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Johansen derived the asymptotic theory for his cointegration rank test statisic for
a vector autoregression where the parameters are restricted so the process is inte-
grated of order one. It is investigated to what extent these parameter restrictions
are binding. The eigenvalues of Johansen’s eigenvalue problem are shown to have the
same consistency rates accross the parameter space. The test statistic is shown to
have the usual asymptotic distribution as long as the possibilities of additional unit
roots and of singular explosiveness are ruled out. To prove the results the convergence
of stochastic integrals with respect to singular explosive processes is considered.

1 Introduction

The cointegration rank test statistic of Johansen (1988, 1995a) is analysed. This is a
likelihood ratio test statistic in a vector autoregression. In the initial distributional
analysis attention was restricted to the I(1)-case thereby imposing restrictions on the
parameter space of the vector autoregressive model. Subsequent research has shown
that the same asymptotic distribution can arise in situations where these assumptions
are not satisfied. Johansen and Schaumburg (1998) have shown this is the case
for seasonally integrated processes while Nielsen (2001, 2005) has considered some
scenarios involving explosive roots. In contrast to those results Johansen (1995b)
shows that different asymptotic distributions arise in 1(2)-cases. In this paper results
are given for the entire vector autoregressive parameter space.

Two types of results are given. First, the canonical correlations appearing in
Johansen’s eigenvalue problem are shown to be consistent in the entire parameter
space. That is, the largest canonical correlations are shown to have positive limits,
while the smallest canonical correlations vanish at a rate of T!. An almost sure
version is given under some parameter restrictions.

Secondly, the parameter values are identified for which the rank test statistic has
the usual asymptotic distribution. This happens quite generally in the parameter
space with two exceptions. The first is that additional unit roots appearing in for
instance 1(2)-case alter the asymptotic distribution. The second is that while regular
explosive components are allowed the possibility of singular explosive components is
ruled out. Such singular explosive components were noted by Anderson (1959) and
have been discussed by Duflo, Senoussi, and Touati (1991), Phillips and Magdalinos
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(2008) and Nielsen (2008). In the cointegration literature the main variants of the
vector autoregressive model involve constants, linear trends and seasonal dummies.
The presented asymptotic results cover these variants.

To establish these results the convergence of stochastic integrals with respect to
singular explosive processes needs to be considered. The difficulty is that although
singular explosive processes satisfy a Functional Central Limit Theorem they are not
adapted to the natural filtration of the problem. This problem has been encountered
previously in the context of integration with respect to mixing processes by de Jong
and Davidson (2000). The solution considered here has more general integrands
including various functions of random walks while the integrand is a singular explosive
process which is a particular nice version of a mixingale.

Related results have been established previously for some mis-specification tests.
Before conducting a rank test an investigator will be interested in checking the spec-
ification of the vector autoregression. Just as for the rank test asymptotic invariance
with respect to the vector autoregressive parameters would be of interest. This has
been established for lag length determination procedures by Nielsen (2006a, 2008),
whereas the correlograms based on the Yule-Walker equations are not invariant, see
Nielsen (2006b). Likewise Engler and Nielsen (2009) have shown that the empiri-
cal process of the residuals has the desired invariance properties as long as singular
explosive roots are ruled out.

The paper is organsied so that §2 introduces the cointegration model. Granger-
Johansen representations are given in §3. The asymptotic results are presented in §4.
The convergence of stochastic integrals with respect to singular explosive processes is
discussed in §5. Proofs are given in an appendix.

The following notation is used throughout the paper: For a matrix a let a®? = aa/.
When « has full column rank then @ = a(o/a)~! whereas « is the orthogonal com-
plement so o/, &« = 0 and (o, vy ) is invertible. When « is symmetric then Ay, (o)
and Apax (@) are the smallest and the largest eigenvalue respectively. For matrices
la]| = {Amax(@®2)}1/2 is the spectral norm, implying that ||a || = {Amin(a®?)} /2.
While E (g;|F;_1) is a conditional expectation the residuals of the least squares re-
gression of ¥; on Z; are denoted (Yy|Z,) = Y; — S0, Y. Z/(32L_, Z8%)1Z, for a time

. 1, 1 - .
series and (yu|2u) = Yu — [, Yozpdv( [, 202,,) " 2, for continuous processes.

2 DModel and rank hypothesis

Suppose a p-dimensional time series, X1_;, ..., Xy, ..., X is available. The statistical
model is then given by the vector autoregression

k—1
X
M : AXt = (H, Hd) ( d:,ll ) + ZFjAXt—j + HDt—l + €4, (21)
j=1
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fort =1,...,T, where the innovations ¢, are independently N(0, Q)-distributed condi-
tionally on the initial values X 4, ..., Xo while d;, D;_; are deterministic components
which are discussed below. Note, that in some cases the term I1yd;_; is left out of the
model equation (2.1). The normality assumption is necessary for defining a likelihood
function. For the subsequent asymptotic analysis it can, however, be replaced by a
martingale difference assumption. The parameters of the model are unrestricted so
I, ..., Tk 1,22 € RP*P Iy, u € RP and vary freely so € is positive definite. The
likelihood function is defined accross this parameter space hence the interest in a
distributional analysis of test statistics accross the parameter space.

Two types of deterministic terms are included. Let pD;_; = piy D141+ M\1D\1,t717
where (d;, D1;) are polynomials like a constant, a linear trend, while Dy, covers
seasonal components. More formally,

dy=di—1+(1,0)D1 41, D1t =D1Dy; 4, D1y = D\iDyy1, (2.2)

where D; is a Jordan block of the form

: (2.3)

e}
_ -0 O

while D\; has eigenvalues on the complex unit circle except at one. Thus, D\;,
can include demeaned seasonal dummies with the property that they sum to zero.
An example would be the biannual dummy Dy, = (—1)*; see also the discussion of
Johansen (1995, §5.8). In combination, D; = (D1, D\1,) satisfies the autoregressive
equation D; = DD;_;, where D is the blockdiagonal matrix D = diag(Dy,D\;). It
will be required that deterministic process satisfies rank(Dy, ..., Dgimp) = dim D.
Johansen (1995) introduced five variants of deterministic terms. These are:

My: di= 2, but omitted in regression, D1y = (t,1) so D;= ( L1 ) ,

01
M, : d;=t, Dy, =1 so D; =1,
M;.: d; = t,but omitted in regression, D=1 so D=1,
M.: d;=1, Dy =10,
M,: d; =0, Dy, = 0.

The cointegration analysis of Johansen (1988, 1995) evolves around the reduced
rank restriction

H(r): rank(IL,II;) <vr
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for some r < p. The reduced rank restriction can be parametised as
(I1, T1y) = aB where ¥ = (5.,

so a,8 € RP*", § € R vary freely. The likelihood ratio test statistic for H(r) is
reviewed below. The interpretation of the hypothesis will, however, depend on the
stochastic properties of the process and hence on the parameters. For the standard
I(1)-case interpretation is given through the Granger-Johansen representation, see
Johansen (1995a, Theorem 4.2). A generalisation of that result is given in §3.

The likelihood ratio test statistic for the rank hypothesis is based on reduced rank
regression. Define X/ ; = (X|_;,d;_1) or simply as X[ ; = X, if d;_; is omitted
from the model equation (2.1). The likelihood is then maximised in two steps. First,
AX; and X} | are regressed on the remaining terms giving the least squares residuals

(Rog, Rig) = (AXy, X[ | AX 1, AX g, Dy) (2.4)

Secondly, the squared sample canonical correlations, 1 > AN > e > 5\p > 0, of
Ry and R, are found. This is done by computing sample product moments S;; =
T! Zthl R; R}, and then solving the eigenvalue problem

0= det(/\Sll — 81050_01501>. (25)

The likelihood ratio test statistic for the reduced rank restriction H(r) is given by

~

IR{H(H@)} =-T > log(1—4)).

j=r+1
3 Granger-Johansen representation

To establish a Granger-Johansen representation the rank of the autoregressive level
impact matrix II needs to be known.

Assumption A rank(Il) = r.

For the classical I(1) case the number of unit roots is given as follows.
Assumption B The number of unit roots is p — r.

The I(1)-condition of Johansen (1988, 1995) is an algebraic condition on the pa-

rameters ensuring that the number of unit roots is p — r. The next theorem shows
that the I(1)-condition holds regardless of the location of the remaining roots.



Theorem 3.1 Assume A holds. Then Assumption B is equivalent to the condition
det(a/, W3, ) # 0.

Theorem 3.1 implies that under Assumption A, B then (3, V'« ) is invertible and
so it can serve as a basis for RP. This is seen by pre-multiplying the basis with (3, 3, )’
which gives a triangular block matix, see also Johansen (1995a, Exercise 3.7).

The general Granger-Johansen representation theorem now follows. There are two
differences in the formulation as compared to Johansen (1995, Theorem 4.2). First,
the considered parameter space is larger. Secondly, the representation expresses X;
in terms of the regressor Y;_; = (X7, 8, AX]_,,...,AX]_,.,) of the model equation
(2.1). The result is therefore suited to analysis of the residuals Ry, and R; ;. In those
respects the result generalises the univariate result of Nielsen (2001, Lemma Al).

Theorem 3.2 Suppose seasonal deterministic components are excluded, Dy = D, 4.
Assume A, B. Define the process Y = (X8, AX},...,AX] ,.,), parameters

_ k-1 k-1
CZBJ_(O/J_\DﬁL)ila,JJ J = {([p_C\I’)ﬁa _szlrja"'a_c Zk: Fj}>
Jj= Jj=k—1

and the initial condition g = VX, + Zlg;g Zj’:ﬂl+1 I'AX g+ 7. Then

t
X, =C> es+ JYs+7pDy + Tady with Y, =YY 1+ (8, 1,,0) e,

s=0

where Y satisfies det(Y — Igmy) 7# 0 so Y has no roots of unity. In particular, the
cointegrating vectors 3 remove unit roots so the relation 3' X, has no unit roots.
The deterministic terms satisfy

T4 = Cu(1,0) — (I, — CV)BY,
Brp(1,0) = @ (WC — Hu(1,0) +a (¥CV — )5,
. = —u{(1,0) d_1 + (I@gimp)-1,0)'D_1}.

In particular it holds 5 X} = B'X; + ¢'dy has no d; component.

The standard 1(1) result of Johansen (1995a, Theorem 4.2) is a special case. This
involves the assumption that the pk — p + r roots not of unity are stationary.

Assumption C The characteric polynomial has pk — p 4+ r stationary roots.

Corollary 3.3 (Johansen, 1995, Theorem 4.2) Assume A, B, C. Then the process
Y; can be given a stationary initial distribution. In particular, the cointegrating rela-
tion ' X; can be given a stationary initial distribution.
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Other special cases arise under various other assumptions to the pk—p+r roots not
of unity. Johansen and Schaumburg (1998) consider the case of seasonal integration.
Nielsen (2005) considers the case of co-explosive processes.

When there are additional unit roots the exact representation will depend on the
multiplicity of these roots. A result for the standard 1(2) case is given by Johansen
(1992). For processes integrated of higher order la Cour (1998) provides a result.
Such results are bound to be somewhat involved in terms of notation. A general
result tailored towards facilitating the present results is given in §A.5.

4 Asymptotic results

For the asymptotic analysis the normality assumption for the innovations can be
replaced by a martingale difference assumption. The assumption is inspired by the
analysis of Lai and Wei (1982, 1983). It involves a bound to the conditional moments
of the innovations which is used to establish their Marcinkiewic-Zygmund result used
for the analysis of the explosive component.

Assumption D Let F; be some filtration so the initial observations are measurable
with respect to Fo. Let (g4, F;) be a martingale difference assumption, so &, is JF;-
measurable and E(g;|F;—1) = 0 a.s. Suppose

(i) sup, E(||e:|[**7|Ft-1) < o0 for some > 0.

(17) E(eg}| Fio1) = Q a.s.

The requirement of constant conditional variance is used for two reasons. First, it
is used to establish a Law of Large Number and Functional Central Limit Theorems
involving the innovations ¢; and so it can it that respect be replaced by an assumption
that such Theorems hold. Secondly, it is used to handle the singular explosive process.
Thus, Assumption D could be modified somewhat if singular explosive processes were
ruled out.

The first result concerns the consistency of the canonical correlations. This result
only requires the cointegration rank is known and does not involve any assumptions
to the characteristic roots.

Theorem 4.1 Assume A, D with v > 1. Then

~ ~

()\17"'7)\7’) :OP(1)7 (5‘7‘4—17"'75‘])) :OP(T_l)-

The proof of Theorem 4.1 includes the notion of a stochastic integral with respect
to a singular explosive process. The necessary theory is established in §5.
Strong consistency results can be established for regular vector autoregressions.



Assumption E The process is reqular: any explosive root has geometric multiplicity
of one.

Theorem 4.2 Assume A, D, E hold with v > 0. Then
(7) hmlnfTﬂoo)\ >0 and ()\TH, o A) = O(T8) aus. for all € < /(247).

A

(44) liminfr_ o A >0 and (A1, - . ., Ap) = O(T1ogT) a.s. if C holds.

Remark 4.3 Some strong consistency results can be established when Y; has singular
roots. For details see Remarks A.6, A.8 involving an argument of Bauer (2009).

The next result shows that the rank test statistic has the usual asymptotic distri-
bution when the number of unit roots is p — r and singular explosiveness is excluded.

Theorem 4.4 Consider either of the models M;;, M, M, M., M., possible including
a seasonal component D\1y. Assume A, B, D, E with v > 2. Then LR has the usual
asymptotic distribution described by Johansen (1995a, Theorems 6.1, 6.2):

LR 2 tr{ [} dB,F.( [} F, Fldu) ™ [\ F,dB.}.

Here B, is a (p — r)-dimensional standard Brownian motion while F, is given by:

M, : Fu:{<i“>|1}, MC:Fu:<€”), M, : F, = B,,

My, : F,= {( (Ip—r-1,0)B. ) | 1} assuming oy, ( (1) ) # 0,

u

M, : F,= ( ([pTi’O)B“ ) assuming o'| p; # 0.
Remark 4.5 If the process has no explosive components it suffices that v > 0 in
Assumption D as discussed in Remark A.12.

Special cases of this result are as follows. The standard I(1) result of Johansen
(1995a, Theorem 6.1). The seasonal integration result of Johansen and Schaumburg
(1998). The univariate result, p = 1, allowing explosive roots by Nielsen (2001). The
co-explosive result with one explosive root by Nielsen (2008).

Remark 4.6 If the Assumptions A, B to the number of unit roots are not satisfied
the rank test statistic will not have the correct limit. If the algebraic multiplicity of
the unit root is higher than the geometric multiplicity then the process is integrated
of order two, 1(2), or higher. Johansen (1995b) and Rahbek, Kongsted and Jorgensen
(1999) discuss the limit distribution in 1(2) situations. If the algebraic and geometric
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multiplicity are the same but with more than r wunit roots the process is (1), but
with less than r cointegrating relations. The limit distribution is discussed by Nielsen
(2004) for a bivariate situation. In general, combinations of such types of distributions
can appear.

Remark 4.7 For singular vector autoregressions the rank test statistic has the usual
limit. As an example consider the bivariate second order vector autoregression

AXt = pAthl + & with XO = AXO = O, Q= IQ.
Then it holds, see Appendix A.8 for details, that
LR = tr{(I — c¢P)Z0.Z;1*T10} + op(1),

T 1
where Ty = thl(Zi 18s)er T = Zt 1(2 es)®?, ¢ = p*/(p* = 1) and P =
wy (W wy )"l where wy be the orthogonal COmplement of the Marcinkiewicz-Zyg-
mund limit p~'AX, — w =Y o0 pies a.s.

5 Convergence of stochastic integrals involving
singular explosive processes

The asymptotic analysis of the likelihood statistics involves cross sample moments of
random walk type variables and the singular explosive process. To analyse these it
is natural to develop some convergence results for stochastic integrals with respect
to singular explosive processes. The difficulty is that the singular explosive process
is not adapted so the standard semi-martingale result of Jakubowski, Mémin and
Pages (1989) does not apply. de Jong and Davidson (2000) considered related sto-
chastic integrals where both the integrand and the integrator are mixing processes
with Brownian limits. Here the integrator has to be of a more general type but at
the same type it can be exploited that the singular process integrand is a particular
nice mixingale.

Consider a singular explosive process Z; = >_2 | W /ey, ; where |eigen(W)| > 1
and ey, is a linear function of €;. The simplest stochastic integral of interest is

IIMH

TNz

This arises as a cross product sample moment of some of the regressors, hence the
timing. Since (W — I)Z;_1 = ew,; + AZ;, see Nielsen (2008, Theorem 3.4), it holds

1 T t-1 ) ) 1 T t-1 ) 1 T t-1
7 LT eZW = 1) = 2 ST el 7 L(Z2)BZ). (51)
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The first term converges to a stochastic integral in the usual way. The second term
is o(1) a.s. To prove this apply partial summation

~

PR = F(5 e 5 el )

t=1

For the first term, ZtT:l g, is o(T/?*7) for any n > 0 by a Law of Iterated Logarithms,
see Lai and Wei (1985, Theorem 1), while Z; = o(T%/27") for a sufficiently small > 0,
see Nielsen (2008, Corollary 4.3), both assuming D(i) with v > 0. The second term
can be argued to vanish

These arguments can be generalised for rather general integrands. This is needed
because vector autoregressions can generate integrated processes of large order. For
this general result introduce the processes

int(Tu int(Tw)

)
Jru=T7 Y &, Kpr,=T7'* Y 7,
t=1 t=1

defined as (p + dim W)-dimensional process on the space Dgp+amw [0, 1] of functions
on [0, 1] with left limits and right continuity taking the value 0 at 0 endowed with the
Skorokhod metric with a univariate deformation. As in (5.1) it holds

int(Tw)
(W= DEKry=T""* Y ews+ T Y*(Zinsiruy — Zo)-
t=1
The latter term is o(1) uniformly in « with probability one, see Nielsen (2008, Corol-
lary 4.3) assuming D(7). It then holds that

(Jp, K7) = (1K), (5.3)

on Dgp+aimw|0, 1] by Chan and Wei (1988, Theorem 2.2) assuming D, where the limit
is a Brownian motion with variance matrix

Now, let h : Dgs[0, 1] x [0,1] — Dgrm[0,1] be a continuous function, let 7 be the
identity function: 7(u) = u, and define Hy = h(Jp,7) and H = h(J, 7). Examples
could be integrals like Hp, = fou Jrsds representing integrated processes of higher
order which will be considered here and powers like Hr,, = J%,u as well as polyno-
mials in time like Hr, = u. Then by the continuous mapping theorem it holds on
Drmtptamw][0, 1] that

(Hr, Jp, K1) 2 (H, J, K). (5.4)
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Since Jr is a quadratic martingale with respect to the filtration Fr, = Finyru) it
holds jointly with (5.4) that [J'Hr—dJ},, LA Jo HdJ!, see Jakubowski, Mémin and

Pages (1989). The question is then if ['Hr, dK, LA Jy HydK, jointly with the
previous convergence. The difficulty is that K is not Fr-adapted. The solution is
to decompose

fO“HT,S_dK’T7S(W —1I)

int(T's

)
= [ Hre d(T7? S ewy) + [ HrsdT VP (Zinyrs) — Zo)'. (5.5
t=1

Assuming that Hrp is Fr-adapted the first term converges by Jakubowski, Mémin and
Pages (1989) so it is left to argue that the latter vanishes.

Theorem 5.1 Assuming D with v > 0, that h satify the condition

sup || 2 qh( @) (1% o(T™)

0<u<l1 ou (Jr,7)
for alln > 0 and Hy is Fr-adapted then it holds on Dgm+1)praimw+1)-1[0, 1] that
(Hr, Jr, Kp, [;Hro dJy, [iHro dK5 ) 2 (H,J, K, [{HdJT, [H.dK.).

Remark 5.2 The condition to the derivative of h holds if h(Jr,T) satisfies a Law of
Iterated Logarithms. This holds for (repeated) integrals of random walks, see Lai and
Wei (1985, Theorem 1) of Nielsen (2005, Theorem 5.1) and for power functions due
to the same Law of Iterated Logarithms.
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A Proofs

A.1 Proofs of representation results

Proof of Theorem 3.1. For this argument the deterministic terms are irrelevant.
Let Y; = {(#'Xy),AX],...,AX]_,,,}. The companion vector (X;3,,Y/)" satisfies

gXe N [ L. Bv B X I
()= A7) (B8 )+ (0 )=

where Y, 1y, v are given below. The triangular structure of the companion matrix
implies that Assumption B is equivalent to det(Y — I,—1)+r) # 0. Now, Y, 1y, v are

I +fa BT B¢ g
Y = a ry o s oy =| I, |, v=(oT1,....T%1) (A1)
0 v Ny 0

where ¢ = (I's,...,T_1) and ¢ = (I,,0) are {p X p(k — 2)}-dimensional, while the
{p(k —2) x p(k — 2)}-dimensional N, and its inverse, for = # 0, are

—Z'Ip -1

) z,
Nx - . 5 Nx_l = - :
o [l PNy |

I, —ul, g 8

Partitioned inversion gives det(Y — Ij,—,+,) = det(Ny) det(D), where det(—N;) =1
and D is given by

/ /F / B
D:<ﬁa& rlﬁ—llp>_<i>‘ﬁN11¢(0 I ).

Inserting the expressions for ¢, N;*, v and recalling ¥ = I — 25;11 I'; gives
_( Ba BTy g oy (Ba B, -0)
D—( o T,-1, ) )0 =" "y )

Pre-multiply and post-multiply D with regular matrices

0 (a’) 0 I —a'vp  —avp, I,
DS = Pr=| - 98 —a/,\ T 0
Loy NERAN P

The latter matrix is regular if and only if det (o/, W3, ) # 0 as desired. =
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Proof of Theorem 3.2. Homogenous equation. Leaving out deterministic terms
and recalling that ¥ = [, — Zf;ll I'; the model equation (2.1) can be rewritten as

k—1
\IJAXt = 045/th1 + Z Fj (AXt,j — AXt) + &¢.
1

J

Insert AX;_; — AX; = — Zz;é A%X,_, and interchange the two sums to get

k=2 k-1
\IJAXt = 045/th1 - Z( Z Fj)A2Xt,g + &¢.
(=0 j=(+1

Pre-multiply by C' = 3, (o/, ¥3,) '/, , sum over ¢, and recall the definition of &y to
get

t k—2 k-1
CUX, =5 Cey— S (S CT))AX,_,. (A.2)
5=0 (=0 j=l+1

Assuming A, B then Theorem 3.1 implies that (5, V'« ) is a basis. Then CW is
the associated skew projection on 3, along o/, ¥, and it holds (/,—CV)3, = 0 giving
the skew projection identity

I,=CV+ (I, — CY)3p. (A.3)

Therefore X; = CYX, + (I, — CV)BA'X;. Insert CUX; from (A.2) and identify the
JY, component from the AX,_, and 8'X, terms. Note that Y; has no unit roots under
Assumption B as discussed in the proof of Theorem 3.1.

Inhomogenous equation. It is assumed that the seasonal deterministic terms D\,
are absent so D; = Ds,. Replace &; by &; + ad’d;_; + pD;_;. For the common trend
component, C' ZZ:O €5, the additional contribution is C'u Zizo D,_. Since d; and D,
satisfy the equation (2.2) then

(1, O)Dt_l = Adt and (O, ](dimD)fl>Dt—1 = (](dimD)fla O)ADt (A4)

The determistic contribution to the common trends is then
t
Cu> Dy1 = Cu(1,0) (dy — d-1) + Cu(I@imd)-1,0)' (D — D_1). (A.5)
s=0

The equation for the non-unit root component is, in terms of Y, ¢y of (A.1),
Y, =YY, 1 +uy(e +pDiy),

noting that Y; now includes the component X} = §'X; 4 ¢'d;. Since Y does not
have unit roots then Y; = Y; — kpD; solves the homogeneous equation for Y; for some
kp as argued in Nielsen (2005, §3).
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Combining these results it follows that
Xy = X; + 7pDy + Tady + 7, (A.6)

where X, solves the homogenous equation. It holds 74 = Cu(1,0) — (I, — C¥)B4
where the first term originates from the common trend, while the second term arises
from B*X; with impact (I, — C¥)B noting that AX; has no d; term. Further,
7. = C7. where 7. = —p{(1,0) d_; + (I(aimD)—1,0)'D_1} is the initial condition for
the common trends, see (A.5), noting that initial values for Y; are implicitly included
in the equation for Y;. The term 7p is to be determined.

Insert the expression (A.6) for X; in the model equation (2.1) to get

{AXt + 7pAD; + 74(1,0) D1 } = 04(5/5(75—1 + ﬁ,TDDt—l)

k—1 5
+ Z Fj{AXt—j + 7'DADt—j + Td(la O)Dt—j—l} + pDi1 + &,
j=1

noting 374 = —4&'. As X, solves the homogeneous equation it must hold that

k—1
TDAD,: + Td(]_, O)Dt—l = OéBITDDt_l + Z Fj{TDADt_j + Td(l, O)Dt—j—l} + ,UDt—l-
j=1

Pre-multiply by ', focus on the first element of D;, that is Dt(l) = (1,0)D; say, and
note that the first element of AD; does not involve Dt(l). Hence, 5'7p(1,0)" solves

k—1
Tda = Oéﬁ/TD(]., O), + Z Fde + /1’(17 O),
j=1
Insert the expression for 74, rearrange and pre-multiply with @ to get the desired
expression for 5'7p(1,0). =

A.2 Some initial remarks on the eigenvalue problem

The cointegration analysis is done in terms of the residuals Ry; and R;; defined in
(2.4). These residuals arise by regressing on AX; 1,..., AX; i1, Di—1. As indicated
by the model equation (2.1) and the Granger-Johansen representation in Theorem 3.2
then it is convenient to extend this set of regressors by 5* X | giving the regressor
(Y/_1,D;_) where Y, = (X"5", AX{,...,AX] ,.,)"

To appreciate the consequences of this extention the residual R;; has to rotated
by B as well as a complement, 7 say, of 5%, so (8%, 8" ) has full rank, but it is not
necessary that 473* = 0. Different choices for 37 depending on whether B is assumed
or not, see §A.4, A.5. Thus, define the residuals

R,B,t = 5*,R17t7 ROﬂ,t = (AXt ‘ Y;t—l, Dt—1)7 Rﬁlﬂ,t = (BT_IX:_:L | Yi—lj Dt—1)7
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noting that by the model equation (2.1) then Ry.s: = (¢ | Yi—1, D). Define also
the conditional product moments

( Soos Sos, 8 ) _ ZT: ( Ro.5.4 )®2

Sg08 S8.8,8 =i\ Rs, st

The original eigenvalue problem 0 = det(ASpy — So1.5;;"S10) can then be written as
0 = det{ASoo.s + (A = 1)S05555 S50 — Sos. 555, 5, 556,08} (A7)

The asymptotic analysis of the cointegration rank test then rests on an analysis of
the terms Spo., 50555’515/30, SOBL-BSEﬁLBSBLOﬂ‘ The first two terms involve only the
extended regressor (Y}, D;)" which is a generalised cointegration vector. These terms
are discussed in §A.3. Two different analyses are made for the third term depending
on whether B is assumed or not, see §A.4, §A.5.

For the analysis the following algebraic result will be useful.

Lemma A.1 Define e, and z; = (y;, 2;)'. Then S.,..S,,}.Sye.. and S..S_'S. are both
O(S-2S1Sz0).
Proof of Lemma A.1. By the partial inversion formula then
Seya Sl Syes + S S7LS.e = Sy STLS,

Then apply that all involved terms are positive semi-definite. m

A.3 Analysis of the generalised cointegration vector

The terms Soo.s, 505555550 are investigated.
The extended regressor (Y/, D;)" where V; = (X}'8", AX],...,AX] , ,) satisfies

(5)-(3 %) (5)+(5)-

where Y, 1y were given in (A.1). Following the argument in Nielsen (2005, §3) an
invertible matrix M and a matrix m exist so

(v 0) ()-8

Dy
satisfies the equation
K, K 0 19574 K4 ML
W, |=( 0 W o0 Wi +( OY>€t
D, 0 0 D D, 4
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where |eigen(K)| < 1 and |eigen(W)| > 1. In fact, M can be chosen so

U U,
K= Vl ) Kt = Vvl,t )
Vi Wi

where |eigen(U)| < 1, |eigen(V\1)| = 1 so eigen(V\1) # 1, and eigen(V;) = 1. If K,
D have no common eigenvalues m could be chosen so also i, = 0.
Some further analysis is needed for the explosive component. This satisfies

Wy = WW,_1 + ewy,

where ey, are the elements of Mty e, associated with W;. The Marcinkiewicz-Zygmund
result of Lai and Wei (1983) then shows

WI'W, S W =Wy + Zy where Z, =5 W ey,
j=1
where W has a continuous distribution assuming D. As pointed out by Anderson
(1959) then W'IW may have linearly dependent elements which will give a singular-
ity that needs to be taken into account in the asymptotic analysis. Nielsen (2008,
Theorem 3.1) shows that this singularity arises when some of the eigenvalues of W
have geometric multiplicity larger than one. The degree of singularity is determined
by the dimension n which is the sum of the dimensions of the largest Jordan blocks
associated with the distinct eigenvalues of W. Moreover, WW; has the representation

VVt = w)\t - Zt, (Ag)

where w € R¥™W>n ig a function of the limiting random vector W and has full
column rank with probability one, while the vector \; € R" is deterministic and of
exponential order in t; see (A.16) for an example.

Having the singularity in mind the process Y; can be decomposed a little further.
Define the random transformation

_ Ng _( lamvi-aimw O B 0 '
N_<wlNW) where NQ—( 0 E/>’ NW_(Idimw)’

so N is invertible with probability one. A process ); exists so
wﬁ_Zt

( Q ):NMx, (A.10)

and Q) satisfies Q; = QQs—1+ Ng(tx,0) Di—1+ NgMiye; where Q has non-explosive
and regularly explosive eigenvalues.
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The singular component 7, ; satisfies jointly with ¢; a Law of Large Numbers

1 L Zt,1 @2 a.s. QZZ QZs
? & < & Dt—l) — QEZ Q s (Al].)

see Nielsen (2008, Equation 4.5, Theorem 4.7) assuming A, D, where

QZZ = z WiijMLyQL/YM/N{/V(quj, QZE = WileMLyQ.
j=1

J

In singular situations some bias terms arise with the following properties.
Lemma A.2 Define the terms
Qe = Q= Qezw (W) Qzzwi) "0 Qg
Qim = O+ Qpas Where  Abins = {Opxdim @, Qezw (W' Qzzw1 ) ™ w', } Ny My

(1) Assuming D then Q... and o, cym are invertible a.s.
(17) Assuming E then Q...; = Q and ajm = a.

Proof of Lemma A.2. This follows from Nielsen (2008, Lemma A.2). =

Finally, it is convenient to define the residuals and product moment matrices

T
Roi= (@t 1Dea). Rema=1( 5%, ) 1Dea) 8 =T S Ruft,
t=1

fori,j =@, (e, Z). Some weak and strong convergence results are established for S;;.

Lemma A.3 Assuming A, D with v > 1 then
(i) Soo = Oe(1),

N a—1/2 ~1/2
(é4) SQQ/ SQ,(e,Z)S(e,é),(E,Z) = op(1).

Proof of Lemma A.3. (i) The components Ky, Ay, w', Z; of Q); are uncorrelated
in probability due to Nielsen (2005, Theorem 9.1, 9.2, 9.4), Nielsen (2008, Theorem
4.7). Then apply Nielsen (2008, Theorem 4.9) for each element.

(77) Follows from Nielsen (2008, Theorem 4.7). Note that if there are no singular
component then v > 0 suffices in (i) using Nielsen (2005, Theorem 2.4) instead. m

Lemma A.4 Assuming A, D with v > 1 then
(Z) Sog.g = Q5€~Z + Op(].).

(ZZ) 5055561 = Qim + Op(l).

(iii) Sz5 = Op(1).
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Proof of Lemma A.4. (i) Note Ry; = (&¢|Y;—1, Di—1). Transform Y; by NM
s0 Ryt = (64|Q¢—1, W', Zi—1, Dy—1). By the uncorrelatedness of ;1 and (g}, Z;_,)’, see
Lemma A.3(ii) assuming A, D then Spos = T3/ (e, Z,_1)®? + op(1). Then
use the Law of Large Numbers in (A.11) assuming A, D.

(1) Under the hypothesis the model equation implies Sp35 gﬁl =a+ 55556_61 where
the latter term is the partial regression estimator

SesSz5 = SeySyyts  with Ry, = (Yi—1|Diy),

and where 3 = {I,,0,xpk-1)}. As in (i) transform Y; by NM and apply Lemma
A.3(i7) to get
Ssﬂsﬁ_ﬁl = (SgQSégg, ngsgé)NMLﬂ{l + 0p<1)},
defined in terms of Ro; = (Qi—1|Di—1) and Rz = (w' Zi—1|D;_1). For the first term
note SEQSC;?/Q = 0(1) a.s. by Nielsen (2005, Theorem 2.4), while Séé? = Op(1) by
Lemma A.3(7). For the second term use the Law of Large Numbers in (A.11).
(491) As in (i) note Sgs = 13 Syytg, transform Y; by NM, use Lemma A.3 to get

Sps = ts(M')H(N') " (Sqqs Szz) N M~ 1s{1 + op(1)}.

Since M, N have full rank with probability one then by the Poincaré separation the-
orem, see Magnus and Neudecker (1988, Theorem 11.12) it suffices to argue that
A AT Q1,0 Zi 1| Dy 1)®2} and A {T ' 327, (wy Z 1| Dy—1)%?} have pos-
itive limiting points. The latter follows from the Law of Large Numbers in (A.11),
while S,f = Op(1) by Lemma A.3(i). =

Lemma A.5 Assuming A, D, E with v > 0 then
(Z) SOOﬂ — an a.s.,

(ii) SosSz5 = a+0o(1) a.s.,

(479) liminf Apin(Sgs) > 0 a.s.

Remark A.6 The results in Lemma A.5 hold more generally. An argument could be
made along the lines of Lemma A.3, A.} under either of the following conditions:
(a) If the model has singular explosive terms and deterministic terms, but Y; has no
roots on the unit circle and Assumption D holds with v > 1; see Nielsen (2008, The-
orem 4.7).

(b) If the model has singular explosive terms, but no deterministic terms, and As-
sumption D holds with v > 1, then Y; can have roots on the unit circle at rational
frequencies exp(£i2mp/q) where p,q € N so 0 < 2p < q as long as these roots have
the same algebraic and geometric multiplicity. This is argued by combining Nielsen
(2008, Theorem 4.7) with Bauer (2009).
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Proof of Lemma A.5. (i,4i) This is proved in the same way as Nielsen (2005,
Theorem 2.4, Corollary 2.6, Theorem 2.8). Those results are concerned with vector
autoregressions so an adjustment has to be made since the regressor Y; ; only is a
part of the companion vector of a vector autoregression.

(74i) Combine Nielsen (2005, Corollary 9.5) with the argument involving the
Poincaré separation theorem in Lemma A.4(7iz). =

A.4 Analysis of the generalised common trends assuming B

When Assumptions A, B hold the Granger-Johansen representation in Theorem 3.2
applies and the analysis of Rj .5, is relatively simple. As complement of 3" chose

v B( W¥ALFL O ) ( b =74 ) | (A12)

so (3%, ) is regular, but 37 5* need not be zero. Here B = I, r+ if d;_1 is present

in the model equation (2.1) whereas if d;_; is absent then OéL\IJBJ_ﬁJ_Td = o/ 1y(1,0)
so B = {I,_,,a/ ;11(1,0)'}. Combing the representation of Theorem 3.2 along with
S then gives, for instance if d;_; is present, that

Rs,.ps = B{( ol Zs 0 ) | Y1, D). (A.13)

Two results then emerge concerning Sog, . 5Sﬁ_j .- 555, 0.5- The first is a consistency
result and the second a distributional result.

Lemma A.7 Assume A, D with v > 0. Then
() If C holds then Sogl.gsngLﬂSBLo.g =0(T 'logT) a.s.,
(i1) If E holds then SOIBJ_.QSELIBLﬁSgLo.B =O(T%) a.s. forall £ <~/(2+7).

Remark A.8 The results in Lemma A.7 hold more generally under the conditions
(a), (b) of Remark A.6. The proof would be a modification of the proof of Lemma
A.10. There are two arguments. First, the uncorrelatedness of Y;_1 and Zs 1Es
also hold with explosive roots under conditions (a), (b) so Sz, 5, .5 = Scc{l +o(1)}

with Scc = 1Zt (o) Zs 153) . Secondly, the uncorrelatedness of Q;—1 and

(€1, Zi—1) then shows SOBLBS&J =TS0 (e|w' Ze 1) (ca!, S el 5_1/2 +o(1).
Then argue as in Remark A.6.

Proof of Lemma A.7. Note Ro; = (&¢|Yi—1, Di—1). Let S, = (X' . dy, Y/, Dy)
be the full companion vector. Then S()BLﬂSB_jBLB;SﬁLo.ﬁ = 0(S.555¢Ss.) by Lemma
A.1. Then apply Nielsen (2005, Theorem 2.4) assuming either of C, E. m
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Lemma A.9 Consider either of the models Mg, M, My, M., M. Assume A, B, D, E
with v > 0. Then

(7) 50555[} =+ SSBSB_[; where 55556_61555 =op(T~%) for all £ < v/(2+ 7).

(22) SUBL'BS§56L~B55LU'5 = Op(T_l).

(1ii) Define By, F,, as in Theorem 4.4, let 2 =/ Qay B,. Then

[C AN

- _ _ D 1 1 1l
TQC&/&{o/LSOBL.5553!55@0.5%9&%{ = B = [ dB,F,([, F.F,du)"" [, F.dB,.
Proof of Lemma A.9. (i) Under the hypothesis the model equation implies

5055551 = o+ 55555’51. To establish the desired bound note that by Lemma A.1
then 58556_61558 = O(SSYS;%/SY&) where, for instance, S.y = T} ZtT:l et(Yio1|Dy—1)'.
Then bound S.y Sy Sy. using Nielsen (2005, Theorem 2.4) assuming D, E.
totically uncorrelated a.s. given D;_;, see Nielsen (2005, Theorem 9.1, 9.2, 9.4), so
they can be treated individually. These terms on the one hand and on the other hand
Ro = {(Zi;ll el,di—1)'|D1g—1} are asymptotically uncorrelated given Dyq;_;. This
holds a.s. for Uy, W4, see Nielsen (2005, Theorem 9.2, 9.4), and in probability for 141,
see Chan and Wei (1988), Chan (1989). It follows that Sz 5,.5 = BSceB'{1+o0p(1)}.

For the models M;, M., M, then B = I,.;. Note that Ros; = (e¢|Yi—1, Di—1). It
then holds in a similar way SOBLBS&{/Z = ECSgé/z +o0p(1). Then apply Theorem 5.1
to get the limiting result.

For the models My,, M then B = {I,_,, o/, 111(1,0)’} is not a square matrix so the
analysis has to take into account that d;_; is of larger order than 22;11 gs. A rotation

argument can be applied as in the proof of Johansen (1995, Theorem 11.1). =

A.5 Analysis of the generalised common trends, not assuming B

When Assumption B does not hold the Granger-Johansen representation in Theorem
3.2 fails in that the process can be integrated of higher order. A result giving the
order of Syg L'BSELIBL' 558, 0. can then be established using Lemma A.1 in conjunction
with a more general representation result.

The general representation comes about by extending the companion form argu-
ments of §A.3. Let S, = (X[3,,d,, Y/, D;) recalling Y; = (X", AX],...,AX]_,.,)
of Theorem 3.2. This vector satisfies the equation S; = SS; 1 + tse; where, recalling
the definitions of Y, iy, v in (A.1), it holds

Ly 0 Biv Bip B

| o 1 0 (1,0 1 o

S = 0 0 Y [ty s Ls = Ly (A14)
0 0 O D 0
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The companion matrix can be decomposed following the argument in Nielsen (2005,
§3). In general the matrix Y may have some unit roots. Thus, there exists a regular,
deterministic matrix M and matrices myy, mip, myp so that

I, 0 myy mip B Xy +myyYy + mip D,
G| 0 10 0 S, — dy
0O 0 M m (Ui, V1/7t> V\/l,tv wy) ’
0 0 0 Ijmp (D DG )

satisfies the equation S, = SS,_; + Zse; where, for some v, 115 fy1s My, 1t holds

L, 010 wvi 0 0| puy O
0 1 0 -+ - 0 |(1,0)
. ) U - : : B+ mayty
0
5 Vi e 0 g | Ty
Vi 0 0 Hy\1 0
W| o0 0 0
: T D1 O
0 oo|oe oo o | 0 Dy

Here |eigen(U)| < 1, eigen(Vi) = 1, |eigen(V\1)| = 1 but eigen(V\;) # 1, and
leigen(W)| > 1. When Assumption B does not hold the parameters Vi, vy, 1y, can
generate higher order integrated components along with higher order deterministic
polynomials. These unit root components satisfy V,=VVii + Ly €¢, Where

B Xt + mayYs + mipDy Iy 0 w1 g
. d, . 0 1 0 (1,0
‘/t = ) V = . . s
Vig 3 Vi iy
Dl,t 0 . 0 Dl

and ¢y, is defined conformably from ¢g. Since it is ultimately of interest to analyse the
residuals of 3| X; 1 given Y;_1, D;_; the term myy'Y; +mipD; in the first component
of V;, will not play any role and is ignored in the subsequent manipulations.

The next step is to separate unit root and deterministic components as in Nielsen
(2005, equation 3.5). That is, there exists a matrix m so V, = mL; where

= Vi B Vi 0 Vi Ly
=)= (0 8. )(52) (%)=
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where V; is a (p—r+dim V;)-dimensional block diagonal matrix so the diagonal blocks
are Jordan blocks of the type (2.3) while Dy is a (dim V;+1+dim D, )-dimensional Jor-
dan blocks of the type (2.3), and where ¢ is defined from the (5’ X¢, V1 +)-components
of +y;. Thus, consider the following result.

Lemma A.10 Assuming A, D with v > 1. Let K, = (U, Ve A Dait)'. Then
(1) Siiiw, z =Sip{l+or(1)},
i ~1/2
(1) St i, 2577 = Op(T71?).
_ Proof of Lemma A.10. (i) First, Z; ; is asymptotically uncorrelated with
K 1, Ly in probability by Nielsen (2008, Theorem 4.7) assuming A, D with v >
1. Secondly, it is argued that K; ; and L, ; are asymptotically uncorrelated in
probability. To see this note that U;_i, \;_1 are asymptotically uncorrelated with
each other and with the remaining terms a.s. by Nielsen (2005, Theorem 9.1, 9.2, 9.4)
and note that 1411, D\1;—1 are asymptotically uncorrelated with L;_; in probability
by arguments as in Chan and Wei (1988), Chan (1989).

(i) Note first that S.;.z v z = n1S( ., 2)1.5 Where np = (I, _S&wLZS;iZ,w’lﬂ
is convergent by the Law of Large Numbers in (A.11) assuming A, D with v > 0.

1/2 —1/2 1/2
Then write S(. . ) 1.2571 = Sew, 20571 = S, 28555 S&1571

The first term S, z) LSEEI/Q: note that 71/2 len__t(lT“)( Z! 1wL)/ is asymp-

totically Brownian assuming D, see (5.3). The vector L, which has unit root and

t(T
polynomial components is a continuous function of Zm ) &, and there exists a nor-

malisation matrix N .7 SO N; TLmt(Tu has a non—degenerate limit, see (5.4). Theorem
5.1 then implies S s 7). LST~1 2 = Op(TY2).

The second term, S . z) o K%2 is O(l) a.s. due to the Law of Large Numbers
. o172 .

in (A.11) and since the correlation matrix S e Z) e w;Z)S(s,w’LZ),KS[(f( is O(1).

The third term S K%2S 7iS Efl,/ % is Op(T~ 1/ 2). To see this apply an argument as in
Chan and Wei (1988) and Chan (1989). =

Lemma A.11 Assuming A, D with v > 1 then SOBL'BSQ_EBLyBSﬁLO'ﬁ =0p(T1).

Proof of Lemma A.11. Note that Rop; = (¢|Y;-1, D;—1). So it suffices to
show S.5, 55[3 5, BS[,»K.B = Op(T71). Recall the definitions of K;, L;. Then Lemma

A1 shows S5, 555 5 558, 8 = O(Setw, 2,857 I ZKSLa,wle(). The latter matrix
is Op(T~ ') by Lemma A.10(7,i7). =
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A.6 Proof of consistency

Proof of Theorem 4.1. Recall the rewritten eigenvalue problem (A.7), that is
0=det{P(\)}, P(A) =ASoos+ (A —1)S0sS55580 — Sos,.6555,.558.05- (A.15)

Note that rank(SosS55550) < 7 and rank(SogL.55[11&,55@0.5) < p—r indicating how
the eigenvalues can be separated. For the weak consistency result it suffices

(a) If p, is the smallest non-zero eigenvalue of 5053551350 then p, ! = Op(1).

(b) The limit of Syo.s has full rank.

(C) SOBL'Bsﬁ_lﬁLﬂSﬁLO'ﬁ = Op(Tﬁl).

For result (al) note first that by Lemma A.4(i7) assuming A, D with 7 > 1 then

A = @i, S055 35 Spolim = {1 + 0p(1)}Sps{Lr + 0p(1)}.

Since SEIBI = Op(1) by Lemma A.4(7ii) assuming A, D with 4 > 1 then the smallest
eigenvalue, p, say, of A satisfies p.* = Op(1). Since p, < p, by Poincaré’s separation
theorem, see Magnus and Neudecker (1988, Theorem 11.12), then also p, ' = Op(1).

Here (b) follows from Lemma A.4(i) while (¢) follows from Lemma A.11, both
assuming A, D with vy > 1. =

Proof of Theorem 4.2. Follow the proof of Theorem 4.1 with two modifications.
Apply Lemma A.5 assuming A, D, E with v > 0 instead of Lemma A.4. Apply Lemma
A.7 assuming A, D, E with 7 > 0 instead of Lemma A.11. Note that different rates
apply depending on whether Assumption C holds or not. =
A.7 Proof of asymptotic distribution of rank test

Proof of Theorem 4.4. The solutions to the eigenvalue problem (A.15) equal to
those of 0 = det{P(p)} where

R e N

with Ay = (Aar, Aa, 1) = (6555/2, &, TY?) and &) = a, (o, Qa, )2, To describe
]5(9) note that Lemmas A.4, A.9 assuming A, B, D, E with v > 0 show

SOOﬂ = Q+ Op(l), ngﬁl = Op(l), SOﬁLBSB_jBLBSBLO'B = OP(T_l)’
5055561 = a+ 5555561, SsﬁSgﬁngg =op(T7%) for all £ < /(2 + 7).

Moreover, T&, Sos, 5555 598, 0800 = B = [y dB.Fy( [l FuFidu)™" [ F.dB),.
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In the following results for the components of P(p) are given. For the term
Al 1508555 S0 A, 1 it is needed that S.555;Ss. = op(T /%) which holds if v > 2.

Al 17S00.84A0.r
A, 7S00.8A0, T
A, 7500840, T
A;,TSOBsgf}SﬁoAa,T
A, 750855 Sp0Aa, 1
A;L,TSOBS;;ngﬁOAaL,T
A, 508,855 5, .558,0.8A0r
Ao 1508, 895, 5, 558,08 4a, 7
A:n,TSOBLBS[QE;;L.55@0.&4%1
It follows that

Poo(T ") =
Poa (T7'0) =
Pou_aj_(Tilg) =

= S5 @0wS;, {1+ op(1)},
= TY2S @ 0a, {1+ op(1)},
= Tl {1+oe(1)},

= I +op(1),

= TY285,%Ss.a1 + op(1).

= Td) SpS5555:01,

= op(1),

= op(1),

= B+ op(1).

_Ir + Op(l),
—Tl/QSgBI/ZSﬁe&J_ + Op(l),
olp—r —B+o0p(1) — T&| S.555; Spetiy.

By the partitioned inversion formula the eigenvalue problem is rewritten as

0 = det{P(0)} = det{Paa(T " 0)} det{Ps o, .o(T " 0)},

where P, o, = Pa o,

— P, o PoaaPao, - Inserting the above results gives

0 = det{P(0)} = det{—1I. + op(1)} det{oI, , — B+ op(1)}.

The eigenvalues of the second matrix have the desired trace. m

Remark A.12 In the proof of Theorem 4.4 it is used that v > 2 as opposed to v > 0
to ensure that 55556_61555 = op(T~1/2). For non-explosive cases that result could be

proved along the lines of Chan and Wei (1988) and Chan (1989) assuming v > 0.

A.8 On the limit distribution for singular cases

Remark 4.7 gives an example of singular explosive process. The Granger-Johansen

representation for this process is

1

t ]_ t ]_ t
X,=—— S g —pAX; = —— S g+ —pf Sy
t ps;t P t l_p;t p_PS;P t
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see Theorem 3.2 or Nielsen (2008, Theorem 1). As a consequence
RO,t = (AXt | AXt—l) = (515 | AXt—l)a
1 t
Rl,t = (Xt—l | AXt—l) = (1—,0 E €t ’ AXt—l)-
— Fs=1

Moreover, as in (A.9) it holds that
¢
AX; =p' > p ey = wh — 74, (A.16)
s=1

where \y = p', Zy = 00, p~*eyj and w = Zy. Thus, in Ry, Ry, the regressor AX;
can be replaced by p'~! w' Z,_ ;. Due to the uncorrelatedness of ¢, 22:1 g, with pi=1
and the uncorrelatedness of >'_, &, with w/ Z;_; then

-
|
—

£5)%%{1 +op(1)},

~
M=

(1—p)*T 'Sy =

~
I
—
]
Ll
— =

L
M=

(1-— p)2$10 =T es)(e | W' Zi1) + op(1),

w
I
R
»
Il
MR

)®2.

o
B
Bl
N

§
M=

SOO = (

—

o~
I
—_

By Theorem 5.1 it then holds
(1= p)2T '8y 2 T (I — aP), (1 - p)2Si0 2> Tro(l — aP),
and Spo — [ — aP in probability, where

p* =1
pr

T = [y B.Bldu Ty = [y BB, P=uw (v w) W, a=

It follows that

LR = tr(Syg So151, S10) +op(1) = tr{(I — a ' P)T0,I;7'Tio} + op(1).

A.9 Stochastic integrals

Proof of Theorem 5.1. It is argued that the second term in (5.5) vanishes. Apply
partial summation formula, with Zr, = T~Y2Z, and Hr,—1 = h(Jr)¢—1),7, to get
int(Tu) int(Tw)
> (Hry1— Hro)AZp, = (Hrimerw — Hr0) Zrinrny — 2 AHriZr,.
=1

t=1
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First term. Note that Hr i1y 1S convergent to a continuous process so its supre-
mum also converges, while Zpinru) = 0(1) a.s. uniformly in u by Nielsen (2008,
Corollary 4.3). Thus the first term vanishes.

Second term. Note that Zp, = T-'/23°2 Wley,; and rewrite the second

term th(T“ AHr: 7, = Tyrw + Lo Where

1 int(Tu) s—1 t
ILT,u = / Z Z AHTt( SeVV,S)/?

—1/2 int{ Tu) —T+t—s /
Iz,T,u = Z AHTt Z(W 6W,T+s) .

s=1

The term Iy r,,. It suffices to consider each coordinate of W' %ey, .. Assume this
is univariate or apply a Jordan decomposition argument. Since ey is a martingale
difference and AHr; is F,_i-adapted then by Lai and Wei (1982, Lemma 1)

int(Tu) s—1

Tirw =T 20[log Amax{ > (3" AHp ;W'*)®?] q.s.
s=2 t=1

It suffices to argue that the double sum is of polynomial order. By the Cauchy-Schwarz
inequality and noting |eigen(W™!)| < 1 then

int(Tu) s—1 o2 int(Tu) s—1 ) s—1 2(t—s)
S (S AW < S (S AP W)

int(Tuw)

< <z zuAHﬁu ><§||W||—%>.

The mean value theorem gives

HT 2 w) Y|

(Jr,7)u=t/T

Az = [{3h(, ) )

for some £f and u* so ||e}]| < ||&;|| and 0 < u* < u!'/2 < 1. This is bounded by

0
< —h(. .
I tzl| < {sup ] 5nC ) (w)

IHT " sup(le]], 1)}
(Jr,7)u=t)T t<T

Due to the assumed bound to h and since ||g;||> = o(T'7%) for all £ < /(2 + 7), see
Lai and Wei (1985, Theorem 1) then ||AH7,|| = o(T~%/2) uniformly in ¢. Thus, the
above double sum is of polynomial order in 7', uniformly in v with probability one.
In turn ||Z; 74|| = o(1) a.s. uniformly in .
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The term Iy r,. Apply first the triangle inequality to get a uniform bound in «

T [e's)
1 Z2rull < Tr = (; W T2 AHr| (]| ;Wfsew,ﬂsll)‘

It holds Jr = o(1) a.s. if for all constants K > 0 it holds > <, 1(||Jr|| > K) =

S (|| TJr]|* > K*) < oo a.s. for any o > 0. By the conditional Borel-Cantelli

lemma of Chen (1978) this holds a.s. on the set where 7, P(||J7||* > K*|Fr) < cc.
Now, by the Markov inequality

1
PUITrlI* > K\ Fr) < 2B Trl "1 F7), (A.17)

so it suffices to show E(||Jr||*|Fr) = o(T~¢) for some ¢ > 1.

The expectation E(||J7||*) may be undefined. In that case apply the truncation
argument in the proof of Lai and Wei (1982, Lemma 2): Choose constants a; so
P(||AHz.||* > a;) < t72. By the Borel-Cantelli Lemma, see Breiman (1968, p.41),
then P(AHr; = AHj, for large t) = 1 where AH}, = AHy, if [|[AH7,||* < a; and
zero otherwise.

To bound E(||Jr||*|Fr) note that a sum n; = 3 °° | a;m; can be bounded using the
spectral norm inequality ||a;mey ;|| < ||a;|| ||mey;]| and the Jensen inequality through
the inequality ||n.||* < (3772, [laj|[)*~ 2252, [laj|[|lmer;|* for a > 1, see also Nielsen
(2008, equation 4.2). Apply this bound to each of the sums in Jr to get

T o]
| Tzr||* < cT<t_Z1 ||VV’1||T’t||T’1/2A1‘JTT¢||“)<Z1 WP llewsrs %),

where ¢ = [[W|*7 11 — [[WH|T) (1 — |[[W1])20=) is bounded uniformly in
T. Noting that AHrp, is Fp-measurable then

T 0o
EC|Tr||*|Fr) < CT(t_Z1 !!VVII'FTIIT_WAHT,H|°“){Z_I1 W E(llew+s] | F7) }-

By Assumption D then sup, E(||ew.r4s||*|Fr) < oo a.s. for o < 2 + , which implies
that the sum in s is finite a.s. For the sum in ¢ use the bound from above that
|AHz,|| = o(T~4/%), uniformly in ¢. Thus, the sum in ¢ is bounded by the product of
o(T~0+9/2) and the bounded sum Y7, |[W|[*~". Thus, the sum in  is o(7~(1+8/2),
Since it must hold that (1 + &)a/2 > 1 while £ < v/(2 + v) and a < 2 + 7 then
(1+&a/2 <{21+v)/2+7)}2+7)/2 <14 ~. Thus (1 + &)a/2 can be chosen
larger than unity for any v > 0. m
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