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Abstract
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1 Introduction

In an analysis of US food expenditure Hendry (1999) used an indicator saturation ap-
proach. The annual data spanned the period 1931-1989 including the great depression,
World War II, and the oil crises. These episodes, covering 25% of the sample, could
potentially result in outliers. An indicator saturation approach was adopted by forming
zero-one indicators for these observation. Condensing the outcome, this large number
of indicators could be reduced to just two outliers with an institutional interpretation.
The suggestion for outlier detection divides the sample in two sets and saturates first

one set and then the other with indicators. The indicators are tested for significance
using the parameter estimates from the other set and the corresponding observation is
deleted if the test statistic is significant. The estimator is the least squares estimator
based upon the retained observations. A formal version of this estimator is the indicator
saturation estimator. This was analyzed recently by Hendry, Johansen and Santos
(2008), who derived the asymptotic distribution of the estimator of the mean in the
case of i.i.d. observations.
The purpose of the present paper is to analyse the indicator saturation algorithm

as a special case of a general procedure considered in the literature of robust statistics.
We consider the regression model yt = β0xt + εt where εt are i.i.d. (0, σ2), and a
preliminary estimator (β̂, σ̂2), which gives residuals rt = yt−β̂

0
xt. Let ω̂

2
t be an estimate

of the variance of rt. Examples are ω̂
2
t = σ̂2 which is constant in t and ω̂2t = σ̂2{1 −

x0t(
PT

s=1 xsx
0
s)
−1xt} which varies with t. From this define the normalized residuals vt =

rt/ω̂t. The main result in Theorem 3.1 is an asymptotic expansion of the least squares
estimator for (β, σ2) based upon those observation for which c ≤ vt ≤ c.
This expansion is then applied to find asymptotic distributions for various choices

of preliminary estimator, like least squares and the split least squares considered in the
indicator saturation approach. Asymptotic distributions are derived under stationary
and trend stationary autoregressive processes and some results are given for unit root
processes.
We do not give any results on the behavior of the estimators in the presence of

outliers, but refer to further work which we intend to do in the future.

1.1 The relation to the literature on robust statistics

Detections of outliers is generally achieved by robust statistics in the class of M-
estimators, or L-estimators, see for instance Huber (1981). An M-estimator of the
type considered here is found by solving

TX
t=1

(yt − β0xt)x
0
t1(σc≤yt−β0xt≤σc̄) = 0, (1.1)

supplemented with an estimator of variance of the residual. The objective function is
known as Huber’s skip function and has the property that it is not differentiable in
β, σ2. The solution may not be unique and the calculation can be difficult due to the
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lack of differentiability, see Koenker (2005). A more tractable one-step estimator can
be found from a preliminary estimator (β̂, σ̂) and choice of ω̂2t , by solving

TX
t=1

(yt − β0xt)x
0
t1(ω̂tc≤yt−β̂

0
xt≤ω̂tc̄) = 0, (1.2)

which is just the least squares estimator where some observations are removed as out-
liers according to a test based on the preliminary estimator. Note that the choice of
the quantiles requires that we know the density f.
An alternative method is to order the residuals rt = yt − β0xt and eliminate the

smallest Tα1 and largest Tα2 observations, and then use the remaining observations
to calculate the least squares estimators. This is an L-estimator, based upon order
statistics. A one-step estimator is easily calculated if a preliminary estimator is used
to define the residuals. One can consider the M- and L-estimators as the estimators
found by iterating the one step procedure described.
Rather than discarding outliers they could be capped at the quantile c as in the

Winsorized least squares estimator solving
PT

t=1 rtx
0
tmin(1, cω̂t/|rt|) = 0, see Huber

(1981, page 18). While the treatment of the outliers must depend on the substantive
context, we focus on the skip estimator in this paper. A related estimator is the least
trimmed squares estimator by Rousseeuw (1984) which minimizes

Ph
i=1 r

2
i after having

discarded the largest T − h = T (α1 + α2) values of r2i .
The estimator we consider in our main result is the estimator (1.2), and we apply

the main result to get the asymptotic distribution of the estimators for stationary
processes, trend stationary processes, and some unit root processes for different choices
of preliminary estimator.
One-step estimators have been considered before. The paper by Bickel (1975) has a

one-step M-estimator of a different kind as the minimization problem is approximated
using a linearization of the derivative of the objective function around a preliminary
estimator. The estimator considered by Ruppert and Carroll (1980), however, is a
one-step estimator of the kind described above, although of the L-type, see also Yohai
and Maronna (1976).
The focus in the robustness literature has been on deterministic regressors satisfying

T−1
PT

t=1 xtx
0
t → Σ > 0, whereas we prove results for stationary and trend stationary

autoregressive processes. We also allow for a non-symmetric error distribution.
We apply the theory of empirical processes using tightness arguments similar to

Bickel (1975). The representation in our main result Theorem 3.1 generalizes the
representations in Ruppert and Carroll (1980) to stochastic regressors needed for time
series analysis.
As an example of the relation between the one-step estimator we consider and the

general theory ofM-estimators, consider the representation we find in Theorem 3.1 for
the special case of i.i.d. observations with a symmetric distribution with mean μ, so
that xt = 1. In this case we find

T 1/2(μ̆− μ) = (1− α)−1{T−1/2
TX
t=1

εt1(cσ≤εt≤σc) + 2cf(c)T
1/2(μ̂− μ)}+ oP (1) .
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If we iterate this procedure we could end up with an estimator, μ∗, which satisfies

T 1/2(μ∗ − μ) = (1− α)−1{T−1/2
TX
t=1

εt1(cσ≤εt≤σc) + 2cf(c)T
1/2(μ∗ − μ)}+ oP (1) ,

so that

T 1/2(μ∗ − μ) = {1− α− 2cf(c)}−1T−1/2
TX
t=1

εt1(cσ≤εt≤σc) + oP (1)

D→ N[0, σ2
τ c2

{1− α− 2cf(c)}2 ],

which is the limit distribution conjectured by Huber (1964) for the M-estimator (1.1).
It is also the asymptotic distribution of the least trimmed squares estimator, see
Rousseeuw and Leroy (1987, p. 180), who rely on Yohai and Maronna (1976) for
the i.i.d case.

1.2 The structure of the paper

The one-step estimators are described in detail in §2, and in §3 we find the asymptotic
expansion of the estimators under general assumptions on the regressor variables, but
under the assumption that the data generating process is given by the regression model
without indicators. The situation where the initial estimator is a least square estimator
is analysed for stationary processes in §4.1. The situation where the initial estimator is
an indicator saturated estimator is then considered for stationary process in §4.2 and
for trend stationary autoregressive processes and unit root processes in §5. Finally,
§6 contains the proof of the main theorem, which involves techniques for empirical
processes, whereas proofs for special cases are given in §7.

2 The one-step M-estimators

At first the statistical model is set up. Subsequently, the considered one-step estimators
are introduced.

2.1 The regression model

As a statistical model consider the regression model

yt = β0xt +
TX
i=1

γi1(i=t) + εt t = 1, . . . , T, (2.1)

where xt is an m-dimensional vector of regressors and the conditional distribution of
the errors, εt, given (x1, . . . xt, ε1, . . . , εt−1) has density σ−1f(σ−1ε), so that σ−1εt are
i.i.d. with density f. Thus, the density of yt given the past should be a member of
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a location-scale family such as the family of univariate normal distributions. When
working with other distributions, such as the t-distribution the degrees of freedom
should be known. We denote expectation and variance given (x1, . . . xt, ε1, . . . , εt−1) by
Et−1 and Vart−1.
The parameter space of the model is given by β, (γ1, . . . , γT ) , σ

2 ∈ Rm×RT ×R+.
The number of parameters is therefore larger than the sample length. We want to make
inference on the parameter of interest β in this regression problem with T observations
and m regressors, where we consider the γis as nuisance parameters. The least squares
estimator for β is contaminated by the γis and we therefore seek to robustify the
estimator by introducing two critical values c < c chosen so that

τ c0 =

Z c

c

f(v)dv = 1− α and τ c1 =

Z c

c

vf(v)dv = 0. (2.2)

It is convenient to introduce as a general notation

τn =

Z
R
unf(u)du, τ cn =

Z c

c

unf(u)du, (2.3)

for n ∈ N0, for the moments and truncated moments of f. A smoothness assumption
to the density is needed.

Assumption A The density f has continuous derivative f 0 and satisfies the condition

sup
v∈R
{(1 + v4)f(v) + (1 + v2)|f 0(v)|} <∞,

with moments τ 1 = 0, τ 2 = 1, τ 4 <∞.

2.2 Two one-step M-estimators

Two estimators are presented based on algorithms designed to eliminate observations
with large values of |γi|. Both estimators are examples of one-stepM-estimators. They
differ in the choice of initial estimator. The first is based on a standard least squares
estimator, while the second is based on the indicator saturation argument.

2.2.1 The robustified least squares estimator

The robustified least squares estimator is a one-stepM-estimator with initial estimator
given as the least squares estimator (β̂, σ̂2). From this, construct the t-ratios for testing
γi = 0 as

vt = (yt − β̂
0
xt)/ω̂t, (2.4)

where ω̂2t could simply be chosen as σ̂
2 or as σ̂{1 − x0t(

PT
s=1 xsx

0
s)
−1xt} by following

the usual finite sample formula for the distribution of residuals for fixed regressors.
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We base the estimator on those observations that are judged insignificantly different
from the predicted value β̂

0
xt, and define the robustified least squares estimator as the

one-step M-estimator

β̆LS = {
TX
t=1

xtx
0
t1(c≤vt≤c)}−1

TX
t=1

xtyt1(c≤vt≤c), (2.5)

σ̆2LS = (
τ c2
1− α

)−1{
TX
t=1

1(c≤vt≤c)}−1
TX
t=1

(yt − β̆
0
LSxt)

21(c≤vt≤c). (2.6)

It will be shown that {
PT

t=1 1(c≤vt≤c)}−1
PT

t=1(yt − β̆
0
LSxt)

21(c≤vt≤c)
P→ σ2τ c2/(1 − α),

which justifies the bias correction in the expression for σ̆2LS.
Obviously the denominators can be zero, but in this case also the numerator is zero

and we can define β̆LS = 0 and σ̆2LS = 0.

2.2.2 The indicator saturation estimator

Based on the idea of Hendry (1999) the indicator saturated estimator is defined as
follows:
1. We split the data in two sets I1 and I2 of T1 and T2 observations respectively,

where TjT−1 → λj > 0 for T →∞.
2. We calculate the ordinary least squares estimator for (β, σ2) based upon the

sample Ij,
β̂j = (

X
t∈Ij

xtx
0
t)
−1
X
t∈Ij

xtyt, σ̂2j =
1

Tj

X
t∈Ij

(yt − β̂
0
jxt)

2, (2.7)

and define the t-ratios for testing γi = 0:

vt = 1(t∈I2)(yt − β̂
0
1xt)/ω̂t,1 + 1(t∈I1)(yt − β̂

0
2xt)/ω̂t,2, (2.8)

where ω̂2t,j could be chosen as σ̂
2
j{1 + x0t(

P
s6∈Ij xsx

0
s)
−1xt} for fixed regressors.

3. We then compute robustified least squares estimators β̃ and σ̃2 by (2.5) and
(2.6) based on vt given by (2.8).
4. Based on the estimators β̃ and σ̃2 define the t-ratios for testing γi = 0:

ṽt = (yt − β̃
0
xt)/ω̃t, (2.9)

where ω̃2t could be chosen as σ̃
2. It is less obvious how to choose a finite sample correc-

tion since the second round initial estimator (β̃, σ̃2) is not based upon least squares.
5. Finally, compute the indicator saturated estimators β̆Sat and σ̆2Sat as the robus-

tified least squares estimators (2.5) and (2.6) based on ṽt given by (2.9).

3 The main asymptotic result

Asymptotic distributions will be derived under the assumption that in (2.1) the indica-
tors are not needed because γi = 0 for all i, that is, (yt−β0xt)/σ are i.i.d. with density
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f. The main result, given here shows that in the analysis of one-step M-estimators
the indicators 1(c≤vt≤c), based on the normalized residual vt = (yt − β̂

0
xt)/ω̂t, can be

replaced by 1(cσ≤εt<c̄σ) combined with correction terms. This shows how the limit
distributions of the initial estimators β̂ and σ̂2 influence the limit distribution of the
robustified estimators. The result is the basis for any further asymptotic analysis and
can be applied both for stationary and trend stationary regressors, and for unit root
processes, but not for explosive processes.
It is convenient to define product moments of the retained observations for any two

processes ut and wt as Suw =
PT

t=1 utw
0
t1(c≤vt≤c), so that the robustified estimators

(2.5) and (2.6) become

β̆ = S−1xx Sxy, (3.1)

σ̆2 = (1− α)(τ c2S11)
−1(Syy − SyxS

−1
xx Sxy). (3.2)

The estimator ω̂2t for the variance of residual rt can be chosen from a wide range of
estimators including σ̂2 and σ̂2{1−x0t(

PT
s=1 xsx

0
s)
−1xt}. These estimators do, however,

have to satisfy the following condition.

Assumption B The estimator ω̂2t is chosen so max1≤t≤T T
1/2|ω̂2t − σ̂2| = oP (1) .

We can now formulate the main result which shows how the product moments Suv
depend on the truncation points c and c and the initial estimators β̂ and σ̂2.

Theorem 3.1 Consider model (2.1), where γi = 0 for all i, and there exists some
estimators (β̂, σ̂2) and non-stochastic normalization matrices NT → 0, so that
(i) The initial estimators satisfy

(a) T 1/2(σ̂2 − σ2), (N−1
T )0(β̂ − β) = OP (1) ,

(b) ω̂2t satisfies Assumption B.
(ii) The regressors satisfy, jointly,

(a) NT

PT
t=1 xtx

0
tN

0
T

D→ Σ
a.s.
> 0,

(b) T−1/2NT

PT
t=1 xt

D→ μ,
(c) maxt≤T E|T 1/2NTxt|4 = O(1) .

(iii) The density f satisfies Assumption A, and c and c are chosen so that τ c1 = 0.
Then it holds

T−1S11
P→ 1− α, (3.3)

NTSxxN
0
T

D→ (1− α)Σ, (3.4)

T−1/2NTSx1
D→ (1− α)μ. (3.5)
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For ξcn = (c)
nf(c)− (c)nf(c) and τ c2 =

R c
c
v2f(v)dv we find the expansions

NTSxε = NT

TX
t=1

{xtεt1(cσ≤εt≤cσ) + ξc1xtx
0
t(β̂ − β) + ξc2(σ̂ − σ)xt}+ oP (1) , (3.6)

Sεε =
TX
t=1

{ε2t1(cσ≤εt≤cσ) + σξc2(β̂ − β)0xt + σξc3(σ̂ − σ)}+ oP
¡
T 1/2

¢
, (3.7)

S11 =
TX
t=1

{1(cσ≤εt≤cσ) + ξc0(β̂ − β)0xt/σ + ξc1(σ̂/σ − 1)}+ oP
¡
T 1/2

¢
. (3.8)

Combining the expressions for the product moments gives expressions for the one-
stepM-estimators of the form (3.1), (3.2). The expressions give a linearization of these
estimators in terms of the initial estimators. For particular initial estimators explicit
expressions for the limiting distributions are then derived in the subsequent sections.

Corollary 3.2 Suppose the assumptions of Theorem 3.1 are satisfied. Then

(1− α)Σ(N−1
T )0(β̆ − β) = NT

TX
t=1

xtεt1(cσ≤εt≤σc)

+ξc1Σ(N
−1
T )0(β̂ − β) + ξc2T

1/2(σ̂ − σ)μ+ oP (1) , (3.9)

τ c2T
1/2(σ̆2 − σ2) = T−1/2

TX
t=1

(ε2t − σ2
τ c2
1− α

)1(cσ≤εt≤σc)

+σζc2μ
0(N−1

T )0(β̂ − β) + σζc3T
1/2(σ̂ − σ) + oP (1) , (3.10)

where ζcn = ξcn − ξcn−2τ
c
2/(1− α). It follows that

{(N−1
T )0(β̆ − β), T 1/2(σ̆2 − σ2)} = OP (1) , (3.11)

so that (β̆, σ̆2) P→ (β, σ2).

The proofs of Theorem 3.1 and Corollary 3.2 are given in §6. It involves a series of
steps. In §6.1 a number of inequalities are given for the indicator functions appearing in
Sxx and Sxε, and in §6.2 we show some limit results which take care of the remainder
terms in the expansions. The argument involves weighted empirical processes with
weights xtx0t, xtεt, ε

2
t and 1 appearing in the numerator and denominators of β̆ and σ̆

2.
Weighted empirical processes have been studied by Koul (2002), but with conditions
on the weights that would be too restrictive for this study. Finally, the threads are
pulled together in §6.3.
The assumptions (ii, a) and (ii, b) are satisfied in a wide range of models. The

assumption (ii, c) is slightly more restrictive: It permits classical stationary regressions
as well as stationary autoregressions in which case NT = T−1/2 and trend station-
ary processes with a suitable choice of NT . It also permits unit root processes where
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NT = T−1, as well as processes combining stationary and unit root phenomena. The
assumption (ii, c) does, however, exclude exponentially growing regressors. As an ex-
ample let xt = 2t. In that case NT = 2−T and maxt≤T T 1/22−T2t = T 1/2 diverges.
Likewise, explosive autoregressions are excluded.
Similarly, the assumption (i, b), referring to Assumption B, is satisfied for a wide

range of situations. If ω̂2t = σ̂2 it is trivially satisfied. If ω̂2t = σ̂2{1−x0t(
PT

s=1 xsx
0
s)
−1xt}

as in the computation of the robustified least squares estimator the assumption is
satisfied when the regressors xt have stationary, unit root, or polynomial components,
but not if the regressors are explosive. This is proved by first proving (ii, a, c) and then
combining these conditions.
The assumption that τ c1 = 0 is important. If it had been different from zero then

εt1(cσ≤ε≤σc) would not have zero mean and the conclusion (3.11) would in general fail
because NTSxε would diverge.

4 Asymptotic distributions in the stationary case

We now apply Theorem 3.1 and Corollary 3.2 to the case of stationary regressors
with finite fourth moment where we can choose NT = T−1/2Im. With this choice the
assumptions (ii)(a, b, c) of Theorem 3.1 are satisfied by the Law of Large Numbers for
stationary processes with finite fourth moments.
The stationary case covers a wide range of standard models:

(i) The classical regression model, where xt is stationary with finite fourth moment.

(ii) Stationary autoregression of order k. We let yt = Xt and xt = (Xt−1 . . .Xt−k)
0.

An intercept could, but need not, be included as in the equation

Xt =
kX

j=1

αjXt−j + μ+ εt.

(iii) Autoregressive distributed lag models of order k. For this purpose consider a p-
dimensional stationary process Xt partitioned as Xt = (yt, z

0
t)
0. This gives the

model equation for yt given the past (Xs, s ≤ t− 1) and zt

yt =
kX

j=1

α0jXt−j + β0zt + μy + εt.

Here, the regressor zt could be excluded to give the equation of a vector autore-
gression.

4.1 Asymptotic distribution of the robustified least squares
estimator

In this section we denote the least squares estimators by (β̂, σ̂2) and we let (β̆LS, σ̆
2
LS)

be the robustified least squares estimators based on these, as given by (2.4), (3.1), and
(3.2). We find the asymptotic distribution of these estimators with a proof in §7.
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Theorem 4.1 Consider model (2.1) with γi = 0 for all i. We assume that xt is a
stationary process with mean μ, variance Σ, and finite fourth moment so we can take
NT = T−1/2Im, and that ω̂2t satisfies Assumption B. The density f satisfies Assumption
A, and c and c̄ are chosen so that τ c1 = 0. Then

T 1/2
µ

β̆LS − β
σ̆2LS − σ2

¶
D→ Nm+1{0,

µ
Ωβ Ωc

Ω0c Ωσ

¶
},

where

Ωβ = σ2(ηβΣ
−1 + κβΣ

−1μμ0Σ−1),

Ωc = σ3(ηcΣ
−1μ+ κcΣ

−1μμ0Σ−1μ),

Ωσ = 2σ4(ησ + κσμ
0Σ−1μ),

and

(1− α)2ηβ = τ c2 (1 + 2ξ
c
1) + (ξ

c
1)
2 ,

(1− α)2κβ = ξc2{
1

4
ξc2(τ 4 − 1) + ξc1τ 3 + τ c3},

(1− α)τ c2ηc = ζc2(τ
c
2 + ξc1) +

ξc2
2
{τ c4 −

(τ c2)
2

1− α
}+ ξc2ζ

c
3

4
(τ 4 − 1)

+(1 + ξc1)τ
c
3 +

ζc3
2
(τ c3 + ξc1τ 3).

(1− α)τ c2κc =
(ζc2)

2

2
τ c3

2(τ c2)
2ησ = {τ c4 −

(τ c2)
2

1− α
}(1 + ζc3) +

(ζc3)
2

4
(τ 4 − 1)

2(τ c2)
2κσ = ζc2(ζ

c
2 + 2τ

c
3 + ζc3τ 3).

For a given f, α, c, and c̄, the coefficients η and κ are known. The parameters (σ2,Σ, μ)
are estimated by σ̆2LS, see (3.11), NTSxxNT/(1−α), see (3.4), and T−1/2NTSx1/(1−α),
see (3.5), respectively, so that, for instance,

(Σ̆−1η + Σ̆−1μ̆μ̆0Σ̆−1κ)−1/2σ̆−1LST
1/2(β̆LS − β)

D→ Nm (0, Im) .

The case where f is symmetric is of special interest. The critical value is then
c = −c = c and τ 3 = τ c3 = 0 and ξc0 = ξc2 = 0 so ζc2 = 0, whereas ξc1 = 2cf (c) and
ξc3 = 2c

3f(c) so ζc3 = {c2 − τ c2/(1 − α)}2cf(c). It follows that κβ = κσ = κc = ηc = 0.
Theorem 4.1 then has the following Corollary.

Corollary 4.2 If f is symmetric and the assumptions of Theorem 4.1 hold, then

T 1/2
µ

β̆LS − β
σ̆2LS − σ2

¶
D→ Nm+1{0,

µ
σ2ηβΣ

−1 0
0 2σ4ησ

¶
},
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Figure 1: The efficiency of the estimators β̆LS and σ̆
2
LS with respect to the least squares

estimators β̂ and σ̂2, respectively, for f equal to the Gaussian density.

where, with ξc1 = 2cf (c) and ζ
c
3 = {c2 − τ c2/(1− α)}2cf(c), it holds

(1− α)2ηβ = τ c2(1 + 2ξ
c
1) + (ξ

c
1)
2,

2(τ c2)
2ησ = {τ c4 −

(τ c2)
2

1− α
}(1 + ζc3) +

(ζc3)
2

4
(τ 4 − 1).

Corollary 4.2 shows that the efficiency of the indicator saturated estimator β̆LS with
respect to the least squares estimator β̂ is

efficiency(β̂, β̆LS) = {asVar(β̆LS)}−1{asVar(β̂)} = η−1β .

Likewise the efficiency of σ̆LS is efficiency(σ̂
2, σ̆2LS) = η−1σ . In the symmetric case the

efficiency coefficients do not depend on the parameters of the process, only on the
reference density f and the chosen critical value c = c = −c. They are illustrated in
Figure 1.

4.2 The indicator saturated estimator

The indicator saturated estimator, β̆Sat, is a one-step M-estimator iterated twice. Its
properties are derived from Theorem 3.1. We first prove two representations corre-
sponding to (3.9) and (3.10) for the first round estimators β̃, σ̃2 based on the least
squares estimators β̂j and σ̂j. Secondly, the limiting distributions of these first round
estimators are found. Finally, the limiting distributions of the second round estimators
β̆Sat, σ̆Sat are found.

Theorem 4.3 Suppose γi = 0 for all i in model (2.1), and that xt is stationary with
mean μ, variance Σ, and finite fourth moment, and that ω̂2t,1 and ω̂

2
t,2 satisfy Assumption
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B. The density f satisfies Assumption A, and c and c̄ are chosen so that τ c1 = 0. Then,
for j = 1, 2 it holds, with λ1 + λ2 = 1 and λj > 0, that

T−1
X
t∈Ij

xt
P→ λjμ, T−1

X
t∈Ij

xtx
0
t
P→ λjΣ. (4.1)

Defining ζcn = ξcn−ξcn−2τ c2σ2/(1−α) and the function ht = (λ1/λ2)1{t∈I2}+(λ2/λ1)1{t∈I1}.
Then it holds that

(1− α)ΣT 1/2(β̃ − β) = T−1/2
TX
t=1

[xt{εt1(cσ≤εt≤σc) + htξ
c
1εt}

+
ξc2
2
μht(ε

2
t/σ − σ)] + oP (1) , (4.2)

τ c2T
1/2(σ̃2 − σ2) = T−1/2

TX
t=1

{(ε2t − σ2
τ c2
1− α

)1(cσ≤εt≤σc)

+σζc2μ
0Σ−1xtεtht + σ

ζc3
2
(ε2t/σ − σ)ht}+ oP (1) . (4.3)

The asymptotic distribution of the first-round estimators β̃, σ̃2 can now be deduced.
For simplicity only β̃ is considered.

Theorem 4.4 Suppose γi = 0 for all i in model (2.1), and that xt is stationary with
mean μ, variance Σ, and finite fourth moment, and that ω̂2t,1 and ω̂

2
t,2 satisfy Assumption

B. The density f satisfies Assumption A, and c and c̄ are chosen so that τ c1 = 0. Then

T 1/2(β̃ − β)
D→ Nm

©
0, σ2(ηΣ−1 + κΣ−1μμ0Σ−1)

ª
, (4.4)

where

(1− α)2η = τ c2 (1 + 2ξ
c
1) + (ξ

c
1)
2 (
λ22
λ1
+

λ21
λ2
),

(1− α)2κ = ξc2[{
1

4
ξc2(τ 4 − 1) + ξ1τ 3}(

λ22
λ1
+

λ21
λ2
) + τ c3].

We note that the result of Hendry, Johansen, and Santos (2008) is a special case
of Theorem 4.4. They were concerned with the situation of estimating the mean in an
i.i.d. sequence where Σ = 1. Due to the relatively simple setup their proof could avoid
the empirical process arguments used here.
In the special case where λ1 = λ2 = 1/2 then the limiting expression for β̃ is exactly

the same as that for the robustified least squares estimator β̆LS, in that η = ηβ and
κ = κβ.
We finally analyse the situation where we first find the least squares estimators in

the two subsets I1 and I2, then construct β̃ and finally find the robustified least squares
estimator β̆Sat based upon β̃. For simplicity we consider only the symmetric case.
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Theorem 4.5 Suppose γt = 0, t = 1, . . . , T in model (2.1), and that xt is stationary
with mean μ, variance Σ, and finite fourth moment, and that ω̂2t,j and ω̃2t satisfy As-
sumption B. The symmetric density f satisfies Assumption A, and c and c̄ are chosen
so that τ c1 = 0. Then

T 1/2(β̆Sat − β)
D→ Nm(0, σ

2Σ−1ηSat),

where

(1− α)4ηSat = (1− α+ ξc1)τ
c
2{(1− α+ ξc1) + 2(ξ

c
1)
2}+ (ξc1)4(

λ21
λ2
+

λ22
λ1
). (4.5)

The assumption to the residual variance estimators is satisfied in a number of
situations. If ω̂2t,j = σ̂2j and ω̃2t = σ̃2 then Assumption B is trivially satisfied. If
ω̂2t,j = σ̂2j{1+ x0t(

P
s/∈Ij xsx

0
s)
−1xt} then Assumption B is satisfied due to the difference

in the order of magnitude of xt and
P

s/∈Ij xsx
0
s.

5 Asymptotic distribution for trending autoregres-
sive processes

We first discuss the limit distribution of the least squares estimator in a trend station-
ary k-th order autoregression, and then apply the results to the indicator saturated
estimator. Finally, the unit root case is discussed.

5.1 Least squares estimation in an autoregression

The asymptotic distribution of the least squares estimator is derived for a trend sta-
tionary autoregression. Consider a time series y1−k, . . . , yT . The model for yt has a
deterministic component dt. These satisfy the autoregressive equations

yt =
kX
i=1

γiyt−i + ϕdt−1 + εt, (5.1)

dt = Ddt−1,

where εt ∈ R are independent, identically distributed with mean zero and variance σ2,
whereas dt ∈ Rc are deterministic terms. The autoregression (5.1) is of the form (2.1)
with x0t = (yt−1, . . . , yt−k, d

0
t) and β0 = (γ1, . . . , γk, φ), so m = k + c. The least squares

estimator is denoted (β̂, σ̂2).
The deterministic terms are defined in terms of the matrix D which has character-

istic roots on the complex unit circle, so dt is a vector of terms such as a constant, a
linear trend, or periodic functions like seasonal dummies. For example,

D =

µ
1 0
0 −1

¶
with d0 =

µ
1
1

¶



Saturation by indicators in regression models 14

will generate a constant and a dummy for a bi-annual frequency. The deterministic
term dt is assumed to have linearly independent coordinates, which is formalised as
follows.

Assumption C |eigen (D)| = 1 and rank (d1, . . . , dc) = c.

It is convenient to introduce the companion form

Yt−1 =

⎛⎜⎝ yt−1
...

yt−k

⎞⎟⎠ , A =

½ ¡
γ1, . . . , γk−1

¢
γk

Ik−1 0

¾
, Φ =

µ
ϕ
0

¶
, et =

µ
εt
0

¶
,

so that Yt = AYt−1+Φdt−1+ et. Focusing on the stationary case where |eigen (A)| < 1
so A and D have no eigenvalues in common, Nielsen (2005, §3) shows that

Yt = Y ∗t +Ψdt where Y ∗t = AY ∗t−1 + et,

and Ψ is the unique solution of the linear equation Φ = ΨD −AΨ.
A normalization matrix NT is needed. To construct this let

MT = (
TP
t=1

dt−1d
0
t−1)

−1/2,

so that MT

PT
t=1 dt−1d

0
t−1M

0
T = Ic. Equivalently, a block diagonal normalisation, ND,

could be chosen ifD, without loss of generality, were assumed to have a Jordan structure
as in Nielsen (2005, §4). Theorem 4.1 of that paper then implies that

T−1/2MT

TP
t=1

dt−1 → μD,

for some vector μD. For the entire vector of regressors, xt = (Y
0
t−1, d

0
t−1)

0, define

NT =

µ
T−1/2 0
0 MT

¶µ
Ik −Ψ
0 Ic

¶
. (5.2)

Theorem 5.1 Let yt be the trend stationary process given by (5.1) so |eigen(A)| < 1,
with finite fourth moment and deterministic component satisfying Assumption C. Then,
with ΣY =

P∞
t=0A

tΩ (At)
0 and ΣD = Ic and μD = limT→∞ T−1/2MT

PT
t=1 dt it holds

NT

TX
t=1

µ
Yt−1
dt−1

¶µ
Yt−1
dt−1

¶0
N 0

T
P→ Σ

def
=

µ
ΣY 0
0 ΣD

¶
, (5.3)

T−1/2NT

TP
t=1

µ
Yt−1
dt−1

¶
P→ μ

def
=

µ
0
μD

¶
, (5.4)

max
1≤t≤T

|MTdt| = O(T−1/2), (5.5)

NT

TX
t=1

µ
Yt−1
dt−1

¶
ε0t

D→ Nm(0, σ
2Σ). (5.6)
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In particular, it holds

(N−1
T )0(β̂ − β)

D→ Nm(0, σ
2Σ−1), (5.7)

T 1/2(σ̂2 − σ2) = T−1/2
TP
t=1

(ε2t − σ2) + oP (1) = OP (1) . (5.8)

A conclusion from the above analysis is that the normalization by NT involving the
parameter separates the asymptotic distribution into independent components. This
will be exploited to simplify the analysis of the indicator saturated estimator below.

5.2 Indicator saturation in a trend stationary autoregression

We now turn to the indicator saturated estimator in the trend stationary autoregres-
sion, although only the first round estimator β̃ is considered. As before this estimator
will consist of a numerator and a denominator term, each of which is a sum of two
components. The main result in Theorem 3.1 can then be applied to each of these
components.

Theorem 5.2 Let yt be the trend stationary process given by (5.1) so |eigen(A)| <
1, with finite fourth moment, deterministic component satisfying Assumption C, and
ω̂2t,j satisfies Assumption B. Suppose the density f satisfies Assumption A, and the
truncation points are chosen so that τ c1 = 0. Finally, assume that

lim
T→∞

MT

P
t∈Ij

dtd
0
tMT = ΣD,j > 0, (5.9)

lim
T→∞

T−1/2MT

P
t∈Ij

dt = μD,j, (5.10)

where ΣD,1 + ΣD,2 = Im and μD,1 + μD,2 = μ and define

μj =

µ
0

μD,j

¶
, Σj =

µ
λjΣY 0
0 ΣD,j

¶
.

Then it holds
(eβ − β)N−1

T
D→ Nm(0, σ

2Σ−1ΦΣ−1), (5.11)

where

(1− α)2Φ = τ c2(1 + 2ξ
c
1)Σ+ (ξ

c
1)
2(Σ2Σ

−1
1 Σ2 + Σ1Σ

−1
2 Σ1)

+τ c3
ξc2
2
(μ2μ

0
1 + μ1μ

0
2)(
1

λ1
+
1

λ2
) + (τ 4 − 1)(

ξc2
2
)2(

μ2μ
0
2

λ1
+

μ1μ
0
1

λ2
)

+τ 3
ξc1ξ

c
2

2
(
μ2μ

0
1Σ
−1
1 Σ2 + Σ2Σ

−1
1 μ1μ

0
2

λ1
+

μ1μ
0
2Σ
−1
2 Σ1 + Σ1Σ

−1
2 μ2μ

0
1

λ2
).
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A closer look at the expression for Φ shows that it is block diagonal. The variance for
the autoregressive components is (1−α)2ΦY = ΣY {τ c2(1+2ξc1)+(ξc1)2(λ22λ−11 +λ21λ

−1
2 )}.

The somewhat complicated limiting covariance matrix for the deterministic terms, ΦD,
simplifies in two important special cases highlighted in the next Corollary. This covers
the case where the reference density f is symmetric so ξc2 = 0 and the terms involving μj
disappear. Alternatively, the proportionality ΣD,j = λjIc and μD,j = λjμD would also
simplify the covariance. In §5.3 it is shown how this proportionality can be achieved
by choosing the index sets in a particular way.

Corollary 5.3 If f is symmetric then ξc2 = 0 so

(1− α)2Φ = τ c2(1 + 2ξ
c
1)Σ+ (ξ

c
1)
2(Σ2Σ

−1
1 Σ2 + Σ1Σ

−1
2 Σ1).

If ΣD,j = λjIc and μD,j = λjμD then Σj = λjΣ and μj = λjμ so Φ = ηβΣ + κβμμ
0,

where the constants ηβ, κβ were defined in Theorem 4.1.

5.3 Choice of index sets in the non-stationary case

Corollary 5.3 showed that the limiting distribution for the trend stationary case reduces
to that of the strictly stationary case in the presence of proportionality, that is, if
ΣD,j = λjIc and μD,j = λjμD. This can be achieved if the index sets are chosen
carefully. The key is that the index sets are, up to an approximation, alternating and
dense in [0, 1], so that for any 0 ≤ u ≤ v ≤ 1,

1

T

int(Tv)X
t∈int(Tu)+1

1(t∈Ij) → λj (v − u) , (5.12)

where λ1 + λ2 = 1. The alternating nature of the sets allows information to be accu-
mulated in a proportional fashion over the two sub-samples, even though the process
at hand is trend stationary. Two schemes for choosing the index sets are considered.
First, a random scheme which is, perhaps, most convenient in applications, and, sec-
ondly, a deterministic scheme. The random scheme is not far from what has been
applied in some Monte Carlo simulation experiments made by David Hendry in similar
situations.

5.3.1 Random index sets

We will consider one particular index set which is alternating in a random way. Gen-
erate a series of independent Bernoulli variables, ς1, . . . , ςT taking the values 1 and 2
so that

P (ςt = 1) = λ1, P (ς t = 2) = λ2, so λ1 + λ2 = 1

for some 0 ≤ λ1, λ2 ≤ 1. Then form the index sets

I1 = (t : ςt = 1) and I2 = (t : ς t = 2) .
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The index sequence has to be independent of the generating process for the data, so
that the data can be analysed conditionally on the index sets. In the following we will
comment on examples of deterministic processes and unit root processes.
Consider the trend stationary model in (5.1). Since the index sets are constructed

by independent sampling then

E(NT

X
t∈Ij

xtx
0
tN

0
T ) = E{NT

TX
t=1

(xtx
0
t)N

0
T}E1(ςt=j) = E{NT

TX
t=1

xtx
0
tN

0
T}λj → λjΣ,

E(T−1/2NT

X
t∈Ij

xt) = E(T−1/2NT

TX
t=1

xt)E1(ςt=j) = E(T
−1/2NT

TX
t=1

xt)λj → λjμ.

5.3.2 Alternating index sets

It is instructive also to consider an index set, which is alternating in a deterministic
way. That is

I1 = (t is odd) and I2 = (t is even) .
This index set satisfies the property (5.12) with λ1 = λ2 = 1/2.
Consider the trend stationary model in (5.1) where the eigenvalues of the deter-

ministic transition matrix D are all at one, so only polynomial trends are allowed. For
simplicity restrict the calculations to a bivariate deterministic terms and let T be even,
so with

dt =

µ
1
t

¶
, QT =

µ
1 0
0 T−1

¶
,

the desired proportionality then follows, in that

T−1QT

P
t∈Ij

dtd
0
tQT = T−1QT

T/2−1P
t=0

d2t+jd
0
2t+jQT →

1

2

µ
1 1/2
1/2 1/3

¶
,

T−1QT

P
t∈Ij

dt = T−1QT

T/2−1P
t=0

d2t+j →
1

2

µ
1
1/2

¶
.

The proportionality will, however, fail if the process has a seasonal component with
the same frequency as the alternation scheme. If for instance dt = (−1)t and T even
then it holds that

μD,1 = T−1
P
t∈I1

(−1)t = −1
2
, μD,2 = T−1

P
t∈I2

(−1)t = 1

2
, μ = T−1

TP
t=1

(−1)t = 0,

so μD,j 6= λjμ, and proportionality does not hold. The proportionality will only arise
when information is accumulated proportionally over the two index sets, either by
choosing them randomly or by constructing them to be out of sync with the seasonality,
for instance by choosing the first index set as every third observation.
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5.4 A few results for unit root processes.

Consider the first order autoregression

Xt = βXt−1 + εt, (5.13)

where β = 1 gives the unit root situation, and we assume for simplicity that f is
symmetric so ξc2 = 0 and the term involving kt falls away. The Functional Central
Limit Theorem shows that

T−1/2
int(Tu)X
t=1

⎧⎨⎩ εt1(t∈I1)
εt1(t∈I2)
εt1(|εt|<c)

⎫⎬⎭ D→

⎛⎝ w1u
w2u
wc
u

⎞⎠ =Wu,

where Wu is a Brownian motion with variance matrix

eΩ def
= σ2

⎛⎝ λ1 0 λ1τ
c
2

0 λ2 λ2τ
c
2

λ1τ
c
2 λ2τ

c
2 τ c2

⎞⎠ .

From the decomposition

X
t∈Ij

X2
t−1 =

TX
t=1

X2
t−11(t∈Ij) =

TX
t=1

X2
t−1λj +

TX
t=1

X2
t−1
©
1(t∈Ij) − λj

ª
,

it is seen that the first term is of order T 2, whereas the second term has mean zero and
variance λ1λ2E(

PT
t=1X

4
t−1); it is therefore of order T

3/2. It follows that

1

T 2
(
X
t∈I1

X2
t−1,

X
t∈I2

X2
t−1,

TX
t=1

X2
t−1)

D→ (λ1, λ2, 1)

Z 1

0

w2udu,

where wu = w1u + w2u is the Brownian motion generated by the cumulated εt. The
information accumulated over each of the two sub-samples are therefore proportional
to
R 1
0
w2udu. It follows from Theorem 3.1, that the first round indicator saturated

estimator satisfies

T (eβ − 1) D→
R 1
0
wud

©
wc
u + 2cf (c)

¡
λ−11 λ2w1u + λ−12 λ1w2u

¢ª
(1− α)2

R 1
0
w2udu

.

When c→∞ then wc
u
D→ wu while cf (c)→ 0 and α→ 0 giving the usual Dickey-Fuller

distribution,

T (β̂ − 1) D→
R 1
0
wudwuR 1
0
w2udu

.

While the limiting distribution is now different from the stationary case, the relevant
modification corresponds to the usual modification of normal distributions into Dickey-
Fuller-type distributions when moving from the stationary to the non-stationary case.
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Nearly the same arguments apply as with random index sets. In this case the
definition of the Brownian motions becomes

T−1/2
int(Tu/2)X

t=1

⎧⎨⎩ ε2t−1
ε2t

εt1(|εt|<c)

⎫⎬⎭ D→

⎛⎝ w1u
w2u
wc
u

⎞⎠ =Wu.

6 Proof of main result

The results of Theorem 3.1 concern the matrices

NTSxxN
0
T =

TX
t=1

NTxtx
0
tN

0
T1(c≤vt≤c), NTSxε =

TX
t=1

NTxtεt1(c≤vt≤c).

For NTSxxN
0
T the main idea in the proof is to approximate ω̂tvt = εt − (β̂ − β)0xt

by εt and the indicator 1(c≤vt≤c) by 1(cσ≤εt≤cσ), because the limit of the approximationPT
t=1NTxtx

0
tN

0
T1(cσ≤εt≤cσ) is easy to find. It turns out that the approximation involves

terms from the preliminary estimator of β and σ. In the proof of Theorem 3.1 this
replacement is justified using techniques for empirical processes and in particular Koul
(2002, Theorem 7.2.1, p.298).
We define the normalised regressors xTt = T 1/2NTxt and the estimation errors

âTt = ω̂t − σ, âT = σ̂ − σ and b̂T = T−1/2(N−1
T )0(β̂ − β). Then T 1/2(âT , b̂T ) = OP(1)

and T 1/2max1≤t≤T |âTt − âT | = T 1/2max1≤t≤T |ω̂t − σ̂| = oP(1) by assumption (i) of
Theorem 3.1. Note that

ω̂tvt = εt − (β̂ − β)0xt = εt − {T−1/2(N−1
T )0(β̂ − β)}0(T 1/2NTxt) = εt − b̂0TxTt, (6.1)

so that
(c ≤ vt ≤ c) = {c (σ + âTt) ≤ εt − b̂0TxTt ≤ c (σ + âTt)}.

We define u = (a, b0)0 and

It (u) = It (a, b) = 1{c(σ+a)≤εt−b0xTt≤c(σ+a)} − 1(cσ≤εt≤cσ), (6.2)

and find for the denominator NTSxxN
0
T

NTSxxN
0
T = T−1

TX
t=1

xTtx
0
Tt1(c≤vt≤c) = T−1

TX
t=1

xTtx
0
Tt1(cσ≤εt≤cσ) (6.3)

+T−1
TX
t=1

xTtx
0
Tt{It(âTt, b̂T )− It(âT , b̂T )}+ T−1

TX
t=1

xTtx
0
TtIt(âT , b̂T )

We then have to show that âtT is so close to âT that the second term tends to
zero, and if we can show that T−1

PT
t=1 xTtx

0
TtIt(a, b) is tight as a process in (a, b) and

because T−1
PT

t=1 xTtx
0
TtIt(0, 0) = 0, and (âT , b̂T ) = OP(T

1/2), we find that the last
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term tends to zero. Finally we find from the Law of Large Numbers the probability
limit of the first term.
Similarly we find for NTSxε

NTSxε = T−1/2
TX
t=1

xTtεt1(c≤vt≤c) = T−1/2
TX
t=1

xTtεt1(cσ≤εt≤cσ)

+T−1/2
TX
t=1

xTtεt{It(âtT , b̂T )− It(âT , b̂T )}+ T−1/2
TX
t=1

xTtεtIt(âT , b̂T )

The limit of the second term will be shown to be zero because âTt is very close to âT .
We get a contribution from the third term, which we decompose at the point (a, b) as

T−1/2
TX
t=1

xTtεtIt(a, b) = T−1/2
TX
t=1

xTt[εtIt(a, b)− Et−1{εtIt(a, b)}]

+T−1/2
TX
t=1

xTtEt−1{εtIt(a, b)}.

The first of these tends to zero, and for the second we find that a linear approximation
to the smooth function Et−1{εtIt(a, b)} is aξc2+ b0xTtξ

c
1, and we therefore introduce the

processes, for c,m = 0, 1, 2,

M c,m
T = T−1/2

TX
t=1

gm (xTt) ε
c
t{It(âTt, b̂T )− It(âT , b̂T )} (6.4)

W c,m
T (a, b) =

1

T

TX
t=1

gm (xTt) ε
c
tIt (a, b) (6.5)

V c,m
T (a, b) =

1√
T

TX
t=1

gm(xTt)
©
εctIt (a, b)− σc−1(aξcc+1 + b0xTtξ

c
c)
ª
, (6.6)

where the function gm is given as

g0 (xTt) = 1, g1 (xTt) = xTt, g2 (xTt) = xTtx
0
Tt. (6.7)

Lemma 6.4 below shows that σc−1(aξcc+1 + b0xTtξ
c
c) is an approximation to the condi-

tional mean of εctIt (a, b) given the past. Theorems 6.5, 6.6, and 6.7 below show that
as T →∞ and if T 1/2(âT , b̂T ) is tight, then

M c,m
T

P→ 0, W c,m
T (âT , b̂T )

P→ 0 and V c,m
T (âT , b̂T )

P→ 0, . (6.8)

Some equalities and expansions are established initially in §6.1. The remainder
terms are analysed in §6.2. Finally, the threads are pulled together in a proof of
Theorem 3.1 in §6.3.
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6.1 Some initial inequalities and expansions

We define the indicator function 1(e≤ε≤f) as

1(e≤ε≤f) = 1(e≤f){1(ε≤f) − 1(ε≤e)}.

We first prove an inequality for differences of such indicator functions.

Lemma 6.1 For e < f, e0 < f0, and ζ ≥ max(|e− e0|, |f − f0|) we have

|1(e≤ε≤f) − 1(e0≤ε≤f0)| ≤ 1(|ε−e0|≤ζ) + 1(|ε−f0|≤ζ).

Proof of Lemma 6.1. From e = e0+(e−e0) and |e−e0| ≤ ζ we find e0−ζ ≤ e ≤ e0+ζ
and similarly f0 − ζ ≤ f ≤ f0 + ζ. Hence using the monotonicity in e and f, we find

1(e0+ζ≤ε≤f0−ζ) ≤ 1(e≤ε≤f) ≤ 1(e0−ζ≤ε≤f0+ζ).

Because the same inequalities hold for 1{e0≤ε≤f0} we find

|1(e≤ε≤f) − 1(e0≤ε≤f0)| ≤ 1(e0−ζ≤ε≤f0+ζ) − 1(e0+ζ≤ε≤f0−ζ) ≤ 1(|ε−e0|≤ζ) + 1(|ε−f0|≤ζ),

where the last inequality is found by exploiting that e0 ≤ f0 by assumption so

1(e0−ζ≤ε≤f0+ζ) = 1(e0−ζ≤f0+ζ){1(ε≤f0+ζ) − 1(ε≤e0−ζ} = 1(ε≤f0+ζ) − 1(ε≤e0−ζ),

whereas 1(e0+ζ>f0−ζ){1(ε≤e0+ζ) − 1(ε≤f0−ζ)} ≥ 0 so

−1(e0+ζ≤ε≤f0−ζ) = 1(e0+ζ≤f0−ζ){1(ε≤e0+ζ) − 1(ε≤f0−ζ)} ≤ 1(ε≤e0+ζ) − 1(ε≤f0−ζ).

Now, apply this result to the indicator function It (u) introduced in (6.2). Note
that It (0) = 0 and introduce the notation, for some δ > 0, and c = max(|c|, |c|),

Jt(u, δ) = 1{|εt−c(σ+a)−b0xTt|≤δ(c+|xTt|)} + 1{|εt−c(σ+a)−b0xTt|≤δ(c+|xTt|)}.

Lemma 6.2 For u = (a, b0)0, u0 = (a0, b00)
0 and |u− u0| ≤ δ we have

|It(u)− It(u0)| ≤ Jt (u0, δ)

Proof of Lemma 6.2. The object of interest is

It(u)− It(u0) = 1{c(σ+a)+b0xTt≤εt≤c(σ+a)+b0xTt} − 1{c(σ+a0)+b00xTt≤εt≤c(σ+a0)+b00xTt}.

The inequality follows from Lemma 6.1 by the choice e = c(σ + a) + b0xTt, e0 =
c(σ + a0) + b00xTt, f = c(σ + a) + b0xTt, f0 = c(σ + a0) + b00xTt, and ζ = δ(c+ |xTt|).

Introduce the notation Et−1 for the expectation conditional on the information given
by (xs, εs, s ≤ t− 1, xt).
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Lemma 6.3 For c ∈ N0, let u = (a, b0)0, u0 = (a0, b
0
0)
0 be random and E|εt|c < ∞.

Then it holds with c = max(|c|, |c|) that

Et−1{1(|u−u0|≤δ)|εt|c|It(u)− It(u0)|} ≤ Et−1|εt|cJt(u0, δ)
≤ 4δσc−1(c+ |xTt|) sup

v∈R
|v|cf(v).

Proof of Lemma 6.3. The first inequality follows from Lemma 6.2. The function
Jt(u0, δ) is nonzero on two intervals of total length 4δ(c + |xTt|), and the integrand
|εt|cf(εt/σ)/σ is bounded by σc−1 supv∈R |v|cf(v), so that the second inequality holds.

Finally, an approximation to the conditional expectation of εtIt(u) follows.

Lemma 6.4 Let f have derivative f 0. For u = (a, b0)0 and |u| ≤ δ it holds for c ∈ N0¯̄
Et−1

©
εctIt(u)

ª
− σc−1(aξcc+1 + b0xTtξ

c
c)
¯̄
≤ 2δ2 sup

v∈R
{c|v|c−1f(v) + |vcf 0(v)|}(c2 + |xTt|2),

where c = max(|c|, |c|) and ξcc = (c)cf (c)− (c)cf (c) .

Proof of Lemma 6.4. Let ψ(ε) = (ε/σ)c f(ε/σ). A second order Taylor expansion
gives Z cσ+h

cσ

ψ(ε)dε = hψ(cσ) +
1

2
h2ψ0 (σc∗) ,

for c∗ satisfying |σc− σc∗| ≤ h. Thus

σ1−cEt−1
©
εctIt(u)

ª
=

Z c(σ+a)+b0xTt

c(σ+a)+b0xTt

ψ(ε)dε−
Z cσ

cσ

ψ(ε)dε = S − S,

where

S = (ca+ b0xTt)ψ(cσ) +
1

2
(ca+ b0xTt)

2ψ0 (σc∗1) ,

S = (ca+ b0xTt)ψ(cσ) +
1

2
(ca+ b0xTt)

2ψ0 (σc∗2) .

Using ψ(cσ) = ccf(c) the first order term of S − S is

(ca+ b0xTt)(c)
cf(c)− (ca+ b0xTt)(c)

cf(c) = aξcc+1 + b0xTtξ
c
c.

Using (|c|a+ b0xTt)
2 ≤ 2δ2(c2 + |xTt|2) the second order term is bounded by

2δ2(c2 + |xTt|2) sup
v∈R

|ψ0 (v)| ≤ 2δ2(c2 + |xTt|2) sup
v∈R
{c|v|c−1f(v) + |vcf 0(v)|}.
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6.2 Some limit results

The first result on M c,m
T shows that we can replace the estimator, ω̂2t , of the variance

of the residuals with σ̂2.

Theorem 6.5 Let c ∈ N0 and m ∈ {0, 1, 2}. Suppose that
(i) θTT

1/2max1≤t≤T |âtT − âT | = OP(1), for some θT →∞
(ii) maxt≤T E |xTt|3 = O(1),
(iii) supv |v|cf(v) <∞ and E|εt|c <∞.Then it holds for T →∞ that

M c,m
T =

1

T 1/2

TX
t=1

gm (xTt) ε
c
t{It(âtT , b̂T )− It(âT , b̂T )} P→ 0

Proof of Theorem 6.5. Due to condition (i) , for all ζ > 0 there exists a U > 0
so that for large T then P(θTT 1/2max1≤t≤T |âtT − âT | ≤ U) ≥ 1 − ζ. Thus, with

δT = UT−1/2θ−1T , it suffices to show that |M c,m
T |1(max1≤t≤T |âtT−âT |≤δT )

P→ 0, and in turn
by the Markov inequality it suffices to show S = E|M c,m

T |1(max1≤t≤T |âtT−âT |≤δT ) → 0.
Using the triangle inequality and taking iterated expectations it holds

S ≤ 1

T 1/2

TX
t=1

E|xTt|mEt−1{εct|It(âtT , b̂T )− It(âT , b̂T )|1(max1≤t≤T |âtT−âT |≤δT )}.

Lemma 6.2 then shows

S ≤ 4δTT 1/2σc−1 sup
v∈R
{|v|cf(v)}a−1T−1E

TX
t=1

|xTt|m(c+ |xTt|).

This vanishes since δTT 1/2 → 0 and the other terms are bounded.

Theorem 6.6 Let c ∈ N0 and m ∈ {0, 1, 2}. Suppose that
(i) (âT , b̂T ) = OP(T

−1/2),
(ii) maxt≤T E |xTt|m+1 = O(1),
(iii) supv |v|cf(v) <∞ and E|εt|c <∞.
Then it holds for T →∞ that

W c,m
T (âT , b̂T ) =

1

T

TX
t=1

gm (xTt) ε
c
tIt(âT , b̂T )

P→ 0, (6.9)

where gm was defined in (6.7) as 1, xTt, xTtx0Tt for m = 0, 1, 2, so that |gm(xTt)| ≤
|xTt|m.

Proof of Theorem 6.6. Due to condition (i) , for all ζ > 0 there exists a U > 0 so
that for large T then P{|(âT , b̂T )| ≤ T−1/2U} ≥ 1 − ζ. Thus, it suffices to show that
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sup|u|≤T−1/2U |W c,m
T (u) | P→ 0, and in turn by the Markov inequality it suffices to show

that E sup|u|≤T−1/2U |W c,m
T (u) |→ 0.

Because It(0) = 0 then It(u) = It(u) − It(0). Lemma 6.2 then shows |It(u)| ≤
Jt
¡
0, T−1/2U

¢
for |u| ≤ T−1/2U. Thus, using the triangle inequality it holds

sup
|u|≤T−1/2U

|W c,m
T (u) | ≤ 1

T

TX
t=1

|xTt|m |εt|c Jt(0, T−1/2U).

Then take iterated expectations

S = E{ sup
|u|≤T−1/2U

|W c,m
T (u) |} ≤ E 1

T

TX
t=1

|xTt|mEt−1|εt|cJt(0, T−1/2U). (6.10)

Apply Lemma 6.3 with δ = T−1/2U and find

S ≤ E
1

T

TX
t=1

|xTt|m
4Uσc−1

T 1/2
(c+ |xTt|) sup

v∈R
|v|cf(v)

= 4Uσc−1 sup
v∈R
{|v|cf(v)} 1

T 3/2

TX
t=1

{cE (|xTt|m) + E(|xTt|m+1)},

which vanishes due to Assumptions (ii) and (iii) .

Theorem 6.7 Let c ∈ N0 and m ∈ {0, 1}. Suppose that
(i) (âT , b̂T ) = OP(T

−1/2),
(ii) maxt≤T E |xTt|3 = O(1),
(iii) supv∈R

©
(c|v|c−1 + |v|c + v2c)f(v) + |vcf 0(v)|

ª
<∞ and E|εt|2c <∞.

Then it holds for T →∞ that

V c,m
T (âT , b̂T ) =

1√
T

TX
t=1

gm(xTt){εctIt(âT , b̂T )− σc−1(âT ξ
c
c+1 + b̂0TxTtξ

c
c)}

P→ 0.

Proof. As in the proof of Theorem 6.6, using condition (i), it suffices to show that

sup|u|≤T−1/2U |V c,m
T (u)| P→ 0.

1. Decompose V c,m
T as a sum of martingale differences ṼT and a correction term V T

so V c,m
T (u) = ṼT (u) + V T (u), where

ṼT (u) =
1√
T

TX
t=1

gm(xTt)[ε
c
tIt (u)− Et−1{εctIt (u)}]

V T (u) =
1√
T

TX
t=1

gm(xTt)[Et−1{εctIt (u)}− σc−1(âtT ξ
c
c+1 + b̂0TxTtξ

c
c)]
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It has to be shown that the supremum of each of these terms vanishes.
2. The term V T (u). Using first the triangular inequality and then Lemma 6.4 with

δ = T−1/2U gives

sup
|u|≤T−1/2U

|V T (u)| ≤ sup
|u|≤T−1/2U

1√
T

TX
t=1

|xTt|m |Et−1{εctIt (u)}− σc−1(aξcc+1 + b0xTtξ
c
c)|

≤ 2U2 sup
v∈R
{c|v|c−1f(v) + |vcf 0(v)|} 1

T 3/2

TX
t=1

|xTt|m (c2 + |xTt|2)

= OP(T
−1/2),

by Assumption (ii) and (iii), because maxt≤T (E |xTt|m ,E |xTt|m+2) is bounded.
3. The term ṼT (u). For a given χ, to be chosen later, choose |uk| ≤ UT−1/2, k =

1, . . . ,K and Bk = (u : |u − uk| ≤ χT−1/2, |u| ≤ UT−1/2)T−1/2 as a finite cover of
(u : |u| ≤ UT−1/2). Thus, for any u we have u ∈ Bk for some k. In particular, it holds
for u ∈ Bk

|ṼT (u)| ≤ |ṼT (uk)|+ |ṼT (u)− ṼT (uk)| ≤ max
k
|ṼT (uk)|+max

k
sup
u∈Bk

|ṼT (u)− ṼT (uk)|.

4. The term maxk |ṼT (uk)|. Because ṼT is a sum of martingale differences then

Var{ṼT (uk)} =
1

T
E

TX
t=1

£
gm(xTt)gm(xTt)

0Vart−1{εctIt (uk)}
¤
.

From Lemma 6.2 with u0 = 0, It (0) = 0, and |uk| ≤ UT−1/2 we have
©
εctIt (uk)

ª2 ≤
ε2ct J

2
t (0, UT

−1/2). Further, by the inequality (a+b)2 ≤ 2(a2+b2)we have J2t (0, UT−1/2) ≤
2Jt(0, UT

−1/2), so that from Lemma 6.3 we find

Et−1
©
εctIt (uk)

ª2 ≤ 2Et−1ε2ct Jt(0, UT−1/2) ≤ 8 U

T 1/2
σ2c−1(c+ |xTt|) sup

v∈R
|v|2cf(v). (6.11)

Since Vart−1{εctIt (uk)} ≤ Et−1
©
εctIt (uk)

ª2
it then holds

Var{ṼT (uk)} ≤
8Uσ2c−1

T 3/2
sup
v∈R
{v2cf(v)}

TX
t=1

E{|xTt|2m (c+ |xTt|)} ≤
c0
T 1/2

,

because maxt≤T (E |xTt|2m ,E |xTt|2m+1) is bounded. Using first Boole’s inequality and
then Chebychev’s inequality it then holds for a ζ > 0 to be chosen later

P{max
k
|ṼT (uk)| ≥ ζ} = P

K[
k=1

{|ṼT (uk)| ≥ ζ} ≤
KX
k=1

P{|ṼT (uk)| ≥ ζ}

≤ 1

ζ2

KX
k=1

Var{ṼT (uk)} ≤
c0K

T 1/2ζ2
→ 0, (6.12)
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for fixed K (and χ) and T →∞.
5. The term maxk supu∈Bk

|ṼT (u)− ṼT (uk)|. The inequality in Lemma 6.2 shows

sup
u∈Bk

|ṼT (u)− ṼT (uk)| ≤ ZT (k)

where

ZT (k) =
1

T 1/2

TX
t=1

|xTt|m [|εt|cJt(uk, T−1/2χ) + Et−1{|εt|cJt(uk, T−1/2χ)}],

because |u− uk| ≤ T−1/2χ.Again, write ZT as a sum of martingale differences Z̃T and
a correction term ZT so ZT (k) = Z̃T (k) + ZT (k) where

Z̃T (k) =
1

T 1/2

TX
t=1

|xTt|m [|εt|cJt(uk, T−1/2χ)− Et−1{|εt|cJt(uk, T−1/2χ)}],

ZT (k) =
2

T 1/2

TX
t=1

|xTt|m Et−1{|εt|cJt(uk, T−1/2χ)}.

6. The term maxk ZT (k). Lemma 6.3 shows

max
k

ZT (k) ≤ 8χ sup
v∈R
{|v|cf(v)} 1

T

TX
t=1

|xTt|m (c+ |xTt|) = OP(χ), (6.13)

due to Assumptions (ii), (iii) .
7. The term maxk Z̃T (k). Since Z̃T (k) is a sum of martingale differences then

Var{Z̃T (k)} =
1

T

TX
t=1

E[gm(xTt)gm(xTt)
0Vart−1{|εt|cJt(uk, T−1/2χ)}].

Since Vart−1{|εt|cJt(uk, T−1/2χ)} ≤ Et−1{|εt|cJt(uk, T−1/2χ)}2 then (6.11) shows

Var{Z̃T (k)} ≤ 4χσ2c−1 sup
v∈R
{v2cf(v)} 1

T 3/2

TX
t=1

E{|xTt|2m (c+ |xTt|)} = O(T−1/2),

because maxt≤T (E |xTt|2m ,E |xTt|2m+1) is bounded, using Assumptions (ii) and (iii) .
Then, like the evaluation (6.12), we find

P{max
k
| eZT (k)| ≥ ζ} ≤ c0M

T 1/2ζ2
→ 0.

8. The proof is now complete by noticing that for given ζ > 0 and ξ > 0 we can
first choose U so large that

P{T 1/2|(âT , b̂T )| ≥ U} ≤ ξ,

using condition (i). Next choose χ so small that (6.13) is small. Finally, choose T so
large that the remaining terms are small.
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6.3 Proof of main result

Proof of Theorem 3.1. We analyse the properties of the product moments:

S11 =
TX
t=1

1(c≤vt≤c), Sxx =
TX
t=1

xtx
0
t1(c≤vt≤c),

Sxε =
TX
t=1

xtεt1(c≤vt≤c), Sx1 =
TX
t=1

xt1(c≤vt≤c).

We define (âtT , b̂T ) = {ω̂t− σ, T−1/2(N−1
T )0(β̂ − β)}, and note, see (6.3) that the defin-

ition of W c,m
T (a, b) and M c,m

T implies that

T−1
TX
t=1

gm (xTt) ε
c
t1(c≤vt≤c) = T−1

TX
t=1

gm (xTt) ε
c
t1(cσ≤εt≤cσ) +

+T−1/2M c,m
T +W c,m

T (âT , b̂T ),

and that for xTt = T 1/2NTxt, Theorem 6.6 implies that W c,m
T (âT , b̂T ) = oP (1) and

Theorem 6.5 shows that M c,m
T = oP (1) .

The limits (3.3), (3.4), and (3.5). For m = 2, c = 0 we find

NTSxxN
0
T = NT

TX
t=1

xtx
0
t1(cσ≤εt≤cσ)N

0
T + oP(1).

Note that Et−1{1(cσ≤εt≤cσ)} = 1− α, so a martingale decomposition of the main term
on the right hand side is

NT

TX
t=1

xtx
0
t{1(cσ≤εt≤cσ) − (1− α)}N 0

T +NT

TX
t=1

xtx
0
tN

0
T (1− α).

The first term vanishes due to Chebychev’s inequality and Assumption (ii, c) . The
second term converges in probability to (1− α)Σ due to Assumption (ii, a) .
The limit of Sx1 is found by a similar argument for m = 1, c = 0, which gives

T−1/2NT

TX
t=1

xt1(c≤vt≤c) = T−1/2NT

TX
t=1

xt1(cσ≤εt≤cσ) + oP(1).

A martingale decomposition of the main term on the right hand side is

T−1/2NT

TX
t=1

xt{1(cσ≤εt≤cσ) − (1− α)}+ T−1/2NT

TX
t=1

xt(1− α).

The first term vanishes due to Chebychev’s inequality and Assumption (ii, a) . The
second term converges to (1− α)μ due to Assumption (ii, b) .
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Finally for m = c = 0, we find

T−1
TX
t=1

1(c≤vt≤c) = T−1
TX
t=1

1(cσ≤εt≤cσ) + oP(1)
P→ 1− α.

The representations (3.6), (3.7), and (3.8): The definition of V c,m
T (âT , b̂T ) implies

that for m = 0, 1, c = 0, 1, 2 we have the representation

T−1/2
TX
t=1

gm(xTt)ε
c
t1{c≤vt≤c} =M c,m

T + V c,m
T (âT , b̂T )

+T−1/2
TX
t=1

gm(xTt)[ε
c
t1(cσ≤εt≤cσ) + σc−1{x0Tt(β̂ − β)ξcc + (σ̂ − σ)ξcc+1}],

and that for xTt = T 1/2NTxt, Theorem 6.7 implies that V c,m
T (âT , b̂T ) = oP(1) and

Theorem 6.5 shows that M c,m
T = oP(1).

The representation of S11 follows for c = m = 0, and by noting that

T−1
TX
t=1

1(cσ≤εt<c̄σ)
P→ 1− α,

we have proved (3.4). The representation of NTSxε follows for c = m = 1. Finally the
representation of term Sεε follows for m = 0, c = 2.

Proof of Corollary 3.2. Representation of (N−1
T )0(β̆ − β): From (3.1) we have

(N−1
T )0(β̆ − β) = (NTSxxN

0
T )
−1NTSxε.

Because NTSxxN
0
T

P→ (1− α)Σ > 0 by (3.4), we see that β̆ is defined with probability
tending to one, and the representation (3.9) follows from (3.6).
The representation of T 1/2(σ̆2−σ2): We use the expression, see (3.2), to show that

S−111 (Syy − SyxS
−1
xx Sxy) = S−111 {Sεε +OP(1)}

P→ σ2
τ c2
1− α

.

This shows that we need to bias correct the empirical variance and therefore we consider

σ̆2 − σ2 = (1− α)(τ c2)
−1S−111 (Syy − SyxS

−1
xx Sxy) = (1− α)(τ c2)

−1S−111 {Sεε +OP(1)},

and hence
τ c2T

1/2(σ̆2 − σ2) = T 1/2(Sεε − σ2
τ c2
1− α

S11) + OP(T
−1/2).

From (3.7) and (3.8) we find the representation

τ c2T
1/2(σ̆2 − σ2) = {T−1/2

TX
t=1

(ε2t − σ2
τ c2
1− α

)1(σc≤εt≤σc)

+T 1/2(σ̂ − σ)ζc3 + (β̂ − β)0N−1
T T−1/2NTxtζ

c
2)}+ oP(1),
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which proves (3.10), because T−1/2NTxt
P→ μ.

Consistency of the estimators: Finally it follows from the Assumption (i), (ii, a),
(3.9), and (3.10) that {(N−1

T )0(β̆−β), T 1/2(σ̆2−σ2)} = OP(1), and NT → 0 and T →∞
then imply that (β̆, σ̆2) P→ (β, σ2).

7 Proofs for stationary and trend stationary cases

The proofs relating to §4 and §5 follow.

Proof of Theorem 4.1. We apply Corollary 3.2, using NT = T−1/2Im. The least
squares estimator based on the full sample satisfies condition (i, a): T 1/2(σ̂−σ, β̂−β) =
OP(1), and the stationarity of xt shows that conditions (ii, a, b, c) hold.
For the numerator of the estimator β̆LS we therefore consider

T−1/2
TX
t=1

xtεt1(σc≤εt≤cσ) + ξc1ΣT
1/2(β̂ − β) + ξc2T

1/2(σ̂ − σ)μ,

and insert

T 1/2(β̂ − β) = Σ−1T−1/2
TX
t=1

xtεt + oP(1),

T 1/2(σ̂ − σ) =
1

2
T−1/2

TX
t=1

(ε2t/σ − σ) + oP(1).

This shows that (1− α)ΣT 1/2(β̆LS − β) has the same limit distribution as

T−1/2
TX
t=1

{xt(εt1(σc≤εt≤cσ) + ξc1εt) +
ξc2
2
(ε2t/σ − σ)μ}, (7.1)

where the summand is a martingale difference sequence. The Central Limit Theorem
for martingales shows that this expression is asymptotically Nm (0, σ

2Φβ) . To find Φβ

we calculate the sum of the conditional variances

T−1
TX
t=1

xtx
0
t{τ c2 + (ξc1)2 + 2ξc1τ 2c}+ μμ0(

ξc2
2
)2T−1

TX
t=1

(τ 4 − 1)

+T−1
TX
t=1

(xtμ
0 + μx0t)

ξc2
2
(τ c3 + ξc1τ 3)

P→ Σ{τ c2 + (ξc1)2 + 2ξ21τ c2}+ μμ0{(ξ
c
2

2
)2(τ 4 − 1) + ξc2(τ

c
3 + ξc1τ 3)}.

Divide by (1−α)Σ from right and left to get the limiting variance for T−1/2(β̆LS − β).
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For the estimator σ̆LS the limiting distribution of τ c2T
1/2(σ̆LS − σ) is, in the same

way, that of

T−1/2
TX
t=1

{(ε2t −
σ2τ c2
1− α

)1(σc≤εt≤cσ) + σζc2μ
0Σ−1xtεt + σ
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Finally, the asymptotic covariance is of the expressions (7.1), (7.2) is σ3Φc where
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Proof of Theorem 4.3. We want to apply Theorem 3.1 to the contributions for the
two subsets I1 and I2. The least squares estimator based on the full sample satisfies
condition (i, a): T 1/2(σ̂j − σ, β̂j − β) = OP(1), and the stationarity of xt shows that
conditions (ii, a, b, c) hold. Thus, define the product moments
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The stationarity of xt implies that (4.1) holds. Considering the term Sxx apply (3.4)
of Theorem (3.1) to get
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xx

P→ λj(1− α)Σ so T−1Sxx
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since Tj/T → λj.
Representation of T 1/2(β̃ − β) : The estimator β̃ satisfies
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, Theorem 3.1 shows
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where β̂2, σ̂2 are the initial least squares estimators satisfying
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Interchanging the role of the indices 1, 2 gives a similar expression for β̃
2−β. Combining

these expressions according to (7.4) then proves (4.2).
Representation of T 1/2(σ̃2 − σ2): We use the expression (3.2) showing
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We apply (3.7) and (3.8) and find that the contribution from I1 is
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which together with an expression for the contribution from I2 shows (4.3).

Proof of Theorem 4.4. We apply (4.2) where the summands on the right hand
side is a martingale difference sequence and we apply the Central Limit Theorem for
martingales to shows that T 1/2(β̃ − β)

D→ Nm (0,Φ). In order to find Φ we calculate
the sum of the conditional variances and find
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Using the relations
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we find the limit (4.4).

Proof of Theorem 4.5. We apply Theorem 3.1 and Corollary 3.2. The initial
estimators β̃ and σ̃2 satisfy condition (i, a), and the stationarity implies conditions

(ii, a, b, c).We therefore get that T−1Sxx
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we find from (3.9), that, when the density is symmetric so that ξc2 = 0,
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Now insert the expression for β̃ in (4.2) with ξc2 = 0, which is
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Again the summands form a martingale difference sequence and the Central Limit
Theorem for martingales shows that T 1/2(β̆ − β)

D→ N(0,Φ). We calculate the sum of
the conditional variances

σ2T−1
TX
t=1

xtx
0
t{(1 +

ξc1
1− α

)2τ c2 + h2t
(ξc1)

4

(1− α)2
+ 2(1 +

ξc1
1− α

)
(ξc1)

2

1− α
htτ

c
2},

which converges in probability towards

σ2

(1− α)2
Σ{(1− α+ ξc1)

2τ c2 + 2(1− α+ ξc1)(ξ
c
1)
2τ c2 + (

λ21
λ2
+

λ22
λ1
)(ξc1)

4},

which gives the expression (4.5) after dividing by (1− α)2Σ2.
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Proof of Theorem 5.1. The results (5.3), (5.4), (5.5): Note that it can be assumed
without loss of generality that D has the Jordan form of Nielsen (2005, §4). Using
the normalisation ND suggested in that paper it follows that T−1N 0

D

PT
t=1 dtd

0
tND con-

verges. The results then follow from Nielsen (2005, Theorem 4.1, 6.2, 6.4).
The result (5.6) follows from the Central Limit Theorem for martingales noting

that the Lindeberg conditions hold:
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Finally, (5.7), (5.8) follow by combining (5.3) and (5.6).

Proof of Theorem 5.2. We can mimic the steps of the proof of Theorem 5.1 for
the sums over the subsets t ∈ Ij rather than t ∈ I1 ∪ I2. Thus, the assumptions of
Theorem 3.1 are satisfied for each subset. In particular, it holds
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We can now apply Theorem 3.1 to the estimator
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This expression is a sum of a martingale difference sequence and we therefore apply
the Central Limit Theorem for martingales. We calculate the sum of the conditional
variances to be
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Now we apply the results thatPT
t=1NTxtx

0
tN

0
T

P→ Σ, T−1
PT

t=1KtK
0
t →

μ2μ
0
2

λ1
+

μ1μ
0
1

λ2PT
t=1HtNTxtx

0
tN

0
TH

0
t
P→ Σ2Σ

−1
1 Σ2 + Σ1Σ

−1
2 Σ1, T−1/2

PT
t=1NTxtK

0
t
P→ μ1μ

0
2 + μ2μ

0
1PT

t=1NTxtx
0
tN

0
TH

0
t
P→ Σ, T−1/2

PT
t=1HtNTxtK

0
t
P→ Σ2Σ

−1
1 μ1μ

0
2λ
−1
1 + Σ1Σ

−1
2 μ2μ

0
1λ
−1
2

which gives the result.
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