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Abstract

We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We
show this new consistent estimator is guaranteed to be positive semi-definite and is robust to mea-
surement noise of certain types and can also handle non-synchronous trading. It is the first estimator
which has these three properties which are all essential forempirical work in this area. We derive
the large sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We
implement the estimator on some US equity data, comparing our results to previous work which has
used returns measured over 5 or 10 minutes intervals. We showthe new estimator is substantially
more precise.
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1 Introduction

The last seven years has seen dramatic improvements in the way econometricians think about time-varying

financial volatility, first brought about by harnessing highfrequency data and then by mitigating the

influence of market microstructure effects. Extending thiswork to the multivariate case is challenging as

this needs to additionally remove the effects of non-synchronous trading while simultaneously requiring

that the covariance matrix estimator be guaranteed to be positive semi-definite. In this paper we provide

the first estimator which achieves all these objectives. This will be called the multivariate realised kernel,

which we will define in equation (1).

We study ad-dimensional log price processX =
(

X(1), X(2), ..., X(d)
)′

. These prices are observed

irregularly and non-synchronous over the interval[0, T ]. For simplicity of exposition we takeT = 1

throughout the paper. These observations could be trades orquote updates. The observation times for

the i -th asset will be written ast (i )1 , t
(i )
2 , . . .. This means the available database of prices isX(i )(t (i )j ), for

j = 1,2, ..., N(i )(1), andi = 1,2, ...,d. HereN(i )(t) counts the number of distinct data points available

for the i -th asset up to timet .

X is assumed to be driven byY, the efficient price, abstracting from market microstructure effects.

The efficient price is modelled as aBrownian semimartingale(Y ∈ BSM) defined on some filtered

probability space(�,F, (Ft) , P),

Y(t) =
∫ t

0
a(u)du +

∫ t

0
σ (u)dW(u),

wherea is a vector of elements which are predictable locally bounded drifts, σ is a càdlàg volatility

matrix process andW is a vector of independent Brownian motions. For reviews of the econometrics of

this type of process see, for example, Ghysels, Harvey & Renault (1996). If Y ∈ BSM then its ex-post

covariation, which we will focus on for reasons explained ina moment, is

[Y](1) =
∫ 1

0
6(u)du, where 6 = σσ ′,

where

[Y](1) = plim
n→∞

n
∑

j =1

{

Y(t j )− Y(t j −1)
} {

Y(t j )− Y(t j −1)
}′
,

(e.g. Protter (2004, p. 66–77) and Jacod & Shiryaev (2003, p.51)) for any sequence of deterministic

synchronized partitions 0= t0 < t1 < ... < tn = 1 with supj {t j +1 − t j } → 0 for n → ∞. This is the

quadratic variation ofY.

The contribution of this paper is to construct a consistent,positive semi-definite estimator of[Y](1)
from our database of asset prices. The challenges of doing this are three fold: (i) there are market

microstructure effectsU = X − Y, (ii) the data is irregularly spaced and non-synchronous, (iii) the

market microstructure effects are not statistically independent of theY process.
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Quadratic variation is crucial to the economics of financialrisk. This is reviewed by, for example,

Andersen, Bollerslev & Diebold (2008) and Barndorff-Nielsen & Shephard (2007), who provide very

extensive references. The economic importance of this lineof research has recently been reinforced by

the insight of Bollerslev, Tauchen & Zhou (2008) who have showed that expected stock returns seem

well explained by the variance risk premium (the differencebetween the implied and realised variance)

and this risk premium is only detectable using the power of high frequency data. See also the paper by

Drechsler & Yaron (2008).

Our analysis builds upon earlier work on the effect of noise on univariate estimators of[Y](1) by,

amongst others, Zhou (1996), Andersen, Bollerslev, Diebold & Labys (2000), Bandi & Russell (2005),

Zhang, Mykland & Aı̈t-Sahalia (2005), Andersen, Bollerslev & Meddahi (2006), Hansen & Lunde (2006),

Kalnina & Linton (2008), Zhang (2006), Renault & Werker (2008), Barndorff-Nielsen, Hansen, Lunde &

Shephard (2008a) and Jacod, Li, Mykland, Podolskij & Vetter (2007). The caseof no noise is dealt with

in the same spirit as the papers by Andersen, Bollerslev, Diebold & Labys (2001) and Barndorff-Nielsen

& Shephard (2002), Barndorff-Nielsen & Shephard (2004), Mykland & Zhang (2006), Mykland & Zhang

(2008) and Jacod & Protter (1998).

A distinctive feature of multivariate financial data is the phenomenon of non-synchronous trading or

nontrading. These two terms are distinct. The first refers tothe fact that any two assets rarely trade at

the same instant. The latter to situations where one assets is trading frequently over a period while some

other assets do not trade. The treatment of non-synchronoustrading effects dates back to Fisher (1966).

For several years researchers focused mainly on the effectsthat stale quotes have on daily closing prices.

Campbell, Lo & MacKinlay (1997, chapter 3) provides a surveyof this literature. When increasing the

sampling frequency beyond the inter-hour level several authors have demonstrated a severe bias towards

zero in covariation statistics. This phenomenon is often referred to as the Epps effect. Epps (1979)

found this bias for stock returns, and it has also been demonstrated to hold for foreign exchange returns,

see Guillaume, Dacorogna, Dave, Müller, Olsen & Pictet (1997). This is confirmed in our empirical

work where realised covariances computed using high frequency data, over specified fixed time periods

such as 15 seconds, dramatically underestimate the degree of dependence between assets. Some recent

econometric work on this topic includes Malliavin & Mancino(2002), Reno (2003), Martens (2003),

Hayashi & Yoshida (2005), Voev & Lunde (2007), Griffin & Oomen(2006), Large (2007) and Zhang

(2005). We will draw ideas from this work.

The form of multivariate realised kernel we propose is, in the univariate special case, subtly different

from that studied in the univariate paper by Barndorff-Nielsen et al. (2008a). Their flat-top kernel, which

has the advantage of being unbiased and fully efficient, is not guaranteed to be non-negative. It also could

not directly deal with non-synchronous data. This is essential in the multivariate case, which motivates

the specific form of the multivariate realised kernel proposed here. We discuss in some detail the specifics
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of the differences between these estimates in Section 6.1. The change to our preferred estimator means

the rate of convergence, bandwidth choice and asymptotic distribution of our new estimator differs from

the flat-top version. In particular, our theory can be used totune the bandwidth selection for estimating

particular correlations, betas, inverse covariance matrices or just covariances.

The structure of the paper is as follows. In Section 2 we synchronize the timing of the multivariate

data using what we call Refresh Time. This allows us to refine high frequency returns and in turn the

multivariate realised kernel. Further we make precise the assumptions we make use of in our Theorems

to study the behaviour of our statistics. In Section 3 we givea detailed discussion of the asymptotic

distribution of realised kernels in the univariate case. The analysis is then extended to the multivariate

case. Section 4 contains a summary of a simulation experiment designed to investigate the finite sample

properties of our estimator. Section 5 contains some results from implementing our estimators on some

US stock price data taken from the TAQ database. This is followed by a Section on extensions and further

remarks, while the main part of the paper is finished by a Conclusion. This is followed by an Appendix

which contains the proofs of various theorems given in the paper, and an Appendix with results related to

Refresh Time sampling. More details of our empirical results and simulation experiments are given in a

web Appendix which can be found athttp://www.hha.dk/˜alunde/BNHLS/BNHLS.htm .

2 Defining the multivariate realised kernel

2.1 Synchronizing data

2.1.1 Refresh time

Non-synchronous trading delivers fresh (trade or quote) prices at irregularly spaced times which differ

across stocks. Dealing with non-synchronous trading has been an active area of research in financial

econometrics in recent years, e.g. Hayashi & Yoshida (2005), Voev & Lunde (2007) and Large (2007).

Stale prices are a key feature of estimating covariances in financial econometrics as recognised at least

since Epps (1979), for they introduce cross-autocorrelation amongst asset price returns.

Write the number of observations in thei -th asset made up to timet as the counting processN(i )(t),

and the times at which trades are made ast (i )1 , t
(i )
2 , .... We now define a time scale which will be key to

the construction of multivariate realised kernels.

Definition 1 Refresh Time1 for t ∈ [0,1]. We define the first refresh time asτ1 = max
(

t (1)1 , ..., t (d)1

)

,

and then subsequent refresh times as

τ j +1 = max

(

t (1)
N(1)τ j +1

, ..., t (d)
N(d)τ j +1

)

.

The resulting Refresh Time sample size is N, while we write n(i ) = N(i )(1).

1Refresh time was used in a cointegration study of price discovery by Harris, McInish, Shoesmith & Wood (1995). Martens
(2003) used the same idea in the context of realised covariances, but his estimator is inconsistent.
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Theτ1 is the time it has taken for all the assets to trade, i.e. all their posted price have been updated.

τ2 is the first time when all the prices are again refreshed. Thisprocess is displayed in Figure 1 ford = 3.

Our analysis will now be based on this time clock{τ j }. Our approach will be to:

• Assume the entire vector of up to date prices are seen at theserefreshed timesX(τ j ), which is not

correct — for we only see a single new price andd − 1 stale prices2.

• Show these stale pricing errors have no impact on the asymptotic distribution of the realised kernels.

Asset 1

Asset 2

Asset 3
Time

b

b

b

b

b

b b

b

b b

b

b

b

b

b

bb

b

b

b

b b

b

b

b

b

b
τ1 τ2 τ3 τ4 τ5 τ6 τ7

Figure 1:This figure illustrates Refresh Time in a situation with three assets. The dots represent the times
{t (i )j }. The vertical lines represent the sampling times generated from the three assets with refresh time
sampling. Note, in this example, N= 7, n(1) = 8, n(2) = 9 andn(3) = 10.

This approach to dealing with non-synchronous data converts the problem into one where the Re-

freshed Times’ sample sizeN is determined by the degree of non-synchronicity andn(1),n(2), . . . ,n(d).3

The degree to which we keep data is measured by the size of the retained data over the original size of the

database. For Refresh Time this isp = dN/
∑d

i=1 n(i ). For the data in Figure 1,p = 21/27 ≃ 0.78.

2.1.2 Jittering end conditions

Realised kernels are built out ofn high frequency returns computed from synchronized vector prices

recorded atN times. It turns out that our asymptotic theory dictates we need to averagem prices at the

2Their degree of staleness will be limited by their Refresh Time construction to a single lag in Refresh Time. The extension
to a finite number of lags is given in Section 6.6.

3Suppose trade times arrive as independent standard Poissonprocess with common intensityλ, so that E{N(i )(t)} = λt .

Thent (i )1 ∼ exp(λ) and asτ1 = max{t (1)1 , t (2)1 , ..., t (d)1 }, so, e.g. Embrechts, Kluppelberg & Mikosch (1997, pp. 125 & 176)

τ1/ logd
d→ λ−1, or more refined Pr(τ1 − logd ≤ x) = {1 − exp(−λx)/d}d → exp{− exp(−λx)}. Hence the sample size

from the refreshed analysis will fall with logd, the dimension of the asset prices. The situation where the intensity varies across
assets, i.e. E{N(i )(t)} = λi t, will not substantially change this result.

The loss of observations is relatively cheap here, because the rate of convergence for our realised kernel will ben1/5. In a
standard situation where an estimator converges at raten1/2, one can expect confidence intervals to widen by about 100% when
the sample size is reduced by a factor of 4. When the rate of convergence isn1/5, confidence intervals only widen by about 32%.
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very beginning and end of the day to define these returns4. The theory behind this will be explained in

Section 6.5, but for now we just define what we mean by jittering. Letn,m ∈ N, with n − 1 + 2m = N,

then set the vector observationsX0, X1, ..., Xn asX j = X(τ j +m), j = 1,2, ...,n − 1,and

X0 = 1

m

m
∑

j =1

X
(

τ j

)

and Xn = 1

m

m
∑

j =1

X(τN−m+ j ).

So X0 and Xn are constructed by jittering initial and final time points. By allowing m to be moderately

large but very small in comparison withn, it means these observations record the efficient price without

much error, as the error is averaged away. Experimentation suggestsm should be around 2 for the kind

of data we see in this paper: see Section 6.5 for a discussion of this issue.

These prices allow us to define the high frequency vector returns asx j = X j − X j −1, j = 1,2, ...,n.

2.2 Realised kernel

Having synchronized the high frequency vector returns
{

x j

}

we can define our class of positive semi-

definitemultivariate realised kernels(RK). It takes on the following form

K (X) =
n
∑

h=−n

k( h
H+1)Ŵh. (1)

Here the non-stochastick(x) for x ∈ R is a weight function. Theh-th realised autocovariance is

Ŵh =







∑n
j =|h|+1 x j x′

j −h, h ≥ 0

∑n
j =|h|+1 x j −hx′

j , h < 0.

We focus on the class of kernel functions,K, that is characterized by:

(i ) k(0) = 1, k′(0) = 0;

(i i ) k is twice differentiable with continuous derivatives;

(i i i ) k0,0
• , k1,1

• , k2,2
• < ∞, wherek0,0

• =
∫ 1

0 k(x)2dx, k1,1
• =

∫ 1
0 k′(x)2dx, k2,2

• =
∫ 1

0 k′′(x)2dx;

(i v)
∫∞
−∞ k(x)exp(i xλ)dx ≥ 0 for all λ ∈ R.

The assumptionk(0) = 1 meansŴ0 gets unit weight, whilek′(0) = 0 means the kernel gives close

to unit weight toŴh for small values of|h|. Condition(i v) guaranteesK (X) to be positive semi-definite,

(e.g. Bochner’s theorem and Andrews (1991)).

The multivariate realised kernel has the same form as a standard heteroskedasticity and autocorrelated

(HAC) covariance matrix estimator familiar in econometrics (e.g. Gallant (1987), Newey & West (1987),

and Andrews (1991)). But there are a number of important differences. For example, the sums that

4This kind of averaging appears in, for example, Jacod et al. (2007).
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define the realised autocovariances are not divided by the sample size, whilek′(0) = 0 is critical in our

framework. Unlike the situation in the standard HAC literature, an estimator based on the Bartlett kernel

will not be consistent for the ex-post variation of prices, measured by quadratic variation, in the present

setting. Later we will recommend using the Parzen kernel (its form is given in Table 1) instead.

2.3 Assumptions about the noise and refresh time

Having defined the positive semi-definite realised kernel, we will now write out our assumptions about

the market microstructure effectsU and the
{

τ j

}

which govern the properties of the vector returns
{

x j

}

and soK (X).

The assumptions about the noise are stated in observations time — that is we only model the noise at

exactly the times where there are trades or quote updates. This type of assumption is familiar from the

work of, for example, Zhou (1998), Bandi & Russell (2005), Zhang et al. (2005), Barndorff-Nielsen et al.

(2008a) and Hansen & Lunde (2006). We define

U j = X(τ j )− Y(τ j ), j = 0,1, ..., N,

which is noise associated withX(τ j ), the observation at timeτ j .

Assumption 1 Suppose that, conditional on{Y}, {U j } is covariance stationary (U∈ CS) with E(U j ) =
0 and

∑

h |h�h| < ∞, where�h = cov(U j ,U j −h). Let M = max{|i − j |, |h − l |}. For h, l ≥ 0, there

exists̺M such that,
∣
∣
∣Cov(Ui U ′

i−h,U j U ′
j −l )

∣
∣
∣ ≤ ̺M , where

∑∞
i=1 ̺i (1 + ǫ)i < ∞, for someǫ > 0.

A key quantity in our analysis is the, so-called, long-run variance:

� =
∞
∑

h=−∞
�h,

which is a non-stochasticd × d matrix.

On occasions we refer to a white noise assumption about theU process (U ∈ WN ) which means we

assume it has E
(

U j

)

= 0, Var
(

U j

)

= � andUi ⊥⊥ U j , for all i 6= j . This white noise assumption is

unsatisfactory from a number of viewpoints (e.g. Phillips &Yu (2008) and Kalnina & Linton (2008)) and

will not be used to derive our limit theorems.

Throughout the paper we follow Barndorff-Nielsen et al. (2008a) in making this assumption about

the times that we have Refresh Time data5.

5This means thatZ(t) = Y(T(t)) is a Brownian semimartingale with[Z]1 = [Y]T(1) and spot volatilityλ(t) =
τ(t) {σ ◦ T(t)}. The point of this assumption is thatZ( j/N) = Y(T( j/N)) = Y(τ j ), whereτ j = T( j/N). So irregularly
spaced data onY can be thought of as equally spaced onZ.

An implication of this is that supj {τ j +1 − τ j } = Op(n−1) for n → ∞, which means that supi, j {t
(i )
j +1 − t (i )j } = Op(n−1) by

construction of refresh time.
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Assumption 2 Define T(t) =
∫ t

0 τ
2(u)du, whereτ(u) is strictly positive, c̀adlàg univariate process.

Then we assume Refresh Times occur atτ j = T( j/n). We also assume thatτ is adapted toF . When both

conditions hold we writeτ ∈ T .

3 Asymptotic results

3.1 Consistency

We first give a consistency result for the multivariate realised kernelK (X),which can be writtenK (X) =
K (Y)+ K (Y,U )+ K (U,Y)+ K (U ) , whereK (Y,U ) =

∑n
h=−n k( h

H+1)
∑

j y j u′
j −h, with y j = Yj −

Yj −1 andu j = U j − U j −1.

Theorem 1 Let k ∈ K and n→ ∞. If K (U )
p→ 0 and K(Y)

p→ [Y] then

K (X)
p→ [Y].

If H ∝ nη with η ∈ (0,1) and τ ∈ T then K(Y)
p→ [Y]. If H ∝ nη with η ∈ (1/2,1) , U ∈ CS, and

m → ∞, then K(U )
p→ 0. Further, if K(Y)− [Y] = Op(n−ǫ) and K(U ) = Op(n−2ǫ) for someǫ > 0,

then K(X)− [Y] = Op(n−ǫ).

Note in particular that, whatever the relationship betweenY andU , if K (U )
p→ 0 andK (Y)

p→ [Y]

thenK (X)
p→ [Y] . Hansen & Lunde (2006) have shown that endogenous noise is empirically important,

particularly for mid-quote data. The above theorem is comparatively clean, it means endogeneity does

not matter for consistency. What matters is that the realised kernel applied to the noise process would

converge to zero asn → ∞.6

3.2 Central limit theory

3.2.1 Univariate asymptotic analysis of realised kernels

Before introducing the results on the multivariate case, itis helpful to consider the univariate case

X(t j ) =
∫ t j

0
a(u)du +

∫ t j

0
σ (u)dW(u)+ U j .

In order to present the results for the univariate case, we writeω2 in place of�, soω2 =
∑∞

h=−∞ E(Ui Ui−h).

Proposition 1 Let k ∈ K, τ ∈ T , H = c0n3/5, U ∈ CS, Y ⊥⊥ U and m−1 = o(n−1/5). Then

n1/5

{

K(X)−
∫ 1

0
σ 2(u)du

}

Ls→ MN
{

c−2
0

∣
∣k′′(0)

∣
∣ω2,4c0k0,0

• IQ
}

,

whereIQ =
∫ 1

0 λ
4(u)du is the integrated quarticity, andλ(t) = τ(t) {σ ◦ T(t)} .

6Of course, ifU had a componentV, which evolved in calendar time, e.g.V is an Ornstein-Uhlenbeck process, thenU /∈ CS

andK (U) would not vanish in probability.
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The notation
Ls→ MN means stable convergence to a mixed Gaussian distribution. The notion of stable

convergence is important for the construction of confidenceintervals and the use of the delta method.

The reason is that IQ is random, and stable convergence guarantees joint convergence that is needed here.

Stable convergence is discussed, for example, in Mykland & Zhang (2006) and Mykland & Zhang (2008),

who also provides extensive references. The presence ofλ in the limit theory is due to the irregularly

spaced nature of the data, if it was equally spaced thenτ(t) = 1 andT(t) = t , so IQ =
∫ 1

0 σ
4(u)du as

usual.

Remark. The asymptotic distribution in Proposition 1 has a non-zeroasymptotic mean which implies

that the upward asymptotic bias of the realised kernel is roughly n−1/5c−2
0

∣
∣k′′(0)

∣
∣ω2. Having an asymp-

totic bias term in the asymptotic distribution is familiar from kernel density estimation with the optimal

bandwidth. Here the situation is slightly easier for in principle the bias term can be estimated from the

data.

We now explain why Proposition 1 is the most interesting to us. The rest of this subsection can be

skipped on first reading if the reader is not interested in these background results.

To start this consider first some moments of various quantities.

Proposition 2 Let k ∈ K and U ∈ CS. ThenE {K(U )} = n
H2 |k′′(0)|ω2 + O(m−1) + o(n/H2) and if,

additionallyτ ∈ T , the asymptotic variance of K(Y) and K(U ) are given by

H
n 4k0,0

• IQ and n
H3 4k2,2

• ω4. (2)

Remark. The second term in E{K (U )} highlights the need for the averaging at the end-points. The

O(m−1) term roughly equals 2m−1ω2, so we needm → ∞ for the bias to vanish. Empiricallyω2 is tiny

so 2m−1ω2 will be small even withm = 1, but theoretically this is an important observation.

Remark. The result shows that estimators in this class of realised kernels are generally biased due to

the kernels not being entirely flat-top, but the bias is modest so long asH increases at a faster rate than
√

n. For a weight function withk′′(0) = 0 we could takeH ∝ n1/2 which would result in a faster rate

of convergence. However, no weight function withk′′(0) = 0 can guarantee a positive semi-definite

estimate, see Andrews (1991, p. 832, comment 5).

Remark. If m−1 = o(n−1/5), then the mean square error optimal rate forH is H ∝ n3/5, equalising the

rate of the squared bias and the variance. All but the first term in (2) vanish asn → ∞ whenH ∝ n3/5.

Note that the asymptotic bias is tied tok′′(0) whereas the asymptotic variance is tied tok0,0
• .

Remark. This result looks rather weak compared to the correspondingresult for the flat-top kernel

K F (X) introduced by Barndorff-Nielsen et al. (2008a) with k′(0) = 0. They had the nicer result that7

n1/4
{

K F (X)−
∫ 1

0 σ
2(u)du

}
Ls→ MN

{

0,4ck0,0
• IQ + 8

ck1,1
• ω2

∫ 1
0 σ

2(u)du + 4
c3 k2,2

• ω4
}

,

7See also Zhang (2006) who independently obtained an1/4 consistent estimator using a multiscale approach.
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when H = cn1/2, under the assumption thatU ∈ WN . Hence the use of non-flat top kernels comes at

an asymptotic cost, but ensures positive semi-definiteness. Section 6.1.2 also shows thatK (X) is more

robust to endogeneity and serial dependence inU thanK F (X).

3.2.2 Choosing the bandwidthH and weight function

Next we turn to the optimal (mean square error) choice for thebandwidth parameterH .

Proposition 3 Let k ∈ K, τ ∈ T , U ∈ CS and set H= c∗ξ4/5n3/5, where c∗ =
{

k′′(0)2/k0,0
•
}1/5

and

ξ2 = ω2/
√

I Q, then

n1/5

{

K(X)−
∫ 1

0
σ 2(u)du

}

Ls→ MN(κ,4κ2), where κ =
∣
∣k′′(0)(k0,0

• )2
∣
∣
1/5 {ω I Q}2/5 .

The relative efficiency of different realised kernels in this class are determined solely by the constant
∣
∣k′′(0)(k0,0

• )2
∣
∣
1/5

and so can be universally determined for all Brownian semimartingales and noise pro-

cesses. This constant is computed for a variety of kernel weight functions in Table 1. This shows that

the Quadratic Spectral (QS), Parzen and Fejér weight functions are attractive in this context. The op-

timal weight function minimizes,
∣
∣k′′(0)(k0,0

• )2
∣
∣
1/5
, which is also the situation for HAC estimators, see

Andrews (1991). Thus, using Andrews’ analysis of HAC estimators, it follows from our results that the

QS kernel is the optimal weight function within the class of weight functions that are guaranteed to pro-

duce a non-negative realised kernel estimate. A drawback ofthe QS and Fejér weight functions is that

they, in principle, requiren (all) realised autocovariances to be computed, whereas thenumber of realised

autocovariances needed for the Parzen kernel is onlyH — hence we advocate the use of Parzen weight

functions. We will discuss estimatingξ2 in Section 3.3.1.

Kernel function,k(x) |k′′(0)| k0,0
•

∣
∣k′′(0)(k0,0

• )2
∣
∣
1/5

kP(x) =







1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1
0 x > 1

Parzen 12 0.269 0.97

Quadratic Spectral kQS(x) = 3
x2

(
sinx

x − cosx
)

, x ≥ 0 1/5 3π/5 0.93

Fejér kF (x) =
(

sinx
x

)2
, x ≥ 0 2/3 π/3 0.94

Tukey-Hanning∞ kT H∞(x) = sin2
{
π
2 exp(−x)

}

, x ≥ 0 π2/2 0.52 1.06

BNHLS (2008) k(x) = (1 + x) e−x x ≥ 0 1 5/4 1.09

Table 1:Properties of some realised kernels.
∣
∣k′′(0)(k0,0

• )2
∣
∣
1/5

measures the relative asymptotic efficiency
of k ∈ K.

3.2.3 Some multivariate notation

To start we define some terms. Let

9 =
∫ 1

0
τ 2(u) {6 ◦ T(u)⊗6 ◦ T(u)} du,
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which is thed2 × d2 random matrix analog of integrated quarticity.

Our result will use thematrix normal distribution. For M ∈ R
q×q, M ∼ N(A, B) simply means that

vec(M) is Gaussian distributed with mean vec(A) and the covariance betweena′Mb andc′Md is given

by cov(a′Mb, c′ Md) = v′
abBvcd, with vab = vec(ab′+ba′

2 ) andvcd = vec( cd′+dc′

2 ).

3.2.4 Multivariate central limit theorem

Theorem 2 Suppose H= c0n3/5, τ ∈ T , U ∈ CS, m−1 = o(n−1/5), Y ⊥⊥ U and k∈ K then

n1/5

{

K (X)−
∫ 1

0
6(u)du

}

Ls→ MN{c−2
0 |k′′(0)|�,4c0k0,0

• 9}.

This is the multivariate extension of Proposition 1, yielding a limit theorem for the consistent multi-

variate estimator in the presence of noise. The bias is determined by the long-run variance�, the variance

solely by integrated quarticity.

Corollary 1 An implication of Theorem 2 is that for a,b ∈ R
d we have

n1/5a′
{

K (X)−
∫ 1

0
6(u)du

}

b
Ls→ MN

{

c−2
0 |k′′(0)|a′�b,4c0k0,0

• v′
ab9vab

}

.

So once a consistent estimator for9 is obtained, Corollary 1 makes it straightforward to compute a

confidence interval for any element of the integrated variance matrix.

Example 1 In the bivariate case we can write the results as

n1/5






K (X(i ))−
∫ 1

06i i du

K (X(i ), X( j ))−
∫ 1

06i j du

K (X( j ))−
∫ 1

06 j j du






Ls→ MN (A, B) , (3)

where

A = c−2
0 |k′′(0)|





�i i

�i j

� j j



 and B= 2c0k0,0
•

∫ 1

0
τ 2





262
i i 26i i6i j 262

i j

• 6i i6 j j +62
i j 26i i6 j i

• • 262
j j



 ◦ Tdu,

which has features in common with the noiseless case discussed in Barndorff-Nielsen & Shephard (2004,

eq. 18). By the delta method we can deduce the asymptotic distribution of the kernel based regression

and correlation. For example

n1/5

(
K (X(i ), X( j ))

K (X( j ))
− βi j

)

Ls→ MN (A, B) ,

where

A = c−2
0 |k′′(0)|
∫ 1

06 j j du

(

�i j −� j j βi j

)

, βi j =
∫ 1

06i j du
∫ 1

06 j j du
,
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and

B = 2c0k0,0
•

(
∫ 1

06 j j du
)2

(

1,−βi j

)
[∫ 1

0
τ 2

(

6i i6 j j +62
i j 26i i6 j i

26 j j6i j 262
j j

)

◦ Tdu

](

1
−βi j

)

.

To produce the result (3) we notice the asymptotic variance consists of terms4c0k0,0
• v′

ei eh
9vej ek where

ei denotes the i-th unit vector inRd. Consider, for simplicity, the case with equidistant sampling times, so

that9 =
∫ 1

0 6(u)⊗6(u)du. Then

4v′
ei eh
9vej ek = vec(ei e

′
h + ehe′

i )
′
{∫

(6 ⊗6)du

}

vec(ej e
′
k + eke′

j )

= 2
∫

tr{6ei e
′
h6eke′

j + 6ei e
′
h6ej e

′
k}du = 2

∫

(6ik6 j h +6ih6 j k)du,

and the result follows by using various combinations of(i,h, k, j ).

3.3 Some practical issues

3.3.1 Choice ofH in practice

A main feature of multivariate kernels is that there is a single bandwidth parameterH which controls the

number of leads and lags used for all the series. It must grow with n at raten3/5, the key question here is

how to estimate a good constant of proportionality — which controls the efficiency of the procedure.

If we applied the univariate optimal mean square error bandwidth selection to each asset price individ-

ually we would getd bandwidthsH (i ) = c∗ξ4/5
i n3/5, wherec∗ =

{

k′′(0)2/k0,0
•
}1/5

andξ2
i = �i i /

√
I Q i i ,

where6i i (u) is the spot variance for thei -th asset. In practice we usually approximate
√

I Q i i by
∫ 1

0 6i i (u)du and useξ2
i = �i i /

∫ 1
0 6i i (u)du, which can be estimated relatively easily by using a low

frequency estimate of
∫ 1

0 6i i (u)du and one of many sensible estimators of�i i which use high frequency

data. Then we could construct some ad hoc rules for choosing the globalH , such as

Hmin = min(H (1), ..., H (d)), Hmax = max(H (1), ..., H (d)), or H̄ = d−1
d
∑

i=1

H (i ),

or many others. In our empirical work we have usedH̄ , while our web Appendix provides an analysis of

the impact of this choice.

An interesting alternative is to optimise the problem for a portfolio, e.g. lettingι be ad-dimensional

vector of ones thend−2ι′K (X)ι = K
(

d−1ι′ X
)

, which is like a “market portfolio” ifX contains many

assets. This is easy to carry out, for having converted everything into Refresh Time one computes the

market (ι′ X/ι′ι) return and then carry out a univariate analysis on it, choosing an optimalH for the

market. This singleH is then applied to the multivariate problem.

From the results in Example 1 it is straightforward to derivethe optimal choice forH, when the

objective is to estimate a covariance, a correlation, the inverse covariance matrix (which is important for

12



portfolio choice) orβi j . For example, forβ12 the trade-off is betweenc−4
0 |k′′(0)|2 (�12 −�22β12)

2 , and

2c0k0,0
•

∫ 1

0
τ 2 (611622 +62

12 − 4β12611622 + 2β2
12622

)

◦ Tdu.

3.3.2 Realised kernel based beta and correlation

A key reason for needing our realised kernel to be positive semi-definite is that elements of it can be

combined to consistently estimate the quadratic variationversion of the beta and correlation between

assetsi and j

β(i, j ) = [Y(i ),Y( j )]
[Y( j )] and ρ(i, j ) = [Y(i ),Y( j )]

√

[Y(i )][Y( j )]
,

where we have written[Y] =
{

[Y(i ),Y( j )]
}

i, j =1,2,.... The quantitiesβ(i, j ) andρ(i, j ) have been highlighted

in previous research by, for example, Andersen, Bollerslev, Diebold & Labys (2003), Barndorff-Nielsen

& Shephard (2004) and Dovonon, Goncalves & Meddahi (2007), but their work was hampered by only

being able to use 5-15 minute returns due to the effect of noise and irregularly spaced data.

The realised kernel estimators of these quantities are straightforward and the asymptotic distribution

simply follows by the application of the delta method. In particular

β̂(i, j ) =
K
(

X(i ), X( j )
)

K
(

X( j )
) and ρ̂(i, j ) =

K
(

X(i ), X( j )
)

√

K
(

X(i )
)

K
(

X( j )
)

∈ [−1,1],

where we have written the elements of the realised kernel matrix K (X) asK (X) =
{

K
(

X(i ), X( j )
)}

i, j =1,2,....

4 Simulation Study

So far the analysis has been asymptotic, based onn → ∞. Here we reinforce this by carrying out a

simulation analysis to assess the accuracy of the asymptotic predictions in finite samples. We simulate

over the intervalt ∈ [0,1].
The following multivariate factor stochastic volatility model is used

dY(i ) = µ(i )dt + dV (i ) + dF (i ), dV (i ) = ρ(i )σ (i )dB(i ), dF (i ) =
√

1 −
(

ρ(i )
)2
σ (i )dW.

where the elements ofB are independent standard Brownian motions andW ⊥⊥ B. Here F (i ) is the

common factor, whose strength is determined by
√

1 −
(

ρ(i )
)2

.

This model means that eachY(i ) is a diffusive SV model with constant driftµ(i ) and random spot

volatility σ (i ). In turn the spot volatility obeys the independent processesσ (i ) = exp
(

β
(i )
0 + β

(i )
1 ̺

(i )
)

with

d̺(i ) = α(i )̺(i )dt +dB(i ). Thus there is perfect statistical leverage (correlation between their innovations)

betweenV (i ) andσ (i ), while the leverage betweenY(i ) and̺(i ) is ρ(i ). The correlation betweenY(1)(t)

andY(2)(t) is
√

1 −
(

ρ(1)
)2
√

1 −
(

ρ(2)
)2
.
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The price process is simulated via an Euler scheme8, and the fact that the OU-process have an exact

discretization (see e.g. Glasserman (2004, pp. 110)). Our simulations are based on the following config-

uration (the same for both processes)(µ(i ), β
(i )
0 , β

(i )
1 , α

(i ), ρ(i )) = (0.03,−5/16,1/8,−1/40,−0.3), so

thatβ(i )0 = (β
(i )
1 )

2/(2α(i )). Throughout we have imposed that E
(
∫ 1

0 σ
(i )2(u)du

)

= 1. The stationary dis-

tribution of̺(i ) is utilised in our simulations to restart the process each day at̺(i )(0) ∼ N(0, (−2α(i ))−1).

For our design we have that the variance ofσ 2 is exp(−2(β(i )1 )
2/α(i )) − 1 ≃ 2.5. This is comparable to

the empirical results found in e.g. Hansen & Lunde (2005) which motivate our choice forα(i ).

We add noise simulated as

U (i )
j |σ,Y i.i.d.∼ N

(

0, ω2) with ω2 = ξ2

√

N−1
∑N

j =1
σ (i )4( j/N),

where the noise-to-signal ratio,ξ2 takes the values 0, 0.001 and 0.01. This means that the variance of

the noise increases with the volatility of the efficient price (e.g. Bandi & Russell (2006)). The observed

process is then given byX( j/N) = Y( j/N)+ U j , j = 0, . . . , N.

To model the non-synchronously spaced data we use two independent Poisson process sampling

schemes to generate the times of the actual observations
{

t (i )j

}

to which we apply our realised kernel.

We control the two Poisson processes byλ = (λ1, λ2), such that for exampleλ = (5,10) means that

on averageX(1) andX(2) is observed every 5 and 10 second, respectively. This means that the simulated

number of observations will differ between repetitions, but on average the processes will have 23400/λ1

and 23400/λ2 observations, respectively.

We varyλ though the following configurations(3,6), (5,10), (10,20), (15,30), (30,60), (60,120)

motivated by the kind of data we see in databases of equity prices.

For each simulated day we compute the observed the price process, X( j/N). In order to calcu-

late K (X) we need to selectH . To do this we evaluatêω(i )2δ = [X(i )
δ ](1)/(2n) and [X(i )

1/900](1), the

realised variance estimator based on 15 minute returns. These give us the following feasible values

Ĥi = cn3/5
(

ω̂
(i )2
δ /[X(i )

1/900](1)
)2/5

. The results forHmeanare presented in Table 2.

Panel A of the table reports the univariate results of estimating integrated variance. We give the bias

and root mean square error (MSE) for the realised kernel and compare it to the standard realised variance.

In the no noise case ofξ2 = 0 the RV statistic is quite a bit more precise, especially when n is large.

The positive bias of the realised kernel can be seen whenξ2 is quite large, but it is small compared to the

estimators variance. In that situation the realised kernelis far more precise than the realised variance.

None of these results are surprising or novel.

In Panel B we break new ground as it focuses on estimating the integrated covariance. We compare

the realised kernel estimator with a realised covariance. The high frequency realised covariance is a very

8We normalize one second to be 1/23, 400, so that the interval[0,1] contains 6.5 hours. In generating the observed price,
we discretize[0,1] into a numberN = 23, 400 of intervals.
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precise estimator of the wrong quantity as its bias is very close to its very large mean square error. In this

case its bias does not really change very much asn increases.

Table 2: Simulation results

Panel A: Integrated Variance

Series A Series B
RV1m RV15m K (X) RV1m RV15m K (X)

ξ2 = 0.0 R.mse R.mse bias R.mse R.mse R.mse bias R.mse

λ = (3,6) 0.113 0.505 0.006 0.147 0.122 0.436 0.003 0.134
λ = (10,20) 0.111 0.547 0.011 0.262 0.114 0.450 0.011 0.224
λ = (60,120) 0.229 0.504 0.003 0.557 0.227 0.517 0.001 0.490

ξ2 = 0.001

λ = (3,6) 1.509 0.654 0.040 0.253 1.417 0.488 0.033 0.215
λ = (10,20) 1.432 0.660 0.041 0.359 1.318 0.492 0.035 0.295
λ = (60,120) 1.013 0.559 0.014 0.557 0.636 0.554 0.013 0.551

ξ2 = 0.01

λ = (3,6) 14.39 1.531 0.096 0.410 13.67 1.168 0.084 0.351
λ = (10,20) 14.01 1.452 0.106 0.568 13.15 1.305 0.081 0.424
λ = (60,120) 8.893 1.222 0.077 0.611 5.386 1.322 0.080 0.776

Panel B: Integrated Covariance/Correlation

Cov1m Cov15m K (X) Covar K (X) Corr K (X) beta
ξ2 = 0.0 #rets bias R.mse bias R.mse bias R.mse bias R.mse bias R.mse
λ = (3,6) 3,121 -0.051 0.076 -0.004 0.183 -0.007 0.062 -0.012 0.016 -0.016 0.061
λ = (5,10) 1,921 -0.085 0.108 -0.006 0.183 -0.009 0.076 -0.015 0.020 -0.019 0.064
λ = (10,20) 982 -0.160 0.186 -0.011 0.186 -0.009 0.097 -0.018 0.026 -0.023 0.084
λ = (30,60) 332 -0.342 0.395 -0.038 0.188 -0.021 0.142 -0.028 0.042 -0.035 0.125
λ = (60,120) 166 -0.445 0.510 -0.071 0.203 -0.034 0.189 -0.036 0.054 -0.035 0.178
ξ2 = 0.001

λ = (3,6) 3,121 -0.046 0.091 -0.005 0.191 -0.000 0.090 -0.027 0.032 -0.034 0.085
λ = (5,10) 1,921 -0.082 0.123 -0.006 0.186 -0.002 0.099 -0.029 0.036 -0.033 0.083
λ = (10,20) 982 -0.156 0.189 -0.010 0.195 -0.004 0.118 -0.032 0.040 -0.042 0.111
λ = (30,60) 332 -0.344 0.400 -0.039 0.187 -0.019 0.150 -0.039 0.052 -0.049 0.153
λ = (60,120) 166 -0.445 0.513 -0.074 0.206 -0.034 0.195 -0.044 0.060 -0.049 0.204
ξ2 = 0.01

λ = (3,6) 3,121 -0.027 0.398 -0.009 0.263 0.000 0.123 -0.063 0.071 -0.072 0.132
λ = (5,10) 1,921 -0.073 0.431 -0.005 0.257 -0.002 0.133 -0.067 0.076 -0.082 0.149
λ = (10,20) 982 -0.139 0.407 -0.001 0.263 -0.005 0.153 -0.074 0.084 -0.099 0.198
λ = (30,60) 332 -0.354 0.486 -0.044 0.236 -0.017 0.180 -0.089 0.104 -0.119 0.242
λ = (60,120) 166 -0.451 0.561 -0.083 0.265 -0.032 0.222 -0.092 0.111 -0.120 0.310

Simulation results for the realised kernel using a factor SVmodel with non-syncronous observations and measure-
ment noise. Panel A looks at estimating integrated varianceusing realised variance and the Parzen type realised
kernel K(X). Panel B looks at estimating integrated covariance and correlation using realised covariance and
realised kernel. Bias and root mean square error are reported.

The realised kernel delivers a very precise estimator of theintegrated covariance. It is downward

biased due to the non-synchronous data, but the bias is very modest whenn is large and its sampling vari-
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ance dominates the root MSE. Taken together this implies therealised kernel estimators of the correlation

and regression (beta) are less good. Peter says: Both are strongly negatively biased — which is due to

it being a non-linear function of the noisy estimates of the integrated variance. The bias is the dominant

component of the root MSE of the

5 Empirical illustration

We analyze high-frequency stock prices for ten assets, namely Alcoa Inc. (AA), American International

Group Inc. (AIG), American Express Co. (AXP), Boeing Co. (BA), Bank of America Corp. (BAC),

Citygroup Inc. (C), Caterpillar Inc. (CAT), Chevron Corp.(CVX), General Electric Co. (GE), and Stan-

dard & Poor’s Depository Receipt (SPY). The SPY is an exchange-traded fund that holds all of the S&P

500 Index stocks and has enormous liquidity. The sample period runs from January 3, 2005 to June 29,

2007, delivering 626 distinct days. The data is the collection of trades and quotes recorded on the NYSE,

taken from the TAQ database through the Wharton Research Data Services (WRDS) system. We present

empirical results for both transaction and mid-quote prices.

Throughout our analysis we will estimate quantities each day, in the tradition of the realised volatility

literature following, for example, Andersen et al. (2001) and Barndorff-Nielsen & Shephard (2002). This

means the target becomes functions of[Y]s = [Y](s) − [Y](s − 1), s ∈ N. The functions we will deal

with are covariances, correlations and betas.

5.1 Procedure for cleaning the high-frequency data

Careful data cleaning is one of the most important aspects ofvolatility estimation from high-frequency

data. Numerous problems and solutions are discussed in Falkenberry (2001), Hansen & Lunde (2006),

Brownless & Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde & Shephard (2008b). In this paper we

follow the step-by-step cleaning procedure used in Barndorff-Nielsen et al. (2008b) who discuss in detail

the various choices available and their impact on univariate realised kernels. For convenience we briefly

review these steps.

All data: P1) Delete entries with a timestamp outside the 9:30 a.m. to 4p.m. window when the exchange

is open. P2) Delete entries with a bid, ask or transaction price equal to zero. P3) Retain entries originating

from a single exchange (NYSE except for SPY for which all retained observations are from Pacific).

Delete other entries.

Trade data only: T1) Delete entries with corrected trades. (Trades with aCorrection Indicator, CORR 6=
0). T2) Delete entries with abnormalSale Condition. (Trades where COND has a letter code, except for

“E” and “F”). T3) If multiple transactions have the same timestamp: use the median price. T4) Delete

entries with prices that are above theaskplus the bid-ask spread. Similar for entries with prices below

thebid minus the bid-ask spread.
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Quote data only: Q1) When multiple quotes have the same timestamp, we replace all these with a single

entry with the median bid and median ask price. Q2) Delete rows for which the spread is negative. Q3)

Delete rows for which the spread is more that 10 times the median spread on that day. Q4) Delete rows for

which the mid-quote deviated by more than 5 mean absolute deviations from a centered mean (excluding

the observation under consideration) of 50 observations. We note steps P2, T1, T2, T4, Q2, Q3 and Q4

collectively reduce the sample size by less than 1%.

5.2 Sampling schemes

We applied three different sampling schemes depending on the particular estimator. The simplest one is

the HY estimator that uses all the available observations for a particular asset combination. Following

Andersen et al. (2003) the realised covariation estimator is based on calender time sampling. Specifically,

we consider 15 second, 5 minute, and 30 minute intraday return, aligned using the previous tick approach.

This results in 1560, 78 and 13 daily observations, respectively.

For the realised kernel the Refresh Time sampling scheme discussed in section 2.1.1 is used. Our

analysis first considers estimates for each of the 45 unique pairs of assets — delivering 45 distinct 2× 2

covariance matrix estimates each day.

Table 3: Summary statistics for the refresh sampling scheme, 2×2 case

2 × 2 case

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 0.601 0.597 0.594 0.601 0.594 0.587 0.570 0.596 0.568
AIG 0.673 0.600 0.602 0.624 0.628 0.590 0.603 0.625 0.603
AXP 0.665 0.670 0.600 0.602 0.585 0.590 0.552 0.585 0.548
BA 0.662 0.667 0.663 0.599 0.592 0.590 0.568 0.592 0.569
BAC 0.681 0.691 0.678 0.673 0.634 0.592 0.605 0.628 0.604
C 0.687 0.700 0.681 0.678 0.717 0.582 0.624 0.642 0.627
CAT 0.647 0.648 0.650 0.646 0.655 0.657 0.560 0.584 0.562
CVX 0.680 0.690 0.671 0.670 0.707 0.719 0.649 0.620 0.620
GE 0.686 0.699 0.677 0.675 0.719 0.733 0.653 0.726 0.619
SPY 0.678 0.696 0.658 0.665 0.721 0.747 0.633 0.743 0.762

Average over daily number of high frequency observations available before the Refresh Time transformation

AA AIG AXP BA BAC C CAT CVX GE SPY
Trades 4,124 4,789 3,528 4,057 4,757 5,687 4,039 6,292 5,4606,554
Quotes 11,222 11,738 10,482 10,717 12,562 13,393 9,937 13,573 14,189 18,587

Summary statistics for the refresh sampling scheme. In the two upper panels we present averages over the daily
data reduction induced by the refresh sampling scheme, measured by p= d N/

∑d
i=1 n(i ). The upper panel display

this in the 2×2 case. The upper diagonal is based on transaction prices, whereas the lower diagonal is based on
mid-quotes. In the lower panel we average over the daily number of high frequency observations.

The amount of data we discard by constructing Refresh Time isrecorded in Table 3. It records the

average of the dailyp statistics defined in Section 2.1.1 for each pair. It emergesthat we rarely lose more
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that half the observations for most frequently traded assets. For the least active assets we typically lose

between 30% to 40% of the observations.

We will also apply the realised kernel to the full 10× 1 vector of returns. Here the data loss is

more pronounced. Still, even in the worst case more that 20 percent of the observations remain in the

sample. For transaction data the average number of Refresh Time observations in 1,222, whereas the

corresponding number is 3,942 for the quote data. So in most cases we have an observationon average

more often than every 8 seconds for quote data and 20 seconds for trade data.

5.3 Analysis of the covariance estimators:CovK
s , CovHY

s and Cov1m
s

Throughout this subsection the target which we wish to estimate is[Y(i ),Y( j )]s, i, j = 1,2, ...,d, s ∈ N.

In what follows the pairi, j will only be referred to implicitly. All kernels are computed with Parzen

weights.

We compute the realised kernel for (all possible) pairs of assets and for the full 10-dimensional vector

of assets, and the resulting estimates of[Y(i ),Y( j )]s are denoted by CovK2×2
s and CovK10×10

s , respectively.

The two estimators differ in a number of ways, such as the bandwidth selection and the sampling times

(due to the construction of Refresh Time).

To provide useful benchmarks for these estimators we also compute: CovHY
s , the Hayashi & Yoshida

(2005) covariance estimator. Cov1
s , the realised covariance based on intraday returns that span a interval

of length1, e.g. 5 or 30 minutes (the previous-tick method is used). CovOtoC
s , the outer products of

the open to close returns, which when averaged over many daysprovide an estimator of the average

covariance between asset returns.

The empirical analysis of our estimators of the covariance is started by recalling the main statistical

impact of market microstructure and the Epps effect. Table 4contains the time series average covariance

computed using the 15-second realised covariance Cov15s
s , the Hayashi & Yoshida (2005) estimator CovHY

s

and the open to close estimator CovOtoC
s . Quite a few of these types of tables will be presented and they

all have the same structure. The numbers above the leading diagonal are results from trade data, the

numbers below are from mid-quotes. Both Cov15s
s and the CovHY

s are typically much lower than CovOtoC
s .

The numbers which are bolded are statistically significantly different from the CovOtoC
s numbers at the

one percent level. This assessment is carried out in the following way.

For a given estimator, e.g. CovK2×2
s , we consider the differenceds = CovK2×2

s − CovOtoC
s , and

compute the sample bias asd̄ and robust (HAC) variance ase2 = γ0 + 2
∑q

h=1

(

1 − h
q+1

)

γh, where

γh = 1
T−h

∑n−h
s=1 ηsηs−h. Hereηs = dt − d̄ and q = int

{

4(T/100)2/9
}

. The number is boldfaced if
∣
∣
∣

√
Td̄/e

∣
∣
∣ > 2.326. The results in Table 4 indicate the Cov1/4m

s is severely downward bias, while CovHY
s

is even more distorted. In both cases nearly every covariance estimator for every pair of assets for both

trades and quotes seem statistically significantly biased.
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Table 4: Average high frequency realised covariance

Average of realised covariances

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 2.370 0.212 0.194 0.230 0.182 0.213 0.236 0.247 0.167 0.201
AIG 0.212 1.126 0.175 0.192 0.171 0.198 0.180 0.201 0.150 0.172
AXP 0.193 0.178 0.901 0.173 0.158 0.182 0.178 0.185 0.138 0.156
BA 0.230 0.201 0.185 1.287 0.162 0.195 0.215 0.211 0.155 0.176
BAC 0.182 0.171 0.160 0.168 0.807 0.192 0.162 0.184 0.139 0.151
C 0.209 0.197 0.186 0.197 0.189 0.924 0.194 0.213 0.161 0.183
CAT 0.249 0.194 0.190 0.227 0.171 0.203 1.450 0.214 0.151 0.174
CVX 0.251 0.209 0.194 0.218 0.186 0.215 0.228 1.648 0.165 0.205
GE 0.161 0.147 0.133 0.150 0.136 0.157 0.152 0.163 0.887 0.138
SPY 0.203 0.178 0.163 0.190 0.150 0.179 0.192 0.212 0.1300.300

Average of Hayashi-Yoshida covariances (all times)

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 2.842 0.185 0.182 0.208 0.160 0.177 0.215 0.207 0.154 0.175
AIG 0.116 1.318 0.163 0.179 0.153 0.172 0.170 0.171 0.141 0.141
AXP 0.112 0.110 1.017 0.168 0.144 0.163 0.170 0.164 0.132 0.142
BA 0.127 0.122 0.112 1.390 0.150 0.170 0.208 0.185 0.146 0.152
BAC 0.096 0.103 0.091 0.093 1.096 0.161 0.154 0.158 0.129 0.126
C 0.111 0.115 0.106 0.110 0.103 1.211 0.170 0.173 0.142 0.143
CAT 0.140 0.122 0.120 0.137 0.099 0.120 1.471 0.197 0.149 0.154
CVX 0.131 0.119 0.115 0.123 0.105 0.118 0.131 1.718 0.147 0.156
GE 0.088 0.089 0.076 0.087 0.078 0.087 0.090 0.0931.655 0.120
SPY 0.087 0.083 0.079 0.089 0.065 0.078 0.093 0.094 0.0540.292

Open-to-close covariance

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 1.637 0.259 0.350 0.456 0.264 0.307 0.664 0.618 0.227 0.405
AIG 0.259 0.871 0.356 0.268 0.287 0.322 0.351 0.268 0.256 0.283
AXP 0.347 0.353 0.867 0.323 0.377 0.422 0.435 0.344 0.304 0.360
BA 0.453 0.265 0.315 1.371 0.277 0.297 0.559 0.326 0.302 0.355
BAC 0.265 0.288 0.378 0.278 0.524 0.394 0.301 0.256 0.260 0.287
C 0.311 0.321 0.421 0.293 0.391 0.660 0.330 0.270 0.305 0.318
CAT 0.656 0.350 0.428 0.550 0.302 0.327 1.585 0.539 0.342 0.437
CVX 0.612 0.265 0.340 0.321 0.257 0.265 0.533 1.447 0.188 0.401
GE 0.232 0.257 0.307 0.301 0.264 0.304 0.340 0.185 0.532 0.262
SPY 0.409 0.283 0.375 0.363 0.295 0.315 0.427 0.398 0.261 0.349

The upper panel presents average estimates forCov15s
s and the middle and lower panels display these forCovHY

s
and CovOtoC

s , respectively. In all panels the upper diagonal is based on transaction prices, whereas the lower
diagonal is based on mid-quotes. The diagonal elements are the average of IV estimates based on transactions.
Outside the diagonals numbers are boldfaced if the bias is significant at the 1 percent level.

5.4 Results forCovK2×2
s , CovK10×10

s and Cov5m
s

We now move on to more successful estimators. The upper panelof Table 5 presents the time series

average estimates for CovK2×2
s , the middle panel for CovK10×10

s , and the lower panel give results for Cov5m
s .

The diagonal elements are the estimates based on transactions. Off-diagonal numbers are boldfaced if
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they are significantly biased (compared to CovOtoC
s ) at the 1 percent level.

Table 5: Averages for alternative integrated covariance estimators

Average of Parzen covariances (2×2)

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 2.278 0.307 0.351 0.388 0.326 0.357 0.576 0.560 0.308 0.402
AIG 0.310 0.999 0.286 0.247 0.299 0.310 0.308 0.212 0.258 0.281
AXP 0.352 0.284 0.833 0.275 0.323 0.341 0.341 0.239 0.2640.289
BA 0.390 0.254 0.277 1.207 0.267 0.285 0.417 0.256 0.264 0.305
BAC 0.328 0.297 0.320 0.272 0.681 0.380 0.324 0.245 0.263 0.292
C 0.355 0.306 0.331 0.288 0.373 0.778 0.347 0.267 0.291 0.314
CAT 0.566 0.313 0.339 0.419 0.326 0.348 1.684 0.401 0.309 0.387
CVX 0.535 0.221 0.246 0.264 0.253 0.272 0.399 1.660 0.225 0.361
GE 0.308 0.256 0.261 0.261 0.264 0.286 0.306 0.229 0.639 0.274
SPY 0.401 0.282 0.289 0.310 0.291 0.311 0.389 0.361 0.270 0.325

Average of Parzen covariances (10×10)

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 2.168 0.289 0.346 0.405 0.327 0.357 0.649 0.619 0.275 0.396
AIG 0.292 0.943 0.294 0.234 0.288 0.310 0.283 0.188 0.251 0.259
AXP 0.343 0.295 0.838 0.296 0.352 0.355 0.370 0.243 0.268 0.292
BA 0.381 0.238 0.287 1.215 0.271 0.281 0.462 0.241 0.248 0.295
BAC 0.324 0.294 0.350 0.267 0.645 0.394 0.328 0.235 0.249 0.283
C 0.351 0.317 0.355 0.282 0.398 0.705 0.349 0.238 0.282 0.300
CAT 0.628 0.282 0.353 0.446 0.321 0.342 1.622 0.420 0.306 0.388
CVX 0.599 0.194 0.235 0.234 0.240 0.247 0.398 1.563 0.173 0.334
GE 0.280 0.257 0.269 0.250 0.254 0.285 0.302 0.182 0.585 0.247
SPY 0.391 0.264 0.289 0.291 0.285 0.304 0.379 0.338 0.252 0.296

Average of 5 min realised covariance (pre-tick times)

AA AIG AXP BA BAC C CAT CVX GE SPY
AA 2.315 0.312 0.347 0.378 0.318 0.356 0.539 0.526 0.303 0.397
AIG 0.310 0.996 0.274 0.254 0.272 0.292 0.300 0.219 0.239 0.269
AXP 0.342 0.275 0.833 0.272 0.309 0.323 0.327 0.240 0.251 0.281
BA 0.380 0.253 0.275 1.239 0.264 0.284 0.401 0.260 0.252 0.303
BAC 0.322 0.273 0.306 0.265 0.686 0.361 0.305 0.246 0.246 0.276
C 0.358 0.294 0.323 0.283 0.361 0.790 0.342 0.268 0.275 0.303
CAT 0.538 0.300 0.322 0.405 0.307 0.342 1.657 0.377 0.297 0.373
CVX 0.527 0.219 0.244 0.263 0.246 0.267 0.378 1.658 0.222 0.349
GE 0.303 0.243 0.250 0.249 0.247 0.275 0.298 0.223 0.644 0.256
SPY 0.393 0.269 0.280 0.303 0.274 0.303 0.376 0.350 0.254 0.324

The upper panel presents average estimates forCovK2×2
s , the middle panel forCovK10×10

s , and the lower panel gives
results forCov5m

s . In both panels the upper diagonal is based on transaction prices, whereas the lower diagonal
is based on mid-quotes. The diagonal elements are the average of IV estimates based on transactions. Outside the
diagonals numbers are boldfaced if the bias is significant atthe 1 percent level.

These results are quite encouraging for all three estimators. The average levels of the three estimators

are roughly the same. CovK2×2
s has three failures. CovK10×10

s has four failures while Cov5m
s is rejected five

times. All three estimators reject for the SPY/AXP combination, both for trades and quotes.
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A much tougher comparison is to replace the noisyds = CovK
s − CovOtoC

s with ds = CovK2×2
s −

CovK10×10
s . Our tests will then ask if there is a significant difference in the average. The results reported

in our web Appendix suggest very little difference in the level of these two estimators. When we compute

the same test based onds = CovK2×2
s − Cov5m

s we get consistent rejection of no difference between these

estimators — now the levels of the CovK2×2
s is judged to be above the corresponding result for Cov5m

s —

particularly for GE and SPY stocks. The same thing happens when CovK10×10
s is compared to Cov5m

s .

The result in that analysis is reinforced by the informationin the summary Table 6, which shows

results averaged over all asset pairs for both trades and quotes. The results are not very different for most

estimators as we move from trades to quotes, the counter example is CovHY
s which seems sensitive to this.

The Table shows CovK2×2
s and CovK10×10

s have roughly the same average value, which is slightly below

CovOtoC
s . CovK2×2

s has a nine times smaller variance than CovOtoC
s , which shows it is a lot more precise. Of

course integrated variance is its self random so nine underestimates the efficiency gain of using CovK2×2
s .

If volatility is close to being persistent then CovK2×2
s is at least 1.0672

0.3342(1−acf1)
≃ 17 times more informative

than the cross product of daily returns. The same observation holds for mid-quotes.

Cov15s
s and CovHY

s are very precise estimates of the wrong quantity. Cov5m
s is quite close to CovK2×2

s ,

the two measures have a correlation of 0.92.

The corresponding results for correlations are less good. All the estimates are biased, which is no

surprise due to it being a non-linear transform of roughly unbiased and somewhat noisy observations.

CorrK2×2
s looks like the most effective estimate.

In our web appendix we give time series plots and autocorrelogram for the various estimates of re-

alised covariance for the AA-SPY assets combination using trade data. They show CovK2×2
s performing

much better than the 30 minute realised covariance but therenot being a great deal of difference between

the statistics when the realised covariance is based on 5 minute returns. The web appendix also presents

scatter plots of estimates based on transaction prices (vertical axis) against the same estimate based on

mid-quotes (horizontal axis) for the same days. These show aremarkable agreement between estimates

based on CovK2×2
s , Cov5m

s and Cov30m
s , while once again CovHY

s struggles. Overall CovK2×2
s and Cov5m

s

behave in a similar manner, with CovK2×2
s slightly stronger. CovK10×10

s estimates roughly the same level

as CovK2×2
s but is discernibly noisier.

5.5 Analysis of the correlation estimates

In this subsection we will focus on estimatingρ(i, j )s = [Y(i ),Y( j )]s/
√

[Y(i )]s[Y( j )]s by the realised kernel

correlationρ̂(i, j )Ks = K (i, j )
s /

√

K (i,i )
s K ( j , j )

s and the corresponding realised correlationρ̂Xm
s .

A table in our web Appendix average estimates forρ̂
K2×2
s , ρ̂K10×10

s and ρ̂5m
s . It shows the expected

result thatρ̂K2×2
s is more precise than̂ρK10×10

s . Both have average values which are quite a bit below

the unconditional correlation of the daily open-to-close returns. This is not surprising. All the three
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ingredients of thêρK2×2
s are measured with noise and so when we formρ̂(i, j )Ks it will be downward bias.

Table 6: Summary statistics across all asset pairs

Transaction prices

Estimator Average HAC Stdev Bias cor(.,K) acf1 acf2 acf3 acf4 acf5 acf10

Summary stats for covariances

CovK2×2 0.3180 [ 0.023] 0.334 -0.026 1.000 0.40 0.37 0.27 0.24 0.20 0.23
CovK10×10 0.3148 [ 0.026] 0.447 -0.029 0.787 0.23 0.20 0.16 0.16 0.11 0.13
CovHY 0.1026 [ 0.008] 0.099 -0.242 0.706 0.58 0.50 0.42 0.32 0.30 0.32
Cov1/4m 0.1864 [ 0.013] 0.167 -0.158 0.764 0.60 0.52 0.41 0.33 0.29 0.28
Cov5m 0.3082 [ 0.022] 0.334 -0.036 0.924 0.35 0.36 0.24 0.22 0.18 0.20
Cov30m 0.2930 [ 0.025] 0.471 -0.051 0.646 0.15 0.11 0.10 0.10 0.10 0.10
CovOtoC 0.3435 [ 0.046] 1.067 0.288 0.03 0.01 0.02 0.03 0.02 0.05

Summary stats for correlations

CorrK2×2 0.3273 [ 0.010] 0.155 1.000 0.30 0.26 0.21 0.19 0.18 0.14
CorrK10×10 0.3438 [ 0.013] 0.264 0.653 0.11 0.10 0.08 0.08 0.07 0.07
Corr1/4m 0.1758 [ 0.007] 0.084 0.528 0.58 0.52 0.47 0.43 0.41 0.34
Corr5m 0.3177 [ 0.010] 0.165 0.851 0.24 0.21 0.17 0.15 0.14 0.12
Corr30m 0.3358 [ 0.015] 0.315 0.517 0.07 0.06 0.05 0.05 0.06 0.04

Average unconditional Open-to-Close correlation = 0.3974

Mid-quotes

Estimator Average HAC Stdev Bias cor(.,K) acf1 acf2 acf3 acf4 acf5 acf10

Summary stats for covariances

CovK2×2 0.3183 [ 0.023] 0.347 -0.026 1.000 0.37 0.36 0.26 0.23 0.19 0.22
CovK10×10 0.3171 [ 0.026] 0.463 -0.027 0.767 0.19 0.17 0.14 0.15 0.10 0.13
CovHY 0.1628 [ 0.010] 0.136 -0.181 0.743 0.57 0.50 0.41 0.33 0.30 0.31
Cov1/4m 0.1829 [ 0.013] 0.162 -0.161 0.733 0.62 0.53 0.42 0.34 0.30 0.29
Cov5m 0.3080 [ 0.022] 0.333 -0.036 0.921 0.36 0.36 0.25 0.22 0.18 0.20
Cov30m 0.2918 [ 0.024] 0.467 -0.052 0.668 0.16 0.12 0.10 0.10 0.10 0.10
CovOtoC 0.3447 [ 0.046] 1.067 0.299 0.03 0.02 0.02 0.03 0.02 0.05

Summary stats for correlations

CorrK2×2 0.3330 [ 0.010] 0.170 1.000 0.26 0.22 0.18 0.16 0.15 0.13
CorrK10×10 0.3460 [ 0.014] 0.297 0.653 0.09 0.08 0.06 0.07 0.06 0.06
Corr1/4m 0.1735 [ 0.006] 0.078 0.519 0.56 0.49 0.44 0.40 0.37 0.30
Corr5m 0.3194 [ 0.010] 0.165 0.838 0.24 0.20 0.17 0.15 0.13 0.11
Corr30m 0.3351 [ 0.015] 0.317 0.571 0.07 0.06 0.05 0.05 0.06 0.04

Average unconditional Open-to-Close correlation = 0.4035

Summary statistics across all asset pairs. The first column identify the estimator, and the second gives the average
estimate across all asset combinations, followed by the average Newey-West type standard error. The fourth gives
the average standard deviation of the estimator. The fifth isthe average bias. Next is average sample correlation
with our realised kernel. The remaining columns give average autocorrelations. The upper panel is based on
transaction prices, whereas the lower panel is based on mid-quotes. The sub panels give first results for covariance
estimates followed by correlation results.
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5.6 Analysis of the beta estimates

Here we will focus on estimatingβ(i, j )s = [Y(i ),Y( j )]s/[Y( j )]s, by the realised kernel betaβ(i, j )Ks =
K (i, j )

s /K ( j , j )
s . Figure 2 presents scatter plots of beta estimates based on transaction prices (vertical axis)

against the same estimate based on mid-quotes (horizontal axis). The two estimators areβK2×2
s to β5m

s .

The results are not very different in these two cases.

Figure 3 compares the fitted values from ARMA models for the kernel and 5 minute estimates of

realised betas for the AA-SPY assets combination. These arebased on the model estimates for the daily

kernel based realised betas

βK
s = 1.20

(0.06)
+ 0.923

(0.027)
βK

s−1 + us − 0.726
(0.048)

us−1, adj−R2 = 0.213,

and for 5 minute based realised betas

β5 min
s = 1.16

(0.06)
+ 0.950

(0.024)
β5 min

s−1 + us − 0.821
(0.039)

us−1, adj−R2 = 0.145.

Both models have a significant memory, with autoregressive roots well above 0.9 and with large

moving average roots. The fit of the realised kernel beta is a little bit better than that for the realised

beta.
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Figure 2: Scatter plots realised betas
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Figure 3: ARMA(1,1) model for transaction based betas

We also calculate the encompassing regressions. The estimates are for the realised kernel betas are

βK
s = 0.084

(0.031)
+ 0.858

(0.053)
βK

s−1 + 0.074
(0.043)

β5 min
s−1 + us − 0.726

(0.044)
us−1, adj−R2 = 0.215,

with the corresponding 5 minute based realised betas

β5 min
s = 0.056

(0.026)
+ 0.879

(0.047)
β5 min

s−1 + 0.069
(0.035)

βK
s−1 + us − 0.822

(0.040)
us−1, adj−R2 = 0.150.

This shows that either estimator dominates the other in terms of encompassing, although the realised

kernel has a slightly stronger t-statistic.

5.7 A scalar BEKK

5.7.1 Econometric framework

An important use of realised quantities is to forecast future volatilities and correlations of daily returns.

The use of reduced form has been pioneered by Andersen et al. (2001) and Andersen et al. (2003). One

useful way of thinking about the forecasting problem is to fita GARCH type problem with lagged realised
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quantities as explanatory variables, e.g. Engle & Gallo (2006). Here we follow this route, fitting a

bivariate GARCH model with E(rs|Fs−1) = 0, Cov(rs|Fs−1) = Hs, wherers is the 2× 1 vector of daily

close to close returns on thei -th and j -th asset,Fs−1 is the information available at times − 1 to predict

rs. A standard Gaussian quasi-likelihood−1
2

∑T
s=1

(

log |Hs| + r ′
sH−1

s rs

)

is used to make inference. The

model we fit is a variant on the scalar BEKK (e.g. Engle & Kroner(1995))

Hs = C′C + αrs−1r
′
s−1 + βHs−1 + γKK2×2

s−1 , α, β, γ ≥ 0.

The question will be ifγ is estimated to be statistically different from zero, for ifit is not then the high

frequency data enhances the forecast of future covariation.

5.7.2 Empirical results

Our results will be based on a relatively short time series of2.5 years of daily measures, which is a

challenging environment for GARCH type models.

The results in Table 7 suggest that lagged daily returns are no longer significant for this multivariate

GARCH models once we have the realised kernel covariance. This is even though the realised kernel

covariance misses out the overnight effect — the information in the close-to-open returns. An interesting

feature of the series is that in most cases including KK2×2
s−1 reduces the size of the estimatedHs−1 term.

6 Additional remarks

6.1 RelatingK (X) to the flat-top realised kernel K F (X)

6.1.1 Positivity

In the univariate case the realised kernel

K (X) =
n
∑

h=−n

k( h
H+1)Ŵh, H = c0n3/5, Ŵh =

n
∑

j =|h|+1

x j x j −h

is at first sight very similar to the unbiased flat-top realised kernel of Barndorff-Nielsen et al. (2008a)

K F (X) = Ŵ0 +
n
∑

h=1

k( h−1
H+1)

(

ŴF
h + ŴF

−h

)

, H = d0n1/2, ŴF
h =

n
∑

j =1

x j x j −h.

Here theŴh andŴF
h are not divided by the sample size. This means that the end conditions, the ob-

servations at the start and end of the sample, can have influential effects onŴh. With ŴF
h we removed

this effect by starting the sum not ath + 1 but at 1. However, an implication of this is that the resulting

estimator is not guaranteed to be positive semi-definite whatever the choice of the weight function.

The alternativeK F (X) has the advantage that it converges at an1/4 rate and is close to the parametric

efficiency bound. It has the disadvantage that it can go negative, while we see in the next subsection that

it is more sensitive to serial dependence in the noise and endogenous noise thanK (X).

25



Table 7: Scalar BEKK models for close-to-close bivariate returns

Series Ht−1 r CtoC
t−1

(

r CtoC
t−1

)′
KK2×2

t−1 RV5m2×2
t−1 log L

AA-BA 0 .6254
(0.1530)

0.0000
–

0.2409
(0.0912)

– -1057.3

0.6404
(0.1387)

0.0000
–

– 0.2222
(0.0843)

-1059.0

0.8486
(0.1043)

0.0250
(0.0141)

– – -1070.4

0.6254
(0.1528)

– 0.2409
(0.1703)

0.0000
–

-1057.3

AA-SPY 0.6259
(0.1556)

0.0000
–

0.1774
(0.0720)

– -547.67

0.6430
(0.1389)

0.0000
–

– 0.1606
(0.0665)

-549.11

0.8746
(0.0459)

0.0239
(0.0099)

– – -555.70

0.6259
(0.1583)

– 0.1774
(0.1873)

0.0000
–

-547.67

BA-SPY 0.6507
(0.1155)

0.0000
–

0.2975
(0.0938)

– -435.82

0.6392
(0.0968)

0.0000
–

– 0.3162
(0.0861)

-433.44

0.8554
(0.0573)

0.0345
(0.0130)

– – -456.06

0.6392
(0.0926)

– 0.0000
–

0.3161
(0.2327)

-433.44

GE-SPY 0.2831
(0.2114)

0.0063
(0.0249)

0.4555
(0.1273)

– -91.093

0.2847
(0.2197)

0.0115
(0.0250)

– 0.4426
(0.1231)

-91.502

0.8468
(0.0690)

0.0368
(0.0145)

– – -104.04

0.2872
(0.2012)

– 0.3122
(0.2689)

0.1624
(0.2662)

-90.937

Likelihood ratio summary

Mean Std 5% 25% Median 75% 95%

KK2×2
t−1 24.94 16.41 2.068 11.98 23.24 34.49 53.39

RV5m2×2
t−1 22.23 15.88 3.254 10.80 17.13 29.00 57.17

Estimation results for scalar BEKK models for close-to-close bivariate returns.

There are three reasons thatK F (X) can go negative. The most obvious is the use of a kernel function

that does not satisfy,
∫∞
−∞ k(x)exp(i xλ)dx ≥ 0 for all λ ∈ R, such as the Tukey-Hanning kernel or the

cubic kernel,k(x) = 1− 3x2 + 2x3. The flat-top kernels give unit weight toγ1 andγ−1, which can mean

K F (X) may be negative. This can be verified by rewriting the estimator as a quadratic form estimator,

x′Mx, whereM is a symmetric band matrixM = band(1,1, k( 1
H ), k(

2
H ), . . . , ). The determinant of the

upper-left matrix is given by−
{

k( 1
H )− 1

}2
, so thatk( 1

H ) = 1 is needed to avoid negative eigenvalues.

Repeating this argument leads tok( h
H ) = 1 for all h, which violates the condition thatk( h

H ) → 0, as

h → ∞. Finally, the third reason that the flat-top kernel could produce a negative estimate was due to

the construction of realized autocovariances,γh =
∑n

j =1 x j x j −h. This requires the use of “out-of-period”

26



intraday returns, such asx1−H . This formulation was chosen because it makes E{K (U )} = 0 when

U ∈ WN . However, sincex−H only appears once in this estimator, with the termx1x1−H , it is evident

that a sufficiently large value ofx1−H (positive or negative, depending on the sign ofx1) will cause the

estimator to be negative. We have overcome the last obstacleby jittering the end-points, which makes the

use of “out-of-period” redundant. They can be dropped at theexpense of aO(m−1) bias.

6.1.2 Efficiency

An important question is how inefficient isK (X) in practice compared to the flat-top realised kernel,

K F (X)? The answer is quite a bit whenU ∈ WN . Table 8 gives E
[

n1/4 {K (X)− [Y]}
]2
/ω and

E
[

n1/4
{

K F (X)− [Y]
}]2

/ω, the mean square normalised by the rate of convergence ofK F
P (X) (which

is the flat-top realised kernel using the Parzen weight function. An implication is that the scaled MSE for

theK (X) andK F
B will increase without bound asn → ∞ because these estimators converge at a rate that

is slower thann1/4). The results are given in the case of Brownian motion observed with different types

of noise. Results for two flat-tops are given, the Bartlett (K F
B (X)) and Parzen (K F

P (X)) weight functions.

Similar types of results hold for other weight functions.

Consider first the case with GaussianU ∈ WN with variance ofω2. The results show that the

variance ofK (X) is much bigger than its squared bias. For smalln there is not much difference between

the three estimators, but by the timen = 4,096 (which is realistic for our applications) the flat-top

K F (X) has roughly half the MSE ofK (X) in the univariate case. Hence in ideal circumstancesK F (X)

has advantages overK (X), but we are attracted to the positivity and robustness ofK (X).

The robustness advantage ofK (X) can be seen from for the four simulation designs whereU j is

modelled as a dependent process. We consider the moving average specification,U j = ǫ j − θǫ j −1,

with θ = ±0.5 and the autoregressive specification,U j = ϕU j −1 + ǫ j , with ϕ = ±0.5, whereǫ j is

Gaussian white noise. The bandwidth for all estimators wereto be “optimal” underU ∈ WN , which is

the default in the literature, soH F
B = 2.28ω4/3n2/3, H F

P = 4.77ωn1/2, and HP = 3.51ω4/5n3/5 where

ω2 =
∑∞

h=−∞ cov(U j ,U j −h). The results show the robustness ofK (X) and the strong asymptotic bias

of K F
P and K F

B under the non-white noise assumption. The specifications,θ = 0.5 andϕ = −0.5

induce a negative first-order autocorrelation whileθ = −0.5 andϕ = 0.5 induce positive autocorrelation.

Negative first-order autocorrelation can be the product of bid-ask bounce effects, this is particularly the

case if sampling only occurs when the price changes. Positive first-order autocorrelation would, for

example, be relevant for the noise in bid prices because variation in the bid-ask spread would induce such

dependence.
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Table 8: Relative efficiency of the realised kernelK (X)

ω2 = 0.001

normalised bias2 normalised variance normalised mse

n K F
B (X) K F

P (X) K (X) K F
B (X) K F

P (X) K (X) K F
B (X) K F

P (X) K (X)

U ∈ W N
250 0.0 0.0 0.8 16.2 16.3 18.0 16.2 16.3 18.8

1,000 0.0 0.0 2.5 11.7 12.1 16.9 11.7 12.1 19.4
4,000 0.0 0.0 3.1 10.4 10.4 19.0 10.4 10.4 22.1

16,000 0.0 0.0 4.6 10.5 9.5 20.8 10.5 9.5 25.4

U j = ǫ j + 0.5ǫ j −1

250 1.5 1.2 0.6 15.3 15.7 17.6 16.9 16.9 18.2
1,000 22.1 7.3 2.2 11.0 11.9 16.9 33.0 19.2 19.1
4,000 175.7 18.5 3.2 9.3 10.2 19.0 185.0 28.8 22.2

16,000 898.5 41.0 4.4 9.0 9.4 20.9 907.6 50.4 25.4

U j = ǫ j − 0.5ǫ j −1

250 122.7 96.9 3.9 27.5 24.2 18.3 150.2 121.1 22.2
1,000 1,769.1 588.0 6.1 44.8 20.4 16.9 1,813.9 608.3 23.0
4,000 14,195.1 1,490.4 5.0 73.1 13.9 19.3 14,268.2 1,504.4 24.3

16,000 72,797.6 3,326.8 5.5 88.6 10.9 20.8 72,886.2 3,337.726.3

U j = −0.5U j −1 + ǫ j

250 39.1 30.9 1.3 18.9 18.1 17.9 58.0 49.0 19.2
1,000 1,261.0 74.9 3.3 35.9 13.2 16.8 1,296.9 88.1 20.0
4,000 7,751.7 141.1 3.5 40.8 10.8 18.8 7,792.5 151.9 22.4

16,000 40,973.1 253.8 4.8 52.0 9.7 20.9 41,025.2 263.5 25.7

U j = 0.5U j −1 + ǫ j

250 0.5 0.4 0.3 14.8 15.3 17.7 15.3 15.7 18.0
1,000 9.6 6.3 1.5 9.8 10.8 16.6 19.4 17.1 18.2
4,000 96.0 39.6 2.7 8.5 9.7 19.1 104.4 49.2 21.8

16,000 505.8 141.5 4.2 8.5 9.2 21.1 514.3 150.7 25.3

Relative efficiency of the realised kernel K(X) and KF (X) when estimating[Y] where Y is standard
Brownian motion with independent which observed with noiseU with varianceω2. MSE, Var andBias2

are all scaled by n1/2/ω. In the special case with Gaussian white noise the asymptotic lower bound for
the normalized mse is 8.00 (the normalized mse for KF

P (X) converges to 8.54 as n→ ∞ in this special
case).

6.2 Preaveraging without bias correction

6.2.1 Estimating multivariate QV

In independent and concurrent work Vetter (2008, p. 29 and Section 3.2.4) has studied a univariate

suboptimal preaveraging estimator of[Y] whose bias is sufficiently small that the estimator does not

need to be explicitly bias corrected to be consistent (the bias corrected version can be negative). Its rate

of convergence does not achieve the optimaln−1/4 rate. Hence his suboptimal preaveraging estimator

has some similarities to our non-negative realised kernel.Implicit in his work is that his non-corrected
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preaveraging estimator is non-negative. However, this is not remarked upon explicitly nor developed into

the multivariate case where non-synchronously spaced datais crucial.

Here we outline what a simple multivariate uncorrected preaveraging estimator based on refresh time

would look like. We define it aŝV =
∑n−H

j =1 x j x
′
j , wherex j = (ψ2H )−1/2∑H

h=1 g
(

h
H

)

x j +h, ψ2 =
∫ 1

0 g2(u)du. Hereg(u), u ∈ [0,1] is a non-negative, continuously differentiable weight function, with

the properties thatg(0) = g(1) = 0 andψ2 > 0. Now if we setH = θn3/5, then the univariate result in

Vetter (2008) would suggest thatV̂ converges at raten−1/5, like the univariate version of our multivariate

realised kernel. There is no simple guidance, even in the univariate, as to how to chooseθ .

In the univariate bias corrected form, Jacod et al. (2007) show thatV̂ is asymptotically equivalent to

using aK F (X) with k(x) = ψ−1
2

∫ 1
x g(u)g(u − x)du andH ∝ n1/2. It is clear the same result will hold

for the relationship between̂V andK (X) in the multivariate case whenH = θn3/5. A natural choice of

g is g(x) = (1 − x) ∧ x, which delivers
∫ 1

0 g2(u)du = 1/12 and ak function which is the Parzen weight

function. Hence one might investigate usingθ = c0 as in our paper, to drive the choice ofH for V̂ when

applied to refresh time based high frequency returns.

Kinnebrock & Podolskij (2008a) have defined a bias corrected preaveraging estimator of themulti-

variate[Y] with H = θn1/2, for which they derive limit theory. To define their high frequency returns they

use the Refresh Time idea — taken from an early draft of this paper. Their estimator has the disadvantage

that it it is not guaranteed to be positive semi-definite.

6.2.2 Estimating integrated quarticity

In order to construct feasible confidence intervals for our realised quantities (see Barndorff-Nielsen &

Shephard (2002)) we have to estimate9. Our approach is based on the no-noise Barndorff-Nielsen &

Shephard (2004) bipower type estimator applied to suboptimal preaveraged data takingH = θn3/5. This

is not an optimal estimator, it will converge at raten1/5, but it will be positive semidefinite. The proposed

(positive semi-definite) estimator of vec(9) is Q̂ = n
∑n−H−1

j =1

{

c j c′
j − 1

2

(

c j c′
j +H + c j +Hc j

)}

, where

c j = vec(x̄ j x̄′
j ). That the elements of̂Q is consistent using this choice of bandwidth is implicit in the

thesis of Vetter (2008, p. 29 and Section 3.2.4).

6.3 The case with[0, T]

Throughout the paper we have discussed estimating QV over a unit interval, now we extend this to the in-

terval[0, T ]. Technically this is trivial, it is just a time-change argument. The results are that the QV target

is
∫ T

0 6(u)du, while9 = T
∫ T

0 {6(u)⊗6(u)} ◦ T(u)du. Finally, ξi i = �i i /

√

T
∫ T

0 6
2
i i (u) ◦ T(u)du.
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6.4 Finite sample improvements

The realised kernel is non-negative so we can use log-transform to improve its finite sample performance.

In particular

n1/5

{

log (K (X))− log

(∫ 1

0
σ 2(u)du

)}

Ls→ MN







κ
∫ 1

0 σ
2(u)du

,4

(

κ
∫ 1

0 σ
2(u)du

)2





.

When the data is regularly spaced and the volatility is constant thenκσ−2 = (ω/σ )2/5
∣
∣k′′(0)

∣
∣
1/5 (

k0,0
•
)2/5

,

which is slightly less dependent onσ 2 than the non-transformed version.

6.5 Subtlety of end effects

We have introduced jittering to eliminate end-effects. Thelarger ism the smaller is the end-effects,

however increasingm has the drawback that is reduces the sample size,n, that can be used to compute

the realised autocovariances. GivenN observations, the sample size available after jittering isn = N −
2(m − 1), so extensive jittering will increase the variance of the estimator. In this subsection we study

this trade-off.

We focus on the univariate case whereU ∈ WN . The mean square error caused by end-effects is

simply the squared bias plus the variance ofU0U ′
0 + UnU ′

n, which is given by 4m−2ω4 + 4m−2ω4 =
8ω4m−2, as shown in Appendix A, see the proof of Lemma A.4. The asymptotic variance (abstracting

from end-effects) is 5κ2n−2/5 = 5
∣
∣k′′(0)ω2

∣
∣
2/5 {

k0,0
• IQ

}4/5
n−2/5. So the trade-off between contributions

from end-effects and asymptotic variance is given by

gN,ω2,IQ(m) = m−28ω4 + 5
∣
∣k′′(0)ω2

∣
∣
2/5 {

k0,0
• IQ

}4/5
(N − m)−2/5.

This function is plotted in Figure 4 for the case whereN = 1,000 and IQ= 1 andω2 = 0.0025 and

0.001. The optimal value ofm ranges from 1 to 2. The effect of increasingn on optimalm can be seen

from Figure 4, where the optimal value ofm has increased a little from Figure 4 asn has increased to

5,000. However, the optimal amount of jittering is still rather modest.

6.6 Finite lag refresh time

In this paper we roughly synchronise our return data using the concept of Refresh Time. Refresh Time

guarantees that our returns our not stale by more than one lagin Refresh Time. Our proofs need a

somewhat less tight condition, that returns are not stale bymore than a finite number of lags. This

suggests it may be possible to find a different way of synchronising data which throws information away

less readily than Refresh Time. We leave this problem to further research.

30



1 2 3 4 5 6 7 8 9 10
0.16485
0.16490
0.16495
0.16500
0.16505
0.16510
0.16515
0.16520
0.16525
0.16530

R
M

S
E

 w
ith

 J
itt

er
in

g 
(N

=
1,

00
0)

Level of jittering (m)

1 2 3 4 5 6 7 8 9 10

0.11946

0.11948

0.11950

0.11952

0.11954

0.11956

0.11958

0.11960

R
M

S
E

 w
ith

 J
itt

er
in

g 
(N

=
5,

00
0)

Level of jittering (m)

1 2 3 4 5 6 7 8 9 10
0.13720
0.13725
0.13730
0.13735
0.13740
0.13745
0.13750
0.13755
0.13760
0.13765

R
M

S
E

 w
ith

 J
itt

er
in

g 
(N

=
1,

00
0)

Level of jittering (m)

1 2 3 4 5 6 7 8 9 10

0.09943
0.09944
0.09944
0.09945
0.09945
0.09946
0.09946
0.09947
0.09947
0.09947
0.09948

R
M

S
E

 w
ith

 J
itt

er
in

g 
(N

=
5,

00
0)

Level of jittering (m)

ω2 = 0.0025 ω2 = 0.0025

ω2 = 0.001

ω2 = 0.001

Figure 4: Sensitivity to the the choice ofm. The Figure shows the RMSE as a function ofm for the sample
sizesN = 1,000 andN = 5,000, andω2 = 0.001 andω2 = 0.0025.

6.7 Jumps

In this paper we have assumed thatY is a pureBSM. The analysis could be extended to the situation

whereY is a pureBSM a finite activity jump process. The analysis in Barndorff-Nielsen et al. (2008a,

section 5.6) suggests that the realised kernel is consistent for the quadratic variation,[Y], at the same rate

of convergence as before, but with a different asymptotic distribution.

7 Conclusions

In this paper we have proposed the multivariate realised kernel, which is a non-normalised HAC type

estimator applied to high frequency financial returns, as anestimator of the ex-post variation of asset

prices in the presence of noise and non-synchronous trading. The choice of kernel weight function is

important here — for example the Bartlett weight function yields inconsistent estimation in our case.

Our analysis is based on three innovations: (i) we used a weight function which delivers biased

kernels, however allowing us to use positive semi-definite estimators, (ii) we coordinate the collection
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of data through the idea of refresh time, (iii) we show the estimator is robust to the remaining staleness

in the data. Using this setup we are able to show consistency and asymptotic mixed Gaussianity of our

estimator.

Our simulation study indicates our estimation procedure isclose to being unbiased for covariances

under realistic situations. Not surprisingly the estimators of correlations is downward biased due to

the sampling variance of our estimators of variance. The empirical results based on our new estimator

are striking, providing much sharper estimates of dependence amongst assets than has previously been

available.

Multivariate realised kernels have potentially many areasof application, improving our ability to

estimate covariances — allowing high frequency data to significantly improve our predictive models as

well as better understand the pricing and management of riskin financial markets.
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Appendices

Under the assumptions given in this paper, our line of argument will be as follows.

• Assume the data is synchronized and then a time-change allows us to think of the data as being

regularly spaced. This is clear from the arguments in Barndorff-Nielsen et al. (2008a).

• Show the staleness left by the definition of refresh time has no impact on the asymptotic distribution

of the equally spaced realised kernel. This is shown in Appendix B.

• Show the realised kernel is consistent and work out its limittheory for synchronized and equally

spaced data. This is shown in Appendix A.

Appendix A: Proofs

Proof of Theorem 1.We note that for alli, j ,

K

(

Y(i )

U ( j )

)

=
(

K (Y(i )) K (Y(i ),U ( j ))

K (Y(i ),U ( j )) K (U ( j ))

)

≥ 0,

which means that by taking the determinant of this matrix andrearranging we see thatK (Y(i ),U ( j ))2 ≤
K (Y(i ))K (U ( j )). Consequently, providedK (Y)

p→ [Y] ,

K (X)− [Y] = K (Y)− [Y] + Op

(√

maxi K
(

Y(i )
)
√

maxj K
(

U ( j )
)
)

+ K (U )

= K (Y)− [Y] + Op

(√

K (U )
)

.

From this, together with the results of Lemmas A.1 and A.5, the conclusions of the Theorem follow

directly. �

Proof of Proposition 1. This is a special case of Theorem 2.�

Proof of Proposition 2. The asymptotic variance ofK (Y) is given in Barndorff-Nielsen et al. (2008a)

and the results concerningK (U ) follow from Lemma??, given below.�
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Proof of Proposition 3. The problem is simply to minimize the squared bias plus the contribution

from the asymptotic variance with respect toc0. Set IQ =
∫ 1

0 σ
4(u)du. The first order conditions of

minc0

{

−c−4
0 k′′(0)2ω4 + c04k0,0

• IQ
}

yield the optimal value forc0

c∗
0 =

(
k′′(0)2ω4

k0,0
• IQ

)1/5

= c∗ξ4/5, with c∗ =
{

k′′(0)2/k0,0
•
}1/5

.

With H ∗ = c∗ξ4/5n3/5 the asymptotic bias is given by

−
(

k′′(0)2ω4

k0,0
• IQ

)−2/5

k′′(0)ω2n−1/5 =
∣
∣k′′(0)ω2

∣
∣
1/5 {

k0,0
• IQ

}2/5
n−1/5,

and the asymptotic variance is

(
k′′(0)2ω4

k0,0
• IQ

)1/5

4k0,0
• IQn−2/5 = 4

∣
∣k′′(0)ω2

∣
∣
2/5 {

k0,0
• IQ

}4/5
n−2/5.

�

A.1 Proof of Theorem 2.

We decompose the realised kernel into four terms that we willanalyze separately.

K (X)−
∫ 1

0
6(u)du =

{

K (Y)−
∫ 1

0
6(u)du

}

+ E {K (U )} + {K (U )− E[K (U )]}

+ {K (Y,U )+ K (U,Y)} .

We start by deriving the asymptotic properties ofK (Y) −
∫ 1

0 6(u)du. The flat-top does not play a role

in the asymptotic analysis ofK (Y), so the result for the univariate case follows from Barndorff-Nielsen

et al. (2008a). The multivariate result is the following.

Lemma A.1 K (Y) = [Y] + Op(
H
n ), and with H = c0n3/5, then

n1/5

{

K (Y)−
∫ 1

0
6(u)du

}

Ls→ MN
{

0,4c0k0,0
• 9

}

.

Proof of Lemma A.1. First we note that, for any fixeda ∈ R
d the convergence ofa′

{

K (Y)−
∫ 1

06(u)du
}

a

follows directly by applying the univariate results in Barndorff-Nielsen et al. (2008a). Stable conver-

gence for multivariate statistics, such as the realised autocovariances,Ŵh, are established in Kinnebrock

& Podolskij (2008b), see also Jacod (2007). WithH ∝ nγ , the consistency and stable convergence fol-

low from Jacod (2008, theorems 2.1 and 2.2). What remains is to derive the asymptotic variance. For

a,b, c,d ∈ R
d the asymptotic covariance betweena′K (Y)b andc′K (Y)d is given as the plim of

c0
n

H

(
n−1
∑

h=−n+1

k( |h|
H+1)

∑

i

a′yi yi−hb

)




n−1
∑

l=−n+1

k( |l |
H+1)

∑

j

c′y j y j −ld





= c0
n

H






∑

h=l
i= j

k( h
H+1)

2a′yi y
′
i cb′yi−h y′

i−hd +
∑

h=−l
i= j +h

k( h
H+1)

2a′yi y
′
i db′yi−h y′

i−hc




+ Op(

H
n )
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p→ c0

∫ ∞

−∞
k(s)2

∫ 1

0

{

a′6(u)cb′6(u)d + a′6(u)db′6(u)c
}

duds

= vec(ab′+ba′

2 )′
[

4c0k0,0
•

∫ 1

0
{6(u)⊗6(u)}

]

duvec( cd′+dc′

2 ).

Here we used
∫∞
−∞ k(s)2ds = 2k0,0

• and

a′6cb′6d+a′6db′6c = c′6ab′6d + d′6ab′6c = tr
{

6ab′6dc′ +6ab′6cd′}

= vec(ab′)′ (6 ⊗6) vec(dc′ + cd′) = 1
2vec(ab′ + ba′)′ (6 ⊗6) vec(dc′ + cd′).

�

A.1.1 Results concerningK (U )

We derive the asymptotic properties ofK (U ) under the assumption thatU ∈ CS. The following defini-

tions lead to a useful representation ofK (U ). For h = 0,1, . . . we define

Vh =
n−1
∑

j =h+1

U j U
′
j −h + U j −hU ′

j , and Zh =
(

U0U
′
h + UhU ′

0

)

+ (UnU ′
n−h + Un−hU ′

n).

Lemma A.2 The realised autocovariances of U can be written as

Ŵ0(U ) = V0 − V1 + 1
2 Z0 − Z1 (A.1)

Ŵh(U )+ Ŵh(U )
′ = −Vh−1 + 2Vh − Vh+1 + Zh − Zh+1, (A.2)

Proof. The first expression, (A.1), follows from

Ŵ0(U ) =
n
∑

j =1

(U j − U j −1)(U j − U j −1)
′ =

n−1
∑

j =1

(U j U
′
j + U j U

′
j )+ UnU ′

n + U0U
′
0

−
n−1
∑

j =2

(U j U
′
j −1 + U j −1U

′
j )− (UnU ′

n−1 + Un−1U
′
n + U0U

′
1 + U1U

′
0),

and (A.2) is proven similarly.�

Lemma A.3 The realised kernel for U has the exact representation:

K (U ) =
{

k(0)− k( 1
H+1)

}

V0 −
n−1
∑

h=1

{

k( h+1
H+1)− 2k( h

H+1)+ k( h−1
H+1)

}

Vh (A.3)

+ 1
2 Z0 −

n−1
∑

h=1

{

k( h
H+1)− k( h−1

H+1)
}

Zh.

Proof. Follows from the definition ofK (U ) and Lemma A.2.�

Now we prove the result concerning the end-effects. We note thatU0 andUn are absent fromVl , for

all l = 0,1, . . . , so end-effects can only have an impact onK (U ) throughZh, h = 0,1, . . . .

Lemma A.4 E (Z0) = 4m−1∑m−1
h=−m+1

m−|h|
m �h andE(Zh) = 2m−1∑m+h−1

j =h (� j +�′
j ).
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Proof of Lemma A.4. Recall thatU0 = m−1
∑m−1

j =0 U (t j ). So that E(U0) = 0 and

E(U0U
′
0) = m−2

m−1
∑

j =0

m−1
∑

i=0

E{U (t j )U (ti )
′} = m−1

m−1
∑

h=−m+1

m−|h|
m �h,

and similar for E(UnU ′
n). So the first result follows from E(Z0) = 2{E(U0U ′

0) + E(UnU ′
n)}. Next, for

h > 0,

E(U0U
′
h) = m−1

m−1
∑

j =0

E{U (t j )U (tm−1+h)
′} = m−1

m−1
∑

j =0

�− j −h = m−1
m−1
∑

j =0

�′
j +h,

and similarly we find E(UnU ′
n−h) = m−1∑m−1

j =0 � j +h, and the second and last result follows.�

It is a simple matter to compute the bias of the realised kernels caused by the noise.

Lemma A.5 For large n, H and m we have.

E{K (U )} = −k′′(0)
n

H2
�+ O(m−1)+ o(

n

H2
)

and the asymptotic variance of K(U ) is o(nH−3+ǫ)+ O(H−1m−1) for anyǫ > 0.

Remark. So with H ∝ n3/5 and m → ∞, we note that Var{K (U )} = o(n−3/5). This implies that

n1/5 [K (U )− E{K (U )}] = op(1), so K (U ) only contributes to the bias term in the asymptotic distribu-

tion, not to the asymptotic variance whenH ∝ n3/5.

Proof. First we prove the result concerning the bias. We have,

k(0)− k
(

1
H+1

)

= − k′′(εH )

2(H+1)2
, for some 0≤ εH ≤ 1

H+1,

sincek′(0) = 0. Now we definea0 = −k′′(εH ) andah = H2{−k( |h|+1
H+1 )+ 2k( |h|

H+1)− k( |h|−1
H+1 )}, then

{

k(0)− k( 1
H+1)

}

E(V0)−
n−1
∑

h=1

{

k( h+1
H+1)− 2k( h

H+1)+ k( h−1
H+1)

}

E(Vh)

= H−2
n−1
∑

h=−n+1

ah(n − 1 − h)E(U j U
′
j −h) = H−2

n−1
∑

h=−n+1

ah(n − 1 − h)�h

= H−2
∑

|h|≤
√

H

ah(n − 1 − h)�h + H−2
∑

|h|>
√

H

ah(n − 1 − h)�h.

By the continuity ofk′′(x) it follows that

sup
|h|≤

√
H

∣
∣
∣
∣

H2

n
ah(n − 1 − h)+ k′′(0)

∣
∣
∣
∣
→ 0, asH,n → ∞ with H/n = o(1),

so that the first term

H−2
∑

|h|≤
√

H

ah(n − 1 − h)�h = −k′′(0)
n

H2
�+ o(

n

H2
).
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For the second term

H−2

∣
∣
∣
∣
∣
∣

∑

|h|>
√

H

ah(n − 1 − h)�h

∣
∣
∣
∣
∣
∣

≤ n

H2

∑

|h|>
√

H

|ah�h| ≤ sup
|h|≥

√
H

|�h|
n

H2

∑

|h|>
√

H

∣
∣H2ah

∣
∣ ,

which vanishes exponentially fast. For theZ-terms we have by Lemma A.4 that E(Z0) = O(m−1), and

E
n−1
∑

h=1

{

k( h
H+1)− k( h−1

H+1)
}

Zh =
n−1
∑

h=1

{

k( h
H+1)− k( h−1

H+1)
}

2m−1
m−1
∑

j =1

(� j +h +�′
j +h)

≤
n−1
∑

h=1

{

k( h
H+1)− k( h−1

H+1)
}

2m−1
∞
∑

j =1

|� j +h +�′
j +h|

≃ m−12
∫
{

k′( h
H+1)+ O(H−1)

}
∞
∑

j =1

j |� j +�′
j | = O(m−1).

Next, we turn to the asymptotic variance ofK (U ). Consider for simplicity the univariate case. First

we choose someη > 0. We see from expression (A.3) that the contribution from terms involving Vh,

h = 0,1, . . . has a total variance

var(H−2
∑

h

ah

∑

i

2Ui Ui−h) ≤ 4H−4
∑

|i− j |<Hη

|h−l |<Hη

ahal E(Ui Ui−hU j U j −l )+ 4n4 sup
M≥Hη

̺M ,

Assumption 1 guarantees that the last term vanishes at exponential rate. For the first term we have

4H−4
∑

|i− j |<Hη

|h−l |<Hη

ahal E(Ui Ui−hU j U j −l ) ≤ 4H−42H ηnE(U4
i )

∑

|h−l |<Hη

ahal

≤ 8H−3+ηnE(U4
i )2H η

{∫

k′′(s)2ds + o(1)

}

= O(nH−3+2η)E(U4
i ).

The other terms involvingZh, h ≥ 0 have the form

var

[
n−1
∑

h=1

{

k( h
H+1)− k( h−1

H+1)
}

U0Uh

]

≤ H−2
n
∑

i=1

{

k′( h
H+1)+ O(H−1)

}2
E(U2

0U2
h) = O(H−1m−1).

�

A.1.2 Results concerningK (Y,U ) and K (U,Y)

Lemma A.6 K (Y,U ) = Op(H−1/2) so that K(Y,U ) = op(n−1/5) when H∝ n3/5.

Proof. For simplicity we prove the result for the cased = 1. We have

K (Y,U ) =
∑

h

k( h
H+1)

∑

j

y j

(

U j −h − U j −h−1
)

≃
∑

h

k( h
H+1){Wh − Wh−1},

whereWh =
∑n

j =h+1 y j U j −h, so thatK (Y,U ) ≃
∑n−1

h=−n+1 H−1k′( |h|
H+1)Wh. Write EY(·) = E(·| {Y}).

Then

EY





n
∑

i=h+1

n
∑

j =l+1

yi Ui−h y j U j −l



 =
∑

i= j

yi y j EY(Ui−hUi−l )+
∑

i 6= j

yi y j EY(Ui−hU j −l )
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=
∑

i= j

yi y j�l−h +
∑

q 6=0

�q+l−h

∑

i

yi yi−q.

The first term converges to�h−l

∫ 1
0 σ

2(u)du in probability while the second term vanishes. So that

n−1
∑

h=−n+1

H−1k′( |h|
H+1)Wh

n−1
∑

l=−n+1

H−1k′( |l |
H+1)Wl ≃ H−2

∑

h,l

k′( |h|
H+1)k

′( |l |
H+1)�h−l

∫ 1

0
σ 2(u)du

≃ H−2
∑

h,l
|h−l |<Hγ

k′( |h|
H+1)k

′( |l |
H+1)�h−l

∫ 1

0
σ 2(u)du

≃ H−2
∑

h

{

k′( |h|
H+1)

}2 ∑

l
|h−l |<Hγ

�h−l

∫ 1

0
σ 2(u)du ≃ H−1�

∫ 1

0
σ 2(u)du

∫ ∞

−∞
{k′(u)}2du.

Thus K (Y,U ) = Op(H−1/2). With H = n3/5 we haven1/5K (Y,U ) = Op(n−1/10) such that this term

does not contribute to the asymptotic distribution whenH3/5. �

Appendix B: Errors induced by stale prices

The stale prices induce a particular form of noise with an endogenous component. The assumptions

that we made about the noise were formulated for prices sampled with the Refresh Time. It may be

more natural to formulate assumptions for the noise that is tied to actual observation times rather than

the artificial refresh times. Here we show that the limit distribution for K (X) is the same under both

assumptions.

The price indexed by timeτ j is, in fact, the price recorded at timet (i )j ≤ τ j , for i = 1, . . . ,d. With

Refresh Time we haveτ j ≥ t (i )j > τ j −1 so that

X(i )(τ j ) = Y(i )(t (i )j )+ U (i )(t (i )j ) = Y(i )(τ j )+ U (i )(t (i )j )− {Y(i )(τ j )− Y(t (i )j )}
︸ ︷︷ ︸

Ũ (i )(τ j )

.

This shows that if the dependence in{U } was specific toU (i )(t (i )j ), rather thanU (i )(τ j ), then the actual

measurement error,̃U (i )(τ j ) = X(i )(τ j ) − Y(i )(t (i )j ), has an endogenous component given byZ(i )j =
Y(i )(τ j )− Y(i )(t (i )j ). The implication is thatK (X) = K (Y + U + Z), when we define the noise using the

observation timesU (i )
j = U (i )(t (i )j ) for i = 1, . . . ,d.

Theorem B.1 Suppose that H∝ n3/5 and that Assumption 1 holds for Uj =
{

U (1)(t (1)j ), . . . ,U
(d)(t (d)j )

}′
.

Then K(Y + U + Z)− K (Y + U ) = op(n1/5).

The implication is that the asymptotic distribution is unaffected by Refresh Time.

Proof. We prove the result by showing thatK (Z), K (Y, Z), K (U, Z) are allop(n−1/5). First we note that

Z j , j = 1, . . . ,n are increments inY, computed over non-overlapping intervals. So{Z j } is effectively a

heteroskedastic independent process, where E(Z2
j ) is bounded by a term that is of order

δn = sup
j

∫ τ j

τ j −1

σ 2(s)ds = O(n−1).
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So we can apply our analysis ofK (U ), and analogous to Lemma A.5 we find that

E{K (Z)} = n

H2
δn = O(n−6/5),

and the asymptotic variance ofK (Z) is o(nH−2)δ2
n = o(n−11/5). Using the same argument as in the proof

of Theorem 1, we haveK (Y, Z)2 ≤ K (Y)K (Z) and K (U, Z)2 ≤ K (Y)K (Z), which proves that both

K (Y, Z) andK (U, Z) areop(n−1/5), as was needed.�
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