-Smirnov test, an
Anderson-Darling-type test, a Probability-Probability plot or a Quantile-Quantile
plot with confidence bands, or the standard cumulant based tests for normality,
known as the Jarque-Bera tests. The empirical process is analysed for a gen-
eral class of autoregressions, including vector autoregressions and autoregressive
distributed lags models. These can have stationary roots, unit roots as well as
explosive roots, and include deterministic terms. It is found to be asymptotically
Gaussian and free of nuissance parameters as long as an intercept is included
in the model. This is important in applications, as the question of innovation
distribution can be addressed without having to locate the characteristic roots.
Similar result apply for the likelihood-based tests for unit roots and the order of
the autoregression, but not for the usual correlograms, see Nielsen (2001, 2006,
2007).
For the basic first order autoregression without determistic regressors, the as-

ymptotic theory is available in the literature. The results are somewhat discour-
aging in that the empirical process is asymptotically Gaussian in the stationary
and the explosive cases, but non-Gaussian in the unit root case. As a consequence,
inference about the distribution of the innovations and about the autoregressive
coefficient has to be conducted simultaneously. The key to the results presented
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here is that the non-Gaussian component in the unit root case stems from the
sum of the residuals. When an intercept is included in the model, as in most
applications, this sum is zero due to the estimating equation for the intercept and
therefore the non-Gaussian component does not arise.
We will exploit that the expectation taken with respect to the empirical distri-

bution of residuals bε1, . . . ,bεT is simply their sample average. This is first used as
an expository device, and is later used to link the sample moments of the residuals
to the empirical distribution of the residuals. This is then used to establish the
properties of the cumulant based tests for normality referred to as the Jarque-Bera
test.
The paper is organised so that the empirical process and the main result are

presented in §2. Applications of this result to the above mentioned tests and plots
are discussed in §3. The proofs are given in §4.

2 The empirical process

At first the sample average of residuals is discussed for first-order autoregressions
with and without an intercept. This highlights the importance of the intercept
when dealing with the empirical distribution of the residuals. Next, the general
autoregressive model and the empirical distribution of the residuals are defined;
finally, the asymptotic theory of the empirical distribution is given.

2.1 The role of the intercept

The intercept plays a very important role for the empirical distribution of autore-
gressive residuals. This point is best illustrated by examining the sample average
of the residuals, which is the expectation of the empirical distribution.
Consider the first-order autoregression with an intercept as given by

Xt = αXt−1 + µ+ σεt (t = 1, . . . , T ) , (2.1)

conditional on X0 and parameter space α, µ, σ2 ∈ R2 ×R+. No assumptions are
needed for the innovations, εt, at this point. Estimating the parameters by least
squares regression leads to scaled residuals of the form

bεt = Xt − bαXt−1 − bµbσ (t = 1, . . . , T ) .

A crucial property of the residuals, bεt, is that their average is zero,
1

T

TX
t=1

bεt = 0, (2.2)

due to the estimating equation for µ. This implies that the expectation of the
empirical distribution of the residuals is zero. As an immediate consequence, the
expectation of the empirical distribution is free of nuisance parameters. In line
with this it will be shown in §2.3 that the empirical distribution is asymptotically
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Gaussian and free of nuisance parameters. This has previously been shown for
|α| < 1 and |α| > 1 by Pierce (1985) and by Koul and Leventhal (1989), re-
spectively, whereas the result for |α| = 1 has not been studied in the context of
empirical processes.
In constrast, consider the first-order autoregression without intercept, satisfy-

ing
Xt = αXt−1 + σεt (t = 1, . . . , T ) , (2.3)

conditional on X0, with parameter space α, σ2 ∈ R×R+. The scaled least squares
residuals are now of the form

bεt = Xt − bαXt−1bσ (t = 1, . . . , T ) .

Since the intercept is excluded it will in general hold that
PT

t=1bεt 6= 0. The
application of standard asymptotic techniques, with details given in §4.1, reveals
the following asymptotic behaviour for the sample average.

Theorem 2.1 Suppose the model given by (2.3) is satisfied with independent in-
novations with distribution function F where Eεt = 0, Varεt = 1, and E|εt|2+γ <∞
for some γ > 0. Let B (u) be a standard Brownian motion. Then

1√
T

TX
t=1

bεt = 1√
T

TX
t=1

εt +R,

where the remainder term R satisfies

R
P→ 0 for α 6= 1,

R
D→

Z 1

0

B (u) dB (u)Z 1

0

{B (u)}2 du

Z 1

0

B (u) du for α = 1.

This result indicates that in the absence of an intercept rather different as-
ymptotic behaviour can be expected in the presence and absence of unit roots.
Moving on to higher order autoregressions without an intercept, different Dickey-
Fuller-type expressions arise depending on the number of unit roots. This wide
range of limiting distributions is not encouraging. From a practically point of
view the solution is simply to consider the studentised residuals instead of the
scaled residuals, which of course amounts to the residuals of the regression (2.1).
This is the solution adopted, implicitly, in the frequently used cumulant based
tests for normality, see §3.4. For the remainder of the paper an intercept will
therefore be included in the model. Note that this is a modeling assumption, not
an assumption about the distribution. Asymptotic theory for empirical process
for |α| < 1, α = 1 and |α| > 1, have been found by Boldin (1981), Lee and Wei
(1999) and Koul and Leventhal (1989), respectively. The result for α = −1 has
not been studied in the context of empirical processes.
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2.2 The general autoregressive model

Let Xt be a p-dimensional time series partitioned in terms of a univariate time
series Yt and (p− 1)-dimensional time series Zt. The general univariate model is
given by

Yt = ρZt +
kP

j=1

αjYt−j +
kP

j=1

β0jZt−j + νDt−1 + σεt, (t = 1, . . . , T ) (2.4)

conditional on X0, . . . , X1−k, with independent innovations εt with distribution
function F. The term Dt−1 is a deterministic term, which will be discussed in
further detail below. When ρ is restricted to zero, so Zt is absent on the right
hand side, this is the marginal equation of a vector autoregression, and when ρ is
unrestricted this is an autoregressive distributed lags model. If the Z process is
omitted this reduces to an autoregression. Note, that when k = 0 and Dt−1 = 1
the model reduces to a classical regression model with an intercept. In addition,
when ρ is restricted to zero, this becomes a location-scale model for Yt.
Least squares estimation of the equation (2.4) gives the scaled residuals

bεt = Yt − bρZt −
Pk

j=1 bαjYt−j −
Pk

j=1
bβ0jZt−j − bνDt−1bσ ,

if, for instance, ρ is unrestricted. The empirical distribution function of the resid-
uals is defined as bF (x) = 1

T

TX
t=1

1(εt≤x),

with the associated empirical processbF {F (x)} = √T nbF (x)− F (x)o , (2.5)

which has argument u = F (x) on the unit interval.
In order to discuss the distribution of the empirical process the joint distrib-

ution of the time series Xt = (Yt, Z
0
t)
0 has to be specified. If this is assumed to

satisfy a vector autoregression the results for general vector autoregressions given
by Nielsen (2005) can be used. That paper is a generalisation of the work by Lai
and Wei (1985), who did not consider deterministic terms. Thus, suppose the
time series Xt and the deterministic series Dt satisfy the autoregressive equations

Xt =
kP

j=1

AjXt−j + µDt−1 + ξt, (t = 1, . . . , T ) , (2.6)

Dt = DDt−1, (2.7)

conditional on X0, . . . , X1−k, where the vector innovations, ξt, are partitioned as
ξt = (ξy,t, ξ

0
z,t)

0. The vector innovations are assumed to have mean zero and a
positive definite variance matrix partitioned as

Var (ξt) = Ω =

µ
Ωyy Ωyz

Ωzy Ωzz

¶
. (2.8)

The univariate model (2.4) can then arise in two ways:
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1. When ρ is restricted to zero then (2.4) is simply the first equation in (2.6)
so σεt = ξy,t with mean zero and variance σ

2 = Ωyy.

2. When ρ = ΩyzΩ
−1
zz and ξ is normally distributed, then (2.4) states the con-

ditional model for Yt given Zt and the past, with σεt = ξy,t−ρξz,t with mean
zero and variance σ2 = Ωyy − ΩyzΩ

−1
zz Ωzy.

The formulation for the deterministic term Dt allows a joint autoregressive com-
panion representation of Xt,Dt, and is inspired by Johansen (2000). The matrix
D has characteristic roots on the complex unit circle, so Dt is a vector of terms
such as a constant, a linear trend, or periodic functions like seasonal dummies.
For example,

D =

µ
1 0
1 −1

¶
with D0 =

µ
1
1

¶
will generate a constant and a dummy for a bi-annual frequency. The deterministic
term Dt is assumed to have linearly independent coordinates, which is formalised
as follows.

Assumption 2.2 |eigen (D)| = 1 and rank (D1, . . . , DdimD) = dimD.

To ensure that an intercept is included in the model an additional assumption
to D is needed.

Assumption 2.3 Assume D has at least one eigenvalue of unity.

2.3 Asymptotic theory for the empirical process

Before discussing the empirical process bF itself, it is useful to consider the empirical
process of the innovations, εt, for a moment. This is defined as

bU (u) = 1√
T

TX
t=1

£
1{εt≤F−1(u)} − u

¤
=

1√
T

TX
t=1

£
1{F(εt)≤u} − u

¤
, (2.9)

for 0 ≤ u ≤ 1. It is often referred to as the uniform empirical process since the
variables F (εt) are uniformly distributed. The asymptotic theory for the uniform
process of the innovations is outlined in Billingsley (1968, §13) and is described
in terms of a Brownian bridge. That is, under regularity conditions that will be
introduced below, bU (u) D→ U (u) , (2.10)

on the space D[0, 1] of right continuous functions on the unit interval with limits
from the left. Here U is a standard Brownian Bridge, that is, a Gaussian process
with expectation zero and covariance given by Cov{U(u),U(v)} = u(1 − v) for
u ≤ v. The Brownian bridge U can be written in terms of a standard Brownian
motion B as U(u) = B(u)−uB(1). The asymptotic result for the empirical processbF(u) is a generalisation of this result, where the limiting distribution is expressed
in terms of stochastic integrals with respect to the Brownian bridge U.
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The properties of stochastic intergrals with respect to Brownian bridges are dis-
cussed by Shorack andWellner (1986, p. 91-95). Stochastic integrals

R 1
0
hj (u) dU (u) ,

are well-defined for square integrable functions h1, h2. They are normally distrib-
uted with expectation zero, and variance given by

Cov

½Z 1

0

h1 (u) dU (u) ,
Z 1

0

h2 (u) dU (u)
¾

=

Z 1

0

h1 (u)h2 (u) du−
½Z 1

0

h1 (u) du

¾½Z 1

0

h2 (u) du

¾
. (2.11)

The Brownian bridge itself can be written as U (v) =
R 1
0
1(u≤v)dU (u) .

To formulate the main result some assumptions to innovations ξt and εt are
needed. The innovations, ξt, of the vector autoregression (2.6) are assumed to
satisfy a martingale difference sequence assumption to exploit the consistency
results of Nielsen (2005).

Assumption 2.4 Suppose the sequence of innovations ξt of the vector autoregres-
sion (2.6) is a martingal difference sequence with respect to an increasing filtration
Ft so E(ξt|Ft−1) = 0 and where the initial values X0, . . . , X1−k are F0-measurable
and

sup
t
E{(ξ0tξt)λ/2|Ft−1}

a.s.
< ∞ for some λ > 4, (2.12)

E(ξtξ
0
t|Ft−1)

a.s.
= Ω where Ω is positive definite. (2.13)

A further set of three assumptions are needed for the innovations εt of the
regression equation (2.4). It is not sufficient that these innovations are martin-
gale difference sequences, essentially because the empirical process describes the
entire distribution, and thus all moments of εt. The first assumption ensures the
convergence of the uniform empirical process.

Assumption 2.5 Suppose the innovations εt of the regression equation (2.4) are
independent and identically distributed so Eεt = 0, Varεt = 1, and with marginal
distribution function F.

A second assumption is a martingale assumption, which is needed for the case
where ρ is unrestricted so the regression equation (2.4) becomes an autoregressive
distributed lags equation.

Assumption 2.6 If ρ is unrestricted define the filtration Gt−1 as the sigma field
over Ft−1 and Zt, otherwise, if ρ is restricted to zero let Gt−1 = Ft−1. Suppose the
innovations εt are independent of Gt−1.

The third assumption concerns the distribution function F of the innovations,
εt.
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Assumption 2.7 Suppose the distribution function F has density f which is pos-
itive and differentiable everywhere, and satisfies

sup
x∈R

|xf (x) | <∞, sup
x∈R

|f 0 (x) | <∞, sup
x∈R

|x2f 0 (x) | <∞.

The Assumption 2.7 is satisfied by many distributions, notably the standard
normal distributions. Denoting the standard normal density by ϕ it holds that
ϕ0(x) = −xϕ(x). Since ϕ has exponentially declining tails the boundedness follows.
The main result can now be formulated. This shows that as long as an intercept

is included in the autoregression the same Gaussian limit distribution applies for
all values of the characteristic roots. Thus, it is possible to make inference about
the distribution of the autoregressive innovations without knowing the location of
the characteristic roots.

Theorem 2.8 Suppose the model (2.6) and the Assumptions 2.2, 2.3, 2.4, 2.5,
2.6, 2.7 are satisfied. Then

bF©F−1 (·)ª D→ XF (·) ,

on D[0, 1], where XF is the Gaussian process defined by

XF (u) =

⎡⎣ 1
f {F−1 (u)}

1
2
F−1 (u) f {F−1 (u)}

⎤⎦0 Z 1

0

⎡⎣ 1[s≤u]
F−1 (s)
{F−1 (s)}2

⎤⎦ dU (s) . (2.14)

The process XF defined in (2.14) is the sum of three components. The first
component is simply the Brownian Bridge U(u) arising from the uniform empirical
process bU. The second and the third components relate to bF− bU and arise due to
the estimation of the variance and the intercept, respectively. The process XF is
standard, in the sense of applying to cross-sectional regression problems including
a constant, see Shorack & Wellner (1986, p.197f).
The process XF can be simulated in various ways. The first approach is to

use the covariance structure of XF. For any choice of reference distribution F this
covariance structure can be found using the formula (2.11). For the Gaussian case
it is found in Theorem 2.10 below. For a particular grid over the interval [0, 1],
the covariance matrix is computed and its square root multiplied onto a vector
of generated independent standard normal variables. The second approach is to
compute the stochastic integrals in (2.14) directly. First, a Brownian motion B is
computed for a grid over [0, 1] by taking partial sums of generated independent
standard normal variables and is transformed into a Brownian bridge using the
formula U (u) = B (u)−uB (1) . Next, the integral (2.14) is formed. This approach
is a little more convoluted, but numerically faster when dealing with a fine grid
over [0, 1].
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2.4 Empirical moments

The asymptotic properties of the moments of the residuals can be found rather
easily from the empirical process. This point seems to have escaped the literature.
It will later, in §3.4, be used to establish the asymptotic behaviour of the usual
cumulant-based tests for normality. Some notation is needed. Define the empirical
moments of the standardised residuals,

bµm = 1

T

TX
t=1

bεmt = Z
R

xmdbF (x) ,
and the least squares estimator for the variance parameter, normalised by T,

bσ2 = 1

T

TX
t=1

Ã
Yt − bρZt −

kP
j=1

bαjYt−j −
kP

j=1

bβ0jZt−j − bνDt−1

!2
.

It then holds that bµ2 = 1, and, when including an intercept in the model, alsobµ1 = 0. Defining the population moments
µm =

Z
R

xmdF (x) =

Z 1

0

©
F−1 (u)

ªm
du, (2.15)

the sample and population moments can be brought together as

√
T (bµm − µm) =

√
T

½Z
R

xmdbF (x)− Z
R

xmdF (x)

¾
=

Z
R

xmdbFT (x) = Z 1

0

©
F−1 (u)

ªm
dbFT ©F−1 (u)ª . (2.16)

The asymptotic theory then follows by replacing the empirical process bFT with
the limiting Gaussian process XF established in Theorem 2.8. To describe the
resulting limiting normal distribution let

h2 (u) =
©
F−1 (u)

ª2
,

hm (u) =
©
F−1 (u)

ªm −mµm−1
©
F−1 (u)

ª− m

2
µm
©
F−1 (u)

ª2
.

Theorem 2.9 Suppose the model (2.6) and the Assumptions 2.2, 2.3, 2.4, 2.5,
2.6, 2.7 are satisfied, and that F has moments of order at least 2M . Then

√
T
¡bσ2 − σ2, bµ3 − µ3, . . . , bµM − µM

¢
converge jointly in distribution to a normal distribution with mean zero. The
limiting distribution can be represented as

√
T

µbσ2
σ2
− 1
¶

D→
Z 1

0

h2 (u) dU (u) =

Z 1

0

©
F−1 (u)

ª2
dU (u) , (2.17)

√
T (bµm − µm)

D→
Z 1

0

hm (u) dU (u) =

Z 1

0

©
F−1 (u)

ªm
dXF (u) , (2.18)
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and the covariance matrix has entries

ωmn = Cov

½Z 1

0

hm (u) dU (u) ,
Z 1

0

hn (u) dU (u)
¾

which satisfy, for m,n ≥ 3,

ω22 = µ4 − 1, ω2m = µm+2 −mµ3µm−1 − µm

n
1 +

m

2
(µ4 − 1)

o
,

ωmn = µm+n − µm+1µn+1 −
³mn

2
+ 1
´
µmµn +

mn

4
(µ4 − 3)µmµn

+
¡
µm+1 −mµm−1

¢ ¡
µn+1 − nµn−1

¢
+

mn

2
µ3
¡
µm−1µn + µmµn−1

¢
−n
2
µn
©
µm+2 − (m+ 1)µm

ª− m

2
µm
©
µn+2 − (n+ 1)µn

ª
.

The result can form the basis for a cumulant-based test of the reference distri-
bution F in a location-scale model. For instance, if εt follows a standard Gaussian
distribution, a Laplace distribution, or a t-distribution with known degrees of free-
dom, then Yt = µ+σεt is a location-scale model. The Gaussian case is studied in
further detail in §2.5.

2.5 The Gaussian case

The case where the reference distribution F is standard Gaussian, denoted Φ is
of special interest. At first, the covariance structure of the limiting Gaussian
process XF is found. Subsequently, the moments of the empirical distribution are
described.

Theorem 2.10 Suppose F (u) = Φ (u) is the standard normal distribution func-
tion with density ϕ. Then XF = XΦ has covariance given by

Cov {XΦ (u) ,XΦ (v)} = u (1− v)−ϕ©Φ−1 (u)ªϕ©Φ−1 (v)ª½Φ−1 (u)Φ−1 (v)
2

+ 1

¾
,

for 0 ≤ u ≤ v ≤ 1, or equivalently, for x, y ∈ R so x ≤ y,

Cov [XΦ {Φ (x)} ,XΦ {Φ (y)}] = Φ (x) {1− Φ (y)}− ϕ (x)ϕ (y)
³xy
2
+ 1
´
.

Theorem 2.9 presented the asymptotic distribution of the sample moments of
the standardised residuals. This result simplifies considerably in the Gaussian
case. In that case the population moments are

µm =

Z
R

xmdΦ (x) =

Z 1

0

©
Φ−1 (u)

ªm
du =

½
0 for m odd,
(m− 1)!! for m even,

(2.19)

where (m− 1)!! = (m−1)(m−3) · · · 3 ·1 is the odd factorial. In particular µ3 = 0,
µ4 = 3, and µm+1 = mµm−1. This immediately gives the following result, noting
that Assumptions 2.5 and 2.7 are satisfied in the normal case.
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Corollary 2.11 Suppose the model (2.6) and the Assumptions 2.2, 2.3, 2.4, 2.6
are satisfied and the innovations εt are standard normal so F = Φ. Then, for any
M √

T

µbσ2
σ2
− 1, bµ3 − µ3, . . . , bµM − µM

¶
converge jointly in distribution to a normal distribution with mean zero. The
covariance matrix of the limiting distribution has entries, for m,n ≥ 3,

ω22 = 2, ω2m = 0, ωmn = µm+n − µm+1µn+1 −
³mn

2
+ 1
´
µmµn.

The property that ω2m = 0 shows that bσ2 is asymptotically independent of
all higher moments of the standardised residuals, which in turn implies that it
is independent of the higher cumulants. This relates to the exact independence
found by Fisher (1930) for samples of independent normal variates. Note also
that ωmn = 0 when m is even and n is odd, implying that for instance the third
and fourth cumulants of the residuals are asymptotically independent.

3 Applications

Theorem 2.8 has a wide range of applications that can be helpful in autoregressive
analysis. In the following, the empirical process is at first transformed into a
standardised empirical process and a quantile process. Next, Kolmogorov-Smirnov
and Anderson-Darling tests are discussed. Then confidence bands are presented
for Probability-Probability and Quantile-Quantile plots. These are frequently
used in econometrics, but without confidence bands. Finally, the frequently used
cumulant based tests for normality are discussed.

3.1 The standardised empirical process and the quantile process

In Theorem 2.8, a Gaussian approximation was found for the distribution of the
empirical process. Using this result, a standardised version of the empirical process
can be defined bZF (u) = bF (u)cstd {XF (u)} for u ∈ (0, 1).

This process is not defined at the end points u = 0 and u = 1 since both the
empirical process and its variance are then zero. For each u in the open interval
(0, 1) Theorem 2.8 implies the pointwise convergence result:

bZF (u) D→ ZF (u) =
XF (u)

std {XF (u)} . (3.1)

The sequence of standardised empirical processes, bZF, is, however, not tight. The
issue is the variation near 0 and near 1. In this way, Čibisov (1966) showed that

sup
0<u<1

¯̄̄̄
¯ bU (u)
std {U (u)}

¯̄̄̄
¯ P→∞.
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The rate of divergence has been studied intensively, with an overview given in
Shorack and Wellner (1986). The process bZF will, however, converge on D[b, c]
where [b, c] is an arbitrary closed subinterval of (0, 1).
Rather than looking at the distribution function for the residuals, it is often

of interest to look at their quantiles, defined in terms of the inverse distribution
function, bF−1. The standardised quantile process is defined as

bQF (x) = f (x)√T hbF−1 {F (x)}− x
i
. (3.2)

Using the functional δ-method, in an argument made more formally by Shorack
and Wellner (1986, Chapter 18), it holds that

bQF (x) D→ QF (x) , (3.3)

for each point x ∈ R, as well as bQF{F−1(·)} converges on D[b, c] where [b, c] ⊂
(0, 1). The limiting process has the same covariance process as XF due to the
normalisation with f in (3.2). Dividing through by f (x) gives the pointwise result

bRF (x) = √T hbF−1 {F (x)}− x
i
D→ QF (x)

f (x)
. (3.4)

3.2 Test statistics based on the empirical process

In many applications it is convenient to summarize the empirical process in a
single statistic. There are two reasons for this. First, for the uniform empirical
process, distribution free tests can be constructed based on, for instance, the
Kolmogorov-Smirnov statistic. This does, however, not seem possible when the
location and scale are unknown as here. Secondly, tests can be constructed by
evaluating the empirical process at a single point. Looking at two different points,
x1 and x2, the test statistics will be dependent. To achieve a correct size this has
to be taken into account. This is done by looking at summary statistics such as the
Kolmogorov-Smirnov statistic. Different summary statistics are found depending
on the choice of weight function that is applied to the empirical process over the
points x ∈ R. There is no optimal way of choosing a weight function. Likewise,
such statistics are bound to be dependent, so when using several statistics it is
not clear how to achieve a correct size.
Kolmogorov-Smirnov-type statistics can be formed from the empirical process

by

bDF = sup
x∈R

¯̄̄bF {F (x)}¯̄̄ = sup
0≤u≤1

¯̄̄bF (u)¯̄̄ D→ sup
0≤u≤1

|XF (u)| = DF, (3.5)

bD+
F = sup

x∈R
bF {F (x)} = sup

0≤u≤1
bF (u) D→ sup

0≤u≤1
XF (u) = D+

F , (3.6)

where the limiting distributions arise by applying the Continuous Mapping Theo-
rem to the asymptotic distribution for the empirical process reported in Theorem
2.8. These statistics put most weight on values of u closests to 0.5. The limiting
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E Var E log Var log 50% 80% 90% 95% 97.5% 99%
DΦ 0.631 0.0219 -0.487 0.0526 0.612 0.748 0.830 0.903 0.971 1.053
D+

Φ 0.547 0.0231 -0.640 0.0731 0.524 0.666 0.753 0.831 0.903 0.990

Table 1: Simulated distribution of bDΦ and bD+
Φ

distributions of DF, D
+
F depend on the distribution of F. This is in contrast to the

situation where the empirical distribution of independent, identically variables is
compared to a known distribution. In that situation only the uniform term bU is
of relevance and a time transformation argument can be employed.
When testing for normality the distributions DΦ and D+

Φ are of relevance.
These were previously reported by Stephens (1974, Table 1A, case 3). Stephens’
experiment was repeated using a fine grid with 104 points and 106 repetitions
giving the numbers reported in Table 1. A convenient approximation to the p-
values can be found using a Gamma distribution with the reported mean and
variance as done for instance for a Dickey-Fuller F-type distribution in Nielsen
(1997). Due to the extreme value nature of the Kolmogorov-Smirnov statistic,
the Gamma approximation will under-fit the extreme upper tail slightly. For the
reported quantiles the relative error of the Gamma quantiles compared to the
simulated quantiles was at most 3.0%, and at most 1.8% when excluding the two
most extreme quantiles. It was also attempted to fit a Weibull distribution, as
the asymptotic distribution of the D+

F statistic based on the uniform empirical
process is Weibull, see Billingsley (1968, p.85). The Weibull distribution can be
fitted using mean and variance of the log-transformed statistic, see Johnson, Kotz,
and Balakrishnan (1994, §21.4). For the empirical process of residuals the fit is,
however, much worse than the Gamma fit, with relative errors of up to 17%.
While the Kolmogorov-Smirnov statistic puts most weight on deviations in the

middle of the distribution, Anderson and Darling (1952) considered the possibility
of constructing Kolmogorov-Smirnov-type statistics for the standardised empirical
process, bZF, see (3.1). Anticipating the result of Čibisov (1966), they suggested
taking supremum over a closed interval in the interior of the unit interval. Con-
sidering a symmetric interval for simplicity, this gives

bKF,a = sup
1
2
−a<u< 1

2
+a

¯̄̄bZF (u)¯̄̄ D→ sup
1
2
−a<u< 1

2
+a

|ZF (u)| = KF,a.

A Kolmogorov-Smirnov-type statistics can be constructed in the same way for the
empirical quantile process

bQF,a = sup
1
2
−a<u< 1

2
+a

¯̄̄̄
¯̄ bQF (u)cstdnbQF (u)o

¯̄̄̄
¯̄ = sup

1
2
−a<u< 1

2
+a

¯̄̄̄
¯̄ bRF (u)cstdnbRF (u)o

¯̄̄̄
¯̄

D→ sup
1
2
−a<u< 1

2
+a

|ZF (u)| = KF,a,

bRF,a = sup
1
2
−a<u< 1

2
+a

¯̄̄bRF (u)¯̄̄ D→ sup
1
2
−a<u< 1

2
+a

|RF (u)| = RF,a.
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1 a a2 a−1 a−2
¡
1
2
− a
¢−1 ¡

1
2
− a
¢−2

KΦ,a E 1.969 1.405 -0.04406 0.0008920 0.00028
Var 0.365 -0.291 0.141 -0.00001

RΦ,a E 1.672 -1.583 4.904 -0.02773 0.03722 -0.0000677
Var 0.135 0.053 -1.293 0.02743 -0.0000151

Table 2: Response surface in a for expectation and variance of bKΦ,a and bQΦ,a.

When testing for normality the distributions KΦ,a and RΦ,a are of relevance.
These were simulated for a range of a values, a fine grid over u with 104 points
and 106 repetitions. Response surfaces in a for the expectation and variance of
KΦ,a and RΦ,a are reported in Table 2 using 22 values of a chosen as (0.05:0.40,
0.05), (0.41:0.49, 0.01), (0.491:0.495, 0.001). In all cases, the R2 of the fits exceed
0.9995. It is not advisable to extrapolate the response surface for values of a
outside 0.01 < a < 0.495. For a given value of a the expectation and variance
are computed and the distribution approximated using a Gamma distribution
as above. It is evident that the response surfaces diverge for a → 0.5. Different
choices of a will emphasize different departures from normality. Due to the Čibisov
result the literature does not give any guidance towards the choice of a as a
function of the sample size.

3.3 P-P and Q-Q plots

At present, probability-probability and quantile-quantile plots, also called P-P and
Q-Q plots, are used without confidence bands. Based on the work present here,
two types of confidence bands can be derived: pointwise bands and simultaneous
bands based on the statistics presented in §3.2. Pointwise bands would be used
in situations where the nature of the departure from the reference distribution is
unknown, whereas the simultaneous bands are used to detect more specific types
of departures.
Probability-probability plots are plots of bu = bF (x) against u = F (x) on a

[0, 1]×[0, 1]-square. Confidence bands of the type u±n−1/2cασu can be constructed
using the results from above. Three different bands are worth noting.
Pointwise confidence bands can be established from Theorem 2.8, where cα is

the 1 − α/2 quantile of the standard normal distribution and σ2u is the variance
Var{XF(u)} at the point u. For the standard normal case, F = Φ, the variance is
reported in Theorem 2.10. For other reference distributions it can be computed
using (2.11).
Kolmogorov-Smirnov bands can be constructed by σu = 1 and chosing cα from

limiting distributions of the Kolmogorov-Smirnov statistics. This gives bands that
are straight lines parallel to the 45◦-line. This emphasises departures in the middle
of the distribution. Bands of “two-sided” nature are found by choosing cα as the
1− α quantile of DF, whereas a “one-sided” are found from the 1− α/2 quantile
of D+

F .
Anderson-Darling bands are constructed by first choosing a value of a (perhaps
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0.3, 0.4, or 0.45). Then σu is choosen as for the pointwise bands, whereas cα is
chosen as the 1− α quantile of KΦ,a.

Quantile-quantile plots are plots of bx = bF−1 (u) against x = F−1 (u) on a
R×R-square. Confidence bands of the type u ± n−1/2cασu can be constructed.
Two different bands are worth noting.
Pointwise confidence bands can be established directly from Theorem 2.8 and

(3.4). Here cα is the 1 − α/2 quantile of the standard normal distribution and
σ2u equals Var[XF{F(x)}]/{f(x)}2 at the point x. For the standard normal case,
F = Φ, the variance is reported in Theorem 2.10.
Kolmogorov-Smirnov bands can be constructed by σu = 1 and chosing cα from

the 1− α quantile of RF.

3.4 Test for normality based on cumulants

Assuming an intercept is included in the model, the empirical cumulants can be
computed from the sample moments of the standardised residuals, so

bκ3 = bµ3, bκ4 = bµ4 − 3.
The following result follows directly from Corollary 2.11.

Corollary 3.1 Suppose the model (2.6) and the Assumptions 2.2, 2.3, 2.4, 2.6
are satisfied, and that the innovations εt are N[0, 1]-distributed so F (u) = Φ (u) .
Then ³bκ3pT/6, bκ4pT/24

´
D→ N2 [0, I2] .

Note that Assumption 2.3 is trivially satisfied, since the cumulants are based on
the central moments, regardless of whether an intercept is included in the model.
The Theorem presented here requires that the innovations εt are independent as
stated in Assumption 2.5. This assumption is needed to be able to work with the
empirical process, but could be relaxed with a proof based on direct expansions
of the cumulants.
For models with independent observations, such a result was first established

by Thiele (1889), see Lauritzen (2002) for a translation, and later by Pearson
(1902), who argued that (T/6)1/2bκ3 and (T/24)1/2bκ4 are asymptotically standard
normal. A large literature has investigated the joint behaviour in finite samples of
independent observations. Jarque and Bera (1987) have given these tests a likeli-
hood based motivation. Recently Kilian and Demiroglu (2002) have proved that
these results hold for a class of cointegrated vector autoregressions with known
cointegration rank. The proofs of these results are based on direct expansions
of the sample moments of bσbεt rather than appealing to the empirical process ofbεt. While the argument based on the empirical process requires independent in-
novations, an argument based on expansions of the sample moments could be
made for innovations arising from a martingale difference sequence with constant
conditional moments up to a certain order.
For cointegration applications the result of Kilian and Demiroglu (2002) can

be combined with the present result in an interesting way. In a first step an
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unrestricted vector autoregression is fitted to the data and the hypothesis of nor-
mality is tested using the new result, where no knowledge of the autoregressive
parameters is required. Secondly, a cointegration analysis is performed using the
likelihood procedure of Johansen (1995). Once the cointegration rank has been
determined and imposed, the hypothesis of normality can then be tested once
again for the restricted model using the results of Kilian and Demiroglu (2002).

4 Proofs

4.1 The sample average

Proof of Theorem 2.1. First, bσbεt = σε− (bα− α)Xt−1 by the model equation
(2.6), so

1√
T

TX
t=1

bεt = σbσ
Ã
1√
T

TX
t=1

εt − eR! where eR = (bα− α)

σ
√
T

TX
t=1

Xt−1.

Now, eR equals the product eR1 eR2 where
eR1 = PT

t=1Xt−1εtqPT
t=1X

2
t−1

, eR2 = PT
t=1Xt−1q

T
PT

t=1X
2
t−1

.

The estimator bσ is consistent, whereas eR1 = o ¡T 1/2−η¢ a.s. for some η > 0 for all
α (Nielsen, 2005, §2). The result for α 6= 1 follows by showing that eR2 =o¡T η−1/2¢
a.s.
When |α| < 1 then eR2 =o¡T η−1/2¢ a.s. (Nielsen, 2005, Theorem 6.4).
When |α| > 1 then eR2 =O¡T−1/2¢ a.s. (Nielsen, 2005, Theorem 9.1).
When α = −1 then eR2 =o¡T η−1/2¢ a.s. To see this, write Xt−1 as the sum of

(−1)t−1X0 and σ
Pt−1

s=1 (−1)t−1−s εs, so
PT

t=1Xt−1 is the sum of X0

PT−1
t=0 (−1)t =

X0{1−(−1)T}/2 and σ
PT−1

s=1 εs
PT−s−1

t=0 (−1)t = σ
PT−1

s=1 εs{1−(−1)T−s}/2. Thus,PT
t=1Xt−1 = o

¡
T 1/2+η

¢
a.s. by the Law of Iterated Logarithms. As for the

denominator, (T
PT

t=1X
2
t−1)

−1/2 = O(T−1) a.s., see Nielsen (2005, Theorem 8.1).
Finally, when α = 1write σ eR as the product of T−1PT

t=1Xt−1εt, T−3/2
PT

t=1Xt−1,
and (T−2

PT
t=1X

2
t−1)

−1 and apply standard unit root asymptotics.

4.2 Proof of main theorem

Theorem 2.8 is now proved. For the asymptotic analysis, it is convenient to
decompose the empirical process. To facilitate this, the set (bεt ≤ x) is rewritten
in three steps: First, both sides of the inequality are scaled by bσ/σ to bring the
residuals to the population scale; secondly, εt− bσbεt/σ is added to both sides; and
thirdly, x is added and subtracted on the right. This gives

(bεt ≤ x) = (εt ≤ x+ bzt) , (4.1)
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where bzt = bax+bbt, where ba = bσ
σ
− 1, bbt = εt − bσ

σ
bεt. (4.2)

The empirical distribution of the residuals can then be decomposed as

bF (u) = bU (u) + bV (u) +cW (u) , (4.3)

where

bU (u) =
1√
T

TX
t=1

£
1{εt≤F−1(u)} − u

¤
,

bV (u) = f
©
F−1 (u)

ª 1√
T

TX
t=1

bzt,
cW (u) =

1√
T

TX
t=1

£
1{εt≤F−1(u)} − 1{εt≤F−1(u)} − f

©
F−1 (u)

ª bzt¤ .
The components bU and bV are the leading terms. They are analysed in Theorem
4.2 below. For the analysis of bV it is convenient to decompose bV = bV1+ bV2, using
the definition of bzt in (4.1). First, let

bV1 (u) = f ©F−1 (u)ª 1√
T

TX
t=1

µ
εt − bσ

σ
bεt¶ = f ©F−1 (u)ª 1√

T

TX
t=1

εt, (4.4)

since
PT

t=1bεt = 0 when an intercept is included in the model, as stipulated in
Assumption 2.3, whereas, letting F (x) = u,

bV2 (u) = F−1 (u) f ©F−1 (u)ª√T µbσ
σ
− 1
¶
. (4.5)

The third component, cW, vanishes. For the analysis of cW it is convenient to
decompose cW =cW1 +cW2 +cW3, letting F (x) = u,

cW1 (u) =
1√
T

TX
t=1

©
1(εt≤x+ax) − 1(εt≤x) − f (x)baxª ,

cW2 (u) =
1√
T

TX
t=1

n
F
³
x+ bax+bbt´− F (x+ bax)− f (x)bbto

cW3 (u) =
1√
T

TX
t=1

n
1(εt≤x+ax+bt) − 1(εt≤x+ax) − F

³
x+ bax+bbt´+ F (bax)o .

The first term deals with the estimation of the scale parameter σ, while the other
two deal with the estimation of expectation parameters. The first and the third
term are referred to as uniform asymptotic linearity properties by Koul (2002),
whereas the second is a Taylor expansion. It is shown in Theorems 4.3, 4.5, 4.6
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that these terms disappear. The proof of Theorem 2.8 can now be summarised as
follows.

Proof of Theorem 2.8. Decompose bF = bU + bV1 + bV2 +cW1 +cW2 +cW3.
Theorem 4.2 shows the convergence of the leading terms bU, bV1, bV2. Theorems 4.3,
4.5, 4.6 show that cW1,cW2,cW3 vanish.

Before looking at the asymptotic behaviour of bU and bV it is convenient to
consider the estimators for the covariance parameters.

Lemma 4.1 It holds that

bσ
σ
− 1 = 1

2

µbσ2
σ2
− 1
¶
+O

(µbσ2
σ2
− 1
¶2)

.

Suppose model (2.6) and Assumptions 2.2, 2.4 are satisfied. Then

√
T

µbσ2
σ2
− 1
¶
=

1√
T

TX
t=1

¡
ε2t − 1

¢
+ oP (1) = OP (1) , (4.6)

as well as
√
T (bρ− ρ) = OP (1) .

Proof of Lemma 4.1. The first result follows from the Taylor expansion

bσ
σ
− 1 =

s
1 +

bσ2 − σ2

σ2
− 1 = bσ2 − σ2

2σ2
+OP

(µbσ2 − σ2

σ2

¶2)
.

Next, Nielsen (2005, Theorem 2.6) shows that under Assumptions 2.2, 2.4, noting
that λ > 4 in (2.12), it holds

bΩ a.s
=
1

T

TX
t=1

ξtξ
0
t + o(T

−1/2).

The Central Limit Theorem for martingale differences by Brown and Eagleson
(1971) is applicable when (2.12), (2.13) are satisfied, and implies that

√
T (bΩ−Ω) is

asymptotically normal. Using the functional δ-method it is seen that this property
is shared by bσ and bρ.
Theorem 4.2 Suppose model (2.6) and Assumption 2.2, 2.3, 2.4, 2.5 are satis-
fied. Then, letting ¯ denote the element wise (Hadamard) product,⎧⎪⎨⎪⎩

bU (u)bV1 (u)bV2 (u)
⎫⎪⎬⎪⎭ =

⎡⎣ 1
f {F−1 (u)}

1
2
F−1 (u) f {F−1 (u)}

⎤⎦¯Z 1

0

⎡⎣ 1(s≤u)
F−1 (s)
{F−1 (s)}2

⎤⎦ dbU (s)+
⎧⎨⎩ 0

0
oP (1)

⎫⎬⎭ ,

which converges in distribution to XF (u) on D [0, 1] .
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Proof of Lemma 4.2. First, the stochastic integral representation in terms
of bU is established. For the first component this follows from the discussion in
§2.2. For the other two terms, denote the empirical distribution of the innovations
by FT (x) = T−1

PT
t=1 1(εt≤x). As in §2.4 the sample and population moments of

εt satify

1√
T

TX
t=1

(εmt − Eεmt ) =
√
T

Z
R

xmd {FT (x)− F (x)}

=

Z
R

xmdbU {F (x)} = Z 1

0

©
F−1 (u)

ªm
dbU (u) , (4.7)

substituting u = F (x). Thus the expression for bV1, follows directly (4.4), which
requires Assumption 2.3, whereas the expression for bV2 follows from (4.5) and
Lemma 4.1, requiring the Assumptions 2.2, 2.4.
Billingsley (1968, §13) shows that a continuous bU converges to U on C [0, 1] .

This requires Assumption 2.5. Since the limit is continuous, bU converges to U
on D [0, 1] . Further, due to the existence of fourth moments, see Assumption 2.4,
the integrand in (4.7) is square integrable. Following Shorack and Wellner (1986,
p.94) the integrator bU can be replaced with the Brownian bridge U in the limit.
This gives the process XF in (2.14).

It is now argued that the component cW1 vanishes. This result follows from
the work of Koul (2002).

Theorem 4.3 Suppose model (2.6) and Assumptions 2.2, 2.4, 2.7 are satisfied.
Then

sup
0≤u≤1

¯̄̄cW1 (u)
¯̄̄
= oP (1) .

Proof. From Lemma 4.1 it follows that ba is OP(T−1/2). As pointed out by
Rao and Sethuraman (1975) and Loynes (1980) a bound b > 0 can be found so
|ba| < b with probability close to one. Thus it suffices to show

sup
x∈R
|s|<b

1√
T

TX
t=1

h
1{εt≤x(1+T−1/2s)} − 1(εt≤x) − f (x)T−1/2sx

i
.

This result follows from Corollary 2.3.2 of Koul (2002, p.59). A set of assumptions
have to be checked. First, note that, in the notation of Koul (2002), n = T,
dni = T−1/2, cni = 0, Xni = εt, H (x) = Fni = F(x), fni (x) = f (x) . Since dni is
uniform in t, the conditions to dni inN1 andN2 of Koul (2002, p.16) are trivially
satisfied. Since cni = 0 then the conditions to cni in (2.3.6) and (2.3.7) of Koul
(2002, p.52) are trivially satisfied. The conditions F1, F2, F3 to f of Koul (2002,
p.59) are satisfied by Assumption 2.7 as follows: F1 requires unifom continuity of
f, which is satisfied since f is differentiable and supx∈R |f 0(x)| <∞; F2 requires f
to be positive; F3 requires supx∈R |xf(x)| <∞.

Before looking at the components cW2 andcW3 it is useful to discuss the prop-
erties of the process bzt = bax+bbt defined in (4.2).
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Lemma 4.4 Suppose model (2.6) and Assumptions 2.2, 2.4 are satisfied. Then,
if g(T )→∞ as T →∞,

(i) σbbt = (0,bρ− ρ) ξt + (1,−bρ) (bθ − θ)St−1,
(ii) T−1/2

PT
t=1 bz2t = (1 + x2) oP (1) ,

(iii) bbt can be written as bbt = −αTzTt where
(a) zTt is Gt−1-measurable as defined in Assumption 2.6,
(b) αT = OP (1) ,

(c)
PT−g(T )

t=1 zTtz
0
Tt = OP (1) for any function g so g(T )/ log T →∞.

Proof of Lemma 4.4. (i): rewritebbt in terms of the parameters of the vector
autoregression (2.6). By definition σbbt = σεt − bσbεt, where σεt = (1,−ρ) ξt andbσbεt = (1,−bρ)bξt, and ρ is either 0 or ΩyzΩ

−1
zz . Adding and subtracting (1,−bρ) ξt

gives

σbt = σεt − bσbεt = (1,−ρ) ξt − (1,−bρ)bξt = (0,bρ− ρ) ξt − (1,−bρ)³bξt − ξt

´
.

Writing the vector autoregression (2.6) in companion form

Xt = θSt−1 + ξt where θ = (A1, . . . , Ak, µ) , St−1 =
¡
X 0

t−1, . . . , X
0
t−k,D

0
t−1
¢0
,

and in particular bξt − ξt = −(bθ − θ)St−1 leads to the desired expression.
(ii): The least squares estimator for θ satisfies bθ − θ = MξSM

−1
SS where

Mξξ =
TX
t=1

ξtξ
0
t MξS =

TX
t=1

ξtS
0
t−1, MSS =

TX
t=1

St−1S0t−1.

Using the inequality (x+ y)2 ≤ 2 (x2 + y2) both to bz2t and to (σbbt)2 shows
1

4

TX
t=1

(σbzt)2 ≤ T

2
(σbax)2 + 1

2

TX
t=1

³
σbbt´2

≤ T (σbax)2 + (0,bρ− ρ)Mξξ (0,bρ− ρ)0 + (1,−bρ)MξSM
−1
SSMSξ (1,−bρ)0 .

From Lemma 4.1, it follows that ba and bρ−ρ are both OP(T−1/2). Further, Nielsen
(2005, Theorem 2.4, 6.1) shows that MξSM

−1
SSMSξ = oP(T

1/2) and Mξξ = OP(1).
Both arguments use Assumptions 2.2, 2.4. Normalising by T−1/2 gives the desired
result.
(iii): From (i) it holds that σbbt = σαTzTt, since, for instance in the presence

of ρ,

αT = −
n
(bρ− ρ) , (1,−bρ) (bθ − θ)

o
NT , zTt = N−1

T

½
(0, Ip−1) ξt

St−1

¾
,

for some normalisation matrix NT . By construction zTt is Gt−1-measurable, show-
ing (a). Note, that (ii) implies that

PT
t=1αTzTtz

0
Ttα

0
T = OP

¡
T 1/2

¢
, which is not

quite sufficient for (b) , (c). Thus, use that a matrix M exists so

MSt =

⎛⎝ Ut

Qt

Wt

⎞⎠ =

⎛⎝ U 0 0
0 Q 0
0 0 W

⎞⎠⎛⎝ Ut−1
Qt−1
Wt−1

⎞⎠ =

⎛⎝ eU,t
eQ,t
eW,t

⎞⎠ ,
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where the absolute values of the eigenvalues ofU,Q,W are less than one, equal to
one, and greater than one, respectively, see Nielsen (2005, §3). The deterministic
components are therefore included in the Qt process. Using Theorems 2.4, 6.2
and Table 1 of Nielsen (2005) it follows thatµ

Mξξ MξS

MSξ MSS

¶
= diag (Mξξ,MUU ,MQQ,MWW ) {1 + oP (1)} . (4.8)

Therefore, write

σbt = −σ (αξ,Tzξ,T t,αU,TzU,T t,αQ,TzQ,Tt,αW,TzW,Tt) {1 + oP (1)} ,
where, for t ≤ T − g (T ) and some normalisation matrix NQ,T ,

σαξ,t = − (bρ− ρ)T 1/2, zξ,T t = T−1/2 (0, Ip−1) ξt,
σαU,t = − (1,−bρ)MξUM

−1
UUT

1/2, zU,T t = T−1/2Ut−1,
σαQ,t = − (1,−bρ)MξQM

−1
QQNQ,T , zQ,Tt = N−1

Q,TQt−1,
σαW,t = − (1,−bρ)MξWM

−1
WWW

T−g(T ), zW,Tt =W
g(T )−TWt−1.

For (b) it needs to be argued that each α-term is OP (1) . For (c) it suffices to show
that each z-term has sums of squares that are OP (1) , and that the cross-products
are oP (1) . For each of the following arguments it suffices that Assumptions 2.2,
2.4 are satisfied.
The ξ terms. Lemma 4.1 shows that αξ,T = OP (1) . Nielsen (2005, Theorem

6.2) shows that
PT

t=1 zξ,T tz
0
ξ,T t is OP (1) .

The U term. The Central Limit Theorem for martingale differences by Brown
and Eagleson (1971) implies that MξUM

−1/2
UU = OP (1) . Nielsen (2005, Theorem

6.2) shows that T−1MUU has a positive definite limit, a.s. ThusαU,T ,
PT

t=1 zU,T tz
0
U,T t

are both OP (1) .
The Q term. Using standard unit root weak convergence arguments as in

Chan and Wei (1988) and Chan (1989) it can be shown that a normalisation
matrix NQ,T exists so MξQNQ,T and N−1

Q,T

PT
t=1Qt−1Q0

t−1(N
−1
Q,T )

0 are OP (1) , and
the latter is positive definite a.s. Thus αQ,T ,

PT
t=1 zQ,Ttz

0
Q,Tt have the desired

properties. Indeed Chan and Wei (1988), consider the univariate case, where
p = 1 and Xt = Yt, without deterministic terms, whereas Chan (1989) include
deterministic terms for that case. The idea of Chan andWei (1988) is first to show
in their Theorem 2.2 that T−1/2

Pint(Tu)
t=1 Λtεt converges to vector of independent

standard Brownian motions, when defining

Λt = {1, (−1)t ,
√
2 sin(tθ1),

√
2 cos (tθ1) , . . . ,

√
2 sin(tθl),

√
2 cos (tθl)},

for θk ∈ (0, π) so θk 6= θj if k 6= j. This results is easily generalised to a
multivariate result using the Cramér-Wold device, see Billingsley (1968). Next,
existence of a normalisation matrix NQ,T and convergence of T 1/2N−1

Q,TQt and
N−1

Q,T

PT
t=1Qt−1Q0

t−1(N
−1
Q,T )

0 then follows from the Continuous Mapping Theorem
(see Chan andWei, 1988, §3), which is therefore easily generalisable. ForMξQNQ,T ,
convergence of MξQNQ,T jointly with that of T 1/2N−1

Q,TQt is shown by a Skorokhod
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embedding result when Q is univariate (Chan and Wei, 1988, Theorem 2.4(ii)).
This is easy to generalise when Q is multivariate with simple roots (Chan and
Wei, 1988, Remark to Theorem 2.4). For general Q the Continuous Mapping
Theorem is used (Chan and Wei, 1988, Theorem 2.4(i)), which again is easily
generalisable. Finally, the positive definiteness of N−1

Q,T

PT
t=1Qt−1Q0

t−1(N
−1
Q,T )

0 is
shown (Chan and Wei, 1988, Lemma 3.1.1), which can be generalised using a
Cramér-Wold-type argument.
The W term. Nielsen (2005, Theorem 2.4, Corollary 7.2) shows MξWM

−1/2
WW =

o(T 1/4), a.s. and thatW−TMWW (W
−T )0 is convergent with positive definite limit-

ing points. In particular
PT

t=1 zW,Ttz
0
W,Tt =W

g(T )−T PT−g(T )
t=1 Wt−1W 0

t−1(W
g(T )−T )0

is convergent with positive definite limiting points, while−σαW,T = o(T
1/4W−g(T ))

a.s., which again is o(1) for any g(T ) so g(T )/ log T →∞.
Cross terms. These all vanish. This follows directly from (4.8).

Theorem 4.5 Suppose model (2.6) and Assumptions 2.2, 2.4, 2.7 are satisfied.
Then

sup
0≤u≤1

¯̄̄cW2 (u)
¯̄̄
= oP (1) .

Proof of Theorem 4.5. At first cW2 (u) is written as an integral

cW2 (u) =
1√
T

TX
t=1

{F (x+ bzt)− F (x)− f (x) bzt} = 1√
T

TX
t=1

Z x+zt

x

{f (y)− f (x)} dy.

By the triangle inequality

¯̄̄cW2 (u)
¯̄̄
≤ 1√

T

TX
t=1

Z x+zt

x

|f (y)− f (x)| dy.

The integrand can be bounded by its maximum, so

¯̄̄cW2 (u)
¯̄̄
≤ 1√

T

TX
t=1

|bzt| max|h|≤|zt|
|f (x+ h)− f (x)| .

The mean value theorem then implies a further bound

¯̄̄cW2 (u)
¯̄̄
≤ 2√

T

TX
t=1

|bzt|2 max|h|≤|zt|
|f 0 (x+ h)| .

Taking the maximum over the entire real axis, and using Lemma 4.4(ii), which
requires Assumptions 2.2, 2.4, gives¯̄̄cW2 (u)

¯̄̄
≤ oP (1) sup

x∈R

¯̄¡
1 + x2

¢
f 0 (x)

¯̄
,

which follows from Assumption 2.7.
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The asymptotic uniform linearity property, that cW3 vanishes, is now proved.
Two ideas of Lee and Wei (1999) are used. First, to deal with the issue that
for explosive component WTW

0
T and

PT
t=1WtW

0
t , the largest and the smallest

components are treated separately. Lee andWei do actually not consider explosive
and non-explosive components jointly, but the joint evaluation turns out to not
to pose any problems. Secondly, Theorem 2.2 of Lee and Wei gives an asymptotic
uniform linearity property for triangular arrays, which can be used here.

Theorem 4.6 Suppose model (2.6) and Assumptions 2.2, 2.4, 2.5, 2.6, 2.7 are
satisfied. Then

sup
0≤u≤1

¯̄̄cW3 (u)
¯̄̄
= oP (1) .

Proof of Theorem 4.6. Some notation is needed. Let u = F (x) and,
recalling ba, bbt defined in (4.2), let bx = x (1 + ba) . Define

w (t, bx) = 1(εt≤x+bt) − 1(εt≤x) − F³bx+bbt´+ F (bx) .
Decompose cW3 =cW3,1 +cW3,2 where

cW3,1 (u) =
1√
T

T−g(T )X
t=1

w (t, bx) , cW3,2 (bx) = 1√
T

TX
t=T−g(T )+1

w (t, bx) ,
for some function g (T ) chosen so g(T )/

√
T → 0 and g (T ) / log T →∞.

Analysis of cW3,2. It is immediately seen that |w (t, u) | ≤ 2, so

sup
0≤u≤1

¯̄̄cW3,2 (u)
¯̄̄
≤ 1√

T

TX
t=T−g(T )+1

2 =
2g (T )√

T
→ 0.

Analysis of cW3,1. First, note that taking supremum over x ∈ R and overbx ∈ R gives the same supremum so

sup
0≤u≤1

¯̄̄cW3,1 (u)
¯̄̄
= sup

x∈R

¯̄̄̄
¯̄ 1√T

T−g(T )X
t=1

w (t, bx)
¯̄̄̄
¯̄ = sup

x∈R

¯̄̄̄
¯̄ 1√T

T−g(T )X
t=1

w (t, x)

¯̄̄̄
¯̄ .

Secondly, this can be written as

sup
x∈R

¯̄̄̄
¯ 1√T

TX
t=1

©
1(εt≤x−αT zTt) − 1(εt≤x) − F (x−αTzTt) + F (x)

ª¯̄̄̄¯ ,
where−αTzTt equalsbbt for t ≤ T−g (T ) and zero otherwise. According to Lemma
4.4(iii) the term zTt can be chosen as a triangular array of variables measurable
with respect to the filtration Gt−1 introduced in Assumption 2.6.
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Thirdly, the desired result now follows if the conditions of Lee and Wei (1999,
Corollary 2.1) can be established. First, εt are independent and identically distrib-
uted with distribution function F according to Assumption 2.5, and independent
of Gt−1 by Assumption 2.6. The vectors α0T and zTt have a dimension not de-
pending on T where zTt is Gt−1-measurable. Since the εts have the same marginal
distribution function F with uniformly bounded second derivatives by Assump-
tion 2.7 then Lee and Wei’s condition (2.11) is trivially satisfied. Finally αT andPT

t=1 zTtz
0
Tt are both OP (1) according to Lemma 4.4(iii) , requiring Assumption

2.2, 2.4

4.3 Empirical moments

Proof of Theorem 2.9. The following steps are taken. First, it is argued
that the sample moments converge in distribution. Secondly, the identities (2.17),
(2.18) are proved. Thirdly, the asymptotic covariance matrix is derived.
First, by using Lemma 4.1 along with (4.7), (2.16) then

√
T

µbσ2
σ2
− 1
¶

=

Z 1

0

©
F−1 (u)

ª2
dbU (u) ,

√
T (bµm − µm) =

Z 1

0

©
F−1 (u)

ªm
dbF (u) .

Since bU is one of the components of bF, see (4.3), the joint convergence follows
from Theorem 2.8, see Shorack and Wellner (1986, p.92). The second set of
expressions for the limiting distribution in (2.17), (2.18) then follows. The first
set of expressions will be derived below. The asymptotic, mean-zero, normality
follows directly from the remarks about stochastic integrals with respect to U in
§2.3.
Secondly, the identity (2.17) is a straight forward definition. For the identity

(2.18) some more work is required. The process XF is expressed in terms of U in
(2.14) showing thatZ 1

0

©
F−1 (u)

ªm
dXF (u) = Jm + I1J1 + I2J2 (4.9)

where the uniform process U enters the Jm terms:

Jm =

Z 1

0

©
F−1 (u)

ªm
dU (u) ,

whereas the term I1 and I2 are standard integrals not involving U, and which will
be shown to equal:

I1 =

Z 1

0

©
F−1 (u)

ªm
d
£
f
©
F−1 (u)

ª¤
= −mµm−1,

I2 =

Z 1

0

©
F−1 (u)

ªm
d

∙
1

2
F−1 (u) f

©
F−1 (u)

ª¸
= −m

2
µm.
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The integral I1: The integrator is rewritten using the chain rule and implicit
differentiation as

d
£
f
©
F−1 (u)

ª¤
=
f 0 {F−1 (u)}
f {F−1 (u)} du.

Inserting this in I1 gives

I1 =

Z 1

0

©
F−1 (u)

ªm f 0 {F−1 (u)}
f {F−1 (u)} du.

Substituting u = F (x) so du = f (x) dx gives

I1 =

Z
R

xm
f 0 (x)
f (x)

f (x) dx =

Z
R

xmf 0 (x) dx.

Finally, by partial integration

I1 = −m
Z
R

xm−1f (x) dx = −mµm−1.

The integral I2: In the same way

d

∙
1

2
F−1 (u) f

©
F−1 (u)

ª¸
=
1

2

∙
1 + F−1 (u)

f 0 {F−1 (u)}
f {F−1 (u)}

¸
du.

Inserting this in I2, substituting u = F (x) and using partial integration

I2 =
1

2

Z
R

xm
½
1 + x

f 0 (x)
f (x)

¾
f (x) dx =

1

2
{µm − (m+ 1)µm} = −

m

2
µm.

Finally the covariance matrix : The covariance follow from the formula (2.11).
Thus, the expression for σ22 follows fromZ 1

0

h22 (u) du =

Z 1

0

©
F−1 (u)

ª4
du = µ4,

Z 1

0

h2 (u) du = µ2 = 1.

The other expressions follow in a similar way. First,Z 1

0

hm (u) du = µm −mµm−1µ1 −
m

2
µmµ2 = µm

³
1− m

2

´
,

using µ1 = 0 and µ2 = 1, whileZ 1

0

hm (u)h2 (u) du = µm+2 −mµm−1µ3 −
m

2
µmµ4

cannot be reduced further. Together with the above expressions this leads to σm2.
Finally, σmn can be derived usingZ 1

0

hm (u)hn (u) du = µm+n − nµm+1µn−1 −
n

2
µm+2µn

−mµm−1µn+1 +mnµm−1µn−1µ2 +
mn

2
µm−1µnµ3

−m
2
µmµn+2 +

mn

2
µmµn−1µ3 +

mn

4
µmµnµ4.
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4.4 The Gaussian case

Proof of Theorem 2.9. It is first established, for Φ (x) = u thatZ 1

0

1(s≤u)Φ−1 (s) ds = −ϕ (x) ,Z 1

0

1(s≤u)
©
Φ−1 (s)

ª2
ds = −xϕ (x) + u.

To see this, note that ϕ0 (x) = −xϕ (x) and ϕ00 (x) = (x2 − 1)ϕ (x) , and therefore
by substitution Φ (t) = s it holdsZ 1

0

1(s≤u)Φ−1 (s) ds =
Z x

−∞
tϕ (t) dt = −

Z x

−∞
ϕ0 (t) dt = −ϕ (x) ,

and likewiseZ 1

0

1(s≤u)
©
Φ−1 (s)

ª2
ds =

Z x

−∞

©¡
t2 − 1¢+ 1ªϕ (t) dt

=

Z x

−∞
{ϕ00 (t) + ϕ (t)} dt = ϕ0 (x) + Φ (x) .

The integrals involved in the expression (2.11) for the covariance of integrals with
respect to the Brownian bridge can now be considered. Recalling the integral
expressions for the Gaussian moments in (2.19) it holds

κu =
Z 1

0

⎛⎝ 1(s≤u)
Φ−1 (s)
{Φ−1 (s)}2

⎞⎠ ds =

⎛⎝ u
0
1

⎞⎠ ,

and for u = Φ (x) and v = Φ (y) so u ≤ v

Σu,v =

Z 1

0

⎛⎝ 1(s≤u)
Φ−1 (s)
{Φ−1 (s)}2

⎞⎠⎛⎝ 1(s≤v)
Φ−1 (s)
{Φ−1 (s)}2

⎞⎠ ds

=

⎛⎝ u −ϕ (x) u− xϕ (x)
−ϕ (y) 1 0

u− yϕ (y) 0 3

⎞⎠ .

The desired expression is then computed as½
1, ϕ (x) ,

1

2
xϕ (x)

¾
(Σu,v − κuκ0v)

½
1, ϕ (y) ,

1

2
yϕ (y)

¾0
.
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