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A vector autoregression is singular when explosive characteristic roots have geo-
metric multiplicity larger than one. The singular component is a mixingale. Mar-
tingale decompositions are constructed for sample moments involving the singular
component. This permits weak and strong analysis in the case of martingale differ-
ence innovations. While least squares estimators are shown to be inconsistent in the
singular case, procedures for lag length determination are shown to have the same
asymptotic properties in regular and singular cases.

Keywords: inconsistency, lag length determination, martingale decomposition,
mixingale, singular vector autoregression, triangular Toeplitz matrices.

1 Introduction

In general, vector autoregressions can have stationary roots, unit roots, regular and
singular explosive components, as well as deterministic components. The singularity
arises when explosive roots have geometric multiplicity larger than one. In some
applications most components may be present. This could be the case for hyper-
inflationary data, see Nielsen (2005b, 2008), or when stock markets have rational
bubbles, see Engsted (2006). A broader question is to what extent investigators can
work with vector autoregressions without prior knowledge of the location of the roots.
These issues have been addressed for regular vector autoregressions by Lai and Wei
(1985) and Nielsen (2005a, 2006). The aim of the paper is to present a unified theory
of least squares estimators and lag order determination methods covering both the
regular and the singular case.
Several results are given here. First, the decomposition of explosive components

into regular and singular components is analysed in detail using a commutation prop-
erty of triangular Toeplitz matrices. This would permit a Granger-Johansen type
representation of the vector autoregression. Secondly, the asymptotic properties of
the singular component are analysed. It has zero conditional expectation, but it is not
adapted so it is not a martingale difference, but a mixingale. Martingale decomposi-
tions are found for the sample moments involving the singular process. Thirdly, least
squares estimators of singular vector autoregressions are shown to be inconsistent,
since the singular explosive component and the innovation process are, in general,
correlated. This formalises results indicated by Anderson (1959) and Duflo, Senoussi
and Touati (1991), see also Duflo (1997). The inconsistency does, however, not arise
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for certain purely explosive triangular systems as found by Phillips and Magdalinos
(2008). Finally, the inconsistency is shown not to affect lag order determination,
which can be carried out without knowledge of the parameters. In particular the
likelihood ratio test for lag length is asymptotically χ2 for regular as well as singular
process. The lag order estimator found by minimising information criteria with in-
creasing penalty is weakly consistent and a Hannan-Quinn type bound on the penalty
that ensures strong consistency can be established.
The paper is organised so that §2 introduces the model and presents a decompo-

sition of the processes into stationary, unit root, and explosive components. In §3
a further decomposition into regular and singular explosive component is made. In
§4 martingale decompositions are given for sample moments involving the singular
explosive components. In §5 the least squares estimators are discussed. In §6 lag
order determination is discussed.
The following notation is used throughout the paper: For a matrix α let α⊗2 = αα0.

When α has full column rank then α = α(α0α)−1.When α is symmetric then λmin (α)
and λmax (α) are the smallest and the largest eigenvalue respectively. For matrices
||α|| = {λmax(α⊗2)}1/2 is the spectral norm, implying that ||α−1|| = {λmin(α⊗2)}−1/2.
If α and β are both semi-definite matrices then α ≥ β if α−β is positive semi-definite.
While E (εt|Ft−1) is a conditional expectation the residual of the least squares regres-
sion of Yt on Zt is denoted (Yt|Zt) = Yt−

PT
s=1 YsZ

0
s(
PT

s=1 Z
⊗2
s )

−1Zt. The abbreviation
a.s. is used for properties holding almost surely.

2 The autoregressive model, its decomposition, and further notation

The model in this paper is for a p-dimensional time series, X1−k, . . . , X0, . . . ,XT

satisfying a k-th order vector autoregressive system

Xt =
kP

j=1

AjXt−j + μDt−1 + εt, for t = 1, . . . , T, (2.1)

Dt = DDt−1, (2.2)

where Dt−1 is a deterministic term and εt an innovation term.
For the analysis of explosive processes the local Marcinkiewicz-Zygmund result of

Lai and Wei (1983) is needed. This requires that the innovations are martingales with
conditionally bounded moments. That is, for an increasing sequence of σ-fields, (Ft),
let (εt,Ft) be a martingale difference sequence so E(εt|Ft−1) = 0 which satisfies the
following assumptions.

Assumption A For some γ > 0 it holds that supt E(kεtk2+γ |Ft−1) <∞ a.s.

Assumption B lim inft→∞ λminE(ε
⊗2
t |Ft−1) > 0 a.s.

When manipulating the sample moments involving the singular process a stronger
assumption than B is needed.
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Assumption C E(εtε
0
t|Ft−1) = Ω > 0 a.s.

The deterministic termDt is a vector of terms such as a constant, a linear trend, or
periodic functions like seasonal dummies. This is achieved ifD has characteristic roots
on the unit circle. Moreover, Dt is assumed to have linearly independent coordinates.

Assumption D |eigen (D)| = 1 and rank (D1, . . . , DdimD) = dimD.

For the least squares analysis the time series can be written conveniently in com-
panion form. First, define Xt−1 = (X

0
t−1, . . . , X

0
t−k)

0 with associated parameter ma-
trices and innovations

B =

µ
A1 · · ·Ak−1 Ak

Ip(k−1) 0

¶
, μ =

µ
μD
0

¶
, eX,t =

µ
εt
0

¶
.

Secondly, define the companion vector St = (X0
t,D

0
t)
0 and

S =

µ
B μ
0 D

¶
, eS,t =

µ
eX,t

0

¶
.

The companion vector St then satisfies a first order autoregression

St = SSt−1 + eS,t. (2.3)

Following, for instance, Nielsen (2005a, §3) the companion process St can be de-
composed into stationary, unit root and explosive processes. By a similarity transfor-
mation, see Herstein (1975, p.308), then a real, invertible matrix M exists so

µ
M 0
0 IdimD

¶
St =

⎛⎜⎜⎝
Ũt

Vt
W̃t

Dt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
U 0 0 0
0 V 0 μV
0 0 W 0
0 0 0 D

⎞⎟⎟⎠
⎛⎜⎜⎝

Ũt−1
Vt−1
W̃t−1
Dt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝

eU,t
eV,t
eW,t

0

⎞⎟⎟⎠ ,

(2.4)
in which the absolute values of the eigenvalues of U, V andW are smaller than one,
equal to one, and larger than one, respectively. The decoration on the notation Ũt, W̃t

is chosen to be consistent with the notation of Nielsen (2005a). The unit root process
can be written as

Vt = Ṽt + μ̃V D̃t where Ṽt = VṼt−1 + eV,t, D̃t = D̃D̃t−1, (2.5)

and D̃ has dimension dim D̃ = dimV + dimD and the same eigenvalues as D with
the same geometric multiplicity, but possibly larger algebraic multiplicity.
Following Duflo, Senoussi and Touati (1991) vector autoregressions are defined to

be regular or singular according to the following criterion.
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Definition 1 A vector autoregression is regular if all explosive roots of B have geo-
metric multiplicity one. That is: for all ρ ∈ C so |ρ| > 1 and det(B − ρIdimB) = 0
then rank(B− ρIdimB) = (dimB)− 1.
Otherwise, the vector autoregression is singular.

Example 2.1 The matrices

B1 =

µ
ρ 1
0 ρ

¶
, B2 =

µ
ρ 0
0 ρ

¶
both have eigenvalue ρ with algebraic multiplicity 2. The geometric multiplicities are
1 and 2, respectively. Thus, for |ρ| > 1, the matrix B1 is associated with a regular
vector autoregression, while B2 is associated with a singular vector autoregression.

The next theorem shows that the issue of singularity cannot arise when the vector
autoregression is univariate.

Theorem 2.2 If ρ is a root of B then the geometric multiplicity of ρ is at most
p = dimX. That is, rank(B− ρIdimB) ≥ dimB− p.

Proof of Theorem 2.2. If ρ = 0 note thatB−ρIdimB = B. The lower dimB−p
rows of B have full row rank by construction. If ρ 6= 0 define the dimB×(dimB−p)-
matrix N = (0, IdimB−p)

0. Then N 0(B − ρIdimB)N is a lower triangular matrix with
all diagonal elements equal to −ρ 6= 0, hence, it has full rank.

Remark 2.3 In the singular case the matrix
PT

t=1(W
−TW̃t)

⊗2 has a singular limit
as pointed out by Anderson (1959). Duflo, Senoussi and Touati (1991), see also Duflo
(1997, p.68, 127), characterised the situations in which the singularity arises. In the
singular case the least squares estimator is inconsistent, see Theorems 5.1, 5.2 below.
The possibility of singularities was overlooked by Lai and Wei (1985), so their results
only apply to regular vector autoregressions. The same applies to the work of Nielsen
(2005a, 2006).

For assessing certain sample correlations the result of Lai and Wei (1982) is used
in the regular case. That result is formulated for martingale differences and does not
immediately carry over to the martingale approximations appearing in the singular
case. Therefore a constraint on the unit root parameters is needed for some of the
strong results.

Assumption E If the process is singular the parameters satisfy one of conditions
(i) V = 1 and dimD = 0.
(ii) dimV = 0.
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3 The explosive component

The explosive component W̃t is decomposed further. A regular explosive component
grows at an exponential rate, while a singular component, Zt say, is identified. In §4
the singular component is shown to obey a Law of Large Numbers.
Some aspects of the explosive component have been analysed by Phillips and Mag-

dalinos (2008). They considered a triangular system in which the regressor is a first
order vector autoregression with purely explosive and diagonal first order autoregres-
sive coefficient, where the innovations are independent and identically distributed and
without deterministics.
The explosive component has decomposition

W̃t =W
tW − Zt, (3.1)

where, assuming the existence of an infinite sequence eW,t,

Zt =
∞P
j=1

W−jeW,t+j and W = W̃0 + Z0. (3.2)

Assuming A, B the random vector Zt is well-defined due to a Marcinkiewicz-Zygmund
result and Zt has continuous distribution, see Lai and Wei (1983). The process Zt

was denoted ζt+1 by Phillips and Magdalinos (2008, equation 22).
In the following it is shown that in the singular case the processWtW has linearly

dependent coordinate processes. In addition to this property,WtW is shown to have
some simple properties stemming from properties of triangular Toeplitz matrices.
These properties are unrelated to the location of the eigenvalue of W, so for the
discussion in the rest of this section the eigenvalues ofW need not be explosive. In
the asymptotic analysis of vector autoregressions these properties are, however, only
of relevance in the explosive case.
To describe the singularity some notation is needed. For the matrixW, which for

the sake of the argument could be any real square matrix, let m = mr + 2mc denote
the number of distinct eigenvalues, so ϕ1 6= · · · 6= ϕmr

∈ R while ϕmr+1, . . . , ϕm are
complex pairs of the form ψj exp(±iθj). Further, let nj denote the dimension of the
largest Jordan block associated with ϕj and let n =

Pm
j=1 nj. Define vectors λt ∈ Rn

as the concatenation of mr vectors of the form

(ct,nj−1ϕ
t−nj+1
j , . . . , ct,0ϕ

t
j)
0, (3.3)

where ct,k = t(t− 1) · · · (t− k + 1)/(k!) and mc vectors of the form

{ct,nj−1ψ
t−nj+1
j

µ
cos (t− nj + 1) θj
sin (t− nj + 1) θj

¶0
, . . . , ct,0ψ

t
j

µ
cos tθj
sin tθj

¶0
}0. (3.4)

Finally, let Jn denote the (n × n)-matrix with block diagonal structure where the
diagonal blocks are these largest Jordan blocks. With this notation the decomposition
of the explosive component can be formulated. A proof follows below.
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Theorem 3.1 (i) Consider the process W̃t given by (3.1). Let n be the sum of the
dimensions of the largest Jordan blocks associated with the distinct eigenvalues ofW.
Then, for some w ∈ RdimW×n which is a function of the random vector W and for a
determistic λt ∈ Rn with components of the form (3.3), (3.4) it holds

W̃t = wλt − Zt.

(ii) Assuming A, B then P(rank(w) = n) = 1.

For a regular vector autoregression then n = dimW and w is an invertible matrix
with probability one. The process λt has exponential growth whereas the component
Zt is a mixingale obeying a Law of Large Numbers as shown in §4.2. The process
W̃t is then explosive. The deterministic and exponentially growing process λt is well-
understood through the analysis of Lai and Wei (1985). In the singular case where
n < dimW then a matrix w⊥ exists so (w,w⊥) is invertible and w0⊥w = 0 so that

w0⊥W̃t = −w0⊥Zt.

In particular, the normalised sum of squares of W̃t, that is
PT

t=1(W
−TW̃t)

⊗2, con-
verges to a singular matrix.
The relation w0⊥W̃t is in effect a stochastically co-explosive relation, where the

co-explosive vectors w⊥ are stochastic. Combing Theorem 3.1 with the Granger-
Johansen representation for co-explosive processes in Nielsen (2005b) indicates a way
forward for analysing processes with both co-explosive and stochastically co-explosive
relations.
The proof of Theorem 3.1 hinges on a Jordan decomposition. Powers of Jordan

matrices are triangular Toeplitz matrices. It is convenient to start with establishing
properties of such matrices.
For vectors a = (a1, . . . , an)0 and x = (x1, . . . , xn)

0 introduce operators for trian-
gular Toeplitz matrices and for reordering of vectors, that is

tt(a) =

⎛⎜⎜⎜⎝
a1 a2 · · · an

. . .
...

. . . a2
a1

⎞⎟⎟⎟⎠ , ↓ x =

⎛⎜⎝ xn
...
x1

⎞⎟⎠ .

Lemma 3.2 Let a = (a1, . . . , an)0 and b = (b1, . . . , bn).
(i) If A = tt(a), B = tt(b) then AB = BA = tt(

P1
j=1 ajb1+1−j, . . . ,

Pn
j=1 ajbn+1−j).

(ii) tt(a)b = {tt(↓ b)}(↓ a).
(iii) When J = tt(μ, 1, 0, . . . , 0) then J t = tt(μtct,0, . . . , μ

t−n+1ct,n−1).
(iv) The results in (i)-(iii) also hold for block triangular Toeplitz matrices where the
blocks aj, bj and μ then have complex structure like

aj =

µ
aj1 aj2
−aj2 aj1

¶
,

while 1 becomes an identity matrix.
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Proof of Lemma 3.2. (i) , (ii) Write the matrices out to inspect.
(iii) See for instance Varga (2000, p. 13).
(iv) Use the propertiesµ

a1 a2
−a2 a1

¶µ
b1 b2
−b2 b1

¶
=

µ
b1 b2
−b2 b1

¶µ
a1 a2
−a2 a1

¶
,µ

a1 a2
−a2 a1

¶µ
x1
x2

¶
=

µ
x1 x2
−x2 x1

¶µ
a1
a2

¶
.

Lemma 3.3 SupposeW is a real square matrix (possibly with unrestricted eigenvalues).
Let n be the sum of the dimensions of the largest Jordan blocks associated with the
distinct eigenvalues ofW. Recall the definition of λt and Jn in connection with (3.3),
(3.4). Then, for all W ∈ RdimW there exists a w ∈ RdimW×n so
(i)WtW = wλt for t = . . . ,−1, 0, 1, . . .
(ii)Wtw = w(Jn)

t.

Proof of Lemma 3.3. (i) The real Jordan decomposition, see Herstein (1975,
p.308), shows that there exists an invertible real matrix N so NWN−1 = J is a block
diagonal matrix with blocks of the form tt(λ̃1), where λ̃t is of the form (3.3) or (3.4).
By Lemma 3.2(iii, iv) then J t is block diagonal, with blocks of the form tt(↓ λ̃t).
Suppose J has one Jordan block, so λt = λ̃t. Then NWtW = NWtN−1NW =

J tNW. Since J t = tt(↓ λt) andNW a vector then J tNW = tt{↓ (NW )}λt by Lemma
3.2(ii, iv) . This implies the desired result with Nw = tt{↓ (NW )}.
For general J , applying Lemma 3.2(ii, iv) for each block shows that (i) holds

for each block. Concatenating vertically the Nw matrices for blocks with the same
eigenvalues gives the expression (i).
If the Jordan blocks of J with the same eigenvalues are clustered together then

the matrix Nw will have a block diagonal structure with one block for each distinct
eigenvalue of J. Each block will be a vertical concatenation of triangular Toeplitz
matrices, possibly padded with zero vectors, with dimensions comformable with the
blocks of J.
(ii) Since N of (i) is invertible it is equivalent to show NWtw = Nw(Jn)

t. Note
that NWtw = (NWtN−1)(Nw) = J t(Nw). As outlined in (i) the blocks of J t and
Nw have triangular Toeplitz structure, so they commute due to Lemma 3.2(i, iv) .
Collecting the blocks of J t with the same eigenvalues then gives the desired result.
For instance, ⎛⎝ ρ 1 0

0 ρ 0
0 0 ρ

⎞⎠⎛⎝ w1 w2
0 w1
0 w3

⎞⎠ =

⎛⎝ w1 w2
0 w1
0 w3

⎞⎠µ ρ 1
0 ρ

¶
,

where the right hand side expression has the same span as w.
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Proof of Theorem 3.1. (i) Apply Lemma 3.3(i) to (3.1).
(ii) Due to Lai and Wei (1983, Corollary 4) for all vectors a ∈ RdimW and all

random variables Y that are Ft-measurable for some t then P(a0W = Y ) = 0. The
coordinates of the matrix w are given as products b0ijW, for some deterministic vectors
bij. The matrix w has reduced rank if some vector c exists so wc = 0. This is not
possible due to the continuity property of W.

Phillips and Magdalinos (2008) found, in the special case described above, that
w0⊥Zt satisfies a first order autoregression (equation 20, using notation z1t). This also
holds in the general setup.

Theorem 3.4 The process Zt satisfies
(i) the equation Zt =WZt−1 − eW,t,
(ii) the triangular systemµ

w0

w0⊥

¶
Zt =

µ
w0Ww⊥ w0Ww⊥
0 w0⊥Ww⊥

¶µ
w0

w0⊥

¶
Zt−1 −

µ
w0

w0⊥

¶
eW,t.

Proof of Theorem 3.4. (i) From (3.2) then

WZt−1 =W
∞P
j=1

W−jeW,t−1+j = eW,t +
∞P
j=2

W−(j−1)eW,t−1+j = eW,t + Zt.

(ii) Pre-multiply the equation Zt =WZt−1 − eW,t by (w,w⊥)0 and post-multiplyW
by the identity I = ww0 + w⊥w

0
⊥ to getµ

w0

w0⊥

¶
Zt =

µ
w0Ww⊥ w0Ww⊥
w0⊥Ww w0⊥Ww⊥

¶µ
w0

w0⊥

¶
Zt−1 −

µ
w0

w0⊥

¶
eW,t.

Due to Lemma 3.3(iii) thenWw ∈ span(w) so w0⊥Ww = 0.

4 Sample moments involving the singular process

The singular component Zt is an innovation in the sense that E(Zt|Ft−1) = 0 but it
is not a martingale difference as it is not Fs-measurable for any s. It can be shown
to be a mixingale with exponentially declining mixingale numbers. Sample moments
involving the singular process are analysed directly through martingale approxima-
tions rather than by exploiting mixingale results. At first the order of magnitude of
Zt is established.

4.1 The order of magnitude of the singular process

A result concerning the order of magnitude of the mixingale Zt is now given. At first
a general result is formulated
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Theorem 4.1 Let (mt,Ft) be a martingale difference, that is E(mt|Ft−1) = 0 a.s.
and mt is Ft-measurable. Suppose supt E(||mt||α|Ft−1) <∞ a.s. for some α > 1. Let
nt =

P∞
j=1 ajmt+j, for constants aj so

P∞
j=1 ||aj|| <∞. Then

(i) supt E(||nt||α|Ft−1) <∞ a.s.
(ii) ||nT || = o(T ζ) a.s. for all ζ > 1/α.

For the proof a variant of Lai and Wei (1983, Lemma 2) is needed.

Lemma 4.2 Let (mt,Ft) be a martingale difference so supt E(||mt||α|Ft−1) <∞ a.s.
for some α > 1.
(i) Then for every 0 < η < 1 there exists positive integers t0 and K and a martingale
difference sequence (m̃t, F̃t) so F̃t ⊂ Ft and E(m̃t|F̃t−1) = 0 satisfying, for all t ≥ t0,

E(||m̃t||α|F̆t−1) ≤ Kα a.s. (4.1)

and P(mt = m̃t for all t ≥ t0) ≥ 1− η.
(ii) For constants aj so

P∞
j=1 ||aj|| < ∞ define ñt =

P∞
j=1 ajm̃t+j. Then, it holds

E(||m̃t||α|F̃t) ≤ (K
P∞

j=1 ||aj||)α a.s.

Proof of Lemma 4.2. (i) Follow the proof of Lemma 2(i) of Lai and Wei (1983)
for the univariate case and their §4 for the multivariate case.
(ii) The triangle inequality and the spectral norm inequality ||AB|| ≤ ||A||||B||

imply

||ñt|| = ||
∞P
j=1

ajm̃t+j|| ≤
∞P
j=1

||ajm̃t+j|| ≤
∞P
j=1

||aj||||m̃t+j||.

Since
P∞

j=1 ||aj|| is finite then by Jensen’s inequality

||ñt||α ≤ (
∞P
j=1

||aj||)α−1
∞P
j=1

||aj||||m̃t+j||α. (4.2)

Note, that, by taking iterated expectations and using (4.1), for j ≥ 1,

E(||m̃t+j||α|F̃t) = E{E(||m̃t+j||α|F̃t+j−1)|F̃t} ≤ Kα.

The desired results follows by combining these results.

The proof of the first part of Theorem 4.1 is a variant of Lai and Wei (1983,
Corollary 2). The proof of the second part is inspired by Lai and Wei (1985, Theorem
1), but uses the conditional Borel-Cantelli lemma of Chen (1978) which does not
require the process to be adapted.

Proof of Theorem 4.1. (i) Follow the proof of Corollary 2 of Lai and Wei
(1983). Assume the contrary that for some η > 0

P{supt E(||nt||α|Ft) =∞} = 2η > 0. (4.3)
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For this η there exists, due to Lemma 4.2, integers t0 and K and a process Z̃t and a
filtration F̃t with Ft ⊂ F̃t so that E(||ñt||α|F̃t) < Kα

n and on a set ∆̆ so P(∆̆) ≥ 1− η
then nt = ñt for t > t0.
On the set ∆̆ it holds that

sup
t
E(||nt||α|Ft) = max{max

t<t0
E(||nt||α|Ft), sup

t≥t0
E(||nt||α|Ft)}.

Since nt = ñt for t > t0 then

E(||nt||α|Ft) = E(||nt||α|Ft) = E{E(||nt||α|F̃t)|Ft} ≤ Kα
n a.s.,

so that supt≥t0 E(||nt||α|Ft) ≤ Kα
n a.s. Moreover, for each ω ∈ ∆̆ then the maximum

over t < t0 is a maximum of a finite number of elements, so it is bounded. Thus,
P{supt E(||nt||α|Ft) <∞} ≥ 1− η, which contradicts (4.3).
(ii) As ζ is defined on an open set it suffices to show that ||nt|| = O(tζ) a.s. This

holds if
P∞

t=1 1(||nt|| > tζ) =
P∞

t=1 1(||nt||α > tζα) < ∞ a.s. The conditional Borel-
Cantelli lemma of Chen (1978), which does not require nt to be Ft-measurable shows
this holds a.s. on the the set where I =

P∞
t=1 P(||nt||α > tζα|Ft) < ∞. Now, by the

Markov inequality

P(||nt||α > tζα|Ft) ≤
1

tζα
E(||nt||α|Ft) ≤

1

tζα
c a.s.

where c = supt E(||nt||α|Ft) <∞ a.s. by part (i) . Thus, I is bounded by c
P∞

t=1 t
−ζα,

which is finite when ζα > 1.

Turning to the process Zt a consequence of Theorem 4.1 is as follows. Using that
for 2ζ = 1− ξ and ζ > (2 + γ)−1 then ξ < γ/(2 + γ).

Corollary 4.3 Assuming A then supt E(||Zt||2+γ|Ft) < ∞ and ||Zt|| = o{t(1−ξ)/2}
a.s. for all ξ < γ/(2 + γ).

4.2 Martingale decompositions

Martingale decompositions are established for
PT

t=1 Zt,
PT

t=1 ZtUt,
PT

t=1(Z
⊗2
t −EZ⊗2t ).

For Zt this follows by manipulating the autoregressive equation of Theorem 3.4(i) . For
ZtUt the argument involves the conditional Borel Cantelli Theorem of Chen (1978)
which does not require the process to be adapted. For Z⊗2t − EZ⊗2t those argu-
ments are combined with a Beveridge-Nelson-type decomposition for variances of
linear processes as exploited in Phillips and Solo (1992) although forward in time.
An alternative approach would be to show that Zt, ZtUt, Z

⊗2
t −EZ⊗2t are mixingales

with exponentially declining mixingale numbers. Mixingale limit results, which are
proved through martingale decompositions, could then be used. That approach has
two drawbacks: A further assumption that supt E||εt||2+δ is bounded seems needed,
and yet only some of the desired strong limit results are available.
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Theorem 4.4 Assuming A then, for all ξ < γ/(2 + γ),

(W− I)
TP
t=1

Zt =
TP
t=1

eW,t+1 + o{T (1−ξ)/2} a.s.

Proof of Theorem 4.4. Reorganising the equation in Theorem 3.4(i) gives
(W − I)Zt = ∆Zt+1 + eW,t+1. Cumulating yields (W − I)

PT
t=1 Zt = (

PT
t=1 eW,t+1 +

ZT+1 − Z1). By Corollary 4.3 then Zt is o{T (1−ξ)/2} a.s.

For sample covariances involving Zt define

Yt =

µ
WZt−1

εt

¶
, Y =

µ
W−1 0
0 0

¶
, eY,t =

µ
eW,t

εt

¶
, (4.4)

so Yt =
P∞

j=0Y
jeY,t+j. Assuming C the expectation of Y ⊗2t is

ΩY Y = EY
⊗2
t =

µ
WΩZZW

0 WΩZε

ΩεZW
0 Ω

¶
, (4.5)

where

ΩZZ = EZ⊗2t = E(
∞P
j=1

W−jeW,t+j)
⊗2 =

∞P
j=1

W−jE(eW,t)(W
−j)0, (4.6)

ΩZε = EZte
0
S,t+1 = E(

∞P
j=1

W−jeW,t+j)ε
0
t+1 =W

−1Cov(eW,t, εt). (4.7)

Here, ΩY , ΩZZ are well defined and positive definite by the argument of Lai and Wei
(1985, Example 3), while ΩZε is non-zero as eW,t is a function of εt.

Theorem 4.5 Let Rt−1 = (ε
0
t−1, U

0
t−1, V

0
t−1N

0
V,t,D

0
t−1N

0
D,t). Assuming A, D then, for

all ξ < γ/(2 + γ),

TP
t=1

YtR
0
t−1 =

TP
t=1

t−1P
j=0

YjeY,tR
0
t−1−j + o(T

1−ξ) a.s.

Proof of Theorem 4.5. Write YtR0t−1 =
P∞

j=0Y
jeY,t+jR

0
t−1. Split the sum in

two sums, of which the first sums to T − t and the second from T − t+1. This yields

IT =
TP
t=1

YtR
0
t−1 = (

TP
t=1

T−tP
j=0

+
TP
t=1

∞P
j=T−t+1

)YjeY,t+jR
0
t−1 = I1,T + I2,T .

For I1,T rearrange using s = j + t to get the leading term.
To prove I2,T = o(T ζ) a.s. with 2ζ = 1− ξ write, with s = j − T + t,

I2,T =
TP
t=1

∞P
j=T−t+1

YjeY,t+jR
0
t−1 =

TP
t=1

YT−t
∞P
s=1

YseY,T+sR
0
t−1.

11



As ζ is defined on an open set it suffices to show that ||I2,T || = O(T ζ) a.s. This holds ifP∞
T=1 1(||I2,T || > T ζ) =

P∞
t=1 1(||I2,T ||2α > T 2αζ) <∞ a.s. By the conditional Borel-

Cantelli lemma of Chen (1978) this holds a.s. on the the set where
P∞

t=1 P(||I2,T ||2α >
T 2αζ|FT ) <∞.
Now, by the Markov inequality

P(||I2,T ||2α > T 2αζ|FT ) ≤
1

T 2αζ
E(||I2,T ||2α|FT ). (4.8)

It will be desired that 2α < 2 + γ. However, the expectation E(||I2,T ||2α) may be
undefined if 2α ≥ 2 + γ. In that case apply the truncation argument in the proof of
Lai and Wei (1982, Lemma 2): Choose constants at so P(||Rt||2α > at) < t−2. By the
Borel-Cantelli Lemma, see Breiman (1968, p.41), then P(Rt = R∗t for large t) = 1
where R∗t = Rt if ||Rt||2α < at and zero otherwise. To bound E(||I2,T ||2α|FT ) apply
the inequality (4.2) and note Rt−1 is FT -measurable so

E(||I2,T ||2α|FT ) ≤ c2α−11

TP
t=1

||Y||T−t
∞P
s=1

||Y||s||R0t−1||2αE(||eY,T+s||2α|FT ).

By Assumption A then supt E(||eY,T+s||2α|FT ) <∞ a.s. for 2α < 2+ γ, while Nielsen
(2005a, Theorems 4.1, 5.1) assuming A, D imply that maxt≤T ||R0t−1||2α = o(Tα(1−ϕ))
for all ϕ < γ/(2 + γ). Thus, for large T and all c2 > 0 then P(||I2,T ||2α > T 2αζ |FT ) ≤
c2T

α(1−ϕ)−2αζ , so it is necessary that α(1−ϕ)− 2αζ < −1. This condition along with
2α < 2 + γ and ϕ < γ/(2 + γ) implies the desired bound for ξ.

Theorem 4.6 Assuming A, C then, for all ξ < γ/(2 + γ),

TP
t=1

Y ⊗2t =
∞P
j=0

Yj(
TP
t=1

e⊗2Y,t)(Y
j)0 +

TP
t=1

(mt +m0
t) + o(T

1−ξ) a.s.,

where mt =
Pt−1

s=1

Ps
c=1Y

s−ceY,t−ce
0
Y,t(Y

s)0.

Proof of Theorem 4.6. First, decompose Y ⊗2t = (
P∞

j=0Y
jeY,t+j)

⊗2 = I1,t +
I2,t + I 02,t, where

I1,t =
∞P
j=0

Yje⊗2Y,t+j(Y
j)0, I2,t =

∞P
j=0

∞P
r=1

YjeY,t+je
0
Y,t+j+r(Y

j+r)0

Secondly, write I1,t = I11,t + I12,t, where

I11,t =
∞P
j=0

Yje⊗2Y,t(Y
j)0, I12,t =

∞P
j=1

Yj(e⊗2Y,t+j − e⊗2Y,t)(Y
j)0.

Here
PT

t=1 I11,t is the leading component. The term I12,t can be written as

I12,t =
∞P
j=1

Yj
jP

c=1

∆(e⊗2Y,t+c − ΩY )(Y
j)0 = ∆y12,t,

12



assuming C, where

y12,t =
∞P
j=1

Yj
jP

c=1

(e⊗2Y,t+c −ΩY )(Y
j)0 =

∞P
c=1

∞P
j=c

Yj(e⊗2Y,t+c −ΩY )(Y
j)0.

It follows that
PT

t=1 I12,t = y12,T − y12,0. Assuming A, C then mt+c = e⊗2Y,t+c − ΩY

is a martingale difference satisfying supt E(||mt||1+γ/2|Ft−1) < ∞ a.s., while Yj has
geometric decay. Theorem 4.1(ii) then shows y12,T = o(T 1−ξ) a.s. for all ξ < γ/(2+γ).
Thirdly, rewrite I2,t using s = j + r

I2,t =
∞P
s=1

s−1P
j=0

YjeY,t+je
0
Y,t+s(Y

s)0.

Split the sum in two

I2,t = (
T−tP
s=1

s−1P
j=0

+
∞P

s=T−t+1

s−1P
j=0

)YjeY,t+je
0
Y,t+s(Y

s)0 = I21,t + I22,t.

Here
PT

t=1 I21,t is the leading component. Rearrange the sum using u = t+ s and
c = s− j to get

PT
t=1 I21,t =

PT
u=1mu.

Further, follow the argument concerning the term I2,T in the proof of Theorem
4.5 to see that

PT
t=1 I22,t = o(T 1−ξ).

4.3 Sample moments

The sample cross correlations of Ũt−1, (Ṽ
0
t−1, D̃

0
t−1), λt−1, (Z

0
t−1, ε

0
t) turn out to vanish.

Those not involving Zt have been studied in Nielsen (2005a). Those involving Zt are
new. For convenience define, for instance, the sample correlation of Zt−1 and Ũt−1 as

czu = cCor(Zt−1, Ũt−1) = (
TP
t=1

Z⊗2t−1)
−1/2(

TP
t=1

Zt−1Ũ
0
t−1)(

TP
t=1

Ũ⊗2t−1)
−1/2. (4.9)

Let cz(vd), czλ denote sample correlations of Zt−1 with (Ṽ 0
t−1, D̃

0
t−1)

0 and λt−1, respec-
tively. Further, recall ΩY Y defined in (4.5), which is positive definite.

Theorem 4.7 Assuming A, C with γ > 1 then
(i) T−1

PT
t=1 Y

⊗2
t−1 → ΩY Y a.s.

(ii) czu = o(T
−ϕ) a.s. for all ϕ < {γ +min(0, γ − 2)}/{2(2 + γ)}.

(iii, a) cz(vd) = o(T
−ψ) a.s. for all ψ < min{γ/(2 + γ), 1/2)} assuming D, E.

(iii, b) cz(vd) = oP(T
−ψ) for all ψ < min{γ/(2 + γ), 1/2)} assuming D.

(iv) czλ = o(T
−ξ/2) a.s. for all ξ < γ/(2 + γ).

The proof of Theorem 4.7 exploits the martingale decompositions in Theorems
4.5, 4.6. The order of the martingales found in those theorems has to be established.
Thus, in relation to Theorem 4.5 define the martingale differences

mεU,t =
t−1P
j=0

YjeY,t(ε
0
t−1−j, U

0
t−1−j), mV D,t =

t−1P
j=0

YjeY,tV
0
t−1−jN

0
V,t,

and recall the martingale difference mt in Theorem 4.6.
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Lemma 4.8 Assuming A, C then
(i)
PT

t=1mεU,t = o(T
1−ϕ) a.s. for all ϕ < {γ +min(0, γ − 2)}/{2(2 + γ)}.

(ii)
PT

t=1mV D,t = o(T
1−ψ) a.s. for all ψ < min{γ/(2 + γ), 1/2)}.

(iii)
PT

t=1mt = o(T
1−ϕ) for all ϕ < {γ +min(0, γ − 2)}/{2(2 + γ)}.

Proof of Lemma 4.8. (i) a law of large numbers formεU,t has to be established.
Since Qt−1−j = (ε0t−1−j, U

0
t−1−j) are Ft−1-measurable then mεU,t is a martingale dif-

ference sequence. By Chow (1965, Theorem 5) then
PT

t=1mεU,t = o(T
1−ϕ) on the set

where
PT

t=1 E(||tϕ−1mεU,t||α|Ft−1) <∞ for some 1 ≤ α ≤ 2. By (4.2) then

||mεU,t||α ≤ (
t−1P
j=0

||Y||j)α−1
t−1P
j=0

||Y||j||Qt−1−j||α||eY,t||α.

For an α so α < 1 + γ/2 and α ≤ 2 consider Et = E(||t(ξ−1)/2Qt−1−j||α||e0Y,t||α|Ft−1).
If the unconditional moment does not exist truncate as in the argument concerning
the term I2,T in the proof of Theorem 4.5. Assuming A then Et ≤ ||Qt−1−j||α a.s.,
uniformly in t. This bound is o{t(1−ξ)/2} a.s. for all ξ < γ/(2 + γ), uniformly in t, see
Lai and Wei (1985, Theorem 1) or Nielsen (2005a, Theorem 5.1). Hence, it has to
hold that {1− ϕ+ (ξ − 1)/2}α > 1 with the above constraints to α.
(ii) Follow the argument of (i) noting that NV,tVt = O{(log log t)1/2}, see Lai and

Wei (1985, Theorem 1) or Nielsen (2005a, Theorem 5.1), while ND,tDt = O(1) , see
Nielsen (2005a, Theorem 4.1). Hence, it has to hold that (1−ψ)α > 1 with the above
constraints to α.
(iii) Same argument as in (i) .

Proof of Theorem 4.7. (i) Apply Theorem 4.6, assuming A, C. By Lemma
4.8(i) with γ > 1 then the martingale terms

PT
t=1mt vanish. Thus, a Law of Large

Numbers, see Lai and Wei (1985, Theorem 2, Example 3) or Nielsen (2005a, Theorem
6.1) gives the desired result.
(ii) For the numerator apply Theorem 4.5 and Lemma 4.8(i) . By Lai and Wei

(1985, Theorem 2, Example 3) assuming A, C, see also Nielsen (2005a, Theorem 6.2),
||(
PT

t=1 Ũ
⊗2
t−1)

−1|| = O(T−1) a.s.
(iii, a) For the numerator apply Theorem 4.5 and Lemma 4.8(ii) . For the denom-

inator two cases are covered.
First, assume E(i) . The Donsker and Varadhan’s (1977) Law of the Iterated Log-

arithm for the integrated squared Brownian motion states

lim inf
T→∞

log logT

T 2

Z T

0

B2
udu

a.s.
=
1

4
.

Thus, with NV,T = T−1/2, it holds ||{
PT

t=1(NV,T Ṽt−1)
⊗2}−1|| =O(T−1 log logT ) a.s.

Secondly, assume E(ii) . By Nielsen (2005a, Theorem 4.1) assuming D it holds
||{
PT

t=1(ND,T D̃t−1)
⊗2}−1|| = O(T−1).
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(iii, b) Following arguments as in Chan and Wei (1988), assuming D, it can be
proved that the weak limit of T−1

PT
t=1R

⊗2
t−1, where Rt−1 = (Ṽ

0
t−1N

0
V,T , D̃

0
t−1N

0
D,T )

0, is
positive definite. Combine this with the arguments in (iii, a).
(iv) As in Nielsen (2005a, Theorem 9.1) use that

||czλ|| ≤ {max
t≤T

Z 0t−1(
TP
t=1

Z⊗2t−1)
−1Zt−1}1/2(

TP
t=1

||λt−1||)||(
TP
t=1

λ⊗2t−1)
−1/2||.

The terms involving λt−1 are convergent a.s. due to Nielsen (2005a, Corollary 5.3,
7.2). By Corollary 4.3 then Zt = o{T (1−ξ)/2} a.s. for all ξ < γ/(2 + γ). Since
||(
PT

t=1 Z
⊗2
t−1)

−1|| = O(T−1) a.s. by (i) the desired order follows.

For easy reference the cross correlations of εt, Ũt−1, (Ṽ
0
t−1, D̃

0
t)
0, λt−1 analysed in

Nielsen (2005a, Theorems 2.4, 9.1, 9.2, 9.4), assuming A, C, D, are stated here. It
holds for all ξ < γ/(2 + γ) and all ζ < min{2γ/(2 + γ), 1} that

c2εu, c
2
εd

a.s.
= O(log log T ), c2ε(vd)

a.s.
= O(log T )

c2ελ, c
2
u(vd), c

2
uλ

a.s.
= O(max

1≤t≤T
kεtk2) = o(T 1−ξ)

cλd
a.s.
= O(T−1/2), cλ(vd)

a.s.
= o(T−ζ/4), cvd

a.s.
= O(1) . (4.10)

Theorem 4.9 Assuming A, C, D, E with γ > 1 then

lim inf
T→∞

λmin(T
−1

TP
t=1

X⊗2t−1) ≥ lim inf
T→∞

λmin{T−1
TP
t=1

(Xt−1|Dt)
⊗2} > 0 a.s.

Proof of Theorem 4.9. Partitioned inversion gives the inequality. The regular
case is covered in Nielsen (2005a, Corollary 9.5) assuming A, C, D. By Theorem 4.7
assuming A, C, D, E with γ > 1, the singular and regular component are asymptoti-
cally uncorrelated while T−1

PT
t=1 Z

⊗2
t−1 has a positive definite limit.

5 Consistency properties of the least squares estimator

The least squares estimator for the companion matrix S and the covariance matrix Ω
are shown to be inconsistent for singular explosive processes. The inconsistency arises
from the correlation of the processes Zt−1 and εt. This issue is avoided in the triangular
system of Phillips and Magdalinos (2008) due to an independence assumption.
Two results are given using weak and strong convergence, respectively. Let n be

the sum of the dimensions of the largest Jordan blocks associated with the distinct
eigenvalues ofW and define dimensions s = dimS, y = dimU+dimV+n, d = dimD,
matrices (ΩZZ ,ΩεZ ,ΩSZ) = Cov{(Zt−1, εt, eS,t), Zt−1}, and random matrices

Ω̃ = Ω−ΩεZw⊥(w
0
⊥ΩZZw⊥)

−1w0⊥ΩZε,

S̃ = S+ {0s×y,ΩSZw⊥(w
0
⊥ΩZZw⊥)

−1w0⊥M},
S̃norm = {0s×y, T 1/2ΩSZw⊥(w

0
⊥ΩZZw⊥)

−1/2, 0s×d}.
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Theorem 5.1 Assuming A, C, D with γ > 1 then
(i) Ω̂

P→ Ω̃.
(ii) (Ŝ− S)(

PT
t=1 S

⊗2
t−1)

1/2 = S̃norm{1 + oP (1)}+ oP (1) .
(iii) Ŝ

P→ S̃.

(iv) P(rank(eΩ) = dim eΩ) = 1.
(v) If dimW > n then the matrix S̃ satisfies P(S̃ = 0) = 0.
(vi) If dimD = 0 then the eigenvalues of Û and V̂ are consistent and n of the eigen-
values of Ŵ are consistent, namely those of the largest Jordan blocks associated with
each distinct eigenvalue. Thus Ŝ has y = dimU+ dimV + n consistent eigenvalues
and dimW− n inconsistent eigenvalues.

Proof of Theorem 5.1. (i) By the companion equation (2.3) then

T Ω̂ =
TP
t=1

ε⊗2t −
TP
t=1

εt(MSt−1)
0{

TP
t=1

(MSt−1)
⊗2}−1

TP
t=1

(MSt−1)ε
0
t.

Due to uncorrelatedness of the regular components, Ũt, Ṽt, λt,Dt, and the singular
component, Zt, established in Theorem 4.7 assuming A, C, D with γ > 1, then the
matrix Q1 =

PT
t=1(MSt−1)

⊗2 is asymptotically block diagonal. Moreover, the regular
components are uncorrelated with the innovation εt, see (4.10), so T Ω̂ has leading
term

PT
t=1(εt|w0⊥Zt−1)

⊗2. The desired limits then arise from Theorem 4.7.
(ii) Same type of argument as in (i) .
(iii) Rewrite Ŝ− S = Q2Q

−1/2
1 M where Q2 = (Ŝ− S)(

PT
t=1 S

⊗2
t−1)

1/2. The terms
Q1 and Q2 were discussed in (i) and (ii). The regular component of the inverse, Q−11 ,
is OP(T−1), so the regular component of Ŝ−S vanishes. For the singular component
use Theorem 4.7.
(iv) Due to (2.4) then eW,t =MW1εt where MW1 = (0, IdimW)M(Ip, 0)

0. Thus, by
(4.6), (4.7) then ΩεZ = ΩM 0

W1(W
−1)0 and ΩZZ =

P∞
j=1W

−jMW1ΩM
0
W1(W

−j)0. The
variance ΩZZ can be rewritten as W−1MW1ΩM

0
W1(W

−1)0 +W−1ΩZZ(W
−1)0 where

W−1ΩZZ(W
−1)0 is positive definite sinceW is invertible and ΩZZ is positive definite,

see (4.6). Consider two special cases.
First, suppose p ≥ dimW − n. Define A = w0⊥W

−1ΩZZ(W
−1)0w⊥ as well as

B =M 0
W1(W

−j)0w⊥. The matrices A,B are random since w is random. Then

eΩ = Ω−ΩB(B0ΩB +A)−1B0Ω.

Post-multiply by (B,Ω−1B⊥) where B⊥ satisfies B0
⊥B = 0, span(B,B⊥) = Rp. Then:

eΩB = ΩB(B0ΩB +A)−1(B0ΩB +A−B0ΩB) = ΩB(B0ΩB +A)−1A

has same rank as B since A and B0ΩB +A are invertible a.s., while eΩΩ−1B⊥ = B⊥.
This shows that eΩ spans Rp.
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Secondly, suppose p ≤ dimW − n. Let B = w0⊥W
−1MW1. To cater explicitly for

the situation where B has reduced rank write B = ξη0 where ξ, η have full column
rank. Then eΩ = Ω−Ωηξ0(ξη0Ωηξ0 +A)−1ξη0Ω.

Post-multiply by (Ω−1η⊥, η) to get eΩΩ−1η⊥ = η⊥, whileeΩη = Ωη −Ωηξ0(ξη0Ωηξ0 +A)−1ξη0Ωη.

Post-multiplying the latter expression by ξ0ξ = I, where ξ = ξ(ξ0ξ)−1 then gives

eΩη = Ωηξ0(ξη0Ωηξ0 +A)−1Aξ

which has the same rank as η.
(v) The matrix ΩZZ is positive definite while ΩSZ is non-zero due to (4.6), (4.7)

using Assumptions A, C. Then use that P{rank(w) = n} = 1 by Theorem 3.1(ii)
assuming A, B.
(vi) The result in (i) shows that the first two columns of

M(Ŝ− S)M−1 =

⎛⎝ Û−U 0 0

0 V̂−V 0

0 0 Ŵ−W

⎞⎠
vanish, so the eigenvalues of Û and V̂ are consistent. The bias in the eigenvalues then
arises from the limit of Ŵ−W. This limit has bias −ΩW (W

−1)0w⊥(w
0
⊥ΩZw⊥)

−1w0⊥
due to (4.7), which has rank dimW − n a.s. This implies (Ŵ −W)w → 0 a.s. By
Lemma 3.3(iii) thenWw = wJn so w0Ww = Jn, so that n of the eigenvalues of Ŵ
are consistent.

A corresponding strong result applies, except that certain parameter restrictions
are required for the unit root components.

Theorem 5.2 Assuming A, C, D, E with γ > 1 then
(i) Ω̂→ Ω̃ a.s.
(ii) (Ŝ− S)(

PT
t=1 S

⊗2
t−1)

1/2 = S̃norm{1 + o (1)}+ o (1) a.s.
(iii) Ŝ→ S̃ a.s. if dimD = 0.

Proof of Theorem 5.2. Follow the proof of Theorem 5.1.
(i, ii) Use (iii, a) instead of (iii, b) in Theorems 4.7 assuming E in addition.
(iii) The regular component of the inverse, Q−11 , is O(T−1) a.s. when dimD = 0

due to Theorem 4.9 assuming E.

Remark 5.3 For regular vector autoregressions the term w⊥ falls away and the bias
term disappears. The results then correspond to those of Lai and Wei (1985) and
Nielsen (2005a).
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Remark 5.4 For singular vector autoregressions the bias term is non-zero. Thus,
the least squares estimators are inconsistent.

Example 5.5 The bivariate, purely explosive case. Let p = 2, k = 1, Ω = I2,
A1 = ρI2, dimD = 0, so A1 = S, ιS = I2, ΩεW = I2, MW = I2. Then ΩY =P∞

j=1 ρ
−2jI2 = (ρ

2 − 1)I2 and

Â1
a.s.→ ρI2 − I2ρ

−1(ρ2 − 1)w⊥(w0⊥w⊥)−1w0⊥
= ρw(w0w)−1w + ρ−1w⊥(w

0
⊥w⊥)

−1w0⊥,

which has eigenvalues at ρ and ρ−1.

Example 5.6 The overfitted, explosive case. Let p = 2, k = 2, Ω unrestricted,
A1 = ρI2, A2 = 0, dimD = 0, so

B =

µ
ρI2 0
I2 0

¶
, M =

µ
I −ρI
I 0

¶
,

U = 0, W = ρI2, eU,t = eW,t = εt, ΩεW = Ω and ΩY = (ρ
2 − 1)−1Ω. Then

Â1
a.s.→ A1 − (ρ− ρ−1)Ωw⊥(w

0
⊥Ωw⊥)

−1w0⊥,

Â2
a.s.→ A2 = 0.

Thus, despite the inconsistency of the overall least squares estimator, the estimator
for the over-fitted lag is consistent.

6 Lag order determination

Lag order determination for vector autoregressions with deterministic terms is dis-
cussed in Nielsen (2006). As pointed out in Remark 2.3 the proofs only apply in
the regular case. In the following it is shown that corresponding results hold in the
singular case. That is, the order of a vector autoregression can be determined with-
out knowledge about the location and the geometric multiplicity of the characteristic
roots. The result is related to Example 5.6, which shows that the least squares esti-
mators of the redundant lag coefficient matrices are zero.
The statistical model is now a p-dimensional vector autoregression of order K so

Xt =
KP
j=1

AjXt−j + μDt + εt, t = 1, . . . , T,

conditional on the initial values X0, . . . , X1−K . The effective sample is X1, . . . ,XT ,
for all sub-models with lag length k < K. The aim is to determine the largest non-
trivial order for the time series, k0 say, so Ak0 6= 0 and Aj = 0 for j > k0. Thus, it is
convenient to give the variance estimator a subscript indicating the applied lag-length,
that is Ω̂k.
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In the case of Gaussian innovations the likelihood ratio test statistic for testing
that Ak = 0, in a model of order k is

LR(Ak = 0) = −T log det(Ω̂−1k−1Ω̂k) = −T log det{Ip − Ω̂−1k−1(Ω̂k−1 − Ω̂k)}. (6.1)

The result for the likelihood ratio statistic proved for the regular case by Nielsen
(2006, Theorem 2.1, 2.2) also applies in the singular case.

Theorem 6.1 Assuming A, C, D with γ > 2 and k0 < k then LR(Ak = 0) is
asymptotically χ2(p2).

The lag length can also be determined maximising a penalised likelihood, or equiv-
alently minimising information criteria of the type

Φj = log det Ω̂j + j
f (T )

T
j = 0, . . . ,K.

Then k0 is estimated by the argument k̂ that minimises Φj. Several candidates for the
penalty f are applied. Akaike (1973) has f (T ) = 2p2, Schwarz (1978) has f(T ) =
p2 log T, while Hannan and Quinn (1979) and Quinn (1980) have f(T ) = 2p2 log log T.
While these authors considered stationary autoregressions generalisations to unit
root processes have been made by Paulsen (1984), Pötscher (1989) and Tsay (1984).
Pötscher (1989) also considered explosive autoregressions. Nielsen (2006, Theorems
2.4, 2.5) established results concerning over-estimation and under-estimation of the
estimator k̂ in the regular case. These results can be generalised to the singular case.
A small difference for the over-estimation results is that Assumption A is required
with γ > 1 in the singular case, rather than just γ > 0.

Theorem 6.2 Assuming A, C, D with γ > 1 and f (T ) = o (T ) then
(i) P(k̂ ≥ k0)→ 1.
(ii) lim infT→∞ k̂ ≥ k0 a.s. assuming E in addition.

For the under-estimation case it is convenient to separate weak and strong results.
The weak result has the same conditions as Nielsen (2006, Theorem 2.5).

Theorem 6.3 Assuming A, C, D with γ > 2 and f (T )→∞ then P(k̂ ≤ k0)→ 1.

For the strong result the regular case is discussed fully in Nielsen (2006, Theorem
2.5) covering different degrees of parameter restrictions for the parameters V, D. For
the singular case with V, D restricted by Assumption E the following result can be
formulated in the style of Hannan and Quinn (1979) and Quinn (1980).

Theorem 6.4 Assuming A, C, D, E with γ > 2 and lim infT→∞(2 log log T )−1f(T ) >
{p+ 2(dimW− n)}2 then lim supT→∞ k̂ ≤ k0 a.s.
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For the proof of the above results some analysis of Ω̂k−1 − Ω̂k is needed. It is
convenient to define, for any time series Rt,

Q (Rt) =
TP
t=1

εtR
0
t(

TP
t=1

R⊗2t )
−1

TP
t=1

Rtε
0
t.

Thus, with Xt−1 = (X
0
t−1, . . . ,X

0
t−k+1)

0 then

Ω̂k−1 = T−1
TP
t=1

(εt|Xt−1, Dt)
⊗2, T (Ω̂k−1 − Ω̂k) = Q(Xt−k|Xt−1,Dt).

The next Lemma described the properties of T (Ω̂k−1 − Ω̂k).

Lemma 6.5 Assuming A, C, D with γ > 2 and k0 < k then there exists an {(p +
dimU)× p}-matrix C with full column rank, so with Ût = C 0{ε0t, Ũ 0

t−1}0, and defining

L =
TP
t=1

(εt|w0⊥Zt−1)Û
0
t−1(

TP
t=1

Û⊗2t−1)
−1

TP
t=1

Ût−1(εt|w0⊥Zt−1)
0, (6.2)

RV = Q(Vt−2|Dt)−Q(Vt−1|Dt), (6.3)

it holds
(i) T (Ω̂k−1 − Ω̂k) = (L+RV ){1 + oP (1)}+ oP (1) .
(ii) T (Ω̂k−1 − Ω̂k) = (L+RV ){1 + o (1)}+ o (1) a.s. if Assumption E holds.

The order of magnitude of the term RV is described in Nielsen (2006, Lemma 3.5).
To prove Lemma 6.5 some properties about the function Q (Rt) are needed.

Lemma 6.6 Let Rt = (R
0
1,t, R

0
2,t)

0 have sample correlation cR1R2 = o(1); see (4.9) for
definition. Then
(i) Q(Rt) = {Q(R1,t) +Q(R2,t)}{1 + o(1)}.
(ii) If cR1R2 , cεR2 = o(T−1/4) then Q(R1,t|R2,t) = {Q(R1,t) + o1}{1 + o(1)} where
o1 = o(T

−1PT
t=1 ε

⊗2
t ).

Proof of Lemma 6.6. (i) Since cR1R2 = o (1) a.s. then

TP
t=1

R⊗2t =

µ PT
t=1R

⊗2
1,t 0

0
PT

t=1R
⊗2
2,t

¶
{1 + o (1)}, a.s.

which leads to the desired result.
(ii) Write Q (R1,t|R2,t) as HH 0 where H = H

1/2
1 H2H

1/2
3 with

H1 =
TP
t=1

ε⊗2t , H2 = cεR1 − cεR2cR2R1 , H3 = 1− c⊗2R1R2.

Since cR1R2, cεR2 = o(T
−1/4) a.s. then

H2 = cεR1 − o(T−1/2), H3 = 1− o(T−1/2) a.s.
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so H = {H1/2
1 cεR1 + o(T

−1/2H
1/2
1 )}{1 + o(1)} giving the desired expression.

Proof of Lemma 6.5. (i) The proof follows in various steps.
First, an algebraic argument. Due to Lemma 3.2 of Nielsen (2006) then

T (Ω̂k−1 − Ω̂k) = Q(Xt−k|Xt−1, Dt)

= Q (Xt−2|Dt)−Q (Xt−1|Dt) +Q (εt−1|Xt−2, Dt) . (6.4)

Secondly, analyse the terms in (6.4). Due to the uncorrelatedness established in
Theorem 4.7 and (4.10), assuming A, C, D with γ > 1, then by Lemma 6.6(i)

Q (Xt−u|Dt) = {Q
µ

Ũt−u
w0⊥Zt−u

¯̄̄̄
Dt

¶
+Q (Vt−u|Dt) +Q(wλt−u|Dt)}{1 + oP (1)}.

Moreover, for u = 1, 2 the correlation betweenDt, Vt−u, λt−u and the terms εt, Ũt−u, Zt−u
is o(T−1/4) a.s. for γ > 2. By Lai and Wei (1985, Remark to Theorem 2) assuming
A, C then

PT
t=1 ε

⊗2
t = O(T ). Then, by Lemma 6.6(ii),

Q

µ
Ũt−u

w0⊥Zt−u

¯̄̄̄
Dt

¶
= Q

µ
Ũt−u

w0⊥Zt−u

¶
{1 + oP (1)}+ oP(1),

Q (εt−1|Xt−2, Dt) = Q (εt−1|w0⊥Zt−2, Ut−2) {1 + oP (1)}+ oP(1).

Insert the above results in (6.4), use RV = Q(Vt−2|Dt) − Q(Vt−1|Dt), and note that
Q(wλt−2)−Q(wλt−1) = o (1) a.s. as in Nielsen (2006, equation 3.10) to get

T (Ω̂k−1 − Ω̂k) = {Q
µ

Ũt−2
w0⊥Zt−2

¶
−Q

µ
Ũt−1

w0⊥Zt−1

¶
+Q(εt−1|w0⊥Zt−2, Ũt−2) +RV }{1 + oP (1)}+ oP(1). (6.5)

Third, by partial inversion, see Nielsen (2006, equation 3.4) then

I1 = Q

µ
Ũt−2

w0⊥Zt−2

¶
+Q(εt−1|w0⊥Zt−2, Ũt−2) = Q

⎛⎝ εt−1
Ũt−2

w0⊥Zt−2

⎞⎠ .

In the latter expression the index of w0⊥Zt−2 can be changed to w0⊥Zt−1. The
argument is that w0⊥Zt−1 = (w0⊥Ww⊥)w

0
⊥Zt−2 − w0⊥eW,t−1 due to Theorem 3.4(ii) .

Since eW,t is a function of εt then there is a bijective relation between (ε0t−1, Z
0
t−2w⊥)

and (ε0t−1, Z
0
t−1w⊥) so I1 = Q(ε0t−1, Ũ

0
t−2, Z

0
t−1w⊥). Inserting in (6.5) gives

T (Ω̂k−1− Ω̂k) = {Q

⎛⎝ εt−1
Ũt−2

w0⊥Zt−1

⎞⎠−Q

µ
Ũt−1

w0⊥Zt−1

¶
+RV }{1+oP (1)}+oP(1). (6.6)

Fourthly, Recall that Ũt−1 = UŨt−2 + eU,t−1 where eU,t−1 = M 0
Uιεt−1 for some

matrix MU and ι = (Ip, 0)0. Since M 0
Uι has full row rank then Ũt−1 = C 0

⊥(Ũ
0
t−2, ε

0
t−1)

0
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where the {(dimU+ p)× dimU}-matrix C⊥ has full column rank then a {(dimU+
p)× p}-matrix C can be chosen so (C,C⊥) is regular and Cov(Ût−1, Ũt−1) = 0 where
Ût−1 = C 0(Ũ 0

t−2, ε
0
t−1)

0. Then

Q(ε0t−1, Ũ
0
t−2, Z

0
t−1w⊥) = Q(Û 0

t−1, Ũ
0
t−1, Z

0
t−1w⊥).

By partitioned inversion, see Nielsen (2006, equation 3.4), then

T (Ω̂k−1 − Ω̂k) = {Q(Yt−1|w0⊥Zt−1, Ũt−1) +RV }{1 + oP (1)}+ oP(1). (6.7)

Fifthly, note T−1
P

εtŨ
0
t−1 and T−1

P
Zt−1Ũ

0
t−1 are o(T

−1/4) a.s. by Theorem 4.7
and (4.10), assuming A, C with γ > 2, while T−1

P
Z⊗t−1 −ΩZZ and T−1

P
Zt−1ε

0
t −

E(Z1ε
0
2) are oP (1) by Theorem 4.6, Lemma 4.8 assuming A, C, while Nielsen (2005a,

Theorem 6.2) gives laws of large numbers for sums of {(ε0t, Ũ 0
t−1)

0}⊗2. Combine these
to see dCov(εt, Ũt−1|w0⊥Zt−1) = oP(T

3/4). Due to Theorem 4.7 then cεu|z = oP(T−1/4).
Sixthly, due to Nielsen (2005a, Theorem 2.4, 2006, Lemma 3.9), assuming A, C,

then

T−1
TP
t=1

µ
εt−1
Ũt−2

¶⊗2
a.s.
=

µ
Ω 0
0
P∞

j=0U
jΩUU(U

j)0

¶
+ o

¡
T−ζ

¢
, (6.8)

for ΩUU = Var(e
⊗2
U,t) and ζ < min{γ/(2+γ), 1/2}. Now, construct Ût−1 from εt−1, Ũt−1

so EÛt−1Ũ
0
t−1 = 0. It follows that T

−1P Ût−1Ũ
0
t−1 = o(T

−1/4) a.s. for γ > 2/3. Then
follow step 5 to show cyu|z = oP(T−1/4).
Seventhly, due to step 5 and 6 then Lemma 6.6(ii) implies

T (Ω̂k−1 − Ω̂k) = {Q(Ût−1|w0⊥Zt−1) +RV }{1 + oP (1)}+ oP(1).

Finally, since Ũt−1 is Ft−1-measurable then taking iterated expectations shows
Cov(Ût−1, Zt−1) = 0. Together with laws of large numbers for Ût−1 and Zt−1 this
implies Q(Ût−1|w0⊥Zt−1) has the desired form.
(ii) Use (iii, a) instead of (iii, b) in Theorem 4.7 assuming E in addition.

Proof of Theorem 6.1. Theorem 5.1(i, iv) assuming A, C, D with γ > 1 shows
that Ω̂k−1 → Ω̃ in probability and Ω̃ > 0 a.s. Lemma 6.5(i) assuming A, C, D with
γ > 2 describes the limit of T (Ω̂k−1− Ω̂k). Nielsen (2006, Lemma 3.5,ii) assuming A,
C, D shows RV = oP (1). Insert these results in (6.1). Due to the Taylor expansion
LR = −T log det(1− T−1FT ) = tr(FT ) + o(FT ) the test statistic has leading term

tr{Ω̃−1
TP
t=1

(εt|w0⊥Zt−1)Û
0
t−1(

TP
t=1

Û⊗2t−1)
−1

TP
t=1

Ût−1(εt|w0⊥Zt−1)
0},

with Ût defined in Lemma 6.5. By Theorem 4.5 assuming A, D with γ > 2 and
defining Yt = (ε0t, Z

0
t−1W) then

PT
t=1 YtÛ

0
t−1 =

PT
t=1

Pt−1
j=0Y

jeY,tÛ
0
t−1−j + o(T

1/2).
The leading term is a martingale. Then apply the Central Limit Theorem of Brown
and Eagleson (1971).
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Proof of Theorem 6.2. Consider j < k0. The condition f (T ) = o (T ) implies

Φj − Φk0 = log det{Ip + (Ω̂j − Ω̂k0)Ω̂
−1
k0
}+ o(1).

(i) Theorem 5.1(i, iv) assuming A, C, D with γ > 1 shows that Ω̂k−1 → Ω̃ in
probability and Ω̃ > 0 a.s. So it suffices to show that λmax(Ω̂j − Ω̂k0) has a positive
limit. Due to the successive inclusion of regressors it holds that Ω̂0 ≥ · · · ≥ Ω̂k−1 ≥
Ω̂k using the ordering of positive semidefinite matrices. Thus it suffices to consider
j = k0 − 1.
Define the residuals Rt = (Xt−k0|Xt−1, . . . ,Xt−k0−1, Dt). In the vector autoregres-

sion of order k0 the least squares estimator for Ak0 is Âk0 =
PT

t=1XtR
0
t(
PT

t=1R
⊗2
t )

−1,
which implies

Ω̂j − Ω̂k0 = T−1
TP
t=1

XtR
0
t(

TP
t=1

R⊗2t )
−1

TP
t=1

RtX
0
t = Âk0(T

−1
TP
t=1

R⊗2t )Â
0
k0 .

Due to Theorem 5.1 (iii, v) then Âk0 = Ãk0 + oP(1) with Ãk0 = Ak0 + Abias. Here
Ak0 6= 0 by the definition of k0 while the random bias Abias has the property that
P(Ak0+Abias = 0) = 0. Using Theorems 4.7, (4.10) and arguments as in Chan andWei
(1988) then λmin(T

−1PT
t=1R

⊗2
t ) either diverges or has a positive limit. The desired

result then follows.
(ii) Use Theorem 5.2 instead of Theorem 5.1 assuming E in addition. By Theorem

4.9 assuming A, C, D, E then lim inf λmin(T−1
PT

t=1R
⊗2
t ) > 0 a.s.

Proof of Theorem 6.3. Consider k0 < j ≤ K. Then

Φj+1 − Φj = log det{Ip − (Ω̂j − Ω̂j+1)Ω̂
−1
j }+ T−1f(T ).

A Taylor expansion shows that if IT = T (Ω̂j−Ω̂j+1)Ω̂
−1
j = o{g(T )} for some function

g so f(T )/g(T ) → ∞ the desired result holds. As in the proof of Theorem 6.1
assuming A, C, D with γ > 2 then IT = OP (1) .

Proof of Theorem 6.4. As in the proof of Theorem 6.3 it has to be argued
that I = T (Ω̂j − Ω̂j+1)Ω̂

−1
j = o{g(T )} where g(T ) = o{f(T )}.

Theorem 5.2 assuming A, C, D, E with γ > 1 shows that Ω̂k−1 → Ω̃ a.s.
Lemma 6.5(ii) assuming A, C, D with γ > 2 shows that T (Ω̂j − Ω̂j+1) is decom-

posed in terms of quantities L and RV , defined in (6.2), (6.3).
If V = 1 and dimD = 0 then RV = o(1) a.s. by Nielsen (2006, Lemma 3.5)

assuming A, C with γ > 0. If dimV = 0 then RV = 0 by construction.
It is left to estimate the order of magnitude of L defined in (6.2). As argue

in connection with Theorem 5.2 and (6.8) then T−1
PT

t=1{(Z 0t−1w⊥, ε0t)0}⊗2 → Ω1 =

diag(w0⊥W, Ip)ΩY diag(W
0w⊥, Ip) and T−1

PT
t=1 Û

⊗2
t−1 → Ω2 a.s. for some positive def-

inite, random Ω1, Ω2. Thus, consider the coordinates of the matrix

IT = Ω
−1/2
1

TP
t=1

µ
w0⊥Zt−1

εt

¶
Û 0
t−1Ω

−1/2
2 .
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Theorem 4.5, assuming γ > 2, shows IT a.s.
=
PT

t=1meU,t + o (1) , where meU,t =

Ω
−1/2
Y

Pt−1
j=0Y

jeY,tÛ
0
t−1−jΩ

−1/2
2 is an Ft-martingale difference.

It holds T−1
PT

t=1m
⊗2
eU,t → I2p−n a.s. assuming A, C with γ > 2, which can be

proved along the lines of Theorem 4.6. Now, apply the law of iterated logarithms by
Stout (1974, Theorem 5.4.1) for each (i, j)-coordinate of IT . A conditional version of
the truncation argument in the proof of Theorem 4.5 may be needed again assuming
A with γ > 2. It then holds lim supT→∞(2T log logT )

−1/2|IT,ij| ≤ 1.
By partitioned inversion then

TP
t=1

Ût−1 (εt|w0⊥Zt−1)
0 {

TP
t=1

(εt|w0⊥Zt−1)
⊗2}−1

TP
t=1

(εt|w0⊥Zt−1) Û
0
t−1

=
TP
t=1

Ût−1

µ
w0⊥Zt−1

εt

¶0
{

TP
t=1

µ
w0⊥Zt−1

εt

¶⊗2
}−1

TP
t=1

µ
w0⊥Zt−1

εt

¶
Û 0
t−1

−
TP
t=1

Ût−1 (w
0
⊥Zt−1)

0 {
TP
t=1

(w0⊥Zt−1)
⊗2}−1

TP
t=1

(w0⊥Zt−1) Û
0
t−1.

Using the triangle inequality and the above bound gives the desired result.
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