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SUMMARY

In this paper, we consider the identification problem arising in the age-
period-cohort models, as well as in the extended chain ladder model. We
propose a canonical parametrization based on the accelerations of the trends
in the three factors. This parametrization is exactly identified. It eases
interpretation, estimation and forecasting. The canonical parametrization
is shown to apply for a class of index sets which have trapezoid shapes,
including various Lexis diagrams and the insurance reserving triangles.
Some key words: Age-period-cohort model; Chain-ladder model; Identifica-
tion.

1 Introduction

Consider the age-period-cohort model used in epidemiology and demography.
It describes the logarithm of the mortality in an additive form, involving three
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interlinked time scales
pij = @i + B + Yitj—1 + 0, (1)

where ¢ is the cohort, j is the age, and 7 + 7 — 1 is the period. The indices
i, vary bivariately in an index set I € N2. The parameters of the model
o, B35, Vitj—1,0 describe the trends of the three factors in the model. It has
long been appreciated that this parametrization is not identified. Holford
(1983) therefore used generalized inverses when solving maximum likelihood
equations, remarking that the choice of generalized inverse can have a large
effect on the parameter estimates. A similar solution has implicitly been used
in the insurance literature, see Zehnwirth (1994). Clayton & Schifflers (1987)
suggested that the ratios of the relative risks are identifiable. On a logarith-
mic scale, they are the second differences, which will be the key ingredient
in this paper. Carstensen (2007) represented the variation of the parameter-
ization of (1) by adding and subtracting linear trends from «;, 5;, Vitj-1,9,
which relate to a group theoretic description of the identification suggested
here. He also pointed out that an ideal parametrization should be simple in
both estimation and computation.

In this paper, we revisit the identification problem. We propose a canon-
ical parametrization which includes the identifiable second differences sug-
gested by Clayton & Schifflers (1987), and prove that it has an 1-1 correspon-
dence with p,;, for all 7,5 € I. It will be shown that the interpretation of
such a parametrization is straight forward, and its design matrix can easily
be deduced.

We shall consider the three leading cases of the age-period-cohort model
related to the Lexis diagram as discussed by Keiding (1990). In the terminol-
ogy of Keiding, the first principal set of dead is data from certain cohorts that
die within a given age range. This is where the indices vary in an age-cohort
rectangle. The other two cases are when the indices vary in an age-cohort
trapezoid. The second principal set of dead studies the deaths of certain
cohorts in a given period as in a longitudinal study. The third principal set
of dead studies the death within a certain period and between a given age
range as in a repeated cross-sectional study.

We shall also consider the extended chain ladder model used for reserving
in non-life insurance. The issue in reserving is that claims relating to a given
accident year may be reported many years after the accident. Thus, the
available data in any given calendar year k is a simplex of size k with claims



indexed by their accident year and by their reporting or development year.
The accident year and the development year add up to the calendar year
plus one. This simplex is referred to as a run-off triangle. The classical chain
ladder model, discussed by for instance England and Verrall (2002), involves
only two time scales relating to the accident and the development year. An
extended chain ladder model parametrized using three time scales as in (1)
has been introduced by Zehnwirth (1994) and Barnett & Zehnwirth (2000).

Initially in §2, we start by considering the identification problem in the
simple case, where the indices 7, j vary in a square. This corresponds to the
‘first principal set of dead’. We shall establish a canonical parametrization
¢ for models with such an index set. It will be seen that £ is given by the
second differences of a;, B;, vi+;—1 and the three corner points 11, po1, ft12.
§3 shows the three corner points can be replaced by other points. §4 then
extends this work to more general index sets, including the ‘second and third
principal sets of dead’ and the insurance run-off triangles.

2 Identification for square index sets

Consider a simple square index set given by Definition 1. In this section, we
propose a canonical parametrization for model (1) for this situation.

Definition 1 I is a square index set if for some k € N,

I={0,j7);i,5=1,...,k}. (2)
For a square index set, the parameters of (1) are
Q = (Ozl, e ,Ozk,ﬁl, . ,ﬁk,’}/l, e ,’ng_l,é) - R4k. (3)

Now, let © = {u;; : (i,7) € I} as given by (1). The map from 6 to p is
surjective, but not injective. As pointed out by Carstensen (2007), linear
trends in «;, B, 7i+;—1 can be added without changing the value of y;;. This
can be phrased by 6 being over-parameterized.

Clayton & Schifflers (1987) worked with a multiplicative formulation of
(1) and suggested that ratios of ratios of the parameters would be invariant.
In the linear setup (1), the linear trends can correspondingly be removed
from «;, B}, vi+j—1 by taking second differences like A%q; = o, — 201+ o,
To generate a canonical parametrization £, we rewrite (1) in terms of these
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second differences, and three initial points. This can be done by introducing
the telescopic sums o; = aq + Z;ZQ Aoy and Aoy = Aas + Zizg A%qy, thus

% t
o = + (Z — 1)AO&2 + Z Z A2CYS,

t=3 s=3

Substitute this expression for «; and similar expressions for 3; and 74,1
into (1) WI'ItlIlg AO(Q + A’}/Q = W21 — H11 and Aﬁg + A’}/Q = M12 — 11, WE get

pij = pran + (1 — 1) (g1 — pan) + (5 — 1) (pa2 — pan) + aij, (4)

for all 4, j € I, where the term a;; is given by

it it itj—1 ¢
a;; = Z Z Ao, + Z ZA255 + Z Z A2,
t=3 s=3 t=3 s=3 t=3 s=3

The expression for a;; can be simplified further by exchanging the double
sums, for instance, > ;_, S, A2a, equals 3.0, A%a,(i — s + 1), thus

i j il
aj = Aoyi=s+ 1)+ AB(—s+1)+ Y A(i+i—s). (5)
s=3 5=3 5=3

Based on formula (4), we define a parameter vector £ € R*~* as

§= (M11>ﬂ21,/~612,A20é3> .- -,AQC%A%& e >A25k>A2’Y3, .- '7A272k—1)- (6)

Theorem 1 shows that & gives a unique parameterization of u. We therefore
call it a canonical parameter.

For estimation purpose, a design matrix for the canonical parameter &
can be deduced from (4). In the case of a square index set, I of dimension
k = 3, the design matrix is given by

[ 10000000

[i19 10100000 K11
i1 11000000 Ha1 = pu
. 11100100 ‘“QA;“”
ms =] 10201100 N%S
Li31 12010100 A23
o 11201210 AQ’V?’
i3 12110210 Aﬂ“
133 12211321 5

e~



Theorem 1 shows that ¢ is unique in general. The uniqueness of ¢ implies that
the design matrix has full column rank, this can be checked by inspection
when k£ = 3. The proof is provided in the Appendix.

Theorem 1 Let 1 = {u5; (¢,7) € I}, where I is a square index set, and fi;;
satisfies (1). The parametrization & given by (6) satisfies

(1) € is a function of 6.
(2) w is a function of £, due to (4).

The parametrization of u by & is exactly identified in that &7 # & implies
(") # (&)

The result could also be cast in terms of group theoretic arguments. We
define as in Carstensen (2007) the group g as

Q; a;+a+ (i —1)d
53' ﬁj+b+(j—1)d
: A 7
Tl |7 vya+e—(i+ji—2d 0
) d—a—b—c

where a, b, c,d are arbitrary constants. The parameter p is a function of 6,
which is invariant to g, that is, u(0) = p{g(f)}. Using invariance arguments
as those in Cox & Hinkley (1974, §5.3), Theorem 1 shows that £ is a maximal
invariant function of # under g.

The assigned parameter f can be constructed from £ using (7). For in-
stance, if we choose a; = (31 = 71 = 2 = 0, then 6 can be computed from &
as

it
a = (i—1)(p2r — pa1) + Z ZA%és,

t=3 s=3
it
Bi = (G — 12— pa1) + ZZAzﬁsa
t=3 s=3
i+i—1 ¢
Yitj-1 = Z ZA2787
t=3 s=3
o6 = H11-



Formula (4) shows that these components add up to p;;. If other values for
a1, (1,71, V2 are desired, corresponding linear trends can be added as set out
in (7) by choosing appropriate values of levels a, b, ¢ and slope d.

Since we can choose a,b,c,d arbitrarily, interpretation of the original
parameters o, (;, Vitj—1 is difficult. The visual impression of the parameters
o, Bj, Vi+j—1 will depend on the choice of a,b, c,d. For instance, by varying
d a figure of the a;-parameters can appear to be increasing or decreasing.
Correspondingly the level, and hence the sign of the first differences Acq; is
arbitrary. The second differences A%, A%3;, A%y;;;_1 do however, have
a unique interpretation. The interpretation of such second differences, or
accelerations, is standard in time series analysis. Likewise, any forecasting
can be done more safely on the second differences rather than the levels.
In applications, it would therefore be helpful to make graphs of the second
differences.

In some applications the components o;, 3;, Vi+j—1, and 0 themselves
are not all that important, whereas the original parameters p;; are of main
interest. Plots of the parameters p;; will be meaningful as y;; is a function
of £ via (4) and (5), and it is therefore identified. An example is when the
object of interest is to forecast how many children there will be in different
grades in the school system in the year 2010. In that case let ¢ be cohort, j
age, and plot f;; as a function of either age or cohort such that the period is
1+ 5 —1=2010. Other examples could be how mortality of people of age 80
vary in terms of either the period or the cohort or how mortality of people
born in 1930 vary in terms of either period or age. Similarly, in insurance
the intrisic issue is to predict outstanding claims relating to a given accident
year rather than to forecast the calendar parameters, 7, say.

3 The Role of initial points

The choice of canonical parametrization is not unique. Any bijective mapping
of £ would also identify p exactly. In particular, the three initial points in &
given by (6) can be replaced by another set of three points without changing
the content of Theorem 1.

The argument for changing the initial points is based on a manipulation



of equation (4). It is convenient to introduce the matrix notation

Hiy 5y M1t Qi 5, bivj:
Y=\ tijo | X=| 2 |, A= aijo |, B=| bijp |
Hisgs H21 Qg 53 bi3j3

with a;; as in formula (5) and b;; = (1,7 — 1,7 — 1). With this notation, it
holds from (4) that
Y = BX + A, (8)

which can be solved for X when B is invertible. We find that B is invertible
when det(B) = i9j3 — i3j2 + i3J1 — 11]3 + i1J2 — 4271 is different from zero.
As a consequence, X can be replaced by Y, which gives a new canonical
parameter

5 = (:u’iljlu Mizjg? /l’i3j37 AQOég, ey A2Oék7 A2ﬁ37 s 7A25k7 A2737 ey A2fy2k71)-
(9)
The following Corollary to Theorem 1 holds.

Corollary 1 Suppose p;; satisfies (1) on a square index set I and consider
the parameter £ given by (9). If the matriz B is invertible, then the conclu-
sitons of Theorem 1 remains true.

A design matrix can be constructed from £ as given by (9). This is done
by combining (8) and (4). This shows that for all (i, j) € I, it holds that

,uij = bZ]X + (Iij = bijB_IY —+ (aij — bijB_lA), (10)

which is a linear function of £ as defined in (9). The inverse of the matrix B
is given by

(ia — 1)(j3 — J2) (i1 — 1)(Jj1 — Js) (i1 — 1)(j2 — J1)
' —(i3—i2)(jo—1) —(h—i3)(h—1) —(ia—i)(j1—1)

B! =
det(B) J2 — Js J3— J1—J2

13 — 12 11— 13 19 — 11




4 Identification for general index sets

In many situations, the parameterization (1) has an index set which is not a
square as considered in §2. For instance, I can be a parallelogram in a Lexis
diagram, or a simplex in an insurance run-off triangle. More generally, [
could be any irregular shape, with one or more missing points. It is therefore
useful to construct a canonical parametrization for (1) with a non-square
index set.

A convenient generalization of the square index sets are index sets of
rectangular shapes, where the period i+ j — 1 can be constrained to a certain
interval. We will call such index sets generalized trapezoids and give a precise
definition below. Working with such index sets it is immediately clear how
to define a canonical parametrization from knowing the dimensions of the
generalized trapezoid. The generalized trapezoid covers the most important
situations encountered in practice, that is the three types of Lexis diagrams
and the insurance run-off triangle.

Definition 2 The index set I is a generalized trapezoid if for some
l,kkme N, he Ny, and h+m <[+ k—1, then

I={Gj);i=1,...;k;j=1,...;L,i+j5—1=h+1,....h+m}. (11)

In the following, we illustrate with diagrams some applications of the
general trapezoid. Fig. 1(a,b,c) shows examples of the three types of Lexis
diagrams discussed by Keiding (1990), where the age and cohort add up to
the period. The first principal set of dead gives a rectangular index set,
whereas the second and third principal sets of dead are trapezoids. Fig. 1(d)
gives an example of an insurance run-off triangle as discussed by Zehnwirth
(1994) and Barnett & Zehnwirth (2000).

[ Figure 1 about here |

For every generalized trapezoid I, we define the canonical parameter &
from the dimensions [, k, m, h by restricting the three time scales. That is,

é = (:uil,jl ) :uiz,jw :uig,j37 AQOég, ceey A2ak7 Azﬁ:ﬂa o 7A2ﬁla A27h+37 o 7A27h+m)7

(12)
where (i1, 71), (42, j2), (i3, j3) € I and satisfy det(B) # 0, the following corol-
lary to Theorem 1 then holds.



Corollary 2 Suppose p;; satisfies (1) on a generalized trapezoid index set I
and consider the parameter £ given by (9). If the matriz B is invertible, then
Theorem 1 remains true.

Corollary 2 is proved by analyzing formula (10), by showing that the terms
A%ys, ..., A%y, 5 are not needed. To see this, we isolate the A2y terms in
aij of (10). It is then seen that A%y, with index s < h + 3 is weighted by

wy = (i+j =) = byB~ (ix + 51— 5,02 + o — 5,03 + Js — 5)'.
The last vector can easily be written in terms of the matrix B giving
wy=(i+j—s)—(1,i—1,j—-1)B'B(2—s,1,1) =0.

A design matrix can be constructed from ¢ as given by (12). As in §3,
this is done directly from the formula (10). The design matrix has a number
of zero elements, for instance, we can show that A%v,.3,..., A%y, with
p > 3 has weight zero if 11 +j; — 1,45+ jo—1,i3+j3— 1 and also ¢+ j — 1 are
all larger than h + p following similarly procedure as the proof of Corollary
2.

Corollary 2 gives a sufficient condition only for the type of index sets
where ¢ in (12) is a canonical parameterization. Fig. 2(a), is an example
of an index set which is not a generalized trapezoid. Fig. 2(b) shows an
extended index set which is a generalized trapezoid. Corollary 2 gives a
canonical parameter £ for the latter set. This parameter £ is also a canonical
parameter for the original set. To see this, we decompose £ into elements &g
say, related to the 3 by 3 simplex and the second differences AfBy, Avyy, Ays.
It turns out that there is a bijective mapping from those three elements to
1414, M2, 33, which can be formulated as

,LL14 1 1 0 A2ﬁ4
poa | = 1 2 1 APy | + f(&),
33 0 21 APy

where f(-) is some functions of &. The design matrix here has rank 3.
However, if any one of the three points fi14, o4, ft33 is missing, & would be
over-parameterized.

[ Figure 2 about here |



In the above example, a canonical parameter for a general index set was
found by extending the set to a generalized trapezoid. This strategy will,
however, not work in general. Fig. 2(c,d) shows some simple examples. In
the first example, the index set has four points. By adding the point oo,
a generalized trapezoid is found with canonical parameter £ of dimension 5.
This & over-parameterized the original set. In the second example, the same
is seen when adding ft15.

5 Discussion

In this paper, we have established a canonical parametrization £ given by (12)
for the age-period-cohort models and for the extended chain ladder model.
The canonical parameter ¢ is based on the identifiable second differences. It
provides a base for easy estimation and forecasting.

While the canonical parameter is indeed unique, its interpretations is in
terms of accelerations, which can be somewhat complicated to communicate.
The level parameters «;, 3;, and 7,41 are not unique, and plots of them
can be visually misleading as they evolve around arbitrarily chosen linear
trends. In some applications one could instead communicate plots of the
original parameter p;; for a fixed value of either 4, j, or i + j — 1.

Theorem 1 and Corollaries 1, 2 provide sufficient conditions on the type of
index sets for which exact identification can be achieved. Fig. 2 (a,b) shows
that identification can also be achieved for a more general class of somewhat
irregular index sets.

Another sufficient condition for the permissible index sets can be based
on a recursive argument. First, find a set I C I, which is a generalized
trapezoid with canonical parameter . A point (i,7) € I\ Iy can be added
to I if it introduces at most one double difference that is not in &. Thus
Inr = {Ix U(i,7)} C I is exactly identified by &41. It should be noted that
Fig. 2(a) is an example, which cannot be obtained by this one-step recursive
scheme. This set is obtained by adding three points (1,4), (2,4), (3,3) to the
identifiable 3 by 3 simplex.
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APPENDIX
Proof of Theorem 1

Theorem 1 is proven by induction using formula (4).

Trivial step: consider the first two diagonals, i.e. the initial three elements.
If one of uJ{l #+ /f{l, uig #+ ,uin, or ,ugl #* u;, then the statement is true.

Initial step: consider the third diagonal.
It NL = N%l» M12 = N%z’ M£1 = Mgh but AQV?E # A27§5 then Ngz # Ngz by
formula (4).
If ply = phys pdy = pidy, pily = pifo, A% = A5, but A2] # A265, or
20‘:2 e AQO‘:{” then MJ{,?, G /ﬂi,?n or /L:Tm G /Lii%,l by formula (4).

Induction step: consider the diagonal (r+ 1), where r +1=4,...,2k — 1.

Assume Nu = M117 Niz = N127 N21 = N217 and for 3 =3, 7“ APl =

AQ,YS? A2ﬁT A2ﬂi A2aT A2OZ¢ but AQ +1 7é A 77’—&-1 Then ILLQT 7£ MZT
by formula (4).

We then can show M11 = M117 /LIQ = /’&27 Mgl = :Uél’ for s = 3,...,r,
Al =A%), A% = A%GL A%al = A%af, APy, = APy, but A, #
A2ﬁr+17 or A20‘:[+1 # A? i+17 then we have UL«H # M?r—&-l? or HI+1,1 # Ni+1,1
by formula (4).
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Fig. 1. Panels (a,b,c) show Lexis diagrams for first, second, and third,
respectively principal set of dead. Panel (d) shows an insurance run-off tri-
angle.
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Fig. 2. Panel (a) shows an index set, which is not a generalized trapezoid.
This set is extended to a generalized trapezoid in panel (b). The sets in (a)
and (b) have the same canonical parameter. Panels (c¢,d) show examples of
sets, which are not generalized trapezoids and where the associated gener-
alized trapezoid has a canonical parameter of larger dimension that the set

itself.
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