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Abstract
A key ingredient of many particle filters is the use of the sampling importance resampling

algorithm (SIR), which transforms a sample of weighted draws from a prior distribution into
equally weighted draws from a posterior distribution. We give a novel analysis of the SIR
algorithm and analyse the jittered generalisation of SIR, showing that existing implementations
of jittering lead to marked inferior behaviour over the basic SIR algorithm. We show how
jittering can be designed to improve the performance of the SIR algorithm. We illustrate its
performance in practice in the context of three filtering problems.

Keywords: Importance sampling, particle filter, random numbers, sampling importance resam-
pling, state space models

1 Introduction

Particle filters are now a standard way of carrying out non-linear, non-Gaussian filtering. Reviews

of the topic include Doucet, de Freitas, and Gordon (2001) and Cappe, Godsill, and Moulines (2007).

Since Gordon, Salmond, and Smith (1993) various researchers have explored how adding small

amounts of randomness might improve aspects of particle filters. This is particularly important

for slowly moving or time invariant states where particle degeneracy is a serious issue. The initial

suggestion was improved by the shrinkage method of Liu and West (2001) and the kernel density

estimator approach advocated by Musso, Oudjane, and LeGland (2001) and Stravropoulos and

Titterington (2001). However, all these methods seem to lead to significant bias which damages

the performance of the particle filter.

Here we give a fresh analysis of jittering. It will be based on a finite sample study of the sampling

importance resampling (SIR) algorithm, which was introduced by Rubin (1987) and Rubin (1988).
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We provide a simple interpretation of resampling in the context of the classic approach to SIR and

then study the jittered alternative. We show how to sensibly jitter and prove that the traditional

approaches in the particle filter literature deliver serious bias. Our alternative, which we call the

“smoothly jittered particle filter”, avoids these features, is dimensionless and we think should be

used in practice. We illustrate these methods.

This paper is a contribution to the literature trying to deal with on-line Bayesian inference

for static model parameters which index some state space model. Alternative approaches consist

in using sufficient statistics, Fearnhead (2002) and Storvik (2002), or a combination of sufficient

statistics and the auxiliary particle filter from Pitt and Shephard (1999), which has been proposed

in Johannes, Polson, and Stroud (2009) and Johannes and Polson (2009). There have been some

recent developments in the recursive maximum likelihood estimation framework. Poyiadjis, Doucet,

and Singh (2009) derive an algorithm for on-line parameter estimation using on-line estimates of

the score to guide recursive maximum likelihood estimation. Del Moral, Doucet, and Singh (2009)

provide a forward smoothing algorithm which permits recursive parameter estimation using an

on-line expectation maximisation (EM) type algorithm.

This paper draws some insights from the literature on smoothed bootstraps, although the details

and motivation differ. Leading papers there include Efron (1982) and Silverman and Young (1987).

We were also influenced in our thinking by the smooth likelihood particle filter by Pitt (2002),

although our objectives and scope are rather different. West (1993) is somewhat related to our

paper, but our focus is on the particle filtering context.

The structure of this paper is as follows: In Section 2 we analyse the finite sample properties

of standard resampling. In Section 3 we extend this to smooth jittering. In Section 4 we provide

numerical examples, while Section 5 delivers some extra remarks. Conclusions are drawn in Section

6. An Appendix holds proofs of various results stated in the paper.

2 Understanding SIR

2.1 Properties

We begin this section by recalling the standard SIR algorithm. Suppose we wish to learn about

the p-dimensional α given data y. Recall Bayes theorem

f(α|y) =
1
c
f(y|α)f(α), c = f(y).

Here f(α) is the prior, f(y|α) the likelihood, f(y) the marginal likelihood and f(α|y) the posterior.

Our desire is to obtain equally weighted draws representing the posterior f(α|y) by using the

SIR algorithm. The idea of importance sampling is to represent a target distribution via weighted
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draws from an importance density, see Liu (2001, p. 31) for a review. By resampling – i.e. sampling

with replacement from these weighted draws – we obtain an equally weighted sample from the target

distribution.

Suppose α(1), ..., α(n) are independent and identically distributed (i.i.d.) draws from the prior

f(α). After assigning each particle α(i) the corresponding weight f(y|α(i))/ (nĉ), where ĉ =
1
n

∑n
i=1 f(y|α(i)), we have a weighted sample from the posterior f(α|y). Rubin’s resampling step

can be thought of as sampling with replacement from the “empirical posterior distribution function”

Fn(α|y) =
d̂

ĉ
, d̂ =

1
n

n∑

i=1

f(y|α(i))I(α(i) ≤ α). (1)

This works because as n → ∞ the strong law of large numbers implies ĉ
p→ f(y) and d̂

p→
f(y)F (α|y), which implies that

Fn(α|y)
p→ F (α|y),

where the convergence is in fact uniform over α.

The preceding discussion should make it clear why the performance of the resampling step is

intrinsically linked to the statistical properties of (1). For the univariate state case, instead of

thinking about the resampling step as sampling with replacement from (1), think of applying the

inverse of Fn to i.i.d. uniform [0, 1] random numbers. By the above results we have

αn = F−1
α|y,n(U) L→ α|y, U ∼ U(0, 1).

This U -th quantile can be compared to an idealised draw α = F−1
α|y(U) L= α|y. In Figure 1 we

illustrate how deviations of Fn from F lead to deviations in αn from α. The quality of the resampled

particles will be determined by the quality of the estimator of F .

If we suppose α is univariate we can provide a strong theoretical justification for that link. Let

the resampling error be vn =
√

n (αn − α). It is easy to see that

vn = − 1
f (α)

un + Op(n−1/2), un =
√

n {Fn(α|y)− F (α|y)} .

The properties of vn are inherited from un. Typically vn will be imprecise in the tails. Reducing

the size of un should improve vn. In the next section we show how to do this.

Having motivated the analysis in terms of the distribution function estimation error

un =
√

n (Fn − F ) ,

from the standard SIR algorithm, we provide in Proposition 1 the ingredients to compute the mean

squared error (mse) of un.
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Figure 1: The solid line represents the true cumulative distribution function, dotted is the empir-
ical distribution function Fn (α) based on M = 10 particles, and dashed the smooth distribution
function estimate F̂ (α) based on the same M = 10 particles. The horizontal line at u = 0.67
indicates which point is resampled when using SIR or the smooth jitter.

Proposition 1 Define un =
√

n (Fn − F ), then

E [un] = 0, Var(un) = {1− 2F (α|y)}R(α|y) + F (α|y)2R(∞|y),

with R(α|y) = 1
f(y)

∫ α
−∞ f(y|x)dF (x|y), where we assume R(∞|y) < ∞.

Proof. Given in the Appendix.

In the case where y ⊥⊥ α then f(y) = f(y|α), so R(α|y) = F (α), then this simplifies to the well

known result on the empirical distribution function that

Var(un) = {1− F (α)}F (α).

We conclude this section by presenting a useful link to a performance measure often used for

particle filters. This link provides an insight about the dependence of the asymptotic performance

of the Fn (in terms of variance) on the quality of the sampling scheme. To do so we define

r(α|y) = f(y|α)f(y|α)/f(y) and compute

R(∞|y) =
∫

r(α|y)dα =
1

f(y)

∫
f(y|α)dF (α|y) =

∫ (
f(y|α)
f(y)

)2

dF (α).
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This term will be important later. If α(i) i.i.d.∼ F (α) then the estimator

R̂(∞|y) = n
n∑

i=1

(
W (i)

)2 p→ R(∞|y), W (i) =
w(i)

∑n
j=1 w(j)

, w(i) = f(y|α(i)),

has the property that 1
n ≤ ∑n

i=1

(
W (i)

)2 ≤ 1. In the particle filter literature one often calls(∑n
i=1

(
W (i)

)2
)−1

the “effective sample size”, which is taken as a measure of sample impoverish-

ment. Linking this to the variance of un we see that it will be small if R̂(∞|y) is close to 1 – i.e. the

weights are quite even. However, the variance can be larger for very uneven weights, when R̂(∞|y)

is close to n. R̂(∞|y) will reappear later when we select a bandwidth.

Having introduced the intuition of thinking of resampling as inverting a distribution function

and having established the asymptotic properties of the Fn used in SIR, the way forward is now

clear. We will introduce an estimator of F which is superior to Fn and show that this will lead

to improved asymptotic properties of the resampling step. Before we do this we recall how SIR is

used in traditional particle filters and illustrate the particle degeneracy problem.

2.2 Particle filter version: iterating

The SIR method can be used iteratively when analysing state space models (e.g. Durbin and Koop-

man (2001)), which have conditionally independent observations yt|αt from the known f(yt|αt),

while the hidden states αt are Markovian. The particle filter sequentially generates samples from

αt|Ft for t = 1, . . . , T , where Ft is the history of the y process up to time t, starting with a prior on

α1|F0. The particle filter is an extension of the famous Kalman filter to non-Gaussian, non-linear

models.

Suppose we can evaluate f(yt|αt) and form a simulator αt|αt−1. We start by drawing a sample

of size n from α1|F0 and weight these, employing f(y1|α1) as the likelihood, to get an approximation

for α1|F1. After sampling n times with replacement from this we have completed the first SIR step.

For each sampled value we use the simulator αt|αt−1 as importance density, delivering n draws from

α2|F1. These draws are weighted using the likelihood f(y2|α2), which produces weighted draws

representing α2|F2, from which we resample to complete the second SIR step. These steps are

then iterated through time. This standard particle filter has been tremendously successful in many

applications and a great deal of statistical theory has been developed for it, see e.g. Del Moral

(2004).

2.3 Particle degeneracy

A main weakness of particle filters is the well known particle degeneracy problem, which is important

when states change very slowly or not at all through time. To get to the heart of the problem

consider Example 1.
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Example 1 Let

yt = αt + εt, εt ∼ N
(
0, σ2

ε

)
, αt = αt−1, t = 1, . . . , T, α1|F0 ∼ N

(
µ0, σ

2
0

)
, (2)

so αt is a time-invariant parameter and we wish to learn about the posterior density f (αt|Ft). The

true posterior is given by

αt|Ft ∼ N

(
σ2

t

(
µ0

σ2
0

+
∑t

s=1 ys

σ2
ε

)
, σ2

t

)
, σ−2

t =
1
σ2

0

+
t

σ2
ε

, (3)

which the population of particles will approximate at each t. We simulate t observations of y, using

α = 0.439 and then run the particle filter on the state space model (2) with σ2
ε = σ2

0 = 1, µ0 = 0,

using n = 20 particles. The left hand side of Figure 2 shows the particle paths for t = 20. The draws

from the prior indicate quite a lot of diversity, but many distinct particles die out and by the time

we reach t = 20 only one unique particle value is left. Due to the SIR structure there is no chance

any new values of α can appear as the particle filter iterates. This is the classic degeneracy problem.

Some improvement can be obtained by using various types of stratified sampling of the particles,

but this does not overcome the problem that the support of the particles is entirely determined at

t = 1. Figure 3 illustrates the impact of particle degeneracy on the estimate of the posterior standard

deviation σt. In the left graph we plot the 5%, 50% and 95% quantiles of the SIR based particle filter

(n = 100) estimates of σt from N = 1, 000 Monte Carlo replications. The true σt is the same in

each replication, as the posterior standard deviation does not depend upon y. It only takes t = 100

for the median σ̂t to become degenerate. In the right graph of Figure 3 we plot the inefficiency of

the SIR particle filter relative to i.i.d. sampling from the true posterior (dotted line). Inefficiency

is measured by the ratio of the mean squared error for estimating σt with SIR to that of using i.i.d.

draws from the true posterior. It suggests that 800 particles have roughly the same information

about σt as a single draw from the posterior when t = 500. We will return to this example later.

3 Smooth SIR

We now return to the static case of having draws from a prior and wishing to sample from a

posterior F (α|y). We propose to use a smooth distribution function estimator instead of Fn in the

resampling step. This is equivalent to jittering the particles obtained from the SIR algorithm.

Since Gordon, Salmond, and Smith (1993) various authors have suggested adding small amounts

of randomness to each resampled particle α(i) — that is jittering. The introduction of all these

approaches has been driven by the desire to overcome particle degeneracy for slow moving or static

states in dynamic state space models. Unfortunately, these previous ways of jittering have been

found not to work very well in practice and we will show that they do indeed damage the asymptotic

properties of the SIR algorithm. We deduce a method which overcomes this problem.
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Figure 2: The particle paths from a SIR (left) and a jittered (right) particle filter for learning αt|Ft.
The underlying model is that of Example 1, with n = 20 particles and t = 20 observations. The
same random numbers have been used for both graphs.

3.1 Smooth distribution function estimation

We replace Fn(α|y) by the alternative estimator

F̂ (α|y) =
1
ĉ

1
n

n∑

i=1

f(y|α(i))G

(
α1 − α

(i)
1

h1
, ...,

αp − α
(i)
p

hp

)
. (4)

where h1,..., hp are called the bandwidths and are tuning parameters. We will assume G is absolutely

continuous and non-decreasing such that

G(t) =
∫ t

−∞
g(u)du, g(u) =

p∏

j=1

g1(uj), G(t) =
p∏

j=1

G1(tj),

where g is a p-dimensional probability density, g1 is a univariate density which we assume symmetric

about zero and scaled so that
∫

ujg1(uj)duj = 0,

∫
ujukg(u)du = 1j=k.

If f (y|α) = f (y) then F̂ (α|y) is the smoothed distribution function estimator of F (α), which

was introduced by Nadaraya (1964) and extensively studied by Azzalini (1981), Jones (1990), Cheng

and Sun (2006) and many others.
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Figure 3: Left: true posterior standard deviation σt (solid), the 5% and 95% quantiles (dashed)
and median (dotted) of σ̂t from SIR across N = 1, 000 Monte Carlo experiments. Middle: The
same from the smoothly jittered particle filter. The underlying model is that of Example 1, with
n = 100 particles and t = 100 observations. The same random numbers have been used for both
graphs. Right: Inefficiency relative to i.i.d. samples, measured as mse of the estimators of σt. The
underlying model is that of Example 1, with n = 5, 000 particles and t = 500 observations, based
on N = 4, 000 replications. The same type of results appear if n is much larger.

Sampling from (4) is easy: we perform SIR and add to each element of the p-dimensional particle

some jitter hjεj , where εj ∼ g1 are independently sampled over j = 1, . . . , p. The variance h2
j will

be chosen such as to optimise the asymptotic behaviour of the smooth resampling scheme and g1

is chosen to make it easy to sample from.

For the p = 1 case, Figure 1 depicts that sampling from (4), or jittering the SIR samples, is

equivalent to sampling from the estimated quantile function

α̂ = F̂−1
α|y (U) , U ∼ U (0, 1) .

We now analyse the properties of such a jittered sample, which simply derive from the properties

of the estimation error

û =
√

n
(
F̂ − F

)
.

To simplify notation we write εj as being drawn from g1 and
∫ ∞

−∞
εjg1 (εj) G1 (εj) dε = Eg1 [εjG1(εj)] .
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Section 5.1 will give an alternative analysis of the error using a different norm.

Proposition 2 Define û =
√

n
(
F̂ − F

)
, then for the p-dimensional case

E [û] =
√

n
1
2





p∑

j=1

h2
j

∂2F (α|y)
∂a2

j



 +

√
nO(max

j
h4

j ) (5)

and

Var (û) = {1− 2F (α|y)}R(α|y) + F (α|y)2R(∞|y)

−2





p∑

j=1

hj
∂R(α|y)

∂αj



Eg1 [ε1G1(ε1)] + O(max

j
h2

j ) + nO(max
j

h4
j ),

with

R(α|y) =
1

f(y)

∫ α

−∞
f(y|x)dF (x|y),

where we assume R(∞|y) < ∞.

Proof. Given in the Appendix.

Comparing these properties with those of Fn we see that we can reduce the variance of the

distribution function estimator at the cost of introducing some bias.

3.2 Optimal jittering

We now work towards finding a simple rule for choosing the bandwidth h. We start with a di-

rect comparison between the SIR algorithm and our smooth jittering to state the optimal rate of

convergence for h. Then we argue for independent jittering and introduce the integrated mean

squared error as performance measure, which is easy to optimise over in practice. Based on this

we introduce a simple bandwidth selection rule.

Combining the results from Section 2 and Section 3.1 we find the mean squared error

mse (un)−mse (û) = a0

p∑

j=1

hj
∂R(α|y)

∂αj
− n

4





p∑

j=1

h2
j

∂2F (α|y)
∂a2

j





2

, a0 = 2Eg1 {ε1G1(ε1)} .

If hj = cjn
−1/3 then

mse (un)−mse (û) = n−1/3


a0

p∑

j=1

cj
∂R(α|y)

∂αj
− 1

4





p∑

j=1

c2
j

∂2F (α|y)
∂a2

j





2
 ,

The rate of the difference in the scaled mse is not influenced by p, it is always n−1/3.

To select sensible {cj} we will work with the optimal bandwidth in each univariate dimension.

Define

uj,n = un(∞, ..., αj , ...,∞), ûj = û (∞, ..., αj , ...,∞) , j = 1, 2, ..., p.
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Then

mse(uj,n)−mse(ûj) = a0hj
∂R(∞, ..., αj , ...,∞|y)

∂αj
− n

4

{
h2

j

∂2F (αj |y)
∂α2

j

}2

.

The integrated mean squared error (imse), summed over j, is

p∑

j=1

imse(uj,n)− imse(ûj) = a0

p∑

j=1

hjR(∞|y)− n

4

p∑

j=1

h4
j

∫
f ′(αj |y)2dαj .

The improvement in the integrated mean squared error imse (uj,n) − imse (ûj) is maximal with

bandwidth

ĥj = a
1/3
0

(
R(∞|y)∫

f ′(αj |y)2dα

)1/3

n−1/3.

Example 2 In the case where the likelihood is flat f(y) = f(y|α) then R(∞|y) = 1 for all α. If

additionally p = 1 then this becomes

imse (un)− imse (û) = ha0 − 1
4
nh4

∫
f ′(α)2dα.

This is the integrated version of the Azzalini (1981) result.

The improvement in accuracy imse (uj,n)− imse (ûj) is

a
1/3
0

(
R(∞|y)∫

f ′(αj |y)2dαj

)1/3

n−1/3a0R(∞|y)

− na
4/3
0

(
R(∞|y)∫

f ′(αj |y)2dαj

)4/3

n−4/3 1
4

∫
f ′(αj |y)2dαj

=
3
4
n−1/3a

4/3
0

R(∞|y)4/3

(∫
f ′(αj |y)2dαj

)1/3
=

3
41/3

G R(∞|y)4/3

(∫
f ′(αj |y)2dαj

)1/3
n−1/3,

where G = (Eg1 {ε1G1(ε1)})4/3. Hence the smoothing improves the accuracy of the estimated

distribution function, but the improvement is not in terms of the first order theory. The most

important aspect of this result is that the rate of convergence is unaffected by jittering and the

precision somewhat improved.

The choice of the jittering distribution ε1 ∼ G1, only influences the universal constant G. The

jitter is assumed to have unit variance, so we maximise Eg1 [|ε1|] subject to this constraint. Jones

(1990) showed G is maximal if g1 is a uniform distribution, but that many other distributions are

nearly as efficient. The same result applies here. Table 1 gives numerical approximations to G,

based on ten million random numbers from the relevant distributions. In particular the standard

normal and Laplace are 3% and 11% less efficient, respectively, than the uniform. However, the

normal and Laplace have the advantage for particle filters of having support on the entire real line.
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g(x) Eg1 [ε1G1(ε1)] G
uniform 1

2
√

3
I

(
x ∈ [−√3,

√
3
])

0.2890 0.1911

normal (2π)−1/2 exp
(−x2/2

)
0.2819 0.1849

Laplace exp
(−√2 |x|) /

√
2 0.2654 0.1706

Table 1: Performance of various jittering distributions. G denotes their efficiency, with higher
numbers being better. Jones (1990) proved that the uniform is the most efficient.

3.2.1 Simple bandwidth rules

To compute the optimal h we need to well approximate

(R(∞|y))1/3

(∫
f ′(αj |y)2dαj

)1/3
.

We will use a Gaussian approximation to the posterior for
∫

f ′(αj |y)2dαj . By assuming αj |y ∼
N(µαj |y, σ

2
αj |y) we find (e.g. Hansen (2004, p. 2))

{∫
f ′(αj |y)2dαj

}−1

= σ3
αj |y4

√
π.

We can estimate σαj |y robustly using the scaled interquartile range ÎQR/1.349, where

ÎQR = F−1
j,n (0.75|y)− F−1

j,n (0.25|y) ,

and Fj,n (αj |y) is (1). Thus, if we use Gaussian jitter this suggests the rule:

ĥj = 1.59
{

R̂(∞|y)
}1/3

σ̂αj |yn
−1/3, σ̂αj |y = ÎQRj/1.349.

At the end of Section 2 we have seen how we can consistently estimate R(∞|y). Linking

R̂(∞|y) = n
∑n

i=1

(
W (i)

)2
to the effective sample size ESS = (

∑n
i=1(W

(i))2)−1, which was intro-

duced as a rough measure of the variance of the importance weights and serves as an indicator of

the quality of the weighted sample, we may write the bandwidth rule

ĥj = 1.59 σ̂αj |y ESS −1/3.

When we are smoothing a weighted sample, we have the intuitive result that instead of using the

actual number of draws n, we scale the bandwidth by the ESS, which will be smaller if the particle

sample is of poor quality, i.e. the importance sampling weights are quite uneven. Hence it is

adaptive to the problem.

We return to Example 1 to illustrate how jittering affects particle degeneracy in practice.

Example 3 (Example 1 continued) We now add jittering. At each time t we compute the

“optimal” degree of jitter

ĥt = 1.59
{

R̂t(∞|Ft)
}1/3

σ̂αt|Ft
n−1/3.
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The resulting particle paths are given in the right hand side of Figure 2. This shows the replenish-

ment of the support of the particles as t increases.

3.3 Damaging particles by jittering

In the particle filter literature Musso, Oudjane, and LeGland (2001) and Stravropoulos and Tit-

terington (2001, p. 298) have suggested jittering the data by using kernel density estimation with

the choice of h = cn−1/5 in the univariate state case. Liu and West (2001) and Gordon, Salmond,

and Smith (1993) have suggested methods which result in h ∝ 1.

Lemma 1 If we set hd = d0n
−1/5, where d0 is a constant and p = 1 then

n4/5mse
(
F̂ (α|y)

)
= d4

0

{
f ′(α|y)

}2 + O(n−1/5).

If h ∝ 1 then F̂ (α|y) is inconsistent.

Proof. Trivial from Proposition 2.

This Lemma shows that the existing suggestions in the literature lead to excessive jittering,

which slows down the rate of convergence of the SIR method and the error is entirely dominated

by the bias. In the literature, for higher dimensional problems, the jittering is typically increased

with h = d0n
−1/(4+p) where p is the dimension. The rate of convergence of the mse is not n−1 but

n−4/(4+p). So if p = 4 then the rate at which the mse falls is n−1/2 which is undesirable.

3.4 Further improvements from shrinkage

After the jittering step the equally weighted particle cloud no longer is an exact representation of

the posterior distribution. The obvious remedy is to treat the jitter as another importance sampling

step and reweight the jittered particles. These weights will be more equal than the pre-resampling

weights. The post-jittering weights would then be passed forward in the particle filter to the next

time period where they would be combined with the appropriate likelihood function. In sequential

applications it is difficult to compute the weights since the true posterior is not easily available.

Instead of using importance sampling weights, we could weight the jittered data so that it

shares some features of the unjittered data. Desired features could be the same mean and variance,

for example. A principled way of weighting the data is to select the weights by maximising the

empirical, Euclidian or entropy likelihoods to minimally move the weights away from 1/n in order

to satisfy the required features. See the general discussion of these methods in Owen (2001). These

types of nonparametric methods are somewhat more computationally demanding and we therefore

advocate a simple yet powerful linear shrinkage rule.
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The reweighting schemes look more attractive in theory than linear shrinkage, as they may be

more effective at dealing with multimodality in the filtering density. Given the effectiveness of

linear shrinking in this paper we intend to explore this alternative in future work.

We now introduce linear shrinkage to further improve the performance of the jittered particle

filter. West (1993) has advocated this approach in the context of approximating posterior distri-

butions by mixtures. He does not consider the particle filter approach and advocates the kernel

density bandwidth choice h = (4/(1 + 2p))1/(1+4p)n−1/(1+4p). Liu and West (2001) use shrinkage

for the particle filter but choose h ∝ 1.

The idea is simple and in the univariate case we can write

α
(i)
t+1 = µ̂t +

√
σ̂2

t − ĥ2
t

σ̂2
t

(
α

(i)
t − µ̂t

)
+ ĥtε

(i)
t , ε

(i)
t

i.i.d.∼ N (0, 1) ,

where µ̂t is an estimate of the posterior mean, σ̂2
t a robust estimate of the posterior variance and

α
(i)
t the resampled particle. Note that

σ̂2
t − ĥ2

t

σ̂2
t

= 1− 1.592
{

R̂t(∞|y)
}2/3

n−2/3

is scale free.

We can think of this being a specific example of a more general kernel distribution function

estimator than the one considered in Section 3.1, given by

F̃ (α|y) =
1
ĉ

1
n

n∑

i=1

f(y|α(i))G

(
α− µα − β

(
α(i) − µα

)

h

)
,

where we now have the additional degree of freedom β. Instead of optimising over β we use it

to impose the constraint that the jittered particles have the same variance as the weighted pre-

resampling particles. Reverting back to the multivariate case, we advocate setting the optimal ĥ

and β̂ to

ĥj,t = 1.59
{

R̂t(∞|y)
}1/3

σ̂j,tn
−1/3, β̂j,t =

√√√√ σ̂2
j,t − ĥ2

j,t

σ̂2
j,t

, σ̂j,t = ÎQRj,t/1.349.

This choice avoids an artificial increase in the variance and guarantees asymptotic consistency since

the ĥj,t converges to zero at the correct rate. For simplicity we once again jitter and shrink the

states α1, . . . , αp independently. This assumption will be shown not to be too strong in Section 4,

where we provide some illustrative examples.

Example 4 (Example 1 continued) Figure 3 illustrates the impact of using jittering with shrink-

age on the particle degeneracy problem. In the middle graph we plot the 5%, 50% and 95% quantiles

from N = 1, 000 Monte Carlo replications estimating the posterior standard deviation σt with the

13



smoothly jittered particle filter with shrinkage. This particle filter does not collapse at all, despite

the large number of observations t = 100 relative to the number of particles n = 100. In the right

graph we see that the inefficiency relative to i.i.d. sampling is growing significantly slower (solid

line) than that of SIR (dotted line).

4 Illustrations

By means of a simple Monte Carlo experiment we first analyse the univariate performance of our

algorithm on the challenging static case. Then we use a linear Gaussian state space model with

dynamic and static states. We finish with a stochastic volatility example.

4.1 Univariate static parameter inference

We return to the setup in Example 1. For the simulation experiment we start by constructing

our observations by setting α = 0.439 throughout and generating t observations of y. Then we

draw n particles from the prior and sequentially add observations one at a time. Based on the

post-resampling approximation to Fαt|Ft
we obtain the estimates1

µ̂t =
1
n

n∑

i=1

α
(i)
t , σ̂t =

√√√√ 1
n

n∑

i=1

(
α

(i)
t − µ̂t

)2
, q̂t,5% = F

−1
αt|Ft

(0.05), q̂t,95% = F
−1
αt|Ft

(0.95)

for

µt = E [αt|Ft] , σt =
√

Var(αt|Ft), qt,5% = F−1
αt|Ft

(0.05), qt,95% = F−1
αt|Ft

(0.95).

Here Fαt|Ft
(α) = 1

n

n∑

i=1

I(α(i)
t ≤ α). We assess the accuracy of the resampling methods by looking

at the distribution of the scaled error for each statistic

√
n (µ̂t − µt) ,

√
n (σ̂t − σt) ,

√
n

(
q̂t,5% − qt,5%

)
,

√
n

(
q̂t,95% − qt,95%

)
, (6)

where the true values for all our statistics are obtained through (3). The experiment is repeated

N = 1, 000 times, drawing different y = (y1, . . . , yt) each time. We summarise the errors by

computing the square root of the average square of the scaled errors (6), e.g. for the posterior mean

we would compute

√
nrmse (µ̂) =

√
n

√√√√ 1
N

N∑

l=1

(
µ

(l)
t − µ̂

(l)
t

)2
,

where l = 1, . . . , N indexes the Monte Carlo iterations of our simulation experiment.

We will employ the posterior resampling methods based on
1We are aware that it is suboptimal to use the post-resampling approximation to obtain estimators. Here our goal

is to compare the resampling algorithms and hence the interest lies in post-resampling approximations.
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1. ht = 0, which is the same as standard SIR;

2. ĥt = 1.59 σ̂t ESS −1/3
t , the optimal jittering approach;

3. ĥt and β̂t =
√

σ̂2
αt
−ĥ2

t

σ̂2
αt

, optimal jittering with shrinkage, our preferred approach;

4. hd,t, kernel density estimator hd = 1.06σ̂tn
−1/5 approach.

Throughout we take σ̂t = ÎQRt/1.349, where ÎQRt is computed from Fn (αt|Ft). When we

rerun the above experiments for different posterior resampling methods we always use the same

random numbers across methods and simply adjust ht.

The scaled root mse (
√

nrmse) results are given in Table 2 for t = 100 and increasing n. It

indicates the hd based jittering has problems as the bias dominates. ĥ performs significantly better

than hd and approaches the performance of SIR from above as n grows. ĥ with shrinkage performs

best. The error in hd remains significantly larger, suggesting serious bias. In Figure 4 we compare

t=100 n = 100,
√

nrmse n = 1, 000,
√

nrmse n = 10, 000,
√

nrmse
µ̂t σ̂t q̂t,5% q̂t,95% µ̂t σ̂t q̂t,5% q̂t,95% µ̂t σ̂t q̂t,5% q̂t,95%

h = 0 1.62 0.83 2.10 2.22 1.42 0.84 2.24 2.33 1.49 0.86 2.42 2.61
ĥ 2.23 2.25 4.49 4.27 2.20 2.04 3.97 4.10 1.95 1.52 3.16 3.35

ĥ, β̂ 1.12 0.52 1.42 1.42 1.10 0.53 1.40 1.46 1.22 0.67 1.75 1.76
hd 2.70 2.96 5.75 5.49 4.75 5.19 9.57 9.99 7.69 7.33 13.82 14.82

Table 2:
√

nrmse for different bandwidths and numbers of particles and t = 100 observations for
the univariate static model.

the changes in the
√

nrmse for t ∈ {1, 5, 25, 100, 500, 1000} and n = 100 fixed. Overall hd does

worst and the
√

nrmse increases with t more than for any other bandwidth selection. We see that

ĥ still seems to have some problems, but much less so than hd. We prefer ĥ with shrinkage as it

does best of all methods. At t = 1000 with n = 100, ĥ with shrinkage has a
√

nrmse of 68%, 99.3%,

70% and 72% relative to that of SIR, for µ̂t, σ̂t, q̂t,5% and q̂t,95% respectively. The value of the true

σ1000 = 0.03 being so small leads to a
√

nrmse for SIR almost as good as ĥ with shrinkage, since

in all of the N = 1, 000 simulation runs the SIR particle filter has collapsed by reaching t = 1, 000.

The results above confirm two conclusions from the above discussions: the kernel based rule

of h ∝ n−1/5 behaves very poorly due to bias. Our distribution based jittering is a significant

improvement over the kernel density hd, but we require shrinkage to obtain some improvements

over SIR. We will see the size of the improvements will be more substantial on more sophisticated

problems.

15



0 200 400 600 800 1000

1.5

2.0

2.5

scaled rmse of µ̂t

h=0 
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Figure 4: Univariate static model:
√

nrmse for the posterior mean (top left), posterior standard
deviation (top right), posterior 5% quantile (bottom left) and posterior 95% quantile. The lines
are based on six points at t = 1, 5, 25, 100, 500, 1000. Throughout n = 100.

4.2 Including a dynamic state

We now consider a simple linear Gaussian state space model with unknown parameters. This

enables us to benchmark the algorithm against results obtained with the Kalman filter. The model

is

yt = λt + σεεt, εt
i.i.d.∼ N (0, 1) , t = 1, . . . , T,

λt = φλt−1 + σηηt, ηt
i.i.d.∼ N (0, 1) , t = 1, . . . , T, λ1|F0 ∼ N

(
0,

σ2
η

1− φ2

)
,

where the unknown parameters are θ =
(
σ2

ε, φ, σ2
η

)′. We assume priors σ2
ε ∼inv-Γ (γε, βε), φ ∼

N
(
µφ, σ2

φ

)
and σ2

η ∼inv-Γ
(
γη, βη

)
.

The object of interest is the marginal posterior f (αt|Ft), where αt =
(
λt, θ

′)′. To compute the

true posterior we draw from the prior θ(i) ∼ f (θ), i = 1, . . . ,M , and evaluate

w
(i)
t =

t∏

l=1

N
(
yl; a

(i)
l|l−1, P

(i)
l|l−1 + σ2(i)

ε

)
, W

(i)
t =

w
(i)
t∑M

j=1 w
(j)
t

, i = 1, . . . , M,

where N (a; b, c) is the normal density with mean b, variance c, evaluated at a, and a
(i)
t|t−1 is the state

prediction and P
(i)
t|t−1 the variance prediction, conditional on θ(i), computed by the Kalman Filter.
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The random measure
{

θ(i),W
(i)
t

}M

i=1
represents f (θ|Ft). For the posterior of the dynamic state we

know that conditional on θ(i) it is normal with mean a
(i)
t|t and variance P

(i)
t|t . Our approximation to

the true posterior will be normal with mean
∑M

i=1 W
(i)
t a

(i)
t|t and variance

∑M
i=1 W

(i)
t P

(i)
t|t .

We perform a Monte Carlo experiment similar to the one in the previous section. We generate

observations from the model with σε = 1, φ = 0.9, ση = 0.5 and then run each particle filter

with the same random numbers on that data set. We repeat this N times, creating a new y

and using different random numbers in each Monte Carlo iteration. The prior parameters are
{
γε, βε, µφ, σφ, γη, βη

}
= {2.125, 0.9, 0.5, 0.2, 2.125, 0.9}. The focus lies now on comparing the best

alternative to SIR, so we drop hd and ĥ and maintain the bandwidth selection criteria

1. hj,t = 0, which is the same as standard SIR;

2. ĥj,t = 1.59 σ̂j,t ESS −1/3
t and β̂j,t =

√
σ̂2

j,t−ĥ2
j,t

σ̂2
j,t

, optimal jittering with shrinkage, our preferred

approach.

Here σ̂j,t is a robust estimate of the standard deviation of αj,t|Ft. For the practical implemen-

tation we jitter log σ
2(i)
ε and log σ

2(i)
η .

Table 3 shows the
√

nrmse from N = 1, 000 Monte Carlo iterations with t = 200 observations

and n = 1, 000 particles for the two bandwidths considered. To compute the true Kalman-based

posterior we use M = 100, 000 draws from the prior.

ĥ with shrinkage does better than SIR for all statistics in all states. The best relative gain is

found for σ̂t of φ where ĥ with shrinkage has a
√

nrmse of 56% relative to that of SIR. The least

relative gain is 84% for µ̂t of σ2
η.

t=200
αt σ2

ε φ σ2
η

µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95%

h = 0 7.6 2.1 8.4 8.4 9.0 4.5 9.5 13.5 5.2 1.9 4.5 7.0 11.3 4.7 14.2 12.0

ĥ, β̂ 5.6 1.4 6.2 6.0 6.4 2.6 5.5 9.1 3.6 1.0 3.1 4.3 9.5 3.0 10.2 10.1

Table 3:
√

nrmse for n = 1, 000 particles and t = 200 for the linear Gaussian model.

In Figures 5 and 6 we compare the changes in the
√

nrmse for the parameters φ and σ2
η

respectively as we increase the number of observations t ∈ {1, 5, 25, 100, 200, 300, 400, 500} and

keep n = 5, 000 fixed. We used N = 400 Monte Carlo iterations only, since the computational

costs of computing the true posterior become cumbersome for t > 200.2 For t ≤ 200 we used

M = 100, 000 draws from the prior to compute the true Kalman-based posterior, for t = 300 we

used M = 200, 000, for t = 400 and t = 500 M = 400, 000 draws from the prior. We find that
2From comparing the results for N = 400 with these for N = 300 we noticed that the ranking of the algorithms

did not change and the plots do not look too differently, so we are confident that N = 400 is sufficient to have
representative results.
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h=0 ĥ, β̂ 

0 100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

scaled rmse of σ̂t
h=0 ĥ, β̂ 
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Figure 5: Linear Gaussian model, autoregressive parameter φ;
√

nrmse for the posterior mean (top
left), posterior standard deviation (top right), posterior 5% quantile (bottom left) and posterior
95% quantile. The lines are based on eight points at t = 1, 5, 25, 100, 200, 300, 400, 500. Throughout
n = 5, 000.

overall ĥ with shrinkage does best, in that it always outperforms SIR. Not depicted here for brevity

are the same plots for the dynamic state αt and σ2
ε. It is worthwhile mentioning that for the former

the performance of both bandwidths lies closer together for all t and for both ĥ with shrinkage

consistently outperforms SIR.

In general we notice that with n = 5, 000 particles and a small number of observations the

difference in
√

nrmse is negligible. As t increases,
√

nrmse increases and the performance of the

algorithms appears to diverge. The true power of ĥ with shrinkage starts to show as t increases.

Comparing the
√

nrmse across all states we notice that estimating σ2
ε and σ2

η are the greatest

challenge and estimating the autoregressive coefficient, which happens to have the tightest prior,

appears easiest.

4.3 A discrete time Gaussian stochastic volatility model

We conclude the illustrations with an empirical application to estimate the Gaussian discrete time

stochastic volatility (SV) model. See for example the reviews in Ghysels, Harvey, and Renault
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Figure 6: Linear Gaussian model, state variance parameter σ2
η;
√

nrmse for the posterior mean (top
left), posterior standard deviation (top right), posterior 5% quantile (bottom left) and posterior
95% quantile. The lines are based on eight points at t = 1, 5, 25, 100, 200, 300, 400, 500. Throughout
n = 5, 000.

(1996), Shephard (2005) and also Kim, Shephard, and Chib (1998). The stock returns are assumed

to follow the processes

yt = µ + exp {β0 + β1αt} εt,
αt+1 = φαt + ηt

(
εt

ηt

)
i.i.d.∼ N

(
0,

(
1 ρ
ρ 1

))
,

where α0 ∼ N
(
0,

(
1− φ2

)−1
)
. The parameters of interest are θ = (µ, β0, β1, φ, ρ)′ and the Gaus-

sian priors are given in Table 4. We use observations of the end-of-day level of the S&P500

µ β0 β1 φ ρ

prior mean 0.0 0.0 0.0 0.975 -0.6
prior stdev 0.1 0.3 0.3 0.020 0.3

Table 4: SV model: means and standard deviations for the Gaussian priors.

Composite Index (NYSE/AMEX only) from CRSP. The daily log-returns are defined as yt =

100 (log S&P500t − log S&P500t−1).

To have a benchmark against which to compare the SIR and smoothly jittered particle filter

we run the particle Markov chain Monte Carlo (PMCMC) algorithm from Andrieu, Doucet, and
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Holenstein (2010) with n = 2, 000 particles and N = 100, 000 Markov chain iterations. We use the

second half of the PMCMC draws from the posterior distribution to compute the “true” statistics

used in the
√

nrmse.

In this experiment we keep the number of observations fixed and analyse the impact of chang-

ing the number of particles. We use N = 1, 000 Monte Carlo repetitions, but this time we use

different random numbers for the particle filters to avoid running out of memory. For the practical

implementation we set the weight of any jittered particle to zero if ρ(i) 6∈ [−1, 1].

In Table 5 we report the usual statistics for the two algorithms when we use daily returns

from 03.01.1995 until 31.12.2007, resulting in t = 3271. The smoothly jittered particle filter with

αt µ β0

µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95%

n=1,000
SIR 133.0 22.3 126.9 149.7 2.0 0.4 2.5 1.7 11.4 2.3 9.5 14.1

ĥ, β̂ 50.1 15.1 43.0 67.0 1.8 0.4 2.4 1.3 9.9 2.2 6.9 13.3

n=5,000
SIR 283.1 44.3 275.6 310.5 4.4 0.9 5.6 3.3 24.7 5.1 19.4 31.3

ĥ, β̂ 90.9 28.5 81.4 119.2 3.3 0.5 4.1 2.6 14.7 3.7 10.7 19.6

n=10,000
SIR 366.8 57.7 374.5 385.5 5.5 1.3 7.3 4.1 31.0 7.2 24.2 40.1

ĥ, β̂ 126.5 35.3 117.8 158.1 3.8 0.6 4.6 3.1 18.5 4.3 14.1 24.0

β1 φ ρ
µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95% µ̂t σ̂t q̂5% q̂95%

n=1,000
SIR 5.0 0.2 5.0 4.9 1.7 0.1 1.5 1.8 12.4 1.4 14.2 10.5

ĥ, β̂ 2.3 0.2 2.5 2.0 1.3 0.1 1.1 1.4 10.1 1.3 12.0 8.2

n=5,000
SIR 6.5 0.5 6.7 6.4 3.2 0.3 3.0 3.5 26.7 3.1 30.8 22.3

ĥ, β̂ 3.1 0.3 3.4 2.8 1.7 0.1 1.7 1.7 11.3 1.6 12.8 9.8

n=10,000
SIR 7.0 0.7 7.5 6.7 4.0 0.4 3.7 4.3 36.1 4.4 42.0 29.8

ĥ, β̂ 3.4 0.3 3.6 3.1 2.0 0.2 2.1 1.9 12.1 1.6 12.8 11.2

Table 5: Gaussian SV model:
√

nrmse for SIR and ĥ with shrinkage; n ∈ {1000, 5000, 10000}; daily
returns from the beginning of 1995 until the end of 2007, resulting in t = 3271.

shrinkage always outperforms SIR, with a
√

nrmse relative to that of SIR of only 30% in the best

case and 98% in the worst. We notice the rather large
√

nrmse for the dynamic state, which can

be explained by the fact that once the static states have collapsed to a single value, SIR basically

runs a particle filter for the dynamic state alone, but potentially extremely poorly calibrated at

whichever parameter values it collapsed onto. For n = 1, 000 the difference in
√

nrmse between the

bandwidth choices is relatively small and starts to increase with n. At too small n both particle

filters have a hard time, but as n starts taking reasonably large values the gains in performance

are much larger for the smoothly jittered particle filter with shrinkage than for SIR. This results

in the average relative
√

nrmse across all statistics being 74% for n = 1, 000, 53% for n = 5, 000

and 49% for n = 10, 000.

In Figure 7 we plot the marginal posterior distribution functions estimated from one run of the

SIR (dashed line) and smoothly jittered (dotted line) particle filter on a reduced data set consisting
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Figure 7: Gaussian SV model: estimated posterior distribution functions from one run of the SIR
particle filter (dashed line) and one run of the smoothly jittered particle filter with shrinkage (dotted
line) with n = 1, 000 and t = 100. Solid line represents “truth” obtained from PMCMC.

of the last 100 daily observations in 2007. We also report the approximate “truth” from the

PMCMC benchmark (solid line). We can see that even though we only have t = 100 observations

and a fairly large number of particles n = 1, 000, SIR has almost collapsed, whereas our smoothly

jittered particle filter provides a smooth distribution function estimator.

This concludes the illustrations section. We have demonstrated the significantly superior per-

formance of the smoothly jittered particle filter on a number of models. We hope to have convinced

the reader that it is a good idea to jitter the resampled particles. The simplifying assumptions we

made in the derivations of our preferred feasible ĥ with shrinkage do not appear to be too serious.

5 Further remarks

5.1 Improving accuracy by smoothing

So far our analysis is based on the quantiles. Another way of thinking about this type of problem

is to use the sampling to approximate

B(F ) =
∫

b(α)dF (α|y) = Eα|y [b(α)] ,
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for some function b. We then replace F by F̂ and Fn and ask which delivers a better Monte Carlo

estimate. For simplicity we will think about α as univariate. The following argument follows closely

that of Silverman and Young (1987) on the smoothed bootstrap.

B(F̂ ) =
∫

b(α)dF̂ (α|y) =
1

ĉnh

n∑

i=1

f(y|α(i))
∫

b(α)g

(
α− α(i)

h

)
dα

=
1
ĉn

n∑

i=1

f(y|α(i))
∫

b
(
α(i) + hε

)
g(ε)dε.

We will ignore the impact of estimating c. As
∫

b (α + hε) g(ε)dε = b(α) +
h2

2
b′′(α) + O(h4),

we get

E
[
B(F̂ )−B(Fn)

]
=

h2

2

∫
b′′(α)f (α|y) dα + O(h4),

Var
(
B(F̂ )

)
−Var (B(Fn)) =

h2

n

∫
b(α)b′′(α)r (α|y) dα + O(h4/n).

This allows for reductions in mean square so long as
∫

b(α)b′′(α)r (α|y) dα is negative. If this is the

case then optimally h ∝ n−1/2.

If we used h ∝ n−1/5 then

mse
{

B(F̂ )
}
∝ n−4/5,

which is worse than mse {B(Fn)} and is dominated by bias. Hence this kernel density estimation

approach is problematic. Our paper has advocated using h ∝ n−1/3 in which case the first order

terms of the mse are unaffected by the jittering as the squared bias is O(n−4/3) and the change

in the variance is O(n−5/3), which are both of lower order than the usual O(n−1) term. Hence

distribution based jittering does no damage in this context.

5.2 Pitt’s smoother

In the univariate state case Pitt (2002) suggested replacing Fn(α|y) by a smoothed version in order

to remove the roughness of the resampling step, which causes jumps in the likelihood function.

His method starts by sorting the particles

α[1] < α[2] < ... < α[n].

In a simple version of his methods, he then defines a “2nd nearest neighbour” type estimator

F̃ (α|y) =
1
nĉ

n−1∑

i=1

[
w[i]I

(
α ≤ α[i−1]

)
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+ I
(
α ∈

(
α[i+1] − α[i]

)){
w[i]

2
+

α− α[i]

α[i+1] − α[i]

w[i] + w[i+1]

2

}]
,

where w[i] = f(y|α[i]). This corresponds to adding uniform jitter on the interval
[
α[i], α[i+1]

]
to the

modified cumulated weights. This finite nearest neighbour method would lead to an inconsistent

density estimator as the neighbourhood is fixed at 2. However, we are interested in estimating the

corresponding distribution function and quantile, which are consistently estimated here. Of course

kernels and nearest neighbourhood methods are intimately related.

6 Conclusion

Particle filters are becoming the dominant way of carrying out on-line Bayesian inference for para-

metric state space models, extending the classic Kalman filter algorithm to the non-linear, non-

Gaussian case. The particle degeneracy problem is extremely important and holds back the analysis

of slowly varying or time invariant states.

This paper provides a solution to this problem using a particular type of jittering and shrinking.

It is based on a higher order analysis of a smooth SIR algorithm, which suggests a dimensionless

way of choosing the degree of jittering based upon distributional smoothing.

We explore the use of this method on a number of applied problems, showing this new procedure

works in practice. It involves a trivial amount of extra computation and coding. The method is not

damaging to particle filters of fast evolving states as it only affects the higher order properties of

the sampling method. We show that the improvements over SIR persist as the number of particles

and the number of observations increase.

A Appendix

A.1 Proof of Proposition 1

We rewrite

Fn (α|y)− F (α|y) =
1
ĉ

(
1
n

n∑

i=1

f
(
y|α(i)

)
I

(
α(i) ≤ α

)
− ĉF (α|y)

)

=
1
ĉ

(
1
n

n∑

i=1

f
(
y|α(i)

) {
I

(
α(i) ≤ α

)
− F (α|y)

})

=
1
c

(
1
n

n∑

i=1

f
(
y|α(i)

) {
I

(
α(i) ≤ α

)
− F (α|y)

}) (
1 + Op

(
n−1/2

))

since ĉ
p→ f (y). We will ignore the Op

(
n−1/2

)
term from now on.

E [un] =
√

n

c

∫
f (y|x) {I (x ≤ α)− F (α|y)} f (x) dx
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=
√

n

∫
{I (x ≤ α)− F (α|y)} f (x|y) dx = 0,

while

nVar (Fn (α|y)− F (α|y)) =
1

f(y)

∫
f (y|x) {I (x ≤ α)− F (α|y)}2 f (x|y) dx

= {1− 2F (α|y)}R (α|y) + F (α|y)2 R (∞|y) .

A.2 Proof of Proposition 2

We again approximate with error Op(n−1/2)

F̂ (α|y)− F (α|y) =
1
c

1
n

n∑

i=1

f(y|α(i))

{
G

(
α− α(i)

h

)
− F (α|y)

}(
1 + Op(n−1/2)

)
,

where G is a probability distribution function. We again ignore the Op

(
n−1/2

)
for the derivations

that follow.

Proposition 3 We will use the following result, which assumes F is twice continuously differen-

tiable.

I1 =
∫ ∞

−∞
G

(
a− x

h

)
f(x)dx = F (a) +

p∑

j=1

h2
j

2
∂2F (a)

∂a2
j

+ O(max
j

h4
j ),

I2 =
∫ ∞

−∞
G

(
a− x

h

)2

f(x)dx = F (a)− 2
p∑

j=1

hj
∂F (a)
∂aj

∫ ∞

−∞
tjg (t) G (t) dt + O(max

j
h2

j ).

Proof. Let U be some absolutely continuous non-decreasing function, so we write it as

U(t1, ..., tp) =
∫ t1

−∞
...

∫ tp

−∞
u(a1, ..., ap)da1...dap,

∂pU(t)
∂t1..., ∂tp

= u(t),

then Fubini’s theorem implies that
∫ ∞

−∞
U

(
x1 − s1

h1
, ...,

xp − sp

h1

)
dF (s)

=
∫ ∞

−∞
u(t1, ..., tp)F (x1 − t1h1, ..., xp − tph1)dt1...dtp

Using this and a third order Taylor approximation (as h1, ..., hp ↓ 0) of F (a − th) around F (a)

delivers

I1 =
∫ ∞

−∞
G

(
a− x

h

)
f(x)dx

=
∫ ∞

−∞
g (t1) ...g (tp)F (a1 − t1h1, ..., ap − tphp)dt

=
∫ ∞

−∞
g (t) F (a)dt−

p∑

j=1

hj
∂F (a)
∂aj

∫ ∞

−∞
tjg (t) dt
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+
p∑

j=1

p∑

k=1

hjhk

2
tr

{
∂2F (a)
∂aj∂ak

∫ ∞

−∞
tjtkg (t) dt

}
+ O(max

j
h4

j )

= F (a) +
p∑

j=1

h2
j

2
∂2F (a)

∂a2
j

+ O(max
j

h4
j ),

by symmetry of g about 0 and
∫ ∞

−∞
tjtkg (t) dt = 1j=k.

Using the independence assumption we solve

∂pG (x)2

∂x1..., ∂xp
= 2p ∂pG (x)

∂x1..., ∂xp
G(x) = 2pg(x)G(x),

and the second integral expression therefore yields

I2 =
∫ ∞

−∞
G

(
a− x

h

)2

f(x)dx =
2p

hp

∫ ∞

−∞
g

(
a− x

h

)
G

(
a− x

h

)
F (x)dx

= 2p

∫ ∞

−∞
g (t) G (t) F (a− th)dt

= 2pF (a)
∫ ∞

−∞
g (t) G (t) dt− 2p

p∑

j=1

hj
∂F (a)
∂aj

∫ ∞

−∞
tjg (t) G (t) dt + O(max

j
h2

j )

= F (a)− 2
p∑

j=1

hj
∂F (a)
∂aj

∫ ∞

−∞
tjg1 (tj) G1 (tj) dtj + O(max

j
h2

j ),

where we only used a first order Taylor approximation.

¤
We now tackle the properties of F̂ (α|y)− F (α|y).

For the expectation we obtain

1
c

∫ ∞

−∞
f(y|x)G

(
α− x

h

)
f(x)dx =

∫ ∞

−∞
G

(
α− x

h

)
f(x|y)dx

= F (α|y) +
p∑

j=1

h2
j

2
∂2F (a|y)

∂a2
j

+ O(max
j

h4
j ).

using I1.

For the variance we recall the notation

f(y|x)2f(x)
f(y)2

=
1

f(y)
f(y|x)f(x|y) = r(x|y), R(x|y) =

∫ x

−∞
r(z|y)dz

and solve

nVar
(
F̂ (α|y)− F (α|y)

)

=
1

f(y)

∫ ∞

−∞
f(y|x)

{
G

(
α− x

h

)
− F (α|y)

}2

f(x|y)dx + nO(max
j

h4
j )
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=
∫ ∞

−∞
G

(
α− x

h

)2

r(x|y)dx− 2F (α|y)
∫ ∞

−∞
G

(
α− x

h

)
r(x|y)dx

+ F (α|y)2
∫ ∞

−∞
r(x|y)dx + nO(max

j
h4

j )

The first term yields
∫ ∞

−∞
G

(
α− x

h

)2

r(x|y)dx

= R(α|y)− 2
∑

hj
∂R(α|y)

∂aj

∫ ∞

−∞
tjg1 (tj) G1 (tj) dtj + O(max

j
h2

j )

by I2 and the second term

−2F (α|y)
∫ ∞

−∞
G

(
α− x

h

)
r(x|y)dx = −2F (α|y)R(α|y)− 2F (α|y)O(max

j
h2

j )

similar to I1 (only using first order Taylor expansion). Combining the terms we get

∫ ∞

−∞
f(y|x)

{
G

(
α− x

h

)
− F (α|y)

}2

f(x|y)dx

= {1− 2F (α|y)}R(α|y) + F (α|y)2R(∞|y)

− 2
∑

hj
∂R(α|y)

∂aj

∫ ∞

−∞
tjg1 (tj) G1 (tj) dtj + O(max

j
h2

j ).

Applying these results delivers the proof. ¤
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