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Abstract

We propose a multivariate realised kernel to estimate thposk covariation of log-prices. We
show this new consistent estimator is guaranteed to beiy@siémi-definite and is robust to mea-
surement noise of certain types and can also handle norwsymaus trading. It is the first estimator
which has these three properties which are all essentiarfgoirical work in this area. We derive
the large sample asymptotics of this estimator and assessduracy using a Monte Carlo study. We
implement the estimator on some US equity data, comparingesults to previous work which has
used returns measured over 5 or 10 minutes intervals. We #ihowew estimator is substantially
more precise.
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1 Introduction

The last seven years has seen dramatic improvements in yrecemometricians think about time-varying

financial volatility, first brought about by harnessing hifyjaquency data and then by mitigating the
influence of market microstructure effects. Extending thisk to the multivariate case is challenging as
this needs to additionally remove the effects of non-symebus trading while simultaneously requiring

that the covariance matrix estimator be guaranteed to Héveosemi-definite. In this paper we provide

the first estimator which achieves all these objectivess Wili be called the multivariate realised kernel,
which we will define in equation (1).

We study ad-dimensional log price procesé = (X, X@, ..., X@)". These prices are observed
irregularly and non-synchronous over the interM@lT]. For simplicity of exposition we takd = 1
throughout the paper. These observations could be tradgsate updates. The observation times for
thei-th asset will be written af”, t{’, . ... This means the available database of price)s(ié(tj(”), for
i=12..,NY@), andi =1,2, .., d. HereN®(t) counts the number of distinct data points available
for thei-th asset up to time

X is assumed to be driven by, the efficient price, abstracting from market microstroetaffects.
The efficient price is modelled asBrownian semimartingaldY < BSM) defined on some filtered
probability spacé€2, F, (), P),

t t
Y(t):/ a(u)du+/ o (WdW(u),
0 0

wherea is a vector of elements which are predictable locally bodndsfts, o is a cadlag volatility
matrix process antlV is a vector of independent Brownian motions. For reviewsheféconometrics of
this type of process see, for example, Ghysels, Harvey & Re(E096). IfY € BSM then its ex-post

covariation, which we will focus on for reasons explaineéimoment, is
1
[Y1(D) = / Y(u)du, where ¥ =00/,
0
where

(Y1) = plim Y " {Y) - Yt} {Yt) - Yt;-»},

n—oo le

(e.g. Protter (2004, p. 66-77) and Jacod & Shiryaev (200&%1p) for any sequence of deterministic
synchronized partitions & tg < t; < ... < t, = 1 with sug{tj+1 —tj} > 0 forn — oo. This is the
quadratic variation oY .

The contribution of this paper is to construct a consistpasitive semi-definite estimator ¢Y](1)
from our database of asset prices. The challenges of doiacath three fold: (i) there are market
microstructure effectt) = X — Y, (ii) the data is irregularly spaced and non-synchronoiii§, tife

market microstructure effects are not statistically iretagent of ther process.
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Quadratic variation is crucial to the economics of financisk. This is reviewed by, for example,
Andersen, Bollerslev & Diebold (2008) and Barndorff-N&ts& Shephard (2007), who provide very
extensive references. The economic importance of thisafrresearch has recently been reinforced by
the insight of Bollerslev, Tauchen & Zhou (2008) who havevet that expected stock returns seem
well explained by the variance risk premium (the differebetween the implied and realised variance)
and this risk premium is only detectable using the power ghlrequency data. See also the paper by
Drechsler & Yaron (2008).

Our analysis builds upon earlier work on the effect of noiseuaivariate estimators dfY](1) by,
amongst others, Zhou (1996), Andersen, Bollerslev, DeeldoLabys (2000), Bandi & Russell (2005),
Zhang, Mykland & Ait-Sahalia (2005), Andersen, BollevséeMeddahi (2006), Hansen & Lunde (2006),
Kalnina & Linton (2008), Zhang (2006), Renault & Werker (3)0Barndorff-Nielsen, Hansen, Lunde &
Shephard (2068 and Jacod, Li, Mykland, Podolskij & Vetter (2007). The cas@o noise is dealt with
in the same spirit as the papers by Andersen, Bollerslepdlie& Labys (2001) and Barndorff-Nielsen
& Shephard (2002), Barndorff-Nielsen & Shephard (2004)kMgd & Zhang (2006), Mykland & Zhang
(2008) and Jacod & Protter (1998).

A distinctive feature of multivariate financial data is tHeepomenon of non-synchronous trading or
nontrading. These two terms are distinct. The first referthéofact that any two assets rarely trade at
the same instant. The latter to situations where one assetaling frequently over a period while some
other assets do not trade. The treatment of non-synchraradisg effects dates back to Fisher (1966).
For several years researchers focused mainly on the effettstale quotes have on daily closing prices.
Campbell, Lo & MacKinlay (1997, chapter 3) provides a sureéyhis literature. When increasing the
sampling frequency beyond the inter-hour level severdi@sthave demonstrated a severe bias towards
zero in covariation statistics. This phenomenon is oftderred to as the Epps effect. Epps (1979)
found this bias for stock returns, and it has also been detmated to hold for foreign exchange returns,
see Guillaume, Dacorogna, Dave, Miller, Olsen & Picte©f)9 This is confirmed in our empirical
work where realised covariances computed using high freqyudata, over specified fixed time periods
such as 15 seconds, dramatically underestimate the defjdependence between assets. Some recent
econometric work on this topic includes Malliavin & Mancirf@002), Reno (2003), Martens (2003),
Hayashi & Yoshida (2005), Voev & Lunde (2007), Griffin & Oomé&2006), Large (2007) and Zhang
(2005). We will draw ideas from this work.

The form of multivariate realised kernel we propose is, mthivariate special case, subtly different
from that studied in the univariate paper by Barndorff-Ségi et al. (2008). Their flat-top kernel, which
has the advantage of being unbiased and fully efficient,tigumaranteed to be non-negative. It also could
not directly deal with non-synchronous data. This is esakmt the multivariate case, which motivates

the specific form of the multivariate realised kernel pragabkere. We discuss in some detail the specifics



of the differences between these estimates in Section éé.cfiange to our preferred estimator means
the rate of convergence, bandwidth choice and asymptattalalition of our new estimator differs from
the flat-top version. In particular, our theory can be usetine the bandwidth selection for estimating
particular correlations, betas, inverse covariance Gegror just covariances.

The structure of the paper is as follows. In Section 2 we siarihe the timing of the multivariate
data using what we call Refresh Time. This allows us to refigh frequency returns and in turn the
multivariate realised kernel. Further we make precise fsemptions we make use of in our Theorems
to study the behaviour of our statistics. In Section 3 we givéetailed discussion of the asymptotic
distribution of realised kernels in the univariate casee @halysis is then extended to the multivariate
case. Section 4 contains a summary of a simulation expetidesigned to investigate the finite sample
properties of our estimator. Section 5 contains some e implementing our estimators on some
US stock price data taken from the TAQ database. This isvigtbby a Section on extensions and further
remarks, while the main part of the paper is finished by a Gmimh. This is followed by an Appendix
which contains the proofs of various theorems given in theepaand an Appendix with results related to
Refresh Time sampling. More details of our empirical resahd simulation experiments are given in a
web Appendix which can be found lattp://www.hha.dk/"alunde/BNHLS/BNHLS.htm

2 Defining the multivariate realised kernel

2.1 Synchronizing data
2.1.1 Refreshtime

Non-synchronous trading delivers fresh (trade or quotEeprat irregularly spaced times which differ
across stocks. Dealing with non-synchronous trading has be active area of research in financial
econometrics in recent years, e.g. Hayashi & Yoshida (20@%v & Lunde (2007) and Large (2007).
Stale prices are a key feature of estimating covariancenamdial econometrics as recognised at least
since Epps (1979), for they introduce cross-autocormiatimongst asset price returns.

Write the number of observations in theh asset made up to timeas the counting process® (t),
and the times at which trades are made ast.’, .... We now define a time scale which will be key to

the construction of multivariate realised kernels.

Definition 1 Refresh Timefor t € [0, 1]. We define the first refresh time as= max(t{l), t{d)) ,

and then subsequent refresh times as

@ (d)
Tj4+1 = max|t ot .
j+1 (N,(jl>+1’ ’ N§?>+1>

The resulting Refresh Time sample size is N, while we wiite=nN® (1).

1Refresh time was used in a cointegration study of price stexyoby Harris, Mclnish, Shoesmith & Wood (1995). Martens
(2003) used the same idea in the context of realised cowasambut his estimator is inconsistent.
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The 7, is the time it has taken for all the assets to trade, i.e. all {hosted price have been updated.
7, IS the first time when all the prices are again refreshed. pitusess is displayed in Figure 1 for= 3.

Our analysis will now be based on this time cldak}. Our approach will be to:

e Assume the entire vector of up to date prices are seen attbigeshed time(z;), which is not

correct — for we only see a single new price ahd 1 stale prices

e Show these stale pricing errors have no impact on the asyimdtstribution of the realised kernels.

Assetl —e ; o *— *— L4 —o—0—>
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Asset 2 ® 900 I < I 0 < I ® >
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Asset 3 - o—+o—0— - - — F— — — - —>
T1 T2 T3 T4 75 T6 T7 Tlme

Figure 1:This figure illustrates Refresh Time in a situation with thessets. The dots represent the times
{tj(')}. The vertical lines represent the sampling times generatad the three assets with refresh time
sampling. Note, in this example, N 7,n® = 8, n® = 9 andn® = 10.

This approach to dealing with non-synchronous data casnbe problem into one where the Re-
freshed Times’ sample siz¢ is determined by the degree of non-synchronicity afitl n®, ..., n@ 3
The degree to which we keep data is measured by the size aftdired data over the original size of the
database. For Refresh Time thispis= dN/ Zidzl n®). For the data in Figure Iy = 21/27 ~ 0.78.

2.1.2 Jittering end conditions

Realised kernels are built out of high frequency returns computed from synchronized vectmep

recorded aN times. It turns out that our asymptotic theory dictates wedn® averagen prices at the

2Their degree of staleness will be limited by their Refresmdiconstruction to a single lag in Refresh Time. The extensio
to a finite number of lags is given in Section 6.6. _
3Suppose trade times arrive as independent standard Pgieseess with common intensity, so that EN (t)} = At.

Thent{i) ~ exp(A) and asrt] = max{t{l),tiz), ...,t{d)}, so, e.g. Embrechts, Kluppelberg & Mikosch (1997, pp. 1257&)1

71/ logd E) 2~1, or more refined Ry — logd < x) = {1 — exp(—)\x)/d}d — exp{—exp(—Ax)}. Hence the sample size
from the refreshed analysis will fall with lady the dimension of the asset prices. The situation where thasity varies across
assets, i.e. N (t)} = A;t, will not substantially change this result.

The loss of observations is relatively cheap here, becdugseate of convergence for our realised kernel willi3é°. In a
standard situation where an estimator converges ahféafeone can expect confidence intervals to widen by about 100&sawh
the sample size is reduced by a factor of 4. When the rate obcgence i1/5, confidence intervals only widen by about 32%.



very beginning and end of the day to define these returfibe theory behind this will be explained in
Section 6.5, but for now we just define what we mean by jittericetn, m e N, withn — 1+ 2m = N,
then set the vector observatioXs, X, ..., Xy asX; = X(tjtm), ] =1,2,...,n—1and
1 & 1 &

Xo=— ; X(r)) and Xo=— ; X(TN-mtj)-
So Xp and X, are constructed by jittering initial and final time pointsy &lowing m to be moderately
large but very small in comparison with it means these observations record the efficient priceowith
much error, as the error is averaged away. Experimentatiggestam should be around 2 for the kind
of data we see in this paper: see Section 6.5 for a discussibisassue.

These prices allow us to define the high frequency vectornstasx; = X; — Xj_1, j =1,2,...,n.

2.2 Realised kernel

Having synchronized the high frequency vector retu{mp} we can define our class of positive semi-

definitemultivariate realised kernel@RK). It takes on the following form
n
K(X) =Y K(z)Th. (1)
h=—n

Here the non-stochastiax) for x € R is a weight function. Thé-th realised autocovariance is

n v/
D i=hi+1 XiXj s h>0
Iy =

ZT:th—l Xj—hxi s h <0.
We focus on the class of kernel functioi§, that is characterized by:
(i1) kis twice differentiable with continuous derivatives;
(i) k2O, k21 k22 < 0o, wherek%0 = [Tk(x)2dx, k- = [ K (x)2dx, k22 = [ K"(x)2dx;
(iv) [ k(x)expiixr)dx > O forallx € R.

The assumptiok(0) = 1 meandg gets unit weight, whilé’(0) = 0 means the kernel gives close
to unit weight tol'y, for small values ofh|. Condition (i v) guarantee¥ (X) to be positive semi-definite,
(e.g. Bochner’s theorem and Andrews (1991)).

The multivariate realised kernel has the same form as aatdheteroskedasticity and autocorrelated

(HAC) covariance matrix estimator familiar in economedr{e.g. Gallant (1987), Newey & West (1987),

and Andrews (1991)). But there are a number of importaneuifices. For example, the sums that

4This kind of averaging appears in, for example, Jacod e2@07).



define the realised autocovariances are not divided by thelsasize, whilek’(0) = 0 is critical in our
framework. Unlike the situation in the standard HAC literat an estimator based on the Bartlett kernel
will not be consistent for the ex-post variation of pricegasured by quadratic variation, in the present

setting. Later we will recommend using the Parzen kernglfditm is given in Table 1) instead.

2.3 Assumptions about the noise and refresh time

Having defined the positive semi-definite realised kerne ,will now write out our assumptions about
the market microstructure effedts and the{z; } which govern the properties of the vector retufms}
and soK (X).

The assumptions about the noise are stated in observaitioas-t that is we only model the noise at
exactly the times where there are trades or quote updates tyfie of assumption is familiar from the
work of, for example, Zhou (1998), Bandi & Russell (2005) aAQ et al. (2005), Barndorff-Nielsen et al.
(200&) and Hansen & Lunde (2006). We define

Uj =X(‘L'j)—Y(‘L'J'), j =0, 1,...,N,
which is noise associated wit(;), the observation at tims;..

Assumption 1 Suppose that, conditional diY}, {U;} is covariance stationary (Us CS) withE(U;) =
Oand) , IhQn| < oo, whereQ, = cov(Uj, Uj_p). Let M = max|i — j|, |h —I[}. For h,I > O, there

existsoy such that,’Cov(UiUi’_h, UjUj’_I) < om,Where} 2, 0i(1+ €)' < oo, for somee > 0.

A key quantity in our analysis is the, so-called, long-runasmce:

oo
Q= )" Q.

h=—o0
which is a non-stochastit x d matrix.

On occasions we refer to a white noise assumption about thecessy € WA) which means we
assume it has fJj) = 0, Var(U;) = QandU; I Uy, foralli # j. This white noise assumption is
unsatisfactory from a number of viewpoints (e.g. Phillip¥.(2008) and Kalnina & Linton (2008)) and
will not be used to derive our limit theorems.

Throughout the paper we follow Barndorff-Nielsen et al.q&%) in making this assumption about

the times that we have Refresh Time data

5This means thaZ(t) = Y(T(t)) is a Brownian semimartingale withZ]; = [Y]t(y and spot volatilityAr(t) =
T(t){o o T(t)}. The point of this assumption is thal(j/N) = Y(T(j/N)) = Y(zj), whererj = T(j/N). So irregularly
spaced data o¥i can be thought of as equally spacedzn _ .

An implication of this is that Suptj+1—7j} = Op(nil) for n — oo, which means that sqq{tj('ll—tj(')} = Op(nil) by
construction of refresh time.



Assumption 2 Define T(t) = fg r2(u)du, wheret(u) is strictly positive, adlag univariate process.
Then we assume Refresh Times occuf at T (j/n). We also assume thatis adapted taF. When both

conditions hold we write € 7.
3 Asymptotic results

3.1 Consistency

We first give a consistency result for the multivariate dikerneK (X), which can be writterK (X) =
K (Y)+ K (Y,U)+ K (U,Y)+ K U), whereK(Y,U) = Y1 K(525) X2 YjUi_p. With y; =Y} —
Yj,l anduj = Uj — Uj,]_.

Theorem 1 Letke K and n— oo. If K(U) ® oand K(Y) LY [Y] then
K(X) 2 [Y].

If H «« n"withn € (0,1) andt € 7 then K(Y) LY [Y]. If H o« n"withn € (1/2,1), U € CS, and
m — oo, then K(U) 2o Further, if K(Y) — [Y] = Op(n™¢) and K(U) = Op(n‘ZG) for somee > 0,
then K(X) — [Y] = Op(n~).

Note in particular that, whatever the relationship betwéeandU, if K (U) £ 0andk Y) LY [Y]
thenK (X) £ [Y]. Hansen & Lunde (2006) have shown that endogenous noise isieailp important,
particularly for mid-quote data. The above theorem is camipeaely clean, it means endogeneity does
not matter for consistency. What matters is that the redli@nel applied to the noise process would

converge to zero asz — 00.8

3.2 Central limit theory

3.2.1 Univariate asymptotic analysis of realised kernels
Before introducing the results on the multivariate casis, lielpful to consider the univariate case
tj tj
X(tj) = / a(u)du + / o (WdW(u) + U;.
0 0

In order to present the results for the univariate case, vite wf in place of2, sow? = > o E(U;U;_p).

Proposition 1 Letke IC,t € 7, H = con®>, U € CS, Y 1L U and nt! = o(n~%/®). Then
1
L 2L
n1/5{K(X) —/0 az(u)du} = MN {52 |K"(0)| ?, 4cok2IQ}

wherelQ = fol A4(u)du is the integrated quarticity, antl(t) = 7(t) {o o T(1)}.

80f course, ifu had a component, which evolved in calendar time, e.¥.is an Ornstein-Uhlenbeck process, thér CS
andK (U) would not vanish in probability.



The notation=S MN means stable convergence to a mixed Gaussian distnibulioe notion of stable
convergence is important for the construction of confidentervals and the use of the delta method.
The reason is that 1Q is random, and stable convergencergaasgjoint convergence that is needed here.
Stable convergence is discussed, for example, in Myklandh&ng (2006) and Mykland & Zhang (2008),
who also provides extensive references. The presengeirothe limit theory is due to the irregularly
spaced nature of the data, if it was equally spaced tifen= 1 andT (t) = t, so IQ = fola“(u)du as
usual.

Remark. The asymptotic distribution in Proposition 1 has a non-zsgmptotic mean which implies
that the upward asymptotic bias of the realised kernel ightyun—/°c; 2 |k”(0)| w?. Having an asymp-
totic bias term in the asymptotic distribution is familiaoiin kernel density estimation with the optimal
bandwidth. Here the situation is slightly easier for in pijsle the bias term can be estimated from the
data.

We now explain why Proposition 1 is the most interesting to I$e rest of this subsection can be
skipped on first reading if the reader is not interested isgl®mckground results.

To start this consider first some moments of various quaatiti

Proposition 2 Letk € K and U € CS. ThenE{K(U)} = 5K’ (0)|w® + O(M™1) + o(n/H?) and if,

additionally t € 7, the asymptotic variance of &) and K(U) are given by
HaQ%Q  and  S54KkZ%0’ (2)

Remark. The second term in K (U)} highlights the need for the averaging at the end-points. The
O(m™1) term roughly equals®—1w?, so we needn — oo for the bias to vanish. Empirically? is tiny

so 2n~tw? will be small even withm = 1, but theoretically this is an important observation.

Remark. The result shows that estimators in this class of realisedeke are generally biased due to
the kernels not being entirely flat-top, but the bias is mbdedong asH increases at a faster rate than
J/N. For a weight function wittk”(0) = 0 we could takeH o n*/2 which would result in a faster rate
of convergence. However, no weight function wkh0) = 0 can guarantee a positive semi-definite
estimate, see Andrews (1991, p. 832, comment 5).

Remark. If m™! = o(n~—%/%), then the mean square error optimal rateHois H o« n®5, equalising the
rate of the squared bias and the variance. All but the first tar(2) vanish a® — oo whenH oc n®5,
Note that the asymptotic bias is tiedk&0) whereas the asymptotic variance is tiek{d.

Remark. This result looks rather weak compared to the correspondisglt for the flat-top kernel
K F(X) introduced by Barndorff-Nielsen et al. (206)8with k'(0) = 0. They had the nicer result tHat

nl/4 {K F(X) — folaz(u)du} 5 MN {o, 4ck001Q + BkMew? [Fo?(u)du + Cigkfszw“} :

"See also Zhang (2006) who independently obtained 4 consistent estimator using a multiscale approach.



whenH = cn'/?, under the assumption thiat € YWWA/. Hence the use of non-flat top kernels comes at
an asymptotic cost, but ensures positive semi-definiterfesstion 6.1.2 also shows thigt( X) is more

robust to endogeneity and serial dependendg thanK " (X).

3.2.2 Choosing the bandwidthH and weight function

Next we turn to the optimal (mean square error) choice fobtiredwidth parametéat .

Proposition 3 Letk e K,7 € 7, U € CS and set H= c*£%°n%®, where ¢ = {k”(O)z/k?’o}l/5 and
£2 = 0?//TQ, then

1
n1/5{K(X)—/ oz(u)du} 5 MN(, 42, where « = [K"(0)(k*%?|"° {wl Q}%5.
0

The relative efficiency of different realised kernels irsthiass are determined solely by the constant
|k”(0)(k9’0)2|1/5 and so can be universally determined for all Brownian semtingales and noise pro-
cesses. This constant is computed for a variety of kerneghtdunctions in Table 1. This shows that
the Quadratic Spectral (QS), Parzen and Fejér weight ibmstare attractive in this context. The op-
timal weight function minimizest”(O)(kf”o)z\1/5, which is also the situation for HAC estimators, see
Andrews (1991). Thus, using Andrews’ analysis of HAC estors it follows from our results that the
QS kernel is the optimal weight function within the class @ight functions that are guaranteed to pro-
duce a non-negative realised kernel estimate. A drawbathkeo@S and Fejér weight functions is that
they, in principle, requira (all) realised autocovariances to be computed, whereasuimber of realised
autocovariances needed for the Parzen kernel is dnb hence we advocate the use of Parzen weight

functions. We will discuss estimatirigf in Section 3.3.1.

Kernel function k(x) K'©] KOO | |k’ (0) (k02|

1-6x2+6x3  0<x<1/2
Parzen kp(x) = {2(1-x)3 1/2<x<1 12 0269 0.97

0 X>1
Quadratic Spectral kgs(x) = X—32 (% - cosx) , x>0 1/5 37/5 0.93
Fejer ke 0o = (S2¢)° x>0 2/3  7/3 0.94
Tukey-Hanning,  kr, (x) = sir? {Z exp(—x)}, x>0 w%/2 052 1.06
BNHLS (2008) k(x) = (L+x)e* x>0 1 5/4 1.09

Table 1:Properties of some realised kernelkf/(O)(k9’°)2|l/ ® measures the relative asymptotic efficiency
of ke K.

3.2.3 Some multivariate notation

To start we define some terms. Let

1
U= / 2(W{ZoT(U)® X o T(U)}du,
0
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which is thed? x d? random matrix analog of integrated quarticity.

Our result will use thenatrix normal distribution ForM € R%*% M ~ N(A, B) simply means that
veqM) is Gaussian distributed with mean ¥&¢ and the covariance betweafMb andc’Md is given
by cov@ Mb, ¢'Md) = v, Bucg, With vap = veq22£22) andugg = veo&54<).

3.2.4 Multivariate central limit theorem

Theorem 2 Suppose H= con®®,t € 7, U € CS, m* = o(n~/%), Y 1L U and ke K then
1
n1/5{K(X) —/ Z(u)du} L MN{c;?K"(0)]2, 4cok®OW}.
0

This is the multivariate extension of Proposition 1, yiafglia limit theorem for the consistent multi-
variate estimator in the presence of noise. The bias isrd@ted by the long-run variance, the variance

solely by integrated quarticity.
Corollary 1 An implication of Theorem 2 is that for, b € R we have
1
nY/5a’ {K(X) —/ Z(u)du} b MN {52 IK" ()&’ 2D, 4cok? Cv) W vap) -
0

So once a consistent estimator fBris obtained, Corollary 1 makes it straightforward to conepart

confidence interval for any element of the integrated vagamnatrix.
Example 1 In the bivariate case we can write the results as
K(X®) — [3idu

nS | KX, x0) — fryidu | = MN (A B), (3)
K(X1) — [35;du

where
Qii 1 22i2i 22” Zij zzizj
A=c?K'O)| and B= 2c0k9*°/ 72 o IiZj+3%F 2% |oTdu,
Qjj 0 ° ° ZEJ-ZJ-

which has features in common with the noiseless case detus8arndorff-Nielsen & Shephard (2004,
eg. 18). By the delta method we can deduce the asymptotiddigin of the kernel based regression

and correlation. For example

K(X®, xd
15 (Q - ﬂu) = MN (A, B),

K (X))
where
—2iLy 1
¢, “|k”(0)| % du
= S —— (@ —QjiBi). B =‘/°1$’
Jo Zjjdu Jo Zjjdu
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and

26 k00 1 Ly 2 TN
B= % (L —8y) [/o - ( 2251'?%: 7 ;;'2‘_2“ ) ’ Tdu} ( _’13” ) ‘
(fo ijdU) !

To produce the result (3) we notice the asymptotic variararesists of termgcok?-%v, o Wve, o Where
e denotes the i-th unit vector iRY. Consider, for simplicity, the case with equidistant sanmgptimes, so
thatw = [ £(u) ® T(u)du. Then

4vg o Ve = VEUE E, + eng)’ {/(2 ® Z)du} veaej g + &E€))
= 2/“’{2&6{129‘6(] + Ee,e}gZeje{(}du = 2/(2”(2“1 + ZihZJ‘k)dU,
and the result follows by using various combinationgioh, k, j).

3.3 Some practical issues

3.3.1 Choice ofH in practice

A main feature of multivariate kernels is that there is a lErgandwidth parametdi which controls the
number of leads and lags used for all the series. It must gritviwat raten®®, the key question here is
how to estimate a good constant of proportionality — whichtoals the efficiency of the procedure.

If we applied the univariate optimal mean square error baditvgelection to each asset price individ-
ually we would getl bandwidthsH® = c*&*°n3/5, wherec* = {k”(0)2/k2°}""° and&? = ;i //TQy,
where ;i (u) is the spot variance for theth asset. In practice we usually approximaté Q;; by
fol ¥ii (Wdu and useéi2 = Qii/fol %ii (wydu, which can be estimated relatively easily by using a low
frequency estimate ofol %ii (u)du and one of many sensible estimatorsnpf which use high frequency

data. Then we could construct some ad hoc rules for chooseglobalH, such as
d .
Hinin = min(H®, ., H®), Hpax=maxH®, ., H®), or H=d"> H,
i=1

or many others. In our empirical work we have uségwhile our web Appendix provides an analysis of
the impact of this choice.

An interesting alternative is to optimise the problem foroatiolio, e.g. letting: be ad-dimensional
vector of ones thed%/K (X))t = K (d~*/X), which is like a “market portfolio” ifX contains many
assets. This is easy to carry out, for having converted #viary into Refresh Time one computes the
market ¢ X//t) return and then carry out a univariate analysis on it, cimgoan optimalH for the
market. This singléH is then applied to the multivariate problem.

From the results in Example 1 it is straightforward to detilke optimal choice foH, when the

objective is to estimate a covariance, a correlation, thierge covariance matrix (which is important for
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portfolio choice) org;; . For example, fopi, the trade-off is betweeg, *|k”(0) |? (R12 — Q22812)%, and
1
ZCOKP’O/ 1 (Z11Z02 + T2, — 4B12Z11 %00 + 2B%,X2,) o Tdu.
0

3.3.2 Realised kernel based beta and correlation

A key reason for needing our realised kernel to be positiveigfinite is that elements of it can be
combined to consistently estimate the quadratic variatiersion of the beta and correlation between

assets and |

lg(i’j) _ _ and ,O(i’j) _ [Y®O vy

Y] VIYOIY O

where we have writtefiY] = {[Y®, Y]} 1.

in previous research by, for example, Andersen, Bolleyfdesbold & Labys (2003), Barndorff-Nielsen
& Shephard (2004) and Dovonon, Goncalves & Meddahi (2001 tHeir work was hampered by only

. The quantitiegg®)> andp’ have been highlighted

being able to use 5-15 minute returns due to the effect oeranisl irregularly spaced data.
The realised kernel estimators of these quantities arigtfarward and the asymptotic distribution

simply follows by the application of the delta method. Intgadar
K (x(i)’ x(j)) and 500 — K (x(i)’ x(j))

. _ _
K (X®M) \/K (XO) K (XD)

e[-1,1],

where we have written the elements of the realised kernebitat X) ask (X) = {K (X®, X1)}. =12,

4 Simulation Study

So far the analysis has been asymptotic, based e co. Here we reinforce this by carrying out a
simulation analysis to assess the accuracy of the asymtiadictions in finite samples. We simulate
over the intervat € [0, 1].

The following multivariate factor stochastic volatilityadel is used
dy® = /L(i)dt +dv® £ dF® dv® = p(i)a(i)dB(i) dE® = /1 — (p(i))za(i)dW.

where the elements d are independent standard Brownian motions #WadlL B. HereF® is the
common factor, whose strength is determined @— (,o<i>)2.

This model means that eadf is a diffusive SV model with constant drifi and random spot
volatility ¢ @ In turn the spot volatility obeys the independent process$e = exp(ﬂg) + ﬁi”g“) with
do” = aWpWdt +dB®. Thus there is perfect statistical leverage (correlatietween their innovations)

betweenv® ando @, while the leverage betweeri) ando® is p@). The correlation betwee¥® (t)
andY@(t) is \/1 — (p(1>)2\/1 — (p<2))2.
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The price process is simulated via an Euler scHemied the fact that the OU-process have an exact
discretization (see e.g. Glasserman (2004, pp. 110)). @uwiations are based on the following config-
uration (the same for both processes)”, 8, 8, a®, p©) = (0.03, —5/16, 1/8, —1/40, —0.3), so
that 83 = (B{")2/(2«"). Throughout we have imposed tha(ﬁ) a(')z(u)du) = 1. The stationary dis-
tribution of o is utilised in our simulations to restart the process eaghatla® (0) ~ N(0, (—2a)~1).

For our design we have that the variancerdfis exp(—2(8.")?/a®) — 1 ~ 2.5. This is comparable to
the empirical results found in e.g. Hansen & Lunde (2005)cwimotivate our choice far®.

We add noise simulated as

) d. ) N . .
UPlo, Y " N (0,0)  with w2=52\/N—1Zj210(')4(J/N)»

where the noise-to-signal ratig? takes the values 0,.@01 and 1 This means that the variance of
the noise increases with the volatility of the efficient prie.g. Bandi & Russell (2006)). The observed
process is then given ¥ (j/N) = Y(j/N)+U;, j=0,..., N.

To model the non-synchronously spaced data we use two indepe Poisson process sampling
schemes to generate the times of the actual observa{nﬁiﬁ}s to which we apply our realised kernel.
We control the two Poisson processesiby= (11, A2), such that for examplé = (5, 10) means that
on averageX® and X@ is observed every 5 and 10 second, respectively. This meahghe simulated
number of observations will differ between repetitionst & average the processes will have 234Q0
and 23400, observations, respectively.

We vary A though the following configuration&, 6), (5, 10), (10, 20), (15, 30), (30, 60), (60, 120
motivated by the kind of data we see in databases of equitgfri

For each simulated day we compute the observed the pricegs€(j/N). In order to calcu-
late K (X) we need to selecH. To do this we evaluaté’? = [X{"](1)/(2n) and [Xf/)goo](l), the
realised variance estimator based on 15 minute returns.seThe us the following feasible values
H = cn3/5( M2, [Xi'/)goo](l)) . The results foHmeanare presented in Table 2.

Panel A of the table reports the univariate results of edligantegrated variance. We give the bias
and root mean square error (MSE) for the realised kernel amgbare it to the standard realised variance.
In the no noise case ¢ = 0 the RV statistic is quite a bit more precise, especially nhds large.
The positive bias of the realised kernel can be seen Whénquite large, but it is small compared to the
estimators variance. In that situation the realised kem&r more precise than the realised variance.
None of these results are surprising or novel.

In Panel B we break new ground as it focuses on estimatinghtegrated covariance. We compare

the realised kernel estimator with a realised covariandee High frequency realised covariance is a very

8We normalize one second to b@2B, 400, so that the intervdD, 1] contains 6.5 hours. In generating the observed price,
we discretizg0, 1] into a numbemN = 23, 400 of intervals.
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precise estimator of the wrong quantity as its bias is vesgeto its very large mean square error. In this

case its bias does not really change very muchiasreases.

Table 2: Simulation results

Panel A: Integrated Variance

Series A Series B
Ry1im Ry15m K (X) Ry1im Ry15m K (X)
£2=00 R.mse R.mse bias R.mse R.mse R.mse bias R.mse
A= (3,6) 0.113 0.505 0.006 0.147 0.122 0.436 0.003 0.134
A = (10, 20) 0.111 0.547 0.011 0.262 0.114 0.450 0.011 0.224
A = (60,120 0.229 0.504 0.003 0.557 0.227 0.517 0.001 0.490
£2 =0.001
A= (3,6) 1.509 0.654 0.040 0.253 1.417 0.488 0.033 0.215
A = (10, 20) 1.432 0.660 0.041 0.359 1.318 0.492 0.035 0.295
A = (60,120 1.013 0.559 0.014 0.557 0.636 0.554 0.013 0.551
£2=0.01
A= (3,6) 14.39 1.531 0.096 0.410 13.67 1.168 0.084 0.351
A = (10, 20) 14.01 1.452 0.106 0.568 13.15 1.305 0.081 0.424
A = (60,120 8.893 1.222 0.077 0.611 5.386 1.322 0.080 0.776
Panel B: Integrated Covariance/Correlation
Coplm Coplom K (X) Covar K (X) Corr K (X) beta
£2=00 #rets bias R.mse bias R.mse bias R.mse bias R.mse bias R.mse
A= (3,6 3,121 -0.051 0.076 -0.004 0.183 -0.007 0.062 -0.012 0.016.0160 0.061
A=(5,10 1,921 -0.085 0.108 -0.006 0.183 -0.009 0.076 -0.015 0.020.019 0.064
A = (10, 20) 982 -0.160 0.186 -0.011 0.186 -0.009 0.097 -0.018 0.026 23.0.084
A = (30, 60) 332 -0.342 0.395 -0.038 0.188 -0.021 0.142 -0.028 0.042 39.@.125
A=(60,120 166 -0.445 0.510 -0.071 0.203 -0.034 0.189 -0.036 0.054 35.0.178
2 _
&< =0.001
A= (3,6) 3,121 -0.046 0.091 -0.005 0.191 -0.000 0.090 -0.027 0.032.0340 0.085
A=(5,100 1,921 -0.082 0.123 -0.006 0.186 -0.002 0.099 -0.029 0.036.033 0.083
A = (10, 20 982 -0.156 0.189 -0.010 0.195 -0.004 0.118 -0.032 0.040 420.@.111
A = (30, 60) 332 -0.344 0.400 -0.039 0.187 -0.019 0.150 -0.039 0.052 49.0.153
A=(60,120 166 -0.445 0.513 -0.074 0.206 -0.034 0.195 -0.044 0.060 49.0.204
£2=0.01
A= (3,6) 3,121 -0.027 0.398 -0.009 0.263 0.000 0.123 -0.063 0.071 0720.0.132
A=(5,100 1,921 -0.073 0.431 -0.005 0.257 -0.002 0.133 -0.067 0.076.0820 0.149
A = (10, 20) 982 -0.139 0.407 -0.001 0.263 -0.005 0.153 -0.074 0.084 99.0.198
A = (30, 60) 332 -0.354 0.486 -0.044 0.236 -0.017 0.180 -0.089 0.104 19.D.242
A= (60,120 166 -0.451 0.561 -0.083 0.265 -0.032 0.222 -0.092 0.111 2e0.D.310

Simulation results for the realised kernel using a factorr®del with non-syncronous observations and measure-
ment noise. Panel A looks at estimating integrated variarging realised variance and the Parzen type realised
kernel K(X). Panel B looks at estimating integrated covariance and @ation using realised covariance and

realised kernel. Bias and root mean square error are repahrte

The realised kernel delivers a very precise estimator ofrtegrated covariance.

It is downward

biased due to the non-synchronous data, but the bias is vetgshwhem is large and its sampling vari-
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ance dominates the root MSE. Taken together this impliessthiesed kernel estimators of the correlation
and regression (beta) are less good. Peter says: Both anglgtnegatively biased — which is due to
it being a non-linear function of the noisy estimates of thtegrated variance. The bias is the dominant

component of the root MSE of the

5 Empirical illustration

We analyze high-frequency stock prices for ten assets, Iyaitheoa Inc. (AA), American International
Group Inc. (AlG), American Express Co. (AXP), Boeing Co. (BBank of America Corp. (BAC),
Citygroup Inc. (C), Caterpillar Inc. (CAT), Chevron Comg\{X), General Electric Co. (GE), and Stan-
dard & Poor’s Depository Receipt (SPY). The SPY is an exchargded fund that holds all of the S&P
500 Index stocks and has enormous liquidity. The sampl@getins from January 3, 2005 to June 29,
2007, delivering 626 distinct days. The data is the coltectf trades and quotes recorded on the NYSE,
taken from the TAQ database through the Wharton Research®avices (WRDS) system. We present
empirical results for both transaction and mid-quote @rice

Throughout our analysis we will estimate quantities eagh idethe tradition of the realised volatility
literature following, for example, Andersen et al. (200aj&arndorff-Nielsen & Shephard (2002). This
means the target becomes functiong¥fs = [Y1(s) — [Y](s — 1), s € N. The functions we will deal

with are covariances, correlations and betas.

5.1 Procedure for cleaning the high-frequency data

Careful data cleaning is one of the most important aspectlafility estimation from high-frequency
data. Numerous problems and solutions are discussed iertadkry (2001), Hansen & Lunde (2006),
Brownless & Gallo (2006) and Barndorff-Nielsen, Hansemd® & Shephard (20@8. In this paper we
follow the step-by-step cleaning procedure used in Bafffvibelsen et al. (200B8) who discuss in detalil
the various choices available and their impact on univaniaslised kernels. For convenience we briefly
review these steps.

All data: P1) Delete entries with a timestamp outside the 9:30 a.mpto¥ window when the exchange
is open. P2) Delete entries with a bid, ask or transactiarepqual to zero. P3) Retain entries originating
from a single exchange (NYSE except for SPY for which all iretd observations are from Pacific).
Delete other entries.

Trade data only: T1) Delete entries with corrected trades. (Trades wifloaection Indicator CORR #

0). T2) Delete entries with abnorm&kle Condition (Trades where COND has a letter code, except for
“E” and “F”). T3) If multiple transactions have the same tistamp: use the median price. T4) Delete
entries with prices that are above thek plus the bid-ask spread. Similar for entries with priceobel

thebid minus the bid-ask spread.
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Quote data only. Q1) When multiple quotes have the same timestamp, we replathese with a single

entry with the median bid and median ask price. Q2) Deletesrmwvwhich the spread is negative. Q3)
Delete rows for which the spread is more that 10 times the amegpiread on that day. Q4) Delete rows for
which the mid-quote deviated by more than 5 mean absolutatit@vs from a centered mean (excluding

the observation under consideration) of 50 observations.nte steps P2, T1, T2, T4, Q2, Q3 and Q4
collectively reduce the sample size by less than 1%.

5.2 Sampling schemes

We applied three different sampling schemes dependingepdtticular estimator. The simplest one is
the HY estimator that uses all the available observations fparticular asset combination. Following
Andersen et al. (2003) the realised covariation estimatbased on calender time sampling. Specifically,
we consider 15 second, 5 minute, and 30 minute intradayrretiligned using the previous tick approach.
This results in 1560, 78 and 13 daily observations, resgelyti

For the realised kernel the Refresh Time sampling schenueiglisd in section 2.1.1 is used. Our

analysis first considers estimates for each of the 45 unigus pf assets — delivering 45 distinct22
covariance matrix estimates each day.

Table 3: Summary statistics for the refresh sampling sch@x2 case

2 x 2 case
AA AIG AXP BA BAC C CAT CVX GE SPY

AA 0.601 0.597 0.594 0.601 0.594 0.587 0.570 0.596 0.568
AlIG 0.673 0.600 0.602 0.624 0.628 0.590 0.603 0.625 0.603
AXP 0.665 0.670 0.600 0.602 0.585 0.590 0.552 0.585 0.548
BA 0.662 0.667 0.663 0.599 0.592 0.590 0.568 0.592 0.569
BAC 0.681 0.691 0.678 0.673 0.634 0.592 0.605 0.628 0.604
C 0.687 0.700 0.681 0.678 0.717 0.582 0.624 0.642 0.627
CAT 0.647 0.648 0.650 0.646 0.655 0.657 0.560 0.584 0.562
CVvX 0.680 0.690 0.671 0.670 0.707 0.719 0.649 0.620 0.620
GE 0.686 0.699 0.677 0.675 0.719 0.733 0.653 0.726 0.619
SPY 0.678 0.696 0.658 0.665 0.721 0.747 0.633 0.743 0.762

Average over daily number of high frequency observatioadl@le before the Refresh Time transformation

AA AIG AXP BA BAC C CAT CvX GE SPY
Trades 4,124 4,789 3,528 4,057 4,757 5,687 4,039 6,292 5,468,554
Quotes 11,222 11,738 10,482 10,717 12,562 13,393 9,937 733,514,189 18,587

Summary statistics for the refresh sampling scheme. Inwbeupper panels we present averages over the daily
data reduction induced by the refresh sampling scheme,uredby p= dN/ Zid:l n®. The upper panel display
this in the 22 case. The upper diagonal is based on transaction pricesyeds the lower diagonal is based on
mid-quotes. In the lower panel we average over the daily rerrabhigh frequency observations.

The amount of data we discard by constructing Refresh Tinnedgrded in Table 3. It records the
average of the daily statistics defined in Section 2.1.1 for each pair. It emetigaiswe rarely lose more
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that half the observations for most frequently traded asdedr the least active assets we typically lose
between 30% to 40% of the observations.

We will also apply the realised kernel to the full 201 vector of returns. Here the data loss is
more pronounced. Still, even in the worst case more that 2€epeof the observations remain in the
sample. For transaction data the average number of Refliesh dbservations in,222, whereas the
corresponding number is 942 for the quote data. So in most cases we have an obseraatiaverage

more often than every 8 seconds for quote data and 20 secontlade data.

5.3 Analysis of the covariance estimatorsCovX, Covf'Y and Covd™

Throughout this subsection the target which we wish to estnis[Y", YD), i, j =1,2, ...,d, s e N.
In what follows the paiii, j will only be referred to implicitly. All kernels are computenith Parzen
weights.

We compute the realised kernel for (all possible) pairs sésand for the full 10-dimensional vector
of assets, and the resulting estimate$¥tif, Y ()]s are denoted by C¢¥<2 and Co1o<10, respectively.
The two estimators differ in a number of ways, such as the walid selection and the sampling times
(due to the construction of Refresh Time).

To provide useful benchmarks for these estimators we alsgpuate: Co{", the Hayashi & Yoshida
(2005) covariance estimator. Chvthe realised covariance based on intraday returns thatesjpderval
of length A, e.g. 5 or 30 minutes (the previous-tick method is used). S@&vthe outer products of
the open to close returns, which when averaged over many glaysde an estimator of the average
covariance between asset returns.

The empirical analysis of our estimators of the covariascgtarted by recalling the main statistical
impact of market microstructure and the Epps effect. Talderntains the time series average covariance
computed using the 15-second realised covariance ¢ive Hayashi & Yoshida (2005) estimator ¢ov
and the open to close estimator @8\9 Quite a few of these types of tables will be presented ang the
all have the same structure. The numbers above the leadiggmil are results from trade data, the
numbers below are from mid-quotes. Both Band the Co§l" are typically much lower than C¥PC.
The numbers which are bolded are statistically signifigadifferent from the COQtOC numbers at the
one percent level. This assessment is carried out in thenfmify way.

For a given estimator, e.g. Cf¥2, we consider the differencds = Co\22 — CoVQ*¢, and
compute the sample bias dsand robust (HAC) variance & = y, + ZZﬂzl (1 — QLH> Yh, Where
Yho= S o nsns_n. Herens = d; —d andq = int{4(T/100%°}. The number is boldfaced if
’ﬁd/é’ > 2.326. The results in Table 4 indicate the &8¥ is severely downward bias, while ¥
is even more distorted. In both cases nearly every covariaatimator for every pair of assets for both

trades and quotes seem statistically significantly biased.
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Table 4: Average high frequency realised covariance

Average of realised covariances

AA
AIG
AXP
BA
BAC
C
CAT
CvX
GE
SPY

AA
AIG
AXP
BA
BAC
C
CAT
CvX
GE
SPY

AA
AIG
AXP
BA
BAC
C
CAT
CvX
GE
SPY

AA AIG AXP BA BAC
2.370 0.212 0.194 0.230 0.182
0.212 1.126 0.175 0.192 0.171
0.193 0.178 0.901 0.173 0.158
0.230 0.201 0.185 1.287 0.162
0.182 0.171 0.160 0.168 0.807
0.209 0.197 0.186 0.197 0.189
0.249 0.194 0.190 0.227 0.171
0.251 0.209 0.194 0.218 0.186
0.161  0.147 0.133 0.150 0.136
0.203 0.178 0.163 0.190 0.150

Average of Hayashi-Yoshida covariances (all times)

AA AIG AXP BA BAC
2.842 0.185 0.182 0.208 0.160
0.116 1.318 0.163 0.179 0.153
0.112 0.110 1.017 0.168 0.144
0.127 0.122 0.112 1.390 0.150
0.096 0.103 0.091 0.093 1.096
0.111 0.115 0.106 0.110 0.103
0.140 0.122 0.120 0.137 0.099
0.131 0.119 0.115 0.123 0.105
0.088 0.089 0.076 0.087 0.078
0.087 0.083 0.079 0.089 0.065

Open-to-close covariance

AA AIG AXP BA BAC
1.637 0.259 0.350 0.456 0.264
0.259 0.871 0.356 0.268 0.287
0.347 0.353 0.867 0.323 0.377
0.453 0.265 0.315 1.371 0.277
0.265 0.288 0.378 0.278 0.524
0.311 0.321 0.421 0.293 0.391
0.656 0.350 0.428 0.550 0.302
0.612 0.265 0.340 0.321 0.257
0.232 0.257 0.307 0.301 0.264
0.409 0.283 0.375 0.363 0.295

C
0.213
0.198

0.182
0.195
0.192
0.924
0.203
0.215
0.157
0.179

C
0.177
0.172
0.163
0.170
0.161
1.211
0.120
0.118
0.087
0.078

C

0.307
0.322
0.422
0.297
0.394
0.660
0.327
0.265
0.304
0.315

CAT
0.236
0.180
0.178
0.215
0.162
0.194
1.450
0.228
0.152
0.192

CAT
0.215
0.170
0.170
0.208
0.154
0.170
1.471
0.131
0.090
0.093

CAT
0.664
0.351
0.435
0.559
0.301
0.330
1.585
0.533
0.340
0.427

CvX
0.247
0.201
0.185

0.167
0.150

GE

0.138

0.211 0.155
0.184 0.139
0.213 0.161

0.214

1.648

0.163
0.212

CvX

0.207 0.154
0.171 0.141

0.164

0.185 0.146

0.158

0.173 0.142

0.197
1.718

0.0931.655

0.094

CvX
0.618
0.268
0.344
0.326
0.256
0.270
0.539
1.447
0.185
0.398

0.151

SPY
0.201
0.172

0.156

0.176
0.151
0.183

0.174

0.165 0.205
0.887 0.138
0.13®@.300

GE

0.132

0.129

0.149

SPY

0.175
0.141

0.142

0.152

0.126

0.143
0.154

0.147 0.156

0.120

0.054€.292

GE SPY

0.227
0.256
0.304
0.302
0.260
0.305
0.342
0.188
0.532
0.261

50.40
83.2
600.3

50.35
870.2

0.318
370.4
010.4

20.26

490.3

The upper panel presents average estimatemr> and the middle and lower panels display theseGort'Y

and Covgtoc, respectively. In all panels the upper diagonal is basedrandaction prices, whereas the lower
diagonal is based on mid-quotes. The diagonal elementshar@terage of IV estimates based on transactions.
Outside the diagonals numbers are boldfaced if the biagjsiitant at the 1 percent level.

K K
5.4 Results forCovs 22, Covg ***° and Covd™

We now move on to more successful estimators. The upper périeble 5 presents the time series
average estimates for Cg)f\ﬁ, the middle panel for CQVMO, and the lower panel give results for C§5’v

The diagonal elements are the estimates based on tramsactiif-diagonal numbers are boldfaced if
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they are significantly biased (compared to £89) at the 1 percent level.

Table 5: Averages for alternative integrated covariantienasors

Average of Parzen covariancesx?2)

AA AIG AXP BA BAC C CAT CvX GE SPY
AA 2.278  0.307 0.351 0.388 0.326 0.357 0.576 0.560 0.308 20.40
AIG 0.310 0.999 0.286 0.247  0.299 0.310 0.308 0.212 0.258 810.2
AXP 0.352 0.284 0.833 0.275 0.323 0.341 0.341 0.239  0.2640.289
BA 0.390 0.254 0.277 1.207  0.267 0.285 0.417 0.256 0.264 50.30
BAC 0.328  0.297 0.320 0.272 0.681 0.380 0.324 0.245 0.263 920.2
C 0.355 0.306 0.331 0.288 0.373 0.778  0.347 0.267 0.291 0.314
CAT 0.566  0.313 0.339 0419 0.326 0.348 1.684 0.401 0.309 870.3
CvX 0535 0.221 0.246 0.264  0.253 0.272  0.399 1.660 0.225 610.3
GE 0.308  0.256 0.261 0.261 0.264 0.286  0.306 0.229 0.639 40.27
SPY 0.401 0.282 0.289 0.310 0.291 0.311 0.389 0.361 0.270 0.325

Average of Parzen covariances (100)

AA AIG AXP BA BAC C CAT CvX GE SPY
AA 2.168  0.289 0.346 0405 0.327 0.357  0.649 0.619 0.275 60.39
AIG 0.292  0.943 0.294 0.234 0.288 0.310 0.283 0.188 0.251 59.2
AXP 0.343 0.295 0.838 0.296 0.352 0.355 0.3700.243 0.268  0.292
BA 0.381  0.238 0.287 1215 0.271 0.281  0.462 0.241 0.248 50.29
BAC 0.324 0.294 0.350 0.267  0.645 0.394 0.328 0.235 0.249 830.2
C 0.351  0.317 0.355 0.282 0.398 0.705  0.349 0.238  0.282 0.300
CAT 0.628 0.282 0.353 0446 0.321 0.342 1.622 0.420 0.306 880.3
CvX 0599 0.194 0.235 0.234 0.240 0.247  0.398 1563 0.173 0.334
GE 0.280  0.257 0.269 0.250 0.254 0.285  0.302 0.182 0.585 70.24
SPY 0.391 0.264 0.289 0.291 0.285 0.304 0.379 0.338  0.252 0.296

Average of 5 min realised covariance (pre-tick times)

AA AIG AXP BA BAC C CAT CvX GE SPY
AA 2315 0.312 0.347 0378 0.318 0.356  0.539 0.526 0.303 .39
AIG 0.310 0.996 0.274 0.254 0.272 0.292  0.300 0.219 0.239 69.2
AXP 0.342  0.275 0.833 0.272 0.309 0.323 0.327 0.240 0.251 0.281
BA 0.380  0.253 0.275 1.239 0.264 0.284 0.401 0.260 0.252 30.30
BAC 0.322 0.273 0.306 0.265 0.686 0.361  0.305 0.246  0.246 760.2
C 0.358 0.294 0.323 0.283 0.361 0.790 0.342 0.268 0.275 0.303
CAT 0.538 0.300 0.322 0.405 0.307 0.342 1.657 0.377  0.297 0.373
CvxX 0527 0.219 0.244  0.263  0.246 0.267 0.378 1.658 0.222 49.3
GE 0.303 0.243 0.250 0.249  0.247 0.275  0.298 0.223 0.644 60.25
SPY 0.393 0.269 0.280 0.303 0.274 0.303 0.376 0.350 0.254 0.324

The upper panel presents average estimate€td 22, the middle panel fo€ovi 1%°, and the lower panel gives
results forCovgm. In both panels the upper diagonal is based on transactiaoest whereas the lower diagonal
is based on mid-quotes. The diagonal elements are the awefdy estimates based on transactions. Outside the
diagonals numbers are boldfaced if the bias is significarthatl percent level.

These results are quite encouraging for all three estimatbhe average levels of the three estimators
are roughly the same. CB¥2 has three failures. C§v<1° has four failures while Cql" is rejected five

times. All three estimators reject for the SPY/AXP combimat both for trades and quotes.
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A much tougher comparison is to replace the nalgy= Cov\ — Co2"¢ with ds = Cov2<2 —
Cov;(loXlO. Our tests will then ask if there is a significant differencdhie average. The results reported
in our web Appendix suggest very little difference in thediesf these two estimators. When we compute
the same test based do= Covi22 — Co\2™ we get consistent rejection of no difference between these
estimators — now the levels of the C;i?vz is judged to be above the corresponding result forg’@ev—
particularly for GE and SPY stocks. The same thing happeresw@ioy <2 is compared to Cql.

The result in that analysis is reinforced by the informatiorthe summary Table 6, which shows
results averaged over all asset pairs for both trades artdgjud®he results are not very different for most
estimators as we move from trades to quotes, the countermmimCO\'gY which seems sensitive to this.

The Table shows C(éﬂ?x2 and CO\ZHMO have roughly the same average value, which is slightly below
CoW™C. Co2:2 has a nine times smaller variance than &8y, which shows it is a lot more precise. Of
course integrated variance is its self random so nine ustierates the efficiency gain of using C;%vz
If volatility is close to being persistent then CBv is at Ieasto_331-0672

£(1—acfy)
than the cross product of daily returns. The same obsenvhbtitils for mid-quotes.

~ 17 times more informative

Covt>*and Coy" are very precise estimates of the wrong quantity. ¥*as quite close to Cdf#~2,
the two measures have a correlation of 0.92.

The corresponding results for correlations are less gootl.tha estimates are biased, which is no
surprise due to it being a non-linear transform of roughlpiased and somewhat noisy observations.
Corri2<2 looks like the most effective estimate.

In our web appendix we give time series plots and autocagrata for the various estimates of re-
alised covariance for the AA-SPY assets combination usigetdata. They show Cb‘w performing
much better than the 30 minute realised covariance but tiwreeing a great deal of difference between
the statistics when the realised covariance is based on &enmaturns. The web appendix also presents
scatter plots of estimates based on transaction priceicaleaxis) against the same estimate based on
mid-quotes (horizontal axis) for the same days. These shmwmarkable agreement between estimates
based on Cdf#2, Cov2™ and Cog®™, while once again CdV struggles. Overall Cd{#2 and Cog™
behave in a similar manner, with C@ﬁ slightly stronger. Co§10x10 estimates roughly the same level

as Coy{®< but is discernibly noisier.

5.5 Analysis of the correlation estimates

In this subsection we will focus on estimatipd !’ = [Y©, YD1s//TY DY D]s by the realised kernel
correlationpd ™ = K&/ /KEV KD and the corresponding realised correlatigft'.

A table in our web Appendix average estimates 672, ps1*% and oM. It shows the expected

result thatp<?? is more precise thaps®. Both have average values which are quite a bit below

the unconditional correlation of the daily open-to-closturns. This is not surprising. All the three
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ingredients of th(‘;ﬁusx2 are measured with noise and so when we féﬁﬁ)K it will be downward bias.

Table 6: Summary statistics across all asset pairs

Transaction prices
Estimator Average HAC Stdev Bias cor(.,K) acf ach aclk acfy acfk achp
Summary stats for covariances

CoK22 0.3180[0.023] 0.334 -0.026 1.000 0.40 037 0.27 024 0.20230.
CoK10x10 0.3148[0.026] 0.447 -0.029 0.787 023 020 0.6 016 0.11130.

Cov'Y 0.1026[0.008] 0.099 -0.242 0.706 058 0.50 042 0.32 0.30320.
Covt/4m 0.1864[0.013] 0.167 -0.158 0.764 0.60 0.52 041 0.33 0.29280.
Cov™ 0.3082[0.022] 0.334 -0.036 0.924 035 0.36 024 0.22 0.18200.
Covom 0.2930[0.025] 0.471 -0.051 0.646 0.15 0.11 0.10 0.10 0.10100.
CowPtec 0.3435[0.046] 1.067 0.288 0.03 0.01 002 0.03 002 0.05
Summary stats for correlations

CorrK2x2 0.3273[0.010] 0.155 1.000 030 026 0.21 019 0.18 0.14
CorrK10<10  (0.3438[0.013] 0.264 0.653 0.11 0.10 0.08 0.08 0.07 0.07
Corr/4m 0.1758[0.007] 0.084 0528 058 052 047 043 041 0.34
CorP™m 0.3177[0.010] 0.165 0851 024 021 017 045 0.14 0.12
CorPom 0.3358[0.015] 0.315 0517 0.07 006 005 005 0.06 0.04

Average unconditional Open-to-Close correlation = 0.3974

Mid-quotes
Estimator Average HAC Stdev Bias cor(.,K) acf ach achk acfy acfk achp
Summary stats for covariances

CowK2x2 0.3183[0.023] 0.347 -0.026 1.000 037 036 0.26 0.23 0.19220.
CowKiox10 0.3171[0.026] 0.463 -0.027 0.767 0.19 0.17 0.14 0.15 0.10130.

Cov'Y 0.1628[0.010] 0.136 -0.181 0.743 057 050 041 0.33 0.30310.
Covt/4m 0.1829[0.013] 0.162 -0.161 0.733 0.62 053 042 0.34 0.30290.
Cov™ 0.3080[0.022] 0.333 -0.036 0.921 0.36 0.36 025 0.22 0.18200.
Cov3om 0.2918[0.024] 0.467 -0.052 0.668 0.16 0.12 0.10 0.10 0.10100.
CowPtec 0.3447[0.046] 1.067 0.299 0.03 0.02 002 0.03 002 0.05
Summary stats for correlations

CorrK2x2 0.3330[0.010] 0.170 1.000 0.26 022 0.8 0.16 0.15 0.13
CorK10<10  0.3460[0.014] 0.297 0.653 0.09 0.08 006 0.07 006 0.06
Corrl/4m 0.1735[0.006] 0.078 0519 056 049 044 040 0.37 0.30
CorPm 0.3194[0.010] 0.165 0.838 024 020 017 015 0.13 0.11
CorPom 0.3351[0.015] 0.317 0571 0.07 006 005 005 0.06 0.04

Average unconditional Open-to-Close correlation = 0.4035

Summary statistics across all asset pairs. The first coludantify the estimator, and the second gives the average
estimate across all asset combinations, followed by theageeNewey-West type standard error. The fourth gives
the average standard deviation of the estimator. The fifthésaverage bias. Next is average sample correlation
with our realised kernel. The remaining columns give averagtocorrelations. The upper panel is based on
transaction prices, whereas the lower panel is based onquotes. The sub panels give first results for covariance
estimates followed by correlation results.
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5.6 Analysis of the beta estimates

Here we will focus on estimatings? = [Y®, Y1 ]s/[YD]s, by the realised kernel begt %
KD kI Figure 2 presents scatter plots of beta estimates basedrmattion prices (vertical axis)
against the same estimate based on mid-quotes (horizo$dl dhe two estimators ar,éusx2 to g2M.
The results are not very different in these two cases.

Figure 3 compares the fitted values from ARMA models for thenkkand 5 minute estimates of
realised betas for the AA-SPY assets combination. Thesbaaed on the model estimates for the daily
kernel based realised betas

K _ K _ i R2 _
BY =120+ 0023, +us ~0.726u ;. adi-R* = 0213

and for 5 minute based realised betas

oM — 1,16+ 0.95082"" + us — 0.821us 3, adj—R* = 0.145
(0.06) (0.024 (0.039

Both models have a significant memory, with autoregressiatsrwell above 0.9 and with large

moving average roots. The fit of the realised kernel beta itla bit better than that for the realised

beta.
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Figure 2: Scatter plots realised betas
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Figure 3: ARMA(1,1) model for transaction based betas

We also calculate the encompassing regressions. The &ssiang for the realised kernel betas are

— K 5min _ _ R2
B = 90g§1?+90%§3§3ﬁ l+0074,3 + U %354?15‘1’ adji—-R? = 0.215,

with the corresponding 5 minute based realised betas

5min 5m|n K _ i R2 —
™= Q088+ QEISPEN" + Q08 ¥ U~ QBRI 20 RE = 0350

This shows that either estimator dominates the other ingesfrencompassing, although the realised

kernel has a slightly stronger t-statistic.

5.7 A scalar BEKK

5.7.1 Econometric framework

An important use of realised quantities is to forecast Ritolatilities and correlations of daily returns.
The use of reduced form has been pioneered by Andersen 20@al) and Andersen et al. (2003). One
useful way of thinking about the forecasting problem is ta f@ARCH type problem with lagged realised
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guantities as explanatory variables, e.g. Engle & Galll06}0 Here we follow this route, fitting a
bivariate GARCH model with Es|Fs_1) = 0, CoMrs|Fs_1) = Hs, Wherers is the 2x 1 vector of daily
close to close returns on theh andj-th asset,Fs_; is the information available at time— 1 to predict
rs. A standard Gaussian quasi—likelihoed} Z;l (Iog |Hs| + r;Hs‘lrs) is used to make inference. The

model we fit is a variant on the scalar BEKK (e.g. Engle & Kro(i£¥95))
He=C'C+arsarl s+ BHs1 + yKSH: . By = 0.

The question will be ify is estimated to be statistically different from zero, foitifs not then the high

frequency data enhances the forecast of future covariation

5.7.2 Empirical results

Our results will be based on a relatively short time serie?.6fyears of daily measures, which is a
challenging environment for GARCH type models.

The results in Table 7 suggest that lagged daily returns @tenger significant for this multivariate
GARCH models once we have the realised kernel covariances i§leven though the realised kernel
covariance misses out the overnight effect — the infornmattiche close-to-open returns. An interesting

feature of the series is that in most cases includifig;Kreduces the size of the estimatelgl ; term.

6 Additional remarks

6.1 RelatingK (X) to the flat-top realised kernel K F (X)
6.1.1 Positivity

In the univariate case the realised kernel
n n
K(X) = Z K(GE)Th, H=cn¥5, TIh= Z XjXj _h
h=—n j=Ihl+1
is at first sight very similar to the unbiased flat-top realikernel of Barndorff-Nielsen et al. (2088
n n
KFX)=To+ > k({55 (0F +T5). H=don™? Tf => xxj_n.
h=1 j=1
Here thel', and '] are not divided by the sample size. This means that the enditwors, the ob-
servations at the start and end of the sample, can have itifllefiects onI'y,. With FhF we removed
this effect by starting the sum not lat+ 1 but at 1 However, an implication of this is that the resulting
estimator is not guaranteed to be positive semi-definiteeviea the choice of the weight function.
The alternativek F (X) has the advantage that it converges at/Arate and is close to the parametric

efficiency bound. It has the disadvantage that it can go negathile we see in the next subsection that

it is more sensitive to serial dependence in the noise andgamibus noise thaik (X).
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Table 7: Scalar BEKK models for close-to-close bivariateines

Series Hi_1 rctoc (rtc_tfc)/ KIK_ZIZ RVf"_"fX2 log L

AA-BA 0.6254 0.0000 0.2409 — -1057.3
(0.1530 - (0.0912
0.6404 0.0000 — 0.2222 -1059.0
(0.1387 - (0.0843
0.8486 0.0250 — — -1070.4
(0.1043 (0.014)
0.6254 — 0.2409 0.0000 -1057.3
(0.1528 (0.1703 -

AA-SPY 0.6259 0.0000 0.1774 — -547.67
(0.1556 - (0.0720
0.6430 0.0000 — 0.1606 -549.11
(0.1389 - (0.0665
0.8746 0.0239 — — -555.70
(0.0459 (0.0099
0.6259 — 0.1774 0.0000 -547.67
(0.1583 (0.1873 -

BA-SPY 06507 0.0000 0.2975 — -435.82
(0.1155 - (0.0938
0.6392 0.0000 — 0.3162 -433.44
(0.0968 - (0.0861
0.8554 0.0345 — — -456.06
(0.0573 (0.0130
0.6392 — 0.0000 0.3161 -433.44
(0.0926 - (0.2327

GE-SPY 02831 0.0063 0.4555 — -91.093
(0.2114 (0.0249 (0.1273
0.2847 0.0115 — 0.4426 -91.502
(0.2197 (0.0250 (0.1231)
0.8468 0.0368 — — -104.04
(0.0690 (0.0145
0.2872 — 0.3122 0.1624 -90.937
(0.2012 (0.2689 (0.2662

Likelihood ratio summary

Mean Std 5% 25% Median 75% 95%
KIK_ZIZ 24.94 16.41 2.068 11.98 23.24 34.49 53.39
va’i“fx2 22.23 15.88 3.254 10.80 17.13 29.00 57.17

Estimation results for scalar BEKK models for close-toseldivariate returns.

There are three reasons thé&f (X) can go negative. The most obvious is the use of a kernel fumcti
that does not satisf;j_“’OO k(x) exp(ixa)dx > O for all A € R, such as the Tukey-Hanning kernel or the
cubic kernelk(x) = 1 — 3x? + 2x3. The flat-top kernels give unit weight §g andy_, which can mean
KF(X) may be negative. This can be verified by rewriting the estimas a quadratic form estimator,
x'MXx, whereM is a symmetric band matriM = band3, 1, k(%), k(%), ...,). The determinant of the
upper-left matrix is given by- {k(3£) — 1}2, so thatk() = 1 is needed to avoid negative eigenvalues.
Repeating this argument leadskof}) = 1 for all h, which violates the condition th&i(1) — 0, as
h — oo. Finally, the third reason that the flat-top kernel could prosl a negative estimate was due to

the construction of realized autocovariancgs—= Z?zl XjXj—n. This requires the use of “out-of-period”
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intraday returns, such as_y. This formulation was chosen because it mak¢&K &)} = 0 when
U € WN. However, sincex_y only appears once in this estimator, with the tetyr;_y, it is evident
that a sufficiently large value of;_y (positive or negative, depending on the signxof will cause the
estimator to be negative. We have overcome the last obsiggiering the end-points, which makes the

use of “out-of-period” redundant. They can be dropped aetpense of ©(m~1) bias.

6.1.2 Efficiency

An important question is how inefficient i (X) in practice compared to the flat-top realised kernel,
KF(X)? The answer is quite a bit whdh € WA Table 8 gives En'/*{K(X) — [Y]}]Z/a) and
E[nY*{KF(X) — [Y]}]z/w, the mean square normalised by the rate of convergensg; 0K) (which

is the flat-top realised kernel using the Parzen weight fanctAn implication is that the scaled MSE for
the K (X) andK § will increase without bound as — oo because these estimators converge at a rate that
is slower tham'/4). The results are given in the case of Brownian motion oleskwith different types

of noise. Results for two flat-tops are given, the Bartlstf (X)) and ParzenK 5 (X)) weight functions.
Similar types of results hold for other weight functions.

Consider first the case with Gaussidn e WA with variance ofw?. The results show that the
variance ofK (X) is much bigger than its squared bias. For smahere is not much difference between
the three estimators, but by the time= 4, 096 (which is realistic for our applications) the flat-top
KF(X) has roughly half the MSE dK (X) in the univariate case. Hence in ideal circumstar€égX)
has advantages ov&r(X), but we are attracted to the positivity and robustness ©f).

The robustness advantage K{X) can be seen from for the four simulation designs wheyes
modelled as a dependent process. We consider the movinggavepecificationl); = ¢; — ¢j_g,
with & = +0.5 and the autoregressive specificatibh), = ¢U;_1 + €, with ¢ = +0.5, wheree; is
Gaussian white noise. The bandwidth for all estimators wetee “optimal” undet € WA, which is
the default in the literature, sl = 2.280*3n%3, HY = 4.77wn%?, andHp = 3.510*°n%° where
w? = Y e cov(Uj, Uj_p). The results show the robustnesskofX) and the strong asymptotic bias
of K§ and KE under the non-white noise assumption. The specificatiéns; 0.5 andg = —0.5
induce a negative first-order autocorrelation while: —0.5 andy = 0.5 induce positive autocorrelation.
Negative first-order autocorrelation can be the productiddfask bounce effects, this is particularly the
case if sampling only occurs when the price changes. Peditist-order autocorrelation would, for
example, be relevant for the noise in bid prices becausati@riin the bid-ask spread would induce such

dependence.
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Table 8: Relative efficiency of the realised kerkalX)

»? =0.001
normalised biags normalised variance normalised mse
n KEX)  KEXO)  KX) KEX)  KEX) KX KEX)  KEX)  KX)
UeWN
250 0.0 0.0 0.8 16.2 16.3 18.0 16.2 16.3 18.8
1,000 0.0 0.0 2.5 11.7 12.1 16.9 11.7 121 194
4,000 0.0 0.0 3.1 10.4 10.4 19.0 10.4 104 22.1
16,000 0.0 0.0 4.6 10.5 95 20.8 10.5 95 254
Uj =¢€; +0.5¢ 1
250 1.5 1.2 0.6 15.3 15.7 17.6 16.9 16.9 18.2
1,000 22.1 7.3 2.2 11.0 11.9 16.9 33.0 19.2 191
4,000 175.7 18.5 3.2 9.3 10.2 19.0 185.0 28.8 22.2
16,000 898.5 41.0 4.4 9.0 9.4 20.9 907.6 504 254
Uj =€ — 0.561',1
250 122.7 96.9 3.9 27.5 242 18.3 150.2 121.1 22.2
1,000 1,769.1 588.0 6.1 44.8 20.4 16.9 1,813.9 608.3 23.0
4,000 14,195.1 1,490.4 5.0 73.1 13.9 19.3 14,268.2 1,504.4.3 2
16,000 72,797.6 3,326.8 5.5 88.6 10.9 20.8 72,886.2 3,33726.3
Uj =—-05Uj_1 +¢j
250 39.1 30.9 1.3 18.9 18.1 179 58.0 490 19.2
1,000 1,261.0 74.9 3.3 35.9 13.2 16.8 1,296.9 88.1 20.0
4,000 7,751.7 141.1 3.5 40.8 10.8 18.8 7,792.5 151.9 224
16,000 40,973.1 253.8 4.8 52.0 9.7 20.9 41,025.2 263.5 25.7
U; =05Uj_1 + ¢
250 0.5 0.4 0.3 14.8 15.3 17.7 15.3 15.7 18.0
1,000 9.6 6.3 1.5 9.8 10.8 16.6 19.4 17.1 18.2
4,000 96.0 39.6 2.7 8.5 9.7 191 104.4 492 21.8
16,000 505.8 141.5 4.2 8.5 9.2 211 514.3 150.7 25.3

Relative efficiency of the realised kernel %) and KF(X) when estimatingY] where Y is standard
Brownian motion with independent which observed with nbisgith variancew?. MSE, Var andBias®
are all scaled by %?/w. In the special case with Gaussian white noise the asynegtmtier bound for

the normalized mse is 8.00 (the normalized mse fp(X) converges to 8.54 as # oc in this special
case).

6.2 Preaveraging without bias correction

6.2.1 Estimating multivariate QV

In independent and concurrent work Vetter (2008, p. 29 aradi®@e 3.2.4) has studied a univariate

suboptimal preaveraging estimator [M] whose bias is sufficiently small that the estimator does not
need to be explicitly bias corrected to be consistent (the borrected version can be negative). Its rate
of convergence does not achieve the optimal/4 rate. Hence his suboptimal preaveraging estimator

has some similarities to our non-negative realised kermeplicit in his work is that his non-corrected
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preaveraging estimator is non-negative. However, thisisemarked upon explicitly nor developed into
the multivariate case where non-synchronously spacedgsiatacial.

Here we outline what a simple multivariate uncorrected y@eagging estimator based on refresh time
would look like. We define it a = Y7_1' XX, whereX; = (YoH) 231 g () Xj4n, Y2 =
fol g?(uw)du. Hereg(u), u € [0, 1] is a non-negative, continuously differentiable weightdiion, with
the properties thay(0) = g(1) = 0 andy» > 0. Now if we setH = #n®>5, then the univariate result in
Vetter (2008) would suggest th¥tconverges at rate~/5, like the univariate version of our multivariate
realised kernel. There is no simple guidance, even in theatiate, as to how to chooge

In the univariate bias corrected form, Jacod et al. (ZOOGWsmnat\? is asymptotically equivalent to
using aK F (X) with k(x) = v, * fxl g(u)g(u — x)du andH o n¥/2, Itis clear the same result will hold
for the relationship betweevf and K (X) in the multivariate case whad = 6n%>°. A natural choice of
gisg(x) = (1 — x) A X, which deliversfo1 g°(u)du = 1/12 and & function which is the Parzen weight
function. Hence one might investigate usihg= ¢, as in our paper, to drive the choice idffor V when
applied to refresh time based high frequency returns.

Kinnebrock & Podolskij (2008) have defined a bias corrected preaveraging estimator ohthie
variate[Y] with H = #n%/?, for which they derive limit theory. To define their high fregncy returns they
use the Refresh Time idea — taken from an early draft of thiepdl heir estimator has the disadvantage

that it it is not guaranteed to be positive semi-definite.

6.2.2 Estimating integrated quarticity

In order to construct feasible confidence intervals for @alised quantities (see Barndorff-Nielsen &
Shephard (2002)) we have to estimdte Our approach is based on the no-noise Barndorff-Nielsen &
Shephard (2004) bipower type estimator applied to sub@ptoreaveraged data takirg) = n%°. This

is not an optimal estimator, it will converge at rat&®, but it will be positive semidefinite. The proposed
(positive semi-definite) estimator of ve#) is Q = ny ]! {cj ¢, —3 (cj Ciyn + Cj+HCJ‘>}, where

¢j = vedX;Xj). That the elements d@ is consistent using this choice of bandwidth is implicit fre t
thesis of Vetter (2008, p. 29 and Section 3.2.4).

6.3 The case with0, T]

Throughout the paper we have discussed estimating QV owvat anterval, now we extend this to the in-
terval[0, T]. Technically this is trivial, itis just a time-change argemb. The results are that the QV target
is /7 T(uydu, while w =T [/ {£(U) ® (W)} o T(u)du. Finally, & = /\/T f3 22 (u) o T(u)du.
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6.4 Finite sample improvements

The realised kernel is non-negative so we can use log-ttamgb improve its finite sample performance.

In particular

s 1 ) Ls K K 2
I K X |0 o“(u d —> MN ) I
n { 0g (K (X)) 9 (/0 (w) u)} folaz(u)du (folgz(u)du>

When the data is regularly spaced and the volatility is @mshenco =2 = (w/a)%° |K"(0) |l/5 (K9

2/5

which is slightly less dependent orf than the non-transformed version.

6.5 Subtlety of end effects

We have introduced jittering to eliminate end-effects. Térger ism the smaller is the end-effects,
however increasingn has the drawback that is reduces the sample mizthat can be used to compute
the realised autocovariances. GiMdrobservations, the sample size available after jittering4s N —
2(m — 1), so extensive jittering will increase the variance of thénestor. In this subsection we study
this trade-off.

We focus on the univariate case whétee WAN'. The mean square error caused by end-effects is
simply the squared bias plus the varianceUgt)} + U,U/,, which is given by #n20* + 4m—20* =
8w*m~2, as shown in Appendix A, see the proof of Lemma A.4. The asytigpt@riance (abstracting
from end-effects) is&n=%° =5 |k”(0)a)2|2/5 {kf”olQ}“/5 n—2/5. So the trade-off between contributions

from end-effects and asymptotic variance is given by
gN,wz_IQ(m) — m—28a)4 4 5 ‘k//(o)a)2|2/5 {kE),OIQ}4/5 (N _ m)—2/5‘

This function is plotted in Figure 4 for the case whéte= 1, 000 and IQ= 1 andw? = 0.0025 and
0.001. The optimal value ah ranges from 1 to 2. The effect of increasingon optimalm can be seen
from Figure 4, where the optimal value of has increased a little from Figure 4 asas increased to

5, 000. However, the optimal amount of jittering is still ratimeodest.

6.6 Finite lag refresh time

In this paper we roughly synchronise our return data usiegctincept of Refresh Time. Refresh Time
guarantees that our returns our not stale by more than onm IRgfresh Time. Our proofs need a
somewhat less tight condition, that returns are not stalenbye than a finite number of lags. This
suggests it may be possible to find a different way of syndhlitog data which throws information away

less readily than Refresh Time. We leave this problem tdéurtesearch.
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Figure 4: Sensitivity to the the choice wf The Figure shows the RMSE as a functiomofor the sample
sizesN = 1, 000 andN = 5, 000, andw? = 0.001 andw? = 0.0025

6.7 Jumps

In this paper we have assumed thais a pureBSM. The analysis could be extended to the situation
whereY is a pureBS M a finite activity jump process. The analysis in BarndorfeNen et al. (2008
section 5.6) suggests that the realised kernel is consistetihe quadratic variatiori,Y], at the same rate

of convergence as before, but with a different asymptostridution.

7 Conclusions

In this paper we have proposed the multivariate realisedekewhich is a non-normalised HAC type
estimator applied to high frequency financial returns, agstimator of the ex-post variation of asset
prices in the presence of noise and non-synchronous tradihg choice of kernel weight function is
important here — for example the Bartlett weight functioalgs inconsistent estimation in our case.
Our analysis is based on three innovations: (i) we used ahwdimction which delivers biased

kernels, however allowing us to use positive semi-defingtimeators, (ii) we coordinate the collection
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of data through the idea of refresh time, (iii) we show thénestor is robust to the remaining staleness
in the data. Using this setup we are able to show consistamtyasymptotic mixed Gaussianity of our
estimator.

Our simulation study indicates our estimation procedurelase to being unbiased for covariances
under realistic situations. Not surprisingly the estimatof correlations is downward biased due to
the sampling variance of our estimators of variance. Theimgrapresults based on our new estimator
are striking, providing much sharper estimates of deperel@amongst assets than has previously been
available.

Multivariate realised kernels have potentially many aretapplication, improving our ability to
estimate covariances — allowing high frequency data toifsagimtly improve our predictive models as

well as better understand the pricing and management ofrriskancial markets.
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Appendices
Under the assumptions given in this paper, our line of argumwél be as follows.

e Assume the data is synchronized and then a time-changesallsvio think of the data as being
regularly spaced. This is clear from the arguments in Baffitiielsen et al. (2008).

e Show the staleness left by the definition of refresh time loaspact on the asymptotic distribution
of the equally spaced realised kernel. This is shown in AgpeR.

e Show the realised kernel is consistent and work out its Ithebry for synchronized and equally
spaced data. This is shown in Appendix A.

Appendix A: Proofs
Proof of Theorem 1. We note that for all, j,
y® K (YD) Ky®, u
K ( um > = < K (YD U K (U ) =0,

which means that by taking the determinant of this matrix m@iranging we see tht(Y®, U 1))2 <
K (Y®D)K (U, Consequently, providel (Y) > [Y],

K (X) —[Y] =K (Y)—-[Y]+ Op (\/max K (Y(U)\/maxj K (U(J))) LK (U)
=K (Y) = [Y] + Op (VK U)).

From this, together with the results of Lemmas A.1 and A.®, ¢bnclusions of the Theorem follow
directly. OJ

Proof of Proposition 1. This is a special case of Theorem(2.

Proof of Proposition 2. The asymptotic variance d (Y) is given in Barndorff-Nielsen et al. (2088
and the results concernirg(U) follow from Lemma??, given below.[d
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Proof of Proposition 3. The problem is simply to minimize the squared bias plus thetrdmtion
from the asymptotic variance with respectdg Set IQ = fola“(u)du. The first order conditions of
ming, {—c5 K" (0)%w* + co4k®0IQ} yield the optimal value focg

. K”(0)%w* 15
- (Seve |

With H* = ¢*£%5n%° the asymptotic bias is given by

1/5
) =c'%5  with ¢ ={Kk'(0?/kX°}

k” 02 4N\ —2/5
- oo ) KOwn e~ k0 () n

and the asymptotic variance is
k” (0 2 4\ 1/5
( k(?())lg ) 4k£),O|Qn—2/5 =4 |k//(o)w2|2/5 {k9,0|Q}4/5 n—2/5‘

O

A.1 Proof of Theorem 2.

We decompose the realised kernel into four terms that weandlyze separately.

1 1
K(X)—/ E(u)du:{K(Y)—/ E(u)du}+E{K(U)}+{K(U)—E[K(U)]}
0 0
+{K(Y,U) + KU, Y)}.

We start by deriving the asymptotic propertieskofY) — fol 3 (u)du. The flat-top does not play a role
in the asymptotic analysis &€ (Y), so the result for the univariate case follows from Barnfdhli€lsen
et al. (200&). The multivariate result is the following.

LemmaA.1 K(Y) = [Y]+ Op(&), and with H= con®/5, then
1
n1/5{K(Y) - / E(U)du} =5 MN {0, 4cok®w} .
0

Proof of Lemma A.1. First we note that, for any fixeal € RY the convergence @f {K Y) - folz(u)du} a
follows directly by applying the univariate results in Bdanff-Nielsen et al. (2008. Stable conver-
gence for multivariate statistics, such as the realisedcavtriancesl’,, are established in Kinnebrock
& Podolskij (200®), see also Jacod (2007). With o« n”, the consistency and stable convergence fol-
low from Jacod (2008, theorems 2.1 and 2.2). What remains detive the asymptotic variance. For
a, b, ¢, d € RY the asymptotic covariance betwegi (Y)b andc’K (Y)d is given as the plim of

n—1 nt
CO%( 3 k(Hhﬂ)Za’yy.hb>( > k(H'H)ZC’nyJd)
i j

h=—n+1 |=—n+1

n

> KAy ny nd+ D k(g% yiyidb iy nc | + Op(H)
h=| h=—
i= i=j+h
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o0 1
LY cO/ k(s)2/ {@Z (e (uyd + a = (udb' = (u)c} duds
—00 0
1
= veo(2052y’ [%k?"’ / ETwe z(u)}} duveo(4%).
0

Here we used ™. k(s)%ds = 2k2° and

archzd+asdbEc=cTabxd +d'TabSc=tr{TabTdc + Tab'Tcd'}
=vedab) (T ® ¥)veadc +cd) = %veo(ab( +ba) (T ® T)veadc + cd).

O

A.1.1 Results concerningk (U)

We derive the asymptotic properties K{U) under the assumption thet € CS. The following defini-
tions lead to a useful representationkofU ). Forh = 0, 1, ... we define

Vo= > UjUj ,+UjUf, and  Zy = (UoU}, + UnUg) + (UnU; _ + UpnU)).
j=h+1
Lemma A.2 The realised autocovariances of U can be written as
To(U)=Vo—Vi+3Z0—2; (A1)
Fh(U) +Th(U) = —Vh_1+ 2Vh — Vhy1 + Zh — Znga, (A.2)

Proof. The first expression, (A.1), follows from

n—-1
FO<U)—Z(UJ—UJ DU; —Uj_) =) (UjU] + UjU)) + UpU; + Ugl}
i=1 j=1

n-1
=) (UjU] 5 +Uj_4U)) = (UpU; 5 + Un_aU}) + UoUs + UgUp).
j=2

and (A.2) is proven similarly]

Lemma A.3 The realised kernel for U has the exact representation:

n-1

KWU) = {k0) — kgt } Vo — Y k(D — 25 +KGED} Vh (A3)
h=1
n—-1
+ %ZO {k(H+1) - k<H+1)}

>
[

1

Proof. Follows from the definition oK (U) and Lemma A.200
Now we prove the result concerning the end-effects. We tatdty andU,, are absent fronv,, for
alll =0,1,..., soend-effects can only have an impactto(J) throughZ,, h=0,1,....

Lemma A4 E(Zo) = 4m Yyt L mNGn andE(Zy) = 2m T YN + ).

m
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Proof of Lemma A.4. Recall thatUp = m~ 377 U (t;). So that EU) = 0 and

m—-1m-1 m—1
EUoUp =m2Y S Eu@pu)y=m?t Y oo,
=0 i=0 he

and similar for EU,U;). So the first result follows from EZg) = 2{E(UoUg) + E(UnU))}. Next, for
h >0,

m—1 m-1 m-1
E(UoU/) =m™ Z E{Ut)U (tm-14n)} =m~* Z Qjp=m" Z Qj i
j=0 j=0 j=0

and similarly we find BU,U; ) = m~? Z?‘:—()l Qj+n, and the second and last result follows.
It is a simple matter to compute the bias of the realised kecaised by the noise.

Lemma A.5 Forlarge n, H and m we have.
k// n —1 n
E(KWU)} = - (O)WQ + O(m™) + °(m)
and the asymptotic variance of(K) is o(nH~3t¢) + O(H'm™1) for anye > O.

Remark. So with H o n¥% andm — oo, we note that V&K (U)} = o(n~¥%). This implies that
nY5[K(U) — E{K(U)}] = 0p(1), soK (U) only contributes to the bias term in the asymptotic distribu
tion, not to the asymptotic variance wheho n®/>.

Proof. First we prove the result concerning the bias. We have,

KO -k (5L5) = —Z‘E;}f;‘l;z, for some 0< ey < 5.
sincek'(0) = 0. Now we defineag = —k’(en) andan = H2{(—k({iH) + 2k (1) — k(fF=h}, then
n—-1
{k(©) = k(55 } E(Vo) — Y {K({ES) — 2K(5) + k(5 } E(Vh)
h=1
n-1 n-1
=H? Y a—-1-hEUU_)=H2 Y an—1-h,
h=—n+1 h=—n+1
= H?2 Z an(n—1—h)Qp+ H2 Z an(n —1—h)Qp.
lhj<vH lh|>vH

By the continuity ofk”(x) it follows that

H2
sup |—ap(n—1—h)+K’(0)| — 0, asH,n — oo with H/n = 0o(1),

lhj<vH

so that the first term

n n
H™2 Y ayn—1-h@, = —k”<0)msz +0(5)-
lhj<vH
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For the second term

n
D a—1-h <o > lannl = sup |s2h| — Y |HZ%a,
Ih= VA Ihl= v Ihi=VH |h\>¢ﬁ
which vanishes exponentially fast. For theterms we have by Lemma A.4 that &) = O(m™1), and

m—1

k() — KGED2m™ D " (Q)4n + Q) 4p)
j=1

S
[any
}—\

ED> k@) —kGRp} Zn

n—

>
I
N
S =
PR

IA

h= j=1

[

~ m—12/ {K(g5) + O(H™H} Z j1Qj + Q)| = 0om™).
j=1

Next, we turn to the asymptotic variance K{U). Consider for simplicity the univariate case. First

we choose some > 0. We see from expression (A.3) that the contribution from &involving Vi,
h=0,1,...has atotal variance

var(H2> "a, > "2UiUip) <4H™ D~ anaE(U;UinU;Uj) +4n sup ow.

h i [i—jl<H" M=H?
[h—l|<H"

Assumption 1 guarantees that the last term vanishes at erpahrate. For the first term we have

4H 4 § aha E(UiUi_hU;U;_) < 4H*2H"nEU) E: and
li—jl<H” lh=l|<H?
lh—l|<H?"

< 8H3"nEUH2H" { / K'(s)%ds + o(l)} = O(NH**NEWUY.

The other terms involvingy,, h > 0 have the form

n—-1
var|:2 k(H+1)—k(H+1)}UoUh} <H 22 {K'(755) + O(H 1)} E(UZUZ) = O(Htm™).
h=1 i=1

O

A.1.2 Results concerningK (Y, U) and K (U, Y)

Lemma A.6 K(Y,U) = Op(H%?) so that K(Y, U) = 0,(n~Y/%) when Hoc n¥>.
Proof. For simplicity we prove the result for the cage= 1. We have

K(Y,U) =Y kG DY (Ujn—Ujonoa) = ) K WL — Whal,
h j h

whereW, = ZJ _ht1 YiUj—n, so thatK (Y, U) ~ - 1n+1 H—lk’(%)wh_ Write Ey (1) = E(-|{Y}).
Then

Ev ( Z Z yIUIhyJUJ) = Zyiyj Ev(Ui—nUi) +Zyiyj Evy(Ui_nUj_1)

i=h+1j=I+1 i=j i)
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= ZMV]QI h+ZQq+I thlyl

a#0

The first term converges @;_, fol o?(u)du in probability while the second term vanishes. So that

n—-1 1
> HTK ()W Z H™ K (F)W ~ H ZZk’(ﬂl)ka‘” ) |/ o2(u)du
0

h=-—n+1 l=—n+1
~H? Y KGEDK ()20 / o3(uydu
lh=I[<HY
2 1 1 0
= H_zz{k/<%)} Z Qh—|/ o?(u)du =~ H‘lng az(u)du/ (K (u))2du.
h 0 0 00
|h—l|<HY

ThusK(Y,U) = Op(HY2). With H = n%° we haven/*K (Y, U) = Op(n~%1% such that this term
does not contribute to the asymptotic distribution wiket®. O

Appendix B: Errors induced by stale prices

The stale prices induce a particular form of noise with anogedous component. The assumptions
that we made about the noise were formulated for prices saimpith the Refresh Time. It may be
more natural to formulate assumptions for the noise thdaedtb actual observation times rather than
the artificial refresh times. Here we show that the limit riligttion for K (X) is the same under both
assumptions.

The price indexed by time; is, in fact, the price recorded at timﬁ) <7, fori =1,...,d. With
Refresh Time we have; >t > 7;_; so that

XV =YM") +uOa") = YD) + U0 — (YO - Y.

U“Nﬁ)

This shows that if the dependence{ln} was specific tdJ (‘)(tj“)), rather tharld ¥ (z;), then the actual
measurement errob) ©(z;) = X (z;) — Y(”(tj(i)), has an endogenous component givenzqv -

YO(z)) - (i)(t(i)) The implication is thak (X) = K (Y + U + Z), when we define the noise using the
observation tlmeSJ(') U(')(t(')) fori =1,...,d.

Theorem B.1 Suppose that Hx n¥® and that Assumption 1 holds for; = {U (1)(tj(1)), ..,u (d)(tj(d))} .
Then K(Y + U + Z) — K(Y + U) = 0,(n¥5).

The implication is that the asymptotic distribution is Ueafed by Refresh Time.
Proof. We prove the result by showing thigi(Z2), K (Y, Z), K(U, Z) are allop(n‘l/S). First we note that
Z;, j =1,...,nare increments ilY, computed over non-overlapping intervals. &4} is effectively a
heteroskedastic independent process, Wh(erfEs bounded by a term that is of order

7
& = sup/ o?(s)ds = O(n™Y).
i Jria
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So we can apply our analysis Kf(U), and analogous to Lemma A.5 we find that
n
E(K(2D)} = mﬁn = 0(n~?),

and the asymptotic variance Kf(Z) is o(nH=2)52 = o(n~1%®). Using the same argument as in the proof
of Theorem 1, we hav& (Y, Z)? < K(Y)K(Z) andK (U, Z)? < K(Y)K(Z), which proves that both
K (Y, Z) andK (U, Z) areo,(n~/°), as was needed
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