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Summary: Estimated characteristic roots in stationary autoregressions are
shown to give rather noisy information about their population equivalents. This
is remarkable given the central role of the characteristic roots in the theory of
autoregressive processes. In the asymptotic analysis the problems appear when
multiple roots are present as this imply a non-differentiability so the δ-method
does not apply, convergence rates are slow, and the asymptotic distribution is
non-normal. In finite samples this has a considerable influence on the finite
sample distribution unless the roots are far apart. With increasing order of
the autoregressions it becomes increasingly difficult to place the roots far apart
giving a very noisy signal from the characteristic roots.
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1 Introduction

Estimated characteristic roots in stationary autoregressions are shown to give rather
noisy information about their population equivalents. This is remarkable given the
central role of the characteristic roots in the theory of autoregressive processes (see
for instance Brockwell and Davis, 1996, or Hamilton, 1994). In the asymptotic
analysis the problems appear when multiple roots are present as this imply a non-
differentiability so the δ-method does not apply, convergence rates are slow, and the
asymptotic distribution is non-normal. In finite samples this has a considerable influ-
ence on the finite sample distribution unless the roots are far apart. With increasing
order of the autoregressions it becomes increasingly difficult to place the roots suffi-
ciently far apart, hence very noisy information about the characteristic roots results.

Computations were done using Ox (Doornik, 2002). The first author gratefully acknowledges finan-
cial support from ESRC grant RES-000-27-0179.
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Asymptotic theory for the estimated roots has previously been established by
Wymer (1972) and Johansen (2003). Starting from the long established asymptotic
theory for the autoregressive coefficients they derive an asymptotic theory for the
characteristic roots using the δ-method. They carefully avoid cases of multiple roots
to ensure that the transformation from the autoregressive coefficients to the roots is
locally differentiable. Here, it is established that convergence rates are slow when
there are multiple roots. This implies that the δ-method does not give accurate finite
sample approximation when the roots are close.
The difficulties in interpreting characteristic roots have been studied recently by

Granger and Jeon (2006). They argue that when empirical models have complex char-
acteristic roots in a torus around the origin it can be consistent either with seasonal
behaviour or with overfitting. This phenomena can, however, also be consistent with
non-seasonal behaviour, which makes it even more difficult to interpret estimated
characteristic roots. Thus, while autoregressive processes with known coefficients are
interpreted through their characteristic roots it appears that estimated characteristic
roots should only be interpreted with caution.
Just as the problem of finding the roots of polynomials, the problem of analysing

the distribution of characteristic roots analytically is rather difficult for higher order
processes. A complete asymptotic theory with accurate finite sample properties is
therefore only established in the tractable second order case. This analysis gives
enough information to understand the difficulties in the higher order case and to
explain the observations made by Granger and Jeon (2006).
Notation: the mapping x1/k is a complex multifunction, see Priestley (1990, page

91f ). Thus, for any real number x let x1/k be a uniquely chosen branch of x1/k. In
particular, when x is non-negative then x1/k is chosen as the positive and real solution.

2 The second order autoregression

The second order autoregressive case is analysed analytically. The analysis is done
in two steps, using first the δ-method and then a direct mapping. The results are
illustrated by simulations.

2.1 The model and asymptotics for the autoregressive coefficients

Consider a time series X−1, X0, . . . , XT and the statistical model given by

Xt = β1Xt−1 + β2Xt−2 + εt, t = 1, . . . , T. (2.1)

Here the initial values X−1, X0 are conditioned upon, the innovations ε1, . . . , εT are
independently, identically normal N(0, ω2)-distributed. The parameters β = (β1, β2)

0

and ω2 vary freely so ω2 > 0.
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The asymptotic theory for the least squares estimator bβ has long been established
in the stationary case, see Anderson (1971, page 200), and shows that

T 1/2(bβ − β) D→ N2(0,Σ
−1). (2.2)

Here, the variance matrix solves the equation Σ = AΣA0 + BB0, where B = (1, 0)0

and A = (β, B)0 is the companion matrix, and it is given by

Σ−1 = (1 + β2)

µ
1− β2 −β1
−β1 1− β2

¶
.

2.2 Analysing the characteristic roots by the δ-method

The characteristic polynomial is

p (z) = z2 − β1z − β2,

with characteristic roots, λ1 and λ2, solving the equation p (z) = 0. The roots are
given as (β1 ±D1/2)/2 where D = β21 + 4β2 is the discriminant. If D > 0 the roots
are real, if D < 0 the roots are complex, and if D = 0 there is a double root.
When D 6= 0 the mapping from β to the roots is differentiable. Thus the asymp-

totic distribution can be found using the δ-method. This was done by Wymer (1972)
and more generally by Johansen (2003). In the second order case the argument can
be made using a composite mapping ϕ ◦ψ. The first mapping finds the discriminant,

ψ: (β1, β2) 7→ (β1,D),
R2 7→ R2,

and is everywhere differentiable. The δ-method gives the following result.

Theorem 1 Suppose |λj| < 1. Let Jψ be the Jacobian of the mapping ψ. Then

T 1/2(bβ1 − β1, bD −D)0
D→ N(0, H),

where the covariance matrix is given by

H = JψΣ
−1J 0ψ =

½ ¡
1− β22

¢
−2β1 (1 + β2)

2

−2β1 (1 + β2)
2 16

¡
1− β22

¢
− 4β21 (1 + β2) (3 + β2)

¾
.

The second mapping is only differentiable when D 6= 0, and even so it depends on
the sign of D. When D > 0 the roots are real so the mapping is

ϕR2 : (β1, D) 7→ (β1 +D1/2, β1 −D1/2)/2 = (λ1, λ2)
R× R+ 7→ R2,
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Experiment (bλ1, bλ2) (bβ1, bβ2) (bβ1, bD) sign( bD) (bλ1, bλ2)
Theorem 2 Eq. (2.2) Theorem 1 Eq. (2.3) Theorem 3

Remark 4
A: (−0.5, 0.5) 0.92 0.94 0.94 0.99 0.94
B: (−0.35, 0.35) 0.88 0.95 0.95 0.88 0.95
C: (0.5, 0.8) 0.65 0.91 0.90 0.65 0.92
D: (0.7± 0.4i) 0.97 0.97 0.96 1.00 0.96
E: (0.7± 0.25i) 0.90 0.92 0.93 0.93 0.93
F : (0.7± 0.15i) 0.79 0.91 0.90 0.77 0.915

Table 1: Coverage probabilities with nominal level 0.95, based onN = 100 repetitions,
with Monte Carlo standard deviation of 0.07.

recalling that x1/2 is chosen to be positive and real when x is positive, whereas when
D < 0 the roots are complex, Re (λ)± Im (λ) , so the relevant mapping is

ϕC : (β1,D) 7→ {β1, (−D)1/2}/2 = {Re (λ) , Im (λ)} ,
R× R− 7→ R2.

Applying the δ-method to these mappings gives the following result, which is a special
case of Johansen (2003, Theorem 3).

Theorem 2 Suppose |λj| < 1.
Let D > 0. Then as T →∞,

T 1/2

Ã bλ1 − λ1bλ2 − λ2

!
D→ N2

¡
0, J+HJ 0+

¢
, J+ =

1

2

µ
1 D−1/2

1 −D−1/2

¶
.

Let D < 0. Then as T →∞,

T 1/2

(
Re(bλ)−Re (λ)
Im(bλ)− Im (λ)

)
D→ N2

¡
0, J−HJ 0−

¢
, J− =

1

2

½
1 0
0 (−D)−1/2

¾
.

The asymptotic distribution approximation given by Theorem 2 can be quite poor
in finite samples. Table 1 reports the result from a simulation study with sample
length T = 100 and six different pairs of characteristic roots. The coverage probability
of a 95% sampling region based on Theorem 2 is reported in column 2. It is seen
to deteriorate as the distance between the population roots decreases. Columns 3
and 4 indicate that the first transformation ψ preserves the coverage probability ofbβ, so the problem lies with the second transformation ϕ. Johansen (2003) pointed
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β2 0 0.01 0.04 0.09 0.16 0.25
Roots 0 ±0.1 ±0.2 ±0.3 ±0.4 ±0.5

Asymptotic T = 102 0.5 0.54 0.66 0.82 0.95 0.995
T = 103 0.5 0.62 0.90 0.998
T = 104 0.5 0.84

Simulated T = 102 0.469 0.508 0.624 0.787 0.929 0.990
T = 103 0.491 0.614 0.893 0.997
T = 104 0.497 0.840

Table 2: Probability that bD and D have the same sign when β1 = 0. Upper panel:
asymptotic approximation to probability based on (2.3). Lower panel: simulated
probability based on 105 repetitions, and zero initial values.

out that in finite samples problems can arise because the parabola determined by the
characteristic polynomial may be perturbed in such a way that for instance the sample
version of a parabola that intersects with the x-axis may not intersect with the x-axis.
This phenomena would arise if the estimated discriminant, bD, has the wrong sign.
Column 5 of Table 1 shows this probability computed from the asymptotic normal
approximation of Theorem 1, that is

P{sign( bD) = sign (D)} ≈ Φ(|νT |) where νT = −T 1/2H−1/2
22 D. (2.3)

These probabilities match the coverage probability of Theorem 2 to some extent.
The sign of the discriminant is therefore the key to the quality of the approximation

in Theorem 2. Table 2 therefore reports a detailed simulation study of the distribution
of bD evaluating the variation with the parameters and the quality of the asymptotic
approximation provided by equation (2.3). Different sample lengths are chosen while
the population roots, for simplicity, are located symmetrically around zero so β1 = 0
and D = 4β2. In particular, when D = 0 there is a double root in zero and formula
(2.3) shows the probability of observing real roots is about 50% for all sample lengths.

2.3 Direct mapping of sampling regions

In order to get an accurate distribution approximation for the characteristic roots the
δ-method is abandoned. Instead the sampling regions of Theorem 1 are transformed
directly using the mappings ϕR2 and ϕC. This reveals a T

1/4-convergence rate when
D = 0 which will influence the finite sample approximation when D is close to zero.
Based on Theorem 1 a sampling region for (bβ1, bD) with coverage level α, of 95%
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say, can be constructed as the ellipsoid

∂S (γ2) =

(µ
β1
D

¶
+

γ2
T 1/2

Ã
H
1/2
11·2 H12H

−1/2
22

0 H
1/2
22

!µ
cos θ
sin θ

¶¯̄̄̄
¯ 0 ≤ θ < 2π

)
, (2.4)

where γ22 is the α-quantile of the χ
2
2-distribution and H11·2 = H11 −H12H

−1
22 H21. A

direct application of the ϕR2 and ϕC then results in the sampling regions

SR2 = ϕR2{S ∪ ( bD ≥ 0)}, SC = ϕC{S ∪ ( bD ≤ 0)}.
The interiors of these sets are disjoint and the coverage of their union set SR2 ∪ SC is
the same as that of S, that is P(SR2 ∪ SC) = P(S).
The key to describing the sets SR2 and SC is to evaluate the event ( bD = 0). This is

included in S whenever D+γ2(H22/T )
1/2 sin θ equals zero for some −π/2 ≤ θ ≤ π/2.

Thus, recall the notation νT = −(T/H22)
1/2D from (2.3) and denote

eθ = ½ arcsin (νT/γ2) if |νT | < γ2,
sign (νT ) (π/2) if |νT | ≥ γ2.

(2.5)

When |νT | < γ2 both of the sets SR2 and SC are non-empty, whereas, for instance SC
is empty if νT > γ2. The sets SR2 and SC can be described as follows.

Theorem 3 Recall eθ defined in (2.5) and define the functions
x (γ, θ) =

β1
2
+

γ

2T 1/2
(H

1/2
11·2 cos θ +H12H

−1/2
22 sin θ),

y (γ, θ) =
D

4
+

γ

4T 1/2
H
1/2
22 sin θ.

Then sets SR2(γ2) and SC(γ2) are then given by

∂SR2(γ) = {[x (γ, θ) + {y (γ, θ)}1/2, x (γ, θ)− {y (γ, θ)}1/2] for eθ ≤ θ ≤ π − eθ}
∪{(z, z) where z = ξx(γ,eθ) + (1− ξ)x(γ,−π − eθ) for 0 < ξ < 1},

∂SC(γ) = {[x (γ, θ) , {−y (γ, θ)}1/2] for eθ ≤ θ ≤ −π − eθ}
∪{(z, 0) where z = ξx(γ,eθ) + (1− ξ) x(γ, π − eθ) for 0 < ξ < 1}.

A number of remarks follow concerning the implications of Theorem 3.

Remark 1 Link with Theorem 2. When there are distinct roots, so D 6= 0 then
νT = −(T/H22)

1/2D diverges and |eθ|→ π/2. The contours given by Theorem 3 then
reduces to the ellipsoid contours of the normal distributions given by Theorem 2.
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Remark 2 The case of double roots. When D = 0 then eθ = 0. Formula (2.3)
shows that asymptotically the sets SR2 and SC each have probability 50%. The func-
tions x and y of Theorem 3 reduce to

x (γ, θ) =
γ cos θ

2T 1/2
|y (γ, θ)|1/2 = (2γ |sin θ|)1/2

T 1/4
,

which gives convergence rates of order T−1/4.

Remark 3 Implications for finite sample behaviour. The non-uniform con-
vergence rates seen above have profound implications for the finite sample behaviour
of the estimated roots. The sets given in Theorem 3 involve the square root of the
function y. This can be expressed in terms of νT = −D(T/H22)

1/2 as

y (γ, θ) =
D

4
(1− γ

νT
sin θ) =

H
1/2
22

4T 1/2
(γ sin θ − νT ).

The order of magnitude of νT relates to the probability that bD has the correct sign
through (2.3).When |νT | is much larger than γ the usual T−1/2 asymptotics dominates
in that

{|y (γ, θ) |}1/2 = |D|1/2
2

+ O
¡
ν−1T
¢
=
|D|1/2
2

+ O
¡
T−1/2

¢
,

whereas when |νT | is much smaller than γ and | sin θ| is not too small then the T−1/4
asymptotics dominates

{|y (γ, θ) |}1/2 ≈ H
1/4
22

2T 1/4
γ1/2| sin θ|1/2.

Remark 4 Plot of characteristic roots in complex plane. Often it is of interest
to plot the characteristic roots (λ1, λ2) in the complex plane. The sampling region will
then be the union of four sets

R+R (γ1) ∪R−R (γ1) ∪R+C (γ2) ∪R−C (γ2),

where critical values γ1 and γ2 of χ
2
1 and χ22 distributions are needed, due to the

dimension reduction when plotting both real roots on the same real axis. The sets on
the real axis are derived from SR2 (γ) and given by the intervals

R±R (γ) = { min
θ<θ<π−θ

z± (γ, θ) < x < max
θ<θ<π−θ

z± (γ, θ)}

where z± (γ, θ) = x (γ, θ)±{y (γ, θ)}1/2. The coverage probability of R+R (γ1)∪R−R (γ1)
and of SR2 (γ2) will asymptotically be the same. The sets in the complex plane R

±
C (γ)

are simply given by SC(γ) and its mirror image in the real axis.
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The finite sample performances of Theorem 3 relative to Theorem 2 was investi-
gated by simulation. First, the last column of Table 1 shows a marked improvement
in the finite sample performance from using Theorem 3. Secondly, Figure 1 illustrates
the sampling regions for the same experiments A − F In contrast to the δ-method
Theorem 2 can capture the non-symmetric variation on the real axis and the non-
ellipsoid variation in the complex plane. The δ-method fares particularly poorly in
experiments B, C, E and F where there is a considerable probability that bD has the
wrong sign.

3 Higher order autoregression

The distribution theory for higher order autoregressions is much more complicated
than for the second order case. In the third order case not only the vertical location
of graph of the polynomial can change, but also the shape of the function can change
from having two turning points to having none. For this reason the δ-method is no
longer helpful in establishing an asymptotic theory for the discriminant. Moreover,
the relevant convergence rates are even slower than in the second order case.

3.1 The discriminant in the third order case

The discriminant can be defined in two ways, see Basu, Pollack and Roy (2003,
§4.2), either in terms of the characteristic roots or in terms of the coefficients of the
polynomial through the determinant of the socalled Sylvester matrix. For the third
order characteristic polynomial

p (z) = z3 − β1z
2 + β2z + β3 (3.1)

the discriminant is therefore given by

D =
¡
λ21 − λ22

¢ ¡
λ21 − λ23

¢ ¡
λ22 − λ23

¢
= β21β

2
2 + 4β

3
2 + 4β

3
1β3 − 27β23 − 18β1β2β3 (3.2)

The determinant has the property that D > 0 if all roots are real, D = 0 if there are
double roots, and D < 0 if one root is real.
As in the two dimensional case it would be of interest to derive an asymptotic

theory for the discriminant from the asymptotic distribution of the autoregressive
coefficients using the δ-method. The next result, which is proved in the Appendix,
shows that the relevant Jacobian is zero if there are triple roots and consequently a
second order δ-method is needed.
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−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

−0.1

0.0

0.1

0.2 A: Roots at −0.5;0.5. (99.0%)

0.60 0.65 0.70 0.75 0.80

−0.5

0.0

0.5

D: Roots at 0.70±0.40⋅i. (99.9%)

−0.50 −0.25 0.00 0.25 0.50

−0.25

0.00

0.25

B: Roots at −0.35;0.35 (86.7%)

0.4 0.5 0.6 0.7 0.8

−0.25

0.00

0.25

E: Roots at 0.7±0.25⋅i. (93.8%)

0.2 0.4 0.6 0.8 1.0

−0.25

0.00

0.25

C: Roots at 0.5;0.8 (65.9%)

0.4 0.5 0.6 0.7 0.8 0.9

−0.25

0.00

0.25

0.50 F: Roots at 0.70±0.15⋅i. (74.5%)

Figure 1: Sampling regions of nominal 95% level for same experiments as in Table 1.
Sample length T = 100 observations and 100 replications. The grey shaded lines are
based on Theorem 2. The bold black lines are based on Theorems 3 and Remark 4.
The estimated probabilities of sign(D̂) = sign(D) in 105 replications are reported in
parentheses.
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β3 −0.32 0 0.384 −0.192 −0.192
Roots 0.8 0.8 0.8 −0.4 −0.6

0.8 0.8 0.8 0.6 0.4
−0.5 0 0.6 0.8 0.8

Asymptotic T = 102 0.50 0.50 0.50 0.60 0.82
T = 103 0.50 0.50 0.50 0.80 1.00
T = 104 0.50 0.50 0.50 1.00 1.00

Simulated T = 102 0.46 0.37 0.07 0.54 0.72
T = 103 0.48 0.48 0.10 0.77 0.99
T = 104 0.49 0.50 0.26 0.99 1.00

Table 3: Probability that bD is positive. Upper panel: Asymptotic approximation
based on δ-method with numerical derivatives. Lower panel: simulated probability
based on 5000 repetitions, and zero initial values. The parameter β3 is the product
of the characteristic roots. When |β3| < T−1/22 lag length tests would typically point
to a shorter lag length than 3.

Theorem 4 The discriminant of the polynomial p (z) = z3−β1z2+β2z+β3 satisfies

∂D

∂β
= 0 ⇐⇒ p (z) = (z − λ)3 for some λ ∈ R.

The fact that a δ-method of second order rather than first order is needed in parts
of parameter space implies that the asymptotic theory delivered by the δ-method is
not going to be uniform in the parameter space. Table 3 reports the results from
a simulation study of this effect. The probability P(D > 0) is found for different
sample lengths and various combinations of roots. The probability was found partly
by simulation and partly using the δ-method with numerical derivatives. It is seen
that in some situations the sample size has to be enormous before the first order
δ-method gives a good approximation.
A consequence of Theorem 4 is that if it is of interest to test the hypothesis

D = 0, one would have to contemplate the hypothesis of a triple root. The triple
root hypothesis can be formulated in terms of the autoregressive parameters using
the first subdiscriminant, see Basu, Pollack and Roy (2003, Proposition 4.29). For
the third order polynomial (3.1) this is sD1 = 2(3β2 + β21), which is zero if and only
if p (z) has a triple root. The Jacobian of sD1 with respect to β is always non-zero,
so reliable inference can be made using the δ-method. Mimicking the procedure of
Pantula (1989) for determining the number of unit roots in an autoregression, the
hypothesis D = 0 can be tested by first testing sD1 = 0 and then testing D = 0 using
the δ-method for both tests.
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3.2 Convergence rates

For autoregressions of order k the relevant convergence rates are as slow as T−1/2k.
To explain this slow convergence it is useful to keep in mind the perturbation theory
for the algebraic eigenvalue problem, in which the coefficients of the polynomials are
known but errors arise in the numerical analysis, see Wilkinson (1965). To keep the
problem tractable consider simply a regression of a series Xt on its k-th lag, Xt =
βXt−k + εt, in which the population value is β = 0. That model has a characteristic
polynomial of the type p (z) = zk − β. The least squares estimator for β has an
asymptotic standard error given by se(bβ) = T−1/2. The population characteristic
equation of zk = 0 is then perturbed as zk = bβ. The perturbed equation has k
distinct roots at

bλj = expµj2π
k

i

¶bβ1/k = OP{T−1/(2k)} for j = 1, . . . , k. (3.3)

This results in roots at the polar arguments k−12jπ when bβ > 0 and arguments
k−1(2j − 1)π when bβ < 0. The distribution of bλj will then have 2k rays and the
modulus of the roots will be T−1/(2k). This explains the observation of Granger and
Jeon (2006) that over-fitting can give spurious characteristic roots.
The effect from over-fitting is illustrated in Figure 2 A and B for 102 and 103

observations, respectively. The true roots are located at the origin, corresponding to
generating independent, identically distributed variables, while the estimated model
is a fourth order autoregression. Most of the estimated roots are located in a torus
around the origin, with marked concentration on 2k = 8 symmetric rays from the
origin as predicted. The radius of the torus shrinks slowly consistent with a rate
of T−1/8 in that T−1/8 takes the values 0.56, and 0.42 for T taking values 102 and
103, respectively. The proportion of real estimated roots is constant (26%) with the
sample length in line with the situation of double roots in the second order case.
An example of a cyclical process is given in Figure 2 C. Here, the four population

roots are complex and located at (−0.6 ± 0.3i, 0.6 ± 0.3i). For T = 100 there is a
non-negligible probability of real estimated roots. Non-cyclical processes can generate
similar patterns, and Figure 2 D shows the estimated roots when the population roots
are simple, real, and located at (±0.6,±0.8). For these examples the product of the
roots are β4 = 0.2025 and β4 = 0.2304, which just about satisfy |β4| > T−1/22 so that
a test for lag length would tend to point towards a lag length of 4. In other words, it is
rather difficult to place four roots inside the unit circle that are so far from each other
that the δ-method is reliable and at the same time avoid the over-fitting problem.
It is interesting to compare the estimated roots for the cyclical and non-cyclical

case. In a small sample, T = 100, the visual appearances of the graphs are broadly
similar and the graphs contain very noisy information about the true characteristic
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−1.0 −0.5 0.0 0.5 1.0
−1

0

1 A: Roots at (0,0,0,0), T=100 (26%)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1 C: Roots at 0.6±0.3⋅i and −0.6±0.3⋅i, T=100 (13%)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1 B: Roots at (0,0,0,0), T=1000 (26%)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1 D: Roots at (−0.8,−0.6,0.6,0.8), T=100 (51%)

Figure 2: Each graph shows the true characteristic roots of a fourth order autore-
gression and the estimated roots in 103 replications. Proportion of real estimated
roots in parentheses. The gray circles in A and B correspond to a modulus of T−1/(2k)

consistent with overfitting.

roots. This suggests that the estimated roots should be interpreted with great care in
finite samples. Large estimated complex roots with an apparently strong cyclical or
seasonal behaviour, could arise just as well from an over-fitted model, a model with
real roots, and from a model with complex roots. In practice the over-fitted models
could be avoided to a large extent by determining the lag length carefully.

4 Conclusion

Estimated characteristic roots have been shown to give rather noisy information about
their population equivalents. The δ-method often gives unreliable approximations to
the distribution of the characteristic roots. Thus, it appears that it is typically diffi-
cult to construct reliable inferential procedures directly based on the roots, whereas
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reliable inferences can more easily be drawn from autoregressive coefficients. Exam-
ples are lag length determination through the last autoregressive coefficient vis-a-vis
the product of the roots; unit root analysis through the sum of the autoregressive
coefficients vis-a-vis unit roots, which is standard; and determination of the number
of real roots and the multiplicity of roots through the discriminant and subresultants.

5 Appendix: Proof of Theorem 4

The discriminant given by (3.2) has partial derivatives

∂D

∂β
=

⎛⎝ 2β1β
2
2 − 12β21β3 − 18β2β3

2β21β2 + 12β
2
2 − 18β1β3

−4β31 − 54β3 − 18β1β2

⎞⎠ .

Expressing the polynomial in terms of its roots

p (z) = (z − γ) (z − λ− α) (z − λ+ α)

= z3 − (γ + 2λ) z2 +
¡
2γλ+ λ2 − α2

¢
z − γ

¡
λ2 − α2

¢
,

where γ, λ, α2 ∈ R3 shows that the partial derivatives satisfy

∂D

∂β
= 4 (λ− γ)

⎛⎝ (λ− γ)2 λ2 − 2λ2 + 4λγ + 3γ2α2
(λ− γ)2 λ− (4λ+ 5γ)α2

(λ− γ)2 − 9α2

⎞⎠+ 4α4
⎛⎝ 5γ + λ

3
0

⎞⎠
Four different special cases need to be considered depending on λ− γ and α.
1. Triple roots: λ− γ = α = 0. ∂D/∂β = 0.
2. λ− γ = 0, but α 6= 0. Then ∂D/∂β2 = 12α

4 6= 0.
3. λ− γ 6= 0, but (λ− γ)2 − 9α2 6= 0. Then ∂D/∂β3 6= 0.
4. λ − γ 6= 0, but (λ− γ)2 − 9α2 = 0 so that λ− γ = 3α 6= 0. Then ∂D/∂β2 =

228α4 6= 0.

6 References

Anderson, T.W. (1971) The statistical analysis of time series. New York: John
Wiley & sons.

Basu, S., Pollack, R., and Roy, M.-F. (2003) Algorithms in Real Algebraic Geometry.
Berlin: Springer-Verlag.

Brockwell, P.J., and Davis, R.A. (1996) Introduction to time series and forecasting.
New York: Springer.

13



Doornik, J.A. (2002) Object-Oriented Matrix Programming Using Ox, 3rd ed. Lon-
don: Timberlake Consultants Press and Oxford: www.doornik.com.

Granger, C.W.J. and Jeon, Y. (2006) Dynamics of Model Overfitting Measured in
Terms of Autoregressive Roots. Journal of Time Series Analysis, 27(3), 347-365.

Hamilton, J.D. (1994) Time Series Analysis. Princeton NJ: Princeton University
Press.

Johansen, S. (2003) The asymptotic variance of the estimated roots in a cointegrated
vector autoregressive model. Journal of Time Series Analysis, 24, 663-678.

Pantula, S.G. (1989) Testing for unit roots in time series data. Econometric Theory,
5, 256-271.

Priestley, H.A. (1990) Introduction to complex analysis. Revised edition. Oxford:
Oxford University Press.

Wilkinson, J.H. (1965) The algebraic eigenvalue problem. Oxford: Oxford University
Press.

Wymer, C.R. (1972) Econometric estimation of stochastic differential equation sys-
tems. Econometrica, 40, 565-577.

14


