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1 Introduction

Stochastic volatility (SV) models are used heavily within the fields of financial economics and math-

ematical finance to capture the impact of time-varying volatility on financial markets and decision

making. The development of the subject has been highly multidisciplinary, with results drawn

from financial economics, probability theory and econometrics blending to produce methods that

aid our understanding of option pricing, efficient portfolio allocation and accurate risk assessment

and management.

Time-varying volatility is endemic in financial markets. This has been known for a long time,

with early comments including Mandelbrot (1963) and Fama (1965). It was also clear to the found-

ing fathers of modern continuous-time finance that homogeneity was an unrealistic if convenient

simplification, e.g. Black and Scholes (1972, p. 416) wrote “... there is evidence of non-stationarity

in the variance. More work must be done to predict variances using the information available.”

Heterogeneity has deep implications for the theory and practice of financial economics and econo-

metrics. In particular, asset pricing theory implies that higher rewards are required as an asset is

exposed to more systematic risk. Of course, such risks may change through time in complicated

ways, and it is natural to build stochastic models for the temporal evolution in volatility and code-

pendence across assets. This allow us to explain, for example, empirically observed departures from

Black-Scholes-Merton option prices and understand why we should expect to see occasional dra-

matic moves in financial markets. More generally, they bring the application of financial economics

closer to the empirical reality of the world we live in, allowing us to make better decisions, inspire

new theory and improve model building.

∗Chapter prepared for the Handbook of Financial Time Series, Springer Verlag.
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Autoregressive conditional heteroskedasticity (ARCH) processes are often described as SV, but

we do not follow that nomenclature. The essential feature of ARCH models is that they explicitly

model the conditional variance of returns given past returns observed by the econometrician. This

one-step-ahead prediction approach to volatility modeling is very powerful, particularly in the field

of risk management. It is convenient from an econometric viewpoint as it immediately delivers the

likelihood function as the product of one-step-ahead predictive densities.

In the SV approach the predictive distribution of returns is specified indirectly, via the structure

of the model, rather than explicitly. For a small number of SV models this predictive distribution

can be calculated explicitly but, invariably, for empirically realistic representations it has to be com-

puted numerically. This move away from direct one-step-ahead predictions has some advantages.

In particular, in continuous time it is more convenient, and perhaps more natural, to model directly

the volatility of asset prices as having its own stochastic process without worrying about the implied

one-step-ahead distribution of returns recorded over an arbitrary time interval convenient for the

econometrician, such as a day or a month. This does, however, raise some difficulties as the likeli-

hood function for SV models is not directly available, much to the frustration of econometricians

in the late 1980s and early 1990s.

Since the mid-1980s continuous-time SV has dominated the option pricing literature but early

on econometricians struggled with the difficulties of estimating and testing these models. Only in

the 1990s were novel simulation strategies developed to efficiently estimate SV models. These com-

putationally intensive methods enable us, given enough coding and computing time, to efficiently

estimate a broad range of fully parametric SV models. This has lead to refinements of the mod-

els, with many earlier tractable models being rejected from an empirical viewpoint. The resulting

enriched SV literature has brought us much closer to the empirical realities we face in financial

markets.

From the late 1990s SV models have taken center stage in the econometric analysis of volatility

forecasting using high-frequency data based on realized volatility and related concepts. The reason

is that the econometric analysis of realized volatility is tied to continuous-time processes, so SV is

central. The close connection between SV and realized volatility has allowed financial econome-

tricians to harness the enriched information set available through high-frequency data to improve,

by an order of magnitude, the accuracy of their volatility forecasts over that traditionally offered

by ARCH models based on daily observations. This has broadened the applications of SV into the

important arena of risk assessment and asset allocation.

Below, we provide a selective overview of the SV literature. The exposition touches on models,

inference, options pricing and realized volatility. The SV literature has grown organically, with a
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variety of contributions playing important roles for particular branches of the literature, reflecting

the highly multidisciplinary nature of the research.

2 The origin of SV models

The modern treatment of SV is typically cast in continuous time, but many older contributions em-

ploy discrete-time models. Specifically, the early econometric studies tended to favor discrete-time

specifications, while financial mathematicians and financial economists often cast the problems in

a diffusive setting when addressing portfolio choice and derivatives pricing. In response, econome-

tricians have more recently developed practical inference tools for continuous-time SV models. We

start with a description of some important early studies cast in a discrete-time setting and then

cover the continuous-time formulations.

A central intuition in the SV literature is that asset returns are well approximated by a mixture

distribution where the mixture reflects the level of activity or news arrivals. Clark (1973) originates

this approach by specifying asset prices as subordinated stochastic processes directed by the incre-

ments to an underlying activity variable. Ignoring mean returns and letting the directing process

being independent of the return innovations he stipulates,

Yi = Xτi
, i = 0, 1, 2, ..., (1)

where Yi denotes the logarithmic asset price at time i and yi = Yi − Yi−1 the corresponding

continuously compounded return over [i − 1, i], Xi is a normally distributed random variable with

mean zero, variance σ2
X · i, and independent increments, and τi is a real-valued process initiated

at τ0 = 0 with non-negative and non-decreasing sample paths, i.e., it constitutes a time change.

Clark focuses on the case where the increments to τi represent independent draws from a stationary

distribution with finite variance, implying the subordinated return process also has independent

increments with zero mean. More generally, as long as the time change process is independent of

the price innovations, the asset returns are serially uncorrelated, albeit dependent, even if the time

change increments are not stationary or independent. In fact, we have

yi|(τi − τi−1) ∼ N(0, σ2
X · (τi − τi−1)). (2)

Thus, marginally, the asset returns follow a normal mixture, implying a symmetric but fat tailed

distribution. The directing or mixing process, τt, t ≥ 0,, is naturally interpreted as an indicator of

the intensity of price-relevant information flow over the interval [0, t]. Specifications of this type are

generally referred to as Mixture of Distributions Hypotheses (MDH). They induce heteroskedas-

tic return volatility and, if the time-change process is positively serially correlated, also volatility
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clustering. Clark explores the i.i.d. time-change specification only and relates the time-change to

trading volume. Many subsequent studies pursue the serially correlated volatility extension empir-

ically and seek to identify observable market proxies for the latent time-change process. Complete

specification of the joint dynamic distribution of return variation and related market variables al-

lows for a more structural oriented approach to stochastic volatility modeling, see, e.g., Epps and

Epps (1976), Tauchen and Pitts (1983), Andersen (1996), and Leisenfeld (2001).

For future reference, it is convenient to cast the Clark formulation in equivalent continuous-time

notation. To emphasize that the log-price process as specified as a martingale, we denote it M . We

may then restate equation (1) in a manner which implies the identical distribution for discretely

sampled data,

Mt = Wτt
, t ≥ 0, (3)

where W is Brownian motion (BM) and W and τ are independent processes. Technically, as long

as (for each t) E
√

τt < ∞, M is a martingale since this is necessary and sufficient to ensure that

E |Mt| < ∞.

Asset pricing theory asserts that securities exposed to systematic risk have expected positive

excess returns relative to the risk-free interest rate. As a result, asset prices will not generally be

martingales. Instead, assuming frictionless markets, a weak no-arbitrage condition implies that the

asset price will be a special semimartingale, see, e.g., Back (1991). This leads to the more general

formulation,

Y = Y0 + A + M, (4)

where the finite variation process, A, constitutes the expected mean return. If the asset represents

a claim on the broader market portfolio, a simple and popular specification for A is At = rf t+βτt,

with rf denoting the risk-free rate and β representing a risk premium due to the undiversifiable

variance risk. This means that the distributional MDH result in equation (2) generalizes to Yt|τt ∼
N(rf t + βτt, τt).

Clark’s main purpose was to advocate the MDH as an alternative to the empirically less at-

tractive stable processes. Although his framework lends itself to the appropriate generalizations,

he did not seek to accommodate the persistence in return volatility. In fact, only about a decade

later do we find a published SV paper explicitly dealing with volatility clustering, namely Taylor

(1982). Taylor models the risky part of returns as a product process,

mi = Mi − Mi−1 = σiεi. (5)
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ε is assumed to follow an autoregression with zero mean and unit variance, while σ is some non-

negative process. He completes the model by assuming ε ⊥⊥ σ and

σi = exp(hi/2), (6)

where h is a non-zero mean Gaussian linear process. The leading example of this is the first order

autoregression,

hi+1 = µ + φ (hi − µ) + ηi, (7)

where η is a zero mean, Gaussian white noise process. In the modern SV literature the model for

ε is typically simplified to an i.i.d. process, as the predictability of asset prices is incorporated in

the A process rather than in M . The resulting model is now often called the log-normal SV model

if ε is also assumed to be Gaussian. Finally, we note that M is a martingale as long as E (σi) < ∞,

which is satisfied for all models considered above if h is stationary.1

A key feature of SV, not discussed by Taylor, is that it can accommodate an asymmetric return-

volatility relation, often termed a statistical leverage effect in reference to Black (1976), even if it is

widely recognized that the asymmetry is largely unrelated to any underlying financial leverage. The

effect can be incorporated in discrete-time SV models by negatively correlating the Gaussian εi and

ηi so that the direction of returns impact future movements in the volatility process, with price drops

associated with subsequent increases in volatility. Leverage effects also generate skewness, via the

dynamics of the model, in the distribution of (Mi+s − Mi) |σi for s ≥ 2, although (Mi+1 − Mi) |σi

continues to be symmetric. This is a major impetus for the use of these models in pricing of equity

index options for which skewness appear endemic.

We now move towards a brief account of some early contributions to the continuous-time SV

literature. In that context, it is useful to link the above exposition to the corresponding continuous-

time specifications. The counterpart to the (cumulative) product process for the martingale com-

ponent in equation (5) is given by the stochastic integral representation,

Mt =

∫ t

0
σsdWs, (8)

where the non-negative spot volatility σ is assumed to have càdlàg sample paths. Note that this

allows for jumps in the volatility process. Moreover, SV models given by (8) have continuous

1Taylor’s discussion of the product process was predated by a decade in the unpublished Rosenberg (1972). This
remarkable paper appears to have been lost to the modern SV literature until recently, but is now available in
Shephard (2005). Rosenberg introduces product processes, empirically demonstrating that time-varying volatility is
partially predictable, and thus moving beyond Clark’s analysis on this critical dimension. He also explores a variety
of econometric methods for analyzing heteroskedasticity only reintroduced into the literature much later. Finally, he
studies an SV model which in some respects is a close precursor of ARCH models even if he clearly does not recognize
the practical significance of restrictions on his system that would lead to an ARCH representation.
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sample paths even if σ does not. A necessary and sufficient condition for M to constitute a

martingale is that E
√∫ t

0 σ2
sds < ∞. The squared volatility process is often termed the spot

variance. There is no necessity for σ and W to be independent, but when they are we obtain

the important simplification that Mt|
∫ t
0 σ2

sds ∼ N
(
0,

∫ t
0 σ2

sds
)
. This makes it evident that the

structure is closely related to the MDH or time-change representation (3) of Clark. The directing

process is labeled Integrated Variance, i.e., IVt =
∫ t
0 σ2

sds, and arises naturally as a quantity of key

interest in practical applications.

An early application of continuous-time SV models was the unpublished work by Johnson (1979)

who studied option pricing using time-changing volatility. While this project evolved into Johnson

and Shanno (1987), a more well known paper in the use of continuous-time SV models for option

pricing is Hull and White (1987) who allow the spot volatility process to follow a general diffusion.

In their approach the spot variation process is given as the solution to a univariate stochastic

differential equation,

dσ2 = α(σ2)dt + ω(σ2)dB, (9)

where B is a second Brownian motion and ω(.) is a non-negative deterministic function. By

potentially correlating the increments of W and B, Hull and White provide the first coherent

leverage model in financial economics. They compute option prices by numerical means for the

special case,

dσ2 = ασ2dt + ωσ2dB. (10)

This formulation is closely related to the so-called GARCH diffusion which arises as the diffusion

limit of a sequence of GARCH(1,1) models, see Nelson (1990), and has been used for volatility

forecasting. Another related representation is the square-root process which belongs to the affine

model class and allows for analytically tractable pricing of derivatives, as discussed in more detail

later.

Wiggins (1987) also starts from the general univariate diffusion (9) but then focuses on the

special case where log volatility follows a Gaussian Ornstein-Uhlenbeck (OU) process,

d log σ2 = α(µ − log σ2)dt + ωdB, α > 0. (11)

The log-normal SV model of Taylor (1982) can be thought of as an Euler discretization to this

continuous-time model over a unit time period. Ito’s formula implies that this log-normal OU

model can be written as

dσ2 =
{
θ − α log σ2

}
σ2dt + ωσ2dB. (12)
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It is evident that it resembles the previous models in important respects although it is also distinctly

different in the drift specification.

The initial diffusion-based SV models specify volatility to be Markovian with continuous sample

paths. This is a constraint on the general SV structure (8) which requires neither of these assump-

tions. Research in the late 1990s and early 2000s has shown that more complex volatility dynamics

are needed to model either options data or high-frequency return data. Leading extensions to the

model are to allow jumps into the volatility SDE, e.g., Barndorff-Nielsen and Shephard (2001) and

Eraker, Johannes, and Polson (2003)) or to model the volatility process as a function of a number

of separate stochastic processes or factors, e.g., Chernov, Gallant, Ghysels, and Tauchen (2003),

Barndorff-Nielsen and Shephard (2001)).

A final noteworthy observation is that SV models and time-changed Brownian motions provide

fundamental representations for continuous-time martingales. If M is a process with continuous

martingale sample paths then the celebrated Dambis-Dubins-Schwartz Theorem, e.g., Rogers and

Williams (1996, p. 64), ensures that M can be written as a time-changed BM with the time-change

being the quadratic variation (QV) process,

[M ]t = p− lim

n∑

j=1

(
Mtj − Mtj−1

)2
, (13)

for any sequence of partitions t0 = 0 < t1 < ... < tn = t with supj{tj − tj−1} → 0 for n → ∞.

What is more, as M has continuous sample paths, so must [M ]. Under the stronger condition

that [M ] is absolutely continuous, M can be written as a stochastic volatility process. This latter

result, known as the martingale representation theorem, is due to Doob (1953). Taken together

this implies that time-changed BMs are canonical in continuous sample path price processes and

SV models arise as special cases. In the SV case we thus have,

[M ]t =

∫ t

0
σ2

sds. (14)

Hence, the increments to the quadratic variation process are identical to the corresponding inte-

grated return variance generated by the SV model.

3 Second generation model building

3.1 Univariate models

3.1.1 Jumps

All the work discussed previously assumes that the asset price process is continuous. Yet, theory

asserts that discrete changes in price should occur when significant new information is revealed.

In fact, equity indices, Treasury bonds and foreign exchange rates all do appear to jump at the
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moment significant macroeconomic or monetary policy news are announced. Likewise, individual

stock prices often react abruptly to significant company-specific news like earnings reports, see, e.g.

Andersen, Bollerslev, Diebold, and Vega (2007) and Johannes and Dubinsky (2006). As long as

these jumps are unknown in terms of timing and/or magnitude this remains consistent with the

no-arbitrage semimartingale setting subject only to weak regularity conditions. The cumulative

sum of squared price jumps contribute to the return quadratic variation, thus generating distinct

diffusive (integrated variance) and jump components in volatility.

Moreover, empirical work using standard SV models, extended by adding jumps to the price

process, document significant improvements in model fit, e.g., Andersen, Benzoni, and Lund (2002)

and Eraker, Johannes, and Polson (2003). This follows, of course, earlier theoretical work by Merton

(1976) on adding jumps to the Black-Scholes diffusion. Bates (1996) was particularly important

for the option pricing literature as he documents the need to include jumps in addition to SV for

derivatives pricing, at least when volatility is Markovian.

Another restrictive feature of the early literature was the absence of jumps in the diffusive

volatility process. Such jumps are considered by Eraker, Johannes, and Polson (2003) who deem

this extension critical for adequate model fit. A very different approach for SV models was put forth

by Barndorff-Nielsen and Shephard (2001) who build volatility models from pure jump processes.

In particular, in their simplest model, σ2 represent the solution to the SDE

dσ2
t = −λσ2

t dt + dzλt, λ > 0, (15)

where z is a subordinator with independent, stationary and non-negative increments. The unusual

timing convention for zλt ensures that the stationary distribution of σ2 does not depend on λ.

These non-Gaussian OU processes are analytically tractable as they belong to the affine model

class discussed below.

Geman, Madan, and Yor (2002) provide a new perspective within the general setting by defining

the martingale component of prices as a time-change Lévy process, generalizing Clark’s time-change

of Brownian motion. Empirical evidence in Barndorff-Nielsen and Shephard (2006) suggest these

rather simple models may potentially perform well in practice. Note, if one builds the time-change

of the pure jump Lévy process from of an integrated non-Gaussian OU process then the resulting

process will not have any Brownian components in the continuous-time price process.

3.1.2 Long memory

In the first generation of SV models the volatility process was given by a simple SDE driven by a

BM. This implies that spot volatility is a Markov process. There is considerable empirical evidence

that, whether volatility is measured using high-frequency data over a few years or using daily data
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recorded over decades, the dependence in the volatility structure decays at a rapid rate for shorter

lags, but then at a much slower hyperbolic rate at longer lags. Moreover, consistent with the

hypothesis that long memory is operative in the volatility process, the estimates for the degree

of fractional integration appear remarkably stable irrespective of the sampling frequencies of the

underlying returns or the sample period, see Andersen and Bollerslev (1997). As an alternative, it

is possible to approximate the long memory feature well by specifying the (log) volatility process

via a sum of first-order autoregressive components, leading to multi-factor SV models as pursued

by, e.g., Chernov, Gallant, Ghysels, and Tauchen (2003).

The literature has been successful in directly accommodating the longer run volatility depen-

dencies through both discrete-time and continuous-time long memory SV models. In principle, this

is straightforward as it only requires specifying a long-memory model for σ. Breidt, Crato, and

de Lima (1998) and Harvey (1998) study discrete-time models where log volatility is modeled as a

fractionally integrated process. They show this can be handled econometrically by quasi-likelihood

estimators which are computationally simple, although not fully efficient. In continuous time Comte

and Renault (1998) model log volatility as a fractionally integrated BM. More recent work includes

the infinite superposition of non-negative OU processes introduced by Barndorff-Nielsen (2001).

The two latter models have the potential advantage that they potentially can be used for options

pricing without excessive computational effort.

3.2 Multivariate models

Diebold and Nerlove (1989) cast a multivariate SV model within the factor structure used in many

areas of asset pricing. Restated in continuous time, their model for the (N ×1) vector of martingale

components of the log asset price vector takes the form,

M =

J∑

j=1

(
β(j)F(j)

)
+ G, (16)

where the factors F(1),F(2),...,F(J) are independent univariate SV models, J < N , and G is a cor-

related (N × 1) BM, and the (N × 1) vector of factor loadings, β(j), remains constant through

time. This structure has the advantage that the martingale component of time-invariant portfolios

assembled from such assets will inherit this basic factor structure. Related papers on the economet-

rics of this model structure and their empirical performance include King, Sentana, and Wadhwani

(1994) and Fiorentini, Sentana, and Shephard (2004).

A more limited multivariate discrete-time model was put forth by Harvey, Ruiz, and Shep-

hard (1994) who suggest having the martingale components be given as a direct rotation of a

p-dimensional vector of univariate SV processes. Another early contribution was a multivariate
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extension of Jacquier, Polson, and Rossi (1994) which evolved into Jacquier, Polson, and Rossi

(1999). In recent years, the area has seen a dramatic increase in activity as is evident from the

chapter on Multivariate SV in this Handbook by Chib, Omori and Asai.

4 Inference based on return data

4.1 Moment based inference

A long standing difficulty for applications based on SV models was that the models were hard to

estimate efficiently in comparison with their ARCH cousins due to the latency of the volatility state

variable. In ARCH models, by construction, the likelihood (or quasi-likelihood) function is readily

available. In SV models this is not the case which early on inspired two separate approaches. First,

there is a literature on computationally intensive methods which approximate the efficiency of

likelihood-based inference arbitrarily well, but at the cost of using specialized and time-consuming

techniques. Second, a large number of papers have built relatively simple, inefficient estimators

based on easily computable moments of the model. We briefly review the second literature before

focusing on the former. We will look at the simplification high frequency data brings to these

questions in Section 6.

The task is to carry out inference based on a sequence of returns y = (y1, ..., yT )′ from which we

will attempt to learn about θ = (θ1, ..., θK)′, the parameters of the SV model. The early SV paper

by Taylor (1982) calibrated the discrete-time model using the method of moments. Melino and

Turnbull (1990) improve the inference by relying on a larger set of moment conditions and combining

them more efficiently as they exploit the generalized method of moments (GMM) procedure. The

quality of the (finite sample) GMM inference is quite sensitive to both the choice of the number

of moments to include and the exact choice of moments among the natural candidates. Andersen

and Sørensen (1996) provide practical guidelines for the GMM implementation and illustrate the

potentially sizeable efficiency gains in the context of the discrete-time lognormal SV model. One

practical drawback is that a second inference step is needed to conduct inference regarding the

realizations of the latent volatility process. A feasible approach is to use a linear Kalman filter

approximation to the system, given the first stage point estimates for the parameters, and extract

the volatility series from the filter. However, this is highly inefficient and the combination of a

two-step approach and a relatively crude approximation renders it hard to assess the precision of

the inference for volatility.

Harvey, Ruiz, and Shephard (1994) apply the natural idea of using the Kalman filter for joint

quasi-likelihood estimation of the model parameters and the time-varying volatility for the log-

normal SV model defined via (5) and (7). This method produces filtered as well as smoothed
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estimates of the underlying volatility process. The main drawback is that the method is quite

inefficient as the linearized system is highly non-Gaussian.

For continuous-time SV models, it is generally much harder to derive the requisite closed form

solutions for the return moments. Nonetheless, Meddahi (2001) provides a general approach for

generating moment conditions for the full range of models that fall within the so-called Eigenfunc-

tion SV class. A thorough account of the extensive literature on moment-based SV model inference,

including simulation-based techniques, is given in the chapter by Eric Renault.

4.2 Simulation-based inference

Within the last two decades, a number of scholars have started to develop and apply simulation-

based inference devices to tackle SV models. Concurrently two approaches were brought forward.

The first was the application of Markov chain Monte Carlo (MCMC) techniques. The second was

the development of indirect inference or the so-called efficient method of moments. To discuss these

methods it is convenient to focus on the simplest discrete-time log-normal SV model given by (5)

and (7).

MCMC allows us to simulate from high dimensional posterior densities, such as the smoothing

variables h|y, θ, where h = (h1, ..., hT )′ are the discrete time unobserved log-volatilities. Shephard

(1993) notes that SV models are a special case of a Markov random field so MCMC can be used for

simulation of h|y, θ. Hence, the simulation output inside an EM algorithm can be used to approx-

imate the maximum likelihood estimator of θ. However, the procedure converges slowly. Jacquier,

Polson, and Rossi (1994) demonstrate that a more elegant inference may be developed by becoming

Bayesian and using the MCMC algorithm to simulate from h, θ|y. Once the ability to compute

many simulations from this T + K dimensional random variable (there are K parameters), one

can discard the h variables and simply record the many draws from θ|y. Summarizing these draws

allows for fully efficient parametric inference in a relatively sleek way. Later, Kim, Shephard, and

Chib (1998) provide an extensive discussion of alternative methods for implementing the MCMC

algorithm. This is a subtle issue and can make a large difference to the computational efficiency of

the methods.

Kim, Shephard, and Chib (1998) also introduce a genuine filtering method for recursively sam-

pling from

h1, ..., hi|y1, ..., yi−1, θ, i = 1, 2, ..., T. (17)

These draws enable estimation, by simulation, of E
(
σ2

i |y1, ..., yt−1, θ
)

as well as the corresponding

density and the density of yi|y1, ..., yt−1, θ using the so-called particle filter, see, e.g., Gordon,

Salmond, and Smith (1993) and Pitt and Shephard (1999). These quantities are useful inputs for
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financial decision making as they are derived conditional only on current information. Moreover,

they allow for computation of marginal likelihoods for model comparison and for one-step-ahead

predictions for specification testing.2. Although these MCMC based papers are couched in discrete

time, it is also noted that the general approach can be adapted to handle models operating with

data generated at higher frequencies through data augmentation. This strategy was implemented

for diffusion estimation by Jones (1998), Eraker (2001), Elerian, Chib, and Shephard (2001), and

Roberts and Stramer (2001).

The MCMC approach works effectively under quite general circumstances, although it is de-

pendent on the ability to generate appropriate and efficient proposal densities for the potentially

complex conditional densities that arise during the recursive sampling procedure. An alternative is

to develop a method that maximizes a simulation based estimate of the likelihood function. This

may require some case-by-case development but it has been implemented for a class of important

discrete-time models by Danielsson and Richard (1993) using the Accelerated Gaussian Importance

Sampler. The procedure was further improved through improved simulation strategies by Fridman

and Harris (1998) and Leisenfeld and Richard (2003). A formal approach for simulated maximum

likelihood estimation of diffusions is developed by Pedersen (1995) and simultaneously, with a more

practical orientation, by Santa-Clara (1995). Later refinements and applications for SV diffusion

models include Elerian, Chib, and Shephard (2001), Brandt and Santa-Clara (2002), Durham and

Gallant (2002), and Durham (2003).

Another successful approach for diffusion estimation was developed via a novel extension to the

Simulated Method of Moments of Duffie and Singleton (1993). Gourieroux, Monfort, and Renault

(1993) and Gallant and Tauchen (1996) propose to fit the moments of a discrete-time auxiliary

model via simulations from the underlying continuous-time model of interest, thus developing the

approach into what is now termed Indirect Inference or the Efficient Method of Moments (EMM).

The latter approach may be intuitively explained as follows. First, an auxiliary model is chosen

to have a tractable likelihood function but with a generous parameterization that should ensure

a good fit to all significant features of the time series at hand. For financial data this typically

involves an ARMA-GARCH specification along with a dynamic and richly parameterized (semi-

nonparametric or SNP) representation of the density function for the return innovation distribution.

The auxiliary model is estimated by (quasi-) likelihood from the discretely observed data. This

provides a set of score moment functions which, ideally, encode important information regarding

the probabilistic structure of the actual data sample. Next, a very long sample is simulated from

the continuous-time model. The underlying continuous-time parameters are varied in order to

2A detailed account of the Particle Filter is given by Johannes and Polson in this Handbook
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produce the best possible fit to the quasi-score moment functions evaluated on the simulated data.

If the underlying continuous-time model is correctly specified it should be able to reproduce the

main features of the auxiliary score function extracted from the actual data. It can be shown,

under appropriate regularity, that the method provides asymptotically efficient inference for the

continuous-time parameter vector. A useful side-product is an extensive set of model diagnostics

and an explicit metric for measuring the extent of failure of models which do not adequately fit the

quasi-score moment function. Gallant, Hsieh, and Tauchen (1997) provide an in-depth discussion

and illustration of the use of these methods in practice. Moreover, the task of forecasting volatility

conditional on the past observed data (akin to filtering in MCMC) or extracting volatility given

the full data series (akin to smoothing in MCMC) may be undertaken in the EMM setting through

the reprojection method developed and illustrated in Gallant and Tauchen (1998).

An early use of Indirect Inference for SV diffusion estimation is Engle and Lee (1996) while

EMM has been extensively applied with early work exploring short rate volatility (Andersen and

Lund (1997)), option pricing under SV (Chernov and Ghysels (2000)), affine and quadratic term

structure models (Dai and Singleton (2000), Ahn, Dittmar, and Gallant (2002)), SV jump-diffusions

for equity returns (Andersen, Benzoni, and Lund (2002)) and term structure models with regime-

shifts (Bansal and Zhou (2002)).

An alternative approach to estimation of spot volatility in continuous time is given by Foster

and Nelson (1996). They develop an asymptotic distribution theory for a local variance estimator,

computed from the lagged data,

σ̂2
t = h−1

M∑

j=1

(
Yt−hj/M − Yt−h(j−1)/M

)2
. (18)

They study the behavior of the estimator as M → ∞ and h ↓ 0 under a set of regularity conditions,

ruling out, e.g., jumps in price or volatility. This “double asymptotics” yields a Gaussian limit

theory as long as h ↓ 0 and M → ∞ at the correct, connected rates. This is related to the realized

volatility approach detailed in a separate section below although, importantly, the latter focuses on

the integrated volatility rather than the spot volatility and thus avoids some of the implementation

issues associated with the double limit theory.

5 Options

5.1 Models

As discussed previously, the main impetus behind the early SV diffusion models was the desire to

obtain a realistic basis for option pricing. A particularly influential contribution was Hull and White

(1987) who studied a diffusion with leverage effects. Assuming volatility risk is fully diversifiable,
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they price options either by approximation or by simulation. The results suggest that SV models

are capable of producing smiles and skews in option implied volatilities as often observed in market

data. Renault (1997) studies these features systematically and confirms that smiles and smirks

emerge naturally from SV models via leverage effects.

The first analytic SV option pricing formula is by Stein and Stein (1991) who model σ as a

Gaussian OU process. European option prices may then be computed using a single Fourier inverse

which, in this literature, is deemed “closed form.” A conceptual issue with the Gaussian OU model is

that it allows for a negative volatility process. Heston (1993) overcomes this by employing a version

of the so-called square root volatility process. Bates (1996) extends the framework further to allow

for jumps in the underlying price and shows that these are critical for generating a reasonable fit to

option prices simultaneously across the strike and time-to-maturity spectrum. Another closed-form

option pricing solution is given by Nicolato and Venardos (2003) who rely on the non-Gaussian OU

SV models of Barndorff-Nielsen and Shephard (2001).

All models above belong to the affine class advocated by Duffie, Pan, and Singleton (2000).

These models are used extensively because they provide analytically tractable solutions for pricing

a wide range of derivative securities. The general case involves solving a set of ordinary differential

equations inside a numerical Fourier inverse but this may be done quickly on modern computers.

These developments have spurred more ambitious inference procedures for which the parameters

of affine SV models for both the underlying asset and the risk-neutral dynamics governing market

pricing are estimated jointly from data on options and the underlying. Chernov and Ghysels (2000)

estimate the affine SV diffusions for the actual and risk-neutral measures simultaneously using

EMM. Pan (2002) exploits at-the-money options while allowing for an affine SV jump-diffusion

representation under the actual and risk-neutral measure. Her inference is conducted via GMM,

exploiting the closed-form expressions for the joint conditional moment-generating function of stock

returns and volatility developed in Duffie, Pan, and Singleton (2000); see also Singleton (2001).

Eraker (2004) expands the model specification, using MCMC based inference, to include a wider

cross-section of option strikes and allowing for jumps in the volatility process as well. Finally, it

is possible to develop option pricing on time-change Lévy processes, see, e.g., Carr and Wu (2004)

who develop the derivatives pricing in a setting inspired by Geman, Madan, and Yor (2002).

6 Realized volatility

A couple of relatively recent developments have moved SV models towards the center of volatility

research. This process is related to the rapid increase in research under the general heading of

realized volatility.
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One major change is the advent of commonly available and very informative high-frequency

data, such as minute-by-minute return data or entire records of quote and/or transaction price

data for particular financial instruments. The first widely disseminated data of this type were

foreign exchange quotes gathered by Olsen & Associates, discussed in detail in the seminal work of

Dacorogna, Gencay, Müller, Olsen, and Pictet (2001). Later scholars started using tick-by-tick data

from the main equity and futures exchanges in the U.S. and Europe. This naturally moved the per-

spective away from fixed time intervals, such as a day, and into the realm where, at least in theory,

one thinks of inference regarding the price process over different horizons based on ever changing

information sets. This type of analysis is, of course, ideally suited to a continuous-time setting as

any finite-horizon distribution then, in principle, may be obtained through time aggregation. More-

over, this automatically ensures modeling coherence across different sampling frequencies. Hence,

almost by construction, volatility clustering in continuous time points us towards SV models.

A related development is the rapidly accumulating theoretical and empirical research on how to

exploit this high-frequency data to estimate the increments of the quadratic variation (QV) process

and then to use this estimate to project QV into the future in order to predict future levels of

volatility. This literature deals with various aspect of so-called realized variation, also often more

generically referred to as realized volatility. This section briefly introduces some of the main ideas,

leaning on contributions from Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-

Nielsen and Shephard (2002). A more detailed account is given in the chapter by Andersen and

Benzoni in this handbook.

In realized variation theory, high-frequency data are used to estimate the QV process. We let

δ denote a time period between high-frequency observations and define the realized QV process as,

[Yδ]t =

⌊t/δ⌋∑

j=1

{Y (δj) − Y (δ (j − 1))}2 . (19)

Then, by the definition of the QV process, as δ ↓ 0 so

[Yδ]t
p→[Y ]t, (20)

which the probability literature has shown to be well behaved if Y is a semimartingale. If the

expected return process has continuous sample paths, then [Y ] = [M ], and if additionally M is a

SV process then [Yδ]t
p→

∫ t
0 σ2

sds.

In practice, it is preferable to measure increments of the quadratic variation process over one

full trading day (or week). This measure is often referred to as the daily realized variance while its

square root then is denoted the daily realized volatility, following the terminology of the financial

mathematics literature. This should not be confused with the more generic terminology that
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refers to all transformations of realized quadratic variation measures as realized volatility. The

main reason for aggregating the realized variation measures to a daily frequency is the presence of

pronounced and systematic intraday patterns in return volatility. These stem from highly regular,

but dramatic, shifts in the quote and transactions intensity across the trading day as well as

the release of macroeconomic and financial news according to specific time tables. Often, new

information creates short-run dynamics akin to a price discovery process with an immediate price

jump followed by a brief burst in volatility, see, e.g., Andersen and Bollerslev (1998). As a result,

the intraday volatility process displays rather extreme variation and contains various components

with decidedly low volatility persistence. Consequently, the direct modeling of the ultra high-

frequency volatility process is both complex and cumbersome. Yet, once the return variation

process is aggregated into a time series of daily increments, the strong inter-daily dependence in

return volatility is brought out very clearly as the systematic intraday variation, to a large extent,

is annihilated by aggregation across the trading day. In fact, the evidence for inter-daily volatility

persistence is particularly transparent from realized volatility series compared to the traditional

volatility measures inferred from daily return data.

Andersen, Bollerslev, Diebold, and Labys (2001) show that a key input for forecasting the

volatility of future asset returns should be predictions of the future daily quadratic return variation.

Recall from Ito’s formula that, if Y is a continuous sample path semimartingale then

Y 2
t = [Y ]t + 2

∫ t

0
YsdYs = [Y ]t + 2

∫ t

0
YsdAs + 2

∫ t

0
YsdMs. (21)

Letting Ft denote the filtration generated by the continuous history of Yt up to time t and

exploiting that M is a martingale, we have

E(Y 2
t |F0) = E ([Y ]t|F0) + 2E

(∫ t

0
YsdAs|F0

)
. (22)

In practice, over small intervals of time, the second term is small, so that

E(Y 2
t |F0) ≃ E ([Y ]t|F0) . (23)

This implies that forecasting future squared daily returns can be done effectively through fore-

casts for future realized QV increments. A natural procedure estimates a time series model directly

from the past observable realized daily return variation and uses it to generate predictions for future

realized variances, as implemented through an ARFIMA model for realized log volatility in Ander-

sen, Bollerslev, Diebold, and Labys (2003). The incorporation of long memory through fractional

integration proves particularly important for forecast performance while only a few autoregres-

sive lags are needed to accommodate shorter run dependencies. Hence, long lags of appropriately
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weighted (hyperbolic decaying) realized log volatilities prove successful in forecasting future volatil-

ity.

A potential concern with this approach is that the QV theory only tells us that [Yδ]
p→[Y ], but

does not convey information regarding the likely size of the measurement error, [Yδ]t − [Y ]t. Jacod

(1994) and Barndorff-Nielsen and Shephard (2002) strengthen the consistency result to provide a

central limit theory for the univariate version of this object. They show that the measurement

errors are asymptotically uncorrelated and

δ−1/2 ([Yδ]t − [Y ]t)√
2
∫ t
0 σ4

sds

d→N(0, 1). (24)

The latter also develop a method for consistently estimating the integrated quarticity,
∫ t
0 σ4

sds, from

high-frequency data, thus enabling feasible inference on the basis of the above result. This analysis

may help simplify parametric estimation as we obtain estimates of the key volatility quantities that

SV models directly parameterize. In terms of volatility forecasting, the use of long lags of weighted

realized volatilities tends to effectively diversify away the impact of measurement errors so that the

predictive performance is less adversely impacted than one may suspect, see Andersen, Bollerslev,

and Meddahi (2006).

In the very recent past there have been various elaborations to this literature. We briefly mention

two. First, there has been interest in studying the impact of market microstructure effects on the

estimates of realized variance. This causes the estimator of the QV to become biased. Leading

papers on this topic are Hansen and Lunde (2006), Zhang, Mykland, and Aı̈t-Sahalia (2005), Bandi

and Russell (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006). Second, one can

estimate the QV of the continuous component of prices in the presence of jumps using the so-called

realized bipower variation process. This was introduced by Barndorff-Nielsen and Shephard (2004).
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