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Abstract

This paper studies in some detail a class of high frequency based volatility (HEAVY) mod-
els. These models are direct models of daily asset return volatility based on realized measures
constructed from high frequency data. Our analysis identifies that the models have momentum
and mean reversion effects, and that they adjust quickly to structural breaks in the level of the
volatility process. We study how to estimate the models and how they perform through the
credit crunch, comparing their fit to more traditional GARCH models. We analyse a model
based bootstrap which allow us to estimate the entire predictive distribution of returns. We
also provide an analysis of missing data in the context of these models.

Keywords: ARCH models; bootstrap; missing data; multiplicative error model; multistep ahead
prediction; non-nested likelihood ratio test; realised kernel; realised volatility.

1 Introduction

This paper analyses the performance of some predictive volatility models built to exploit high

frequency data. This is carried out through the development of a class of models we call high

frequency based volatility (HEAVY) models, which are designed to harness high frequency data to

make multistep ahead predictions of the volatility of returns. These models allow for both mean

reversion and momentum. They are somewhat robust to certain types of structural breaks and

∗We thank Tim Bollerslev, Rob Engle, Nathaniel Frank, Giampiero Gallo, Andrew Patton and Natalia Sizova for
various helpful suggestions. We are responsible for any errors.
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adjust rapidly to changes in the level of volatility. The models are run across periods where the level

of volatility has varied substantially to assess their ability to perform in stressful environments.

Our approach to inference will be based on the use of the “OMI’s realised measure library” of

historical volatility statistics, constructed using high frequency data (OMI denotes the Oxford-Man

Institute). Such statistics are based on a variety of theoretically sound non-parametric estimators

of the daily variation of prices. In particular it includes two estimators of interests to us. The first

is realised variance, which was systematically studied by Andersen, Bollerslev, Diebold, and Labys

(2001) and Barndorff-Nielsen and Shephard (2002). The second, which has some robustness to the

effect of market microstructure effects, is realised kernel, which was introduced by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008a). Alternatives to the realised kernel include the multiscale

estimators of Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang (2006) and the preaveraging

estimator of Jacod, Li, Mykland, Podolskij, and Vetter (2009)1.

The focus of this paper is on predictive models, rather than on non-parametric measurement of

past volatility. Torben Andersen, Tim Bollerslev and Frank Diebold, with various coauthors, have

carried out important work on looking at predicting volatility using realised variances. Typically

they fit reduced form time series models of the sequence of realised variances — e.g. autoregressions

or long memory models on the realised volatilities or their logged versions. Examples of this work

include Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Labys

(2003), Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, and Diebold

(2007).

The approach we follow in this paper is somewhat different. We build models out of the

intellectual insights of the ARCH literature pioneered by Engle (1982) and Bollerslev (1986), but

bolster them with high frequency information. The resulting models will be called HEAVY models.

These models also use ideas generated by Engle (2002), Engle and Gallo (2006) and Cipollini, Engle,

and Gallo (2007) in their work on pooling information across multiple volatility indicators and the

paper by Brownlees and Gallo (2009) on risk management using realised measures. Our analysis

can be thought of as taking a small subset of some of the Engle et al. models and analysing

them in depth for a specific purpose looking at their performance over many assets. Our model

structure is very simple which allows us to cleanly understand its general features, strengths and

potential weaknesses. We provide no new contribution to estimation theory, simply using existing

results on quasi-likelihoods. We show that when we marginalise out the effect of the realised

measures that simple HEAVY models of squared returns have some similarities with the component

GARCH model of Engle and Lee (1999, equation (3.2)). However, HEAVY models are much easier

1See also the work by Bandi and Russell (2008), Bandi and Russell (2006), Andersen, Bollerslev, and Meddahi
(2006), Hansen and Lunde (2006), Corradi and Distaso (2006), and Christensen and Podolskij (2007).
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to estimate as they bring two sources of information to identify the longer term component of

volatility. We further find that the additional information in the realized measure generates out-

of-sample gains, which are particularly strong when the parameters of the model are estimated to

match the prediction horizon, using so-called “direct projection.”

The structure of this paper is the following. In Section 2 we will define HEAVY models, which

use realised measures as the basis for multi-period ahead forecasting of volatility. We provide a

detailed analysis of these models. In Section 3 we detail the main properties of “OMI’s realised

measures library” which we use throughout the paper. In Section 4 we fit the HEAVY models to

the data and compare their predictions to those familiar from GARCH processes. Section 5 gives

a discussion of possible extensions. Section 6 draws some conclusions.

2 HEAVY models

2.1 Assumed data structure

Our analysis will be based on daily financial returns

r1, r2, ..., rT ,

and a corresponding sequence of daily realised measures

RM1, RM2, ..., RMT .

Realised measures are theoretically sound high frequency, nonparametric based estimators of the

variation of the price path of an asset during the times at which the asset trades frequently on an

exchange. Realised measures ignore the variation of prices overnight and sometimes the variation

in the first few minutes of the trading day when recorded prices may contain large errors. The

background to realised measures can be found in the survey articles by Andersen, Bollerslev, and

Diebold (2009) and Barndorff-Nielsen and Shephard (2007).

The simplest realised measure is realised variance

RMt =
∑

0≤tj−1,t<tj,t≤1

x2
j,t, xj,t = Xt+tj,t −Xt+tj−1,t (1)

where tj,t are the normalised times of trades or quotes (or a subset of them) on the t-th day.

The theoretical justification of this measure is that if prices are observed without noise then as

minj |tj,t − tj−1,t| ↓ 0 it consistently estimates the quadratic variation of the price process on the

t-th day. It was formalised econometrically by Andersen, Bollerslev, Diebold, and Labys (2001) and

Barndorff-Nielsen and Shephard (2002). In practice market microstructure noise plays an important

part and the above authors use 1-5 minute return data or a subset of trades or quotes (e.g. every

3



15th trade) to mitigate the effect of the noise. Hansen and Lunde (2006) systematically study the

impact of noise on realised variance. If a subset of the data is used with the realised variance, then

it is possible to average across many such estimators each using different subsets. This is called

subsampling. When we report RV estimators we always subsample them to the maximise degree

possible from the data as this averaging is always theoretically beneficial especially in the presence

of modest amounts of noise.

Three classes of estimators which are somewhat robust to noise have been suggested in the liter-

ature: preaveraging (Jacod, Li, Mykland, Podolskij, and Vetter (2009)), multiscale (Zhang (2006)

and Zhang, Mykland, and Aı̈t-Sahalia (2005)) and realised kernel (Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008a))2. Here we focus on the realised kernel in the case where we use

a Parzen weight function. It has the familiar form of a HAC type estimator (except there is no

adjustment for mean and the sums are not scaled by their sample size)

RMt =

H∑

h=−H

k
(

h
H+1

)
γh, γh =

n∑

j=|h|+1

xj,txj−|h|,t, (2)

where k(x) is the Parzen kernel function

k(x) =





1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1
0 x > 1.

It is necessary for H to increase with the sample size in order to consistently estimate the increments

of quadratic variation in the presence of noise. We follow precisely the bandwidth choice of H spelt

out in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), to which we refer the reader for

details. This realised kernel is guaranteed to be non-negative, which is quite important as some of

our time series methods rely on this property.

2.2 Definitions

We will write a sequence of daily returns as r1, r2, ..., rT , while we will use FLF
t−1 to denote low

frequency past data. A benchmark model for time-varying volatility is the GARCH model of Engle

(1982) and Bollerslev (1986) where we assume that

Var
(
rt|FLF

t−1

)
= σ2

t = ωG + αGr
2
t−1 + βGσ

2
t−1.

This can be extended in many directions, for example allowing for statistical leverage. The persis-

tence of this model, αG + βG, can be seen through the representation

σ2
t = µG + αG

(
r2t−1 − σ2

t−1

)
+ (αG + βG) σ2

t−1,

2See also the important work of Fan and Wang (2007) on the use of wavelets in this context.
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since r2t − σ2
t is a martingale difference with respect to FLF

t−1.

Our focus is on additionally using some daily realised measures. The models we will analyse

will be called “HEAVY models” (High frEquency bAsed VolatilitY models) and are made up of the

system
{

Var
(
rt|FHF

t−1

)

E
(
RMt|FHF

t−1

)
}
, t = 2, 3, ..., T,

where FHF
t−1 is used to denote the past of rt and RMt, that is the high frequency dataset. The most

basic example of this is the linear model

Var
(
rt|FHF

t−1

)
= ht = ω + αRMt−1 + βht−1, ω, α ≥ 0, β ∈ [0, 1] , (3)

E
(
RMt|FHF

t−1

)
= µt = ωR + αRRMt−1 + βRµt−1, ωR, αR, βR ≥ 0, αR + βR ∈ [0, 1] , (4)

These semiparametric models could be extended to include on the right hand side of both equations

the variable r2t−1 (see the discussion above (5) in a moment) but we will see these variables typically

test out. Hence it is useful to focus directly on the above model. Other possible extensions include

adding a more complicated dynamic to (4), such as a component structure with short and long

term components, a fractional model, allowing for statistical leverage type effects, or a Corsi (2009)

type approximate long-memory model.

Remark 1 (3) models the close-to-close conditional variance, while (4) models the conditional

expectation of the open-to-close variation.

It will be convenient to have labels for the two equations in the HEAVY model. We call (3)

the HEAVY-r model and (4) the HEAVY-RM model. Econometrically it is important to note that

GARCH and HEAVY models are non-nested.

It is helpful to solve out explicitly the HEAVY-r model and GARCH models as

Var
(
rt|FHF

t−1

)
=

ω

1 − β
+ α

∞∑

j=0

βjRMt−1−j , Var
(
rt|FLF

t−1

)
=

ωG
1 − βG

+ αG

∞∑

j=0

βjGr
2
t−1−j .

In applied work we will typically estimate β to be around 0.6 to 0.7 and ω to be small. So the

HEAVY-r’s conditional variance is roughly a small constant plus a weighted sum of very recent

realised measures. In estimated GARCH models in our later empirical work βG is usually around

0.91 or above, so has much more memory and so averages more data points.

We can quantify this differential weighting in the following way. Let us focus on the number of

days j which have weights βj or βjG above 0.1. In the GARCH case with βG = 0.91 this would be

around 24.4 days. In the HEAVY-r model with β = 0.7 it amounts to 4.5 days. Hence, roughly,

GARCH models average a month or so of recent squared returns and HEAVY-r models average a

week of realised measures.
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Notice that unlike GARCH models, the HEAVY-r model has no feedback and so the conditional

variance of returns is entirely determined by the sequence of realised measures. Hence the properties

of the realised measures determine the properties of Var
(
rt|FHF

t−1

)
.

The predictive model for the times series of realised measures is not novel. The work of

Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Labys (2003),

Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, and Diebold (2007)

typically looked at using least squares estimators of autoregressive cousins discussed in (4) or their

logged transformed versions. These authors also emphasised the evidence for long memory in these

time series and studied various ways of making inference for those types of processes. Some of this

work uses the model of Corsi (2009) which is easy to estimate and mimics some aspects of long

memory.

Engle (2002) estimated GARCHX type models, which specialise to (3), for foreign exchange

data using realised variances computed using 5 minute returns. He found the coefficient on r2t−1 to

be small. He also fitted models like (4) but again including lagged square daily returns. He argues

that the squared daily return helps forecast the realised variance although there is some uncertainty

over whether the effect is statistically significant (see his footnote 2). He did not, however, express

(3)-(4) as a simple basis for a multistep ahead forecasting system.

Engle and Gallo (2006) extended Engle (2002) to look at multiple volatility indicators, trying

to pool information across many indicators including daily ranges — rather than focusing solely

on theoretically sound high frequency based statistics. They then relate this to the VIX. In that

paper they do study multistep ahead forecasting using a trivariate system which has daily absolute

returns, daily range and realised variance (computed using 5 minute returns for the S&P500, so

using a very small sample size). Their estimated models are quite sophisticated with again daily

returns playing a large role in predicting each series. These results are at odds with our own

empirical experience expressed in section 4. Some clues as to why this might be the case can be

seen from their Table 1 which shows realised volatility having roughly the same average level as

absolute returns and daily range but realised volatility being massively more variable and having

a very long right hand tail. It perhaps suggests their realised measures were quite poor which

distracted from the power and simplicity of using realised measures in HEAVY type models.

Brownlees and Gallo (2009) look at risk management in the context of exploiting high frequency

data. Their model, in Section 5 of their paper, links the conditional variance of returns to an affine

transform of the predicted realised measure. In particular their model has a HEAVY type structure

but instead of using ht = ω+αRMt−1 +βht−1 they model ht = ωB +αBµt. That is they place in

the HEAVY-r equation a smoothed version µt of the lagged realised measures where the smoothing
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is chosen to perform well in the HEAVY-RM equation, rather than the raw version which is then

smoothed through the role of the momentum parameter β (which is optimally chosen to preform

well in the HEAVY-r equation). Although these models are distinct, they have quite a lot of

common thinking in their structure. Maheu and McCurdy (2009) have similarities with Brownlees

and Gallo (2009), but focusing on an even more tightly parameterised model working with open-

to-close daily returns (i.e. ignoring overnight effects) where realised variance captures much of the

variation of the asset price. Giot and Laurent (2004) looks at some similar types of models.

Finally for some data the realised measure is not enough to entirely crowd out the lagged

squared squared daily returns. In that case it makes sense to augment the HEAVY-r model into

its extended version

Var(rt|FHF
t−1 ) = ht = ωX + αXRMt−1 + βXht−1 + γXr

2
t−1, βX + γX < 1. (5)

This could be thought of as a GARCHX type model, but that name suggests that it is the squared

returns which drives the model, where in fact in our empirical work it is the lagged realised measure

which does almost all the work at moving around the conditional variance even in the rare occasions

that γX is estimated to be positive. There seems little point in extending the HEAVY-RM model

in the same way.

2.3 Representations and dynamics

2.3.1 Multiplicative representation

The vector multiplicative representation of HEAVY models rewrites (3) and (4) as
(

r2t
RMt

)
=

(
εtht
ηtµt

)
=

(
ht
µt

)
+

(
ht (εt − 1)
µt (ηt − 1)

)
, where E

{(
εt
ηt

)
|FHF
t−1

}
=

(
1
1

)
.

Such representations are the key behind the work of Engle (2002) and Engle and Gallo (2006).

They are powerful as (εt, ηt)
′ − (1, 1)′ is a martingale difference3 with respect to FHF

t−1 .

The dynamic structure of the bivariate model can be gleaned from writing
(
ht
µt

)
= w +

(
β 0
0 βR

)(
ht−1

µt−1

)
+

(
α 0
0 αR

)
RMt−1, w =

(
ω
ωR

)
,

= w +B

(
ht−1

µt−1

)
+

(
α 0
0 αR

)(
RMt−1 − µt−1

)
, B =

(
β α
0 αR + βR

)
.

Hence this process is driven by a common factor RMt − µt, which is itself a martingale difference

sequence with respect to FHF
t−1 .

The memory in the HEAVY model is governed by
(
β α
0 αR + βR

)
.

3A stronger set of assumptions, which is useful in inspiring a quasi-likelihood, is that jointly (εt, ηt) ∼ i.i.d., over
the subscript t. We will not make the latter assumption unless we explicitly say so.
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This has two eigenvalues (e.g. Golub and Van Loan (1989, p. 333)): β which we call a momentum

parameter (a justification for this name will be given shortly) and αR+βR which is the persistence

parameter of the realised measure. In empirical work we will typically see β to be around 0.6 and

the persistence parameter being close to but slightly less than one so αR + βR governs the implied

memory of r2t at longer lags. The persistence parameter will be close to that seen for estimated

αG + βG for GARCH models.

The role of β is interesting. In typical GARCH models the main feature is that the current value

of conditional variance monotonically mean reverts to the long run average value as the forecast

horizon increases. In HEAVY models this is not the case because of β.

2.3.2 Dynamics of the r2t process

The HEAVY model can be solved out to imply the autocovariance function of the squared returns.

This seems of little practical interests but allows some theoretical in sights.

Theorem 1 Assume that αR, βR, β ∈ [0, 1) and αR+βR < 1. Define ut = r2t−ht, uRt = RMt−µt,
which under the model is are martingale difference sequences with respect to FHF

t−1 . Then writing L

as the lag operator, we can write out the marginal process for the r2t from a HEAVY model as

{1 − (αR + βR)L} (1 − βL) r2t = {1 − (αR + βR)} ω + α ωR + ξt, (6)

where

ξt = (1 − βRL) uRt−1 + {1 − (αR + βR)L} (1 − βL)ut

= ut + {uRt−1 − (αR + βR + β) ut−1} − {βRuRt−2 + (αR + βR)βut−2} .

If we assume that

Var

(
ut
uRt

)
=

(
σ2
u σu,R

σu,R σ2
R

)

exists then ξt has a zero mean weak MA(2) representation and r2t is weak GARCH(2, 2) in the

sense of Drost and Nijman (1993). The autoregressive roots of r2t are β and αR + βR, so are real

and positive. A biproduct of the derivation of these results is the VARMA(1,1) representation

(
r2t
RMt

)
=

(
ω
ωR

)
+

(
β α
0 αR + βR

)(
r2t−1

RMt−1

)
+

(
(1 − βL)ut

(1 − βRL)uRt

)
,

and the equilibrium correction form (see Hendry (1995))

∆r2t = ω + α
(
RMt−1 − γr2t−1

)
+ (1 − βL) ut, where γ =

1 − β

α
. (7)
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Proof. Clearly

r2t = ht + ut =
ω

1 − βL
+
αRMt−1

1 − βL
+ ut, where ut = r2t − ht,

where L is the lag operator. So

(1 − βL) r2t = ω + αRMt−1 + (1 − βL)ut.

Likewise

{1 − (αR + βR)L}RMt = ωR + (1 − βRL) uRt, uRt = RMt − µt.

Combining delivers the result. The rest is trivial. �

An important aspect of the above result is that the memory parameters in the MA(2) depend

upon the covariance matrix of (ut, uRt).

Remark 2 The weak GARCH(2, 2) representation is quite like that discussed in the component

model of Engle and Lee (1999, equation (3.2)) which models

Var
(
rt|FLF

t−1

)
= σ2

t = qt + αC
(
r2t−1 − qt−1

)
+ βC

(
σ2
t−1 − qt−1

)
, where

qt = ωC + ρCqt−1 + ϕC
(
σ2
t−1 − ht−1

)
.

The qt process is called the long-term component and σ2
t−1 − qt−1 the transitory component of the

conditional variance. Thus we expect ρC to be close to one and αC + βC to be substantially less

than one. This model has autoregressive roots (αC + βC + ρC) and −ρC (αC + βC). These play

exactly the opposite role to the ones here (their parameter ρC is like the HEAVY-r model’s β).

Remark 3 An importance aspect of the marginal r2t process is that

r2t = (αR + βR + β) r2t−1 − β (αR + βR) r2t−2 + {1 − (αR + βR)} ω + α ωR + ξt. (8)

This makes plain the role of β in generating momentum. It can push αR + βR + β above one

heightening significant moves in the volatility while αR +βR < 1 causes it to mean revert. If β = 0

then r2t becomes a weak GARCH(1, 2) and has no momentum even though the realised measures

still pushes the volatility around. The component model of Engle and Lee (1999, equation (3.2)) is

also a weak GARCH(1, 2) if ρC = 0.

Remark 4 If βR = β then

{1 − (αR + βR)L} (1 − βRL) r2t = {1 − (αR + βR)} ω + α ωR + ξt,

ξt = (1 − βRL)uRt−1 + {1 − (αR + βR)L} (1 − βRL)ut,

9



so we can divide through by (1 − βRL) to produce

{1 − (αR + βR)L} r2t =
{1 − (αR + βR)}

(1 − βR)
ω +

α

(1 − βR)
ωR + ξt,

ξt = uRt−1 + {1 − (αR + βR)L}ut.

Hence under that constraint the r2t is a weak GARCH(1,1) model.

2.3.3 Integrated HEAVY models

The marginal process (8) can be rewrite in equilibrium correction form as

∆r2t = −{(1 − β) (1 − αR − βR)} r2t−1 + β (αR + βR) ∆r2t−1 + {1 − (αR + βR)} ω+α ωR + ξt,

where ∆ is the difference operator. In practice the coefficients on the level and difference are likely

to be slightly negative and close to β, respectively.

Clements and Hendry (1999) have argued that most economic forecasting failure is due to shifts

in long run relationships and so this can be mitigated by imposing unit roots on the model. In

this context this means setting (1 − β) (1 − αR − βR) to be zero. In order to avoid β being set to

zero, this is achieved by setting αR + βR = 1, and killing the intercept ωR (otherwise the intercept

becomes a trend slope). The resulting forecasting model would then be based around

∆r2t = β∆r2t−1 + ξt,

which has momentum but no mean reversion. This type of model would not be upset by structural

changes in the level of the process. Imposing the unit root in GARCH type models is usually

associated with the work of RiskMetrics, but that analysis does not have any momentum effects.

Hence such a suggestion looks novel in the context of volatility models. It would imply using a

HEAVY model of the type, for example, of

Var
(
rt|FHF

t−1

)
= ht = ω + αRMt−1 + βht−1, ω, α ≥ 0, β ∈ [0, 1) , (9)

E
(
RMt|FHF

t−1

)
= µt = αRRMt−1 + (1 − αR)µt−1, αR ∈ [0, 1) . (10)

We call this the “Integrated HEAVY model”. We will see later that this very simple model can

generate excellent and reliable multiperiod forecasts.

Remark 5 Suppose at time t onwards the volatility of the asset goes to exactly zero (an extreme

structural break), which implies that rt+s = 0 and RMt+s = 0 for all s ≥ 0. Then σ2
t = ωG +

βGσ
2
t−1, and ht = ω + βht−1. In typical empirical work both ωG and ω are estimated to be very

small. The speed of adjustment is determined by βG and β. In empirical work we observe that βG

is usually above 0.9 while β is typically 0.6. So HEAVY models have put little weight on past data
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beyond a week; GARCH models look back around a month. This challenge for GARCH models has

been recognised for some time and has prompted the development of component model by Engle and

Lee (1999) (see also Christensen, Jacobs, and Wang (2008)).

2.3.4 Iterative multistep ahead forecasts

Multistep ahead forecasts of volatility are very important for asset allocation or risk assessment is

usually carried out over multiple days. For one step ahead forecasts of volatility we only need (3),

but for the multistep equation (4) plays a central role.

For s ≥ 0,from the martingale difference representation, we have that

(
Var

(
rt+s|FHF

t−1

)

E
(
RMt+s|FHF

t−1

)
)

=

(
ht+s|t−1

µt+s|t−1

)
= (I +B + ...+Bs)w +Bs+1

(
ht−1

µt−1

)
. (11)

Write ϑ = (αR + βR). It has two roots β and αR + βR. Further

BJ =

(
βJ α

(
ϑJ−1 + ϑJ−2β + ...+ βJ−1

)

0 ϑJ

)
, J = 1, 2, 3, ....

Of course of interest is the integrated variance prediction Var
(
rt + rt+1 + ...+ rt+s|FHF

t−1

)
. We

will assume this can be simplified to

Var
(
rt + rt+1 + ...+ rt+s|FHF

t−1

)
=

s∑

j=0

Var
(
rt+j |FHF

t−1

)

which would mean (11) could be used to compute it.

The forecasting performance of the HEAVY model can be assessed at distinct horizons by

comparing the performance using the QLIK loss function

Loss
(
r2t+s, σ̃

2
t+s|t−1

)
=

r2t+s

σ̃2
t+s|t−1

− log

(
r2t+s

σ̃2
t+s|t−1

)
− 1, s = 0, 1, ..., S, (12)

where r2t+s is the proxy used for the time t+ s (latent) variance and σ̃2

t+s|t is some predictor made

at time t− 1. This loss function has been shown to be robust to certain types of noise in the proxy

in Patton (2009) and Patton and Sheppard (2009a). It will later be used to compare the forecast

performance of non-nested volatility models.

Also important is the cumulative loss function, which we take as

Loss




s∑

j=0

r2t+j ,

s∑

j=0

σ̃2

t+j|t−1


 =

∑s
j=0

r2t+j∑s
j=0

σ̃2

t+j|t−1

− log

( ∑s
j=0

r2t+j∑s
j=0

σ̃2

t+j|t−1

)
− 1, s = 0, 1, ..., S,

which is distinct from the cumulative sum of (12). This uses the s-period realised variance as the

observations.
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2.3.5 Tracking reparameterisation

In the case of a stationary HEAVY model there are some advantages in reparameterising the

equations in the HEAVY model so the intercepts are explicitly related to the unconditional mean

of squared returns and realised measures. In the HEAVY-RM model this is easy to do as

µt = ωR + αRRMt−1 + βRµt−1, αR, βR ≥ 0, αR + βR < 1,

= µR (1 − αR − βR) + αRRMt−1 + βRµt−1, (13)

so that E(RMt) = µR. For the HEAVY-r equation it is less clear since the realized measure is likely

to be a biased downward measure of the daily squared return (due to overnight effects). Writing

µ = E(r2t ) then we can set

ht = ωr + αRMt−1 + βht−1

= µ (1 − ακ− β) + αRMt−1 + βht−1, κ =
µR
µ

≤ 1. (14)

Taken together we call (14) and (13) the “tracking parameterisation” for the HEAVY model.

This parameterisation of the HEAVY model has the virtue that it is possible to use the esti-

mators4

µ̂R =
1

T

T∑

t=1

RMt, µ̂ =
1

T

T∑

t=1

r2t , κ̂ =
µ̂R
µ̂
,

of µR, µ and κ. Thus this reparameterisation is the HEAVY extension of variance tracking intro-

duced by Engle and Mezrich (1996).

2.4 Inference for HEAVY based models

2.4.1 Quasi-likelihood estimation

Inference for HEAVY models is a simple application of multiplicative error models discussed by

Engle (2002) who uses standard quasi-likelihood asymptotic theory.

The HEAVY model has two equations

Var
(
rt|FHF

t−1

)
= ht = ω + αRMt−1 + βht−1,

E
(
RMt|FHF

t−1

)
= µt = ωR + αRRMt−1 + βRµt−1.

We will estimate each equation separately, which makes optimisation straightforward. No attempt

will be made to pool information across the two equations, although more information is potentially

available if this was attempted (see the analysis of Cipollini, Engle, and Gallo (2007)).

4There may be advantages in truncating the estimator of κ to insist it is weakly less than one but we have not
done that in this paper.

12



The first equation will be initially estimated using a Gaussian quasi-likelihood

logQ1(ω,ψ) =

T∑

t=2

lrt , where lrt = −1

2

(
log ht + r2t /ht

)
, ψ = (α, β)′, (15)

where we take h1 = T−1/2
∑⌊T ⌋1/2

t=1
r2t .

The second equation will be estimated using the same structure with

logQ2(ωR, ψR) =

T∑

t=2

lRMt where lRMt = −1

2
(log µt +RMt/µt) , ψR = (αR, βR)′, (16)

where we take µ1 = T−1/2
∑⌊T ⌋1/2

t=1
RMt.

In inference we will regard the parameters as having no link between the HEAVY-r and HEAVY-

RM models, i.e. (ω,ψ) and ( ωR, ψR) are variation free (e.g. Engle, Hendry, and Richard (1983)),

which we will see in the next subsection is important for inference. For now we just note that it is

valid to carry out optimisation equation by equation to find the maximum of the quasi-likelihoods,

rather than jointly. This is convenient as existing GARCH type code can simply be used in this

context (see the remarks in Engle (2002)). We will write θ =
(
ω,ψ′, ωR, ψ

′
R

)′
and the resulting

maximum of the quasi-likelihoods as θ̂.

The alternative tracking parameterisation has

ht = µ (1 − ακ− β) + αRMt−1 + βht−1, κ =
µR
µ

≤ 1,

µt = µR (1 − αR − βR) + αRRMt−1 + βRµt−1, αR + βR < 1,

so that E(RMt) = µR and E(r2t ) = µ. This has the virtue that we can employ a two-step approach,

first setting

µ̂ =
1

T

T∑

t=1

r2t and µ̂R =
1

T

T∑

t=1

RMt,

and then we compute

ψ̂ = arg
ψ

max logQ1(µ̂, µ̂R, ψ) and ψ̂R = arg
ψR

max logQ2(µ̂R, ψR).

This has the advantage that it reduces the dimension of the optimisations by one each time, it

has the disadvantage that the two equations are no longer variation-free which complicates the

asymptotic distribution.

2.4.2 Quasi-likelihood based asymptotic distribution

Inference using robust standard errors is standard in this context of (15) and (16). We stack the

scores so that

T∑

t=2

mt(θ̂) = 0, where mt(θ) =

(
∂lrt
∂λ′

,
∂lRMt
∂λ′R

)′

, λ =
(
ω,ψ′

)′
, λR =

(
ωR, ψ

′
R

)′
,
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where θ =
(
λ′, λ′R

)′
. Then if we denote the point in the parameter space where the model (3) and

(4) holds as θ∗ then under the model

E
{
mt(θ

∗)|FHF
t−1

}
= 0,

that is mt(θ
∗) is a martingale difference sequence with respect to FHF

t−1 . Under standard quasi-

likelihood conditions we have that

√
T
(
θ̂ − θ∗

)
d→ N(0,J −1IJ−1′),

where the Hessian is

J = p lim
T→∞

ĴT , where ĴT = − 1

T

( ∑T
t=2

∂2lrt
∂λ∂λ′

0

0
∑T

t=2

∂2lRM
t

∂λR∂λ
′

R

)
, (17)

and

I = p lim
T→∞

ÎT , where ÎT =
1

T

T∑

t=2

mt(θ̂)mt(θ̂)
′. (18)

The block diagonality of (17) is due to the variation freeness of the blocks, while it is not necessary

to use a HAC estimator in (18) due to the martingale difference features of the stacked scores.

This is a straightforward application of quasi-likelihood theory and can be viewed as an extension

of Bollerslev and Wooldridge (1992) and is already discussed extensively in Cipollini, Engle, and

Gallo (2007).

The most important implication of the block diagonality of the Hessian (17) is that the equation

by equation standard errors for the HEAVY-r and HEAVY-RM are correct, even when viewing the

HEAVY model as a system. This means that standard software can be used to compute them.

When the two step approach is used on the tracking parameterisation then the moment condi-

tions change to

mt(θE) =

{
1

T
(rt − µ) ,

∂lrt
∂ψ′ ,

1

T
(MRt − µR) ,

∂lRMt
∂ψ′

R

}′

, θE =
(
µ,ψ′, µR, ψ

′
R

)′
.

The moment conditions are no longer martingale difference sequences, but they do have a zero

mean for all values of t at the true parameter point

ĴT = − 1

T




T
∑T

t=2

∂2lrt
∂µ∂ψ′

∑T
t=2

∂2lrt
∂µR∂ψ

′ 0

0
∑T

t=2

∂2lrt
∂ψ∂ψ′ 0 0

0 0 T
∑T

t=2

∂2lRM
t

∂µR∂ψ
′

R

0 0 0
∑T

t=2

∂2lRM
t

∂ψR∂ψ
′

R



,

while ÎT needs to be a HAC estimator applied to the time series of mt(θE).
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2.4.3 Non-tested tests

One natural way to assess the forecasting power of the HEAVY model is to compare it to that

generated by the GARCH model. We will do this by comparing QLIK loss, following the discussion

given in Section 2.3.4.

The temporal average (s+ 1)-step ahead relative loss will be

L̂s =
1

T − s

T∑

t=s+1

Lt,s, s = 0, 1, ..., S,

where

Lt,s = Loss
(
r2t+s, ht+s|t−1

)
− Loss

(
r2t+s, σ

2
t+s|t−1

)
, s = 0, 1, ..., S

=

{
r2t+s

ht+s|t−1

+ ln
(
ht+s|t−1

)}
−
{

r2t+s
σ2
t+s|t−1

+ ln
(
σ2

t+s|t−1

)}

= −2 log
f(rt+s|0, ht+s|t−1)

f(rt+s|0, σ2

t+s|t−1
)
.

Here ht+s|t−1 is the forecast from the HEAVY model, σ2

t+s|t is the corresponding GARCH forecast

and f(x|µ, σ2) denotes a Gaussian density with mean µ and variance σ2, evaluated at x. The

framework will allow both the HEAVY and GARCH model to be estimated using QML techniques.

The HEAVY model will be favoured if L̂s is negative.

L̂s estimates Ls = E(Lt,s), s = 0, 1, ..., S, for each s, the unconditional average likelihood

ratio between the two models. The HEAVY model will be favoured at s-steps if Ls < 0 and the

GARCH model if Ls > 0. We will say that the HEAVY model forecast-dominates the GARCH

model if Ls < 0 for all s = 1, 2, ..., S. Weakly forecast-dominates means that Ls ≤ 0 for all

s = 1, 2, ..., S with at least one of the ≤ relationships being a strict inequality. This approach

follows the ideas of Cox (1961b) on non-nested testing using the Vuong (1989) and Rivers and

Vuong (2002) implementation5.

The above scheme can be implemented simply if Lt,s (evaluated at their pseudo-true parame-

ter values) is sufficiently weakly dependent to allow the parameter estimates of the HEAVY and

GARCH models to obey a standard Gaussian central limit theorem (e.g. Rivers and Vuong (2002)).

Then

√
T
(
L̂s − Ls

)
d→ N(0, Vs),

where Vs is the long-run variance of the Lt,s. The scale Vs has to be estimated by a HAC estimator

(e.g. Andrews (1991)).

5In the context of forecasting this is related to Diebold and Mariano (1995). As well as an elegant implementation,
Vuong (1989) has the virtue of being valid even if neither model is correct. It just assesses which is better in terms
of the unconditional average likelihood ratio.

15



2.4.4 Horizon tuned estimation and evaluation

Having multistep ahead loss functions suggests separately estimating the model at each forecast

horizon by minimising expected loss at that horizon. This way of tuning the model to produce

multistep ahead forecasts is called “direct forecasting” and has been studied by, for example,

Marcellino, Stock, and Watson (2006) and Ghysels, Rubia, and Valkanov (2009). The former

argue direct forecasting may be more robust to model misspecification than iterating one-period

ahead models, although they find iterative methods more effective in forecasting for macroeconomic

variables in practice. Direct forecasting dates at least to Cox (1961a). Marcellino, Stock, and

Watson (2006) provide an extensive discussion of the literature.

Minimising the QLIK multistep ahead loss can be thought of as maximising a distinct quasi-

likelihood for each value of s

logQ1,s(ωs, ψs) =

T∑

t=2

lrt,s, where lrt,s = −1

2

(
log ht+s|t−1 +

r2t+s
ht+s|t−1

)
, ψs = (αs, βs)

′,

logQ2,s(ωR,s, ψR,s) =
T∑

t=2

lRMt,s where lRMt,s = −1

2

(
log µt+s|t−1 +

RMt+s

µt+s|t−1

)
, ψR,s = (αR,s, βR,s)

′,

where the quasi-likelihood is the Gaussian likelihood based on multistep ahead forecasts. This

delivers the sequence of horizon tuned estimators ω̂s, ψ̂s, ω̂R,s, ψ̂R,s, whose standard errors can

be computed using the usual theory of quasi-likelihoods. In practice, because of the structure of

our HEAVY model, by far the most important of these equations is the second one, which allows

horizon tuning for the HEAVY-RM forecasts6. The same exercise can be carried out for a GARCH

model.

2.4.5 Bootstrapping

Like GARCH models, a significant drawback of HEAVY models is that they only specify the

conditional means of r2t and RMt given FHF
t−1 . It is sometimes helpful to produce the entire forecast

distributions

F (rt+s|FHF
t−1 ), s = 0, 1, 2, ..., (19)

or

F
(
rt + rt+1 + ...+ rt+s|FHF

t−1

)
. (20)

A simple way of carrying this out is via a model based bootstrap. To do this we use the rep-

resentation rt = ζth
1/2
t , RMt = ηtµt, E(ζ2

t |FHF
t−1 ) = 1, E(ηt|FHF

t−1 ) = 1 and then assume that

6If we condition on the lagged realised measure the additional memory in the HEAVY-r model is modest.
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(ζt, ηt)
′ i.i.d.∼ Fζ,η. Typically these bivariate variables will be contemporaneously correlated. In par-

ticular for equities we would expect a sharp negative correlation reflecting the statistical leverage

effect. If we had knowledge of Fζ,η it would be a trivial task to carry out model based simulation

from (19) or (20).

We can estimate the joint distribution function Fζ,η by simply taking the filtered (ht, µt)
′ and

computing the devolatilised7

ζ̂t = rt/h
1/2
t , η̂t = (RMt/µt)

1/2 , t = 2, 3, ..., T, (21)

and computing the empirical distribution function F̂ζ,η. It is a simple matter to sample with re-

placement pairs from this population8, which can then be used to drive a simulated joint path of the

pair (rt, RMt)
′, (rt+1, RMt+1)

′, ..., (rt+s, RMt+s)
′. By discarding the drawn realised measures gives

us paths of daily returns rt, rt+1, ..., rt+s. Carrying out this simulation many times approximates

the predictive distributions.

2.5 Statistical leverage effect

We can parametrically model statistical leverage effects, where falls in asset prices are associated

with increases in future volatility, by adding a new equation for a realised semivariance (RM∗
t ).

Realised semivariances were introduced by Barndorff-Nielsen, Kinnebrouck, and Shephard (2009)

and further emphasised in empirical work by Patton and Sheppard (2009b). Now our model becomes

Var
(
rt|FHF

t−1

)
= ht = ω + αRMt−1 + α∗RM∗

t−1 + βht−1, α∗ ≥ 0,

E
(
RMt|FHF

t−1

)
= µt = ωR + αRRMt−1 + βRµt−1,

E
(
RM∗

t |FHF
t−1

)
= µ∗t = ω∗

R + α∗
RRM

∗
t−1 + β∗Rµ

∗
t−1, α∗

R, β
∗
R ≥ 0, α∗

R + β∗R < 1.

The expansion of the model to allow for the appearance of realised semivariances raises no new

issues (allowing lags of RM∗
t to appear in the dynamic of RMt could potentially help to, but we

will not discuss that here).

The paper by Engle and Gallo (2006) suggests an alternative approach. Let it = 1rt<0 then they

extend models by interacting it with volatility measures, following the tradition of the GARCH

literature. If one does this to the HEAVY model it becomes

Var
(
rt|FHF

t−1

)
= ht = ω + αRMt−1 + α∗it−1RMt−1 + βht−1, α∗ ≥ 0, (22)

7We work with the RM
1/2
t , rather than the original RMt as volatilities (as opposed to variance type objects) are

easier to interprete later, but this choice has little impact here and the same exercise could be carried out based on
the RMt.

8There maybe some advantages in using a block sampling scheme for the innovations (ζt, ηt) as they are not
expected to be exactly temporally independent, although they should be temporally uncorrelated. But we have not
explored that here.
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E
(
RMt|FHF

t−1

)
= µt = ωR + αRRMt−1 + αit−1RMt−1 + βRµt−1, α∗

R ≥ 0.

This model is easy to estimate, for it−1 is in FHF
t−1 . However, to make two step ahead forecasts we

run into trouble for we do not know itRMt or have a forecast of it.

One approach to this is to assume that

it+h ⊥⊥ RMt+h|FHF
t−1 , h = 0, 1, 2, ...

where A ⊥⊥ B denotes A and B are statistically independent. This would imply

E(it+hRMt+h|FHF
t−1 ) = E(it+h|FHF

t−1 )E(RMt+h|FHF
t−1 ).

Typically we would assume that E(it+h|FHF
t−1 ) = E(it+h), which is likely to be very close to 1/2.

This would allow multistep ahead forecasts to be computed analytically and straightforwardly.

Perhaps more wisely we could use a bootstrap to simulate the empirical distribution of ζ̂t, η̂t

from (21) and this allows to simulate through (22). This method of dealing with statistical leverage

has the virtue is that it also delivers an estimator of the multistep ahead prediction distribution,

and so may reveal the long left hand tail of the asset prices often induced by statistical leverage

even though ζ̂t is marginally relatively symmetric.

3 OMI’s realised measure library 0.1

3.1 A list of assets and data cleaning

In this section we will discuss the database used in this paper. The database is called the “OMI’s

realised measure library” version 0.1 and has been produced by Heber, Lunde, Shephard, and

Sheppard (2009)9.

The version 0.1 of the library currently starts on the 2nd January 1996 and finishes 27th March

2009. Some of the series are available throughout this period, but quite a number start after 1996,

as detailed in Table 1. In total the database covers 34 different assets. Some of these series are

indexes computed by MSCI. Others are traded assets or indexes computed by other data providers

computed in real time. For each asset we give in Table 1 the basic features of the data used to

compute the library, indicating the frequency of the base data used in the calculations of realised

measures.

For each asset the library currently records daily returns, daily subsampled realised variances

and daily realised kernels. In this paper we use the daily returns and realised kernels in our

modelling. If the market is closed or the data is regarded as being of unacceptably low quality

9The library cannot be used for commerical purposes without the written permission of the Oxford-Man Institute,
but it can be used for academic research as long as it is quoted appropriately.
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Asset Med dur Start Dates T Asset Med dur Start Dates T

Dow Jones Industrials 2 2-1-1996 3,278 MSCI Australia 60 2-12-1999 2,323
Nasdaq 100 15 2-1-1996 3,279 MSCI Belgium 60 1-7-1999 2,442
S&P 400 Midcap 15 2-1-1996 3,275 MSCI Brazil 60 4-10-2002 1,587
S&P 500 15 2-1-1996 3,284 MSCI Canada 60 12-2-2001 2,013
Russell 3000 15 2-1-1996 3,279 MSCI Switzerland 60 9-6-1999 2,434
Russell 1000 15 2-1-1996 3,279 MSCI Germany 60 1-7-1999 2,448
Russell 2000 15 2-1-1996 3,281 MSCI Spain 60 1-7-1999 2,423
CAC 40 30 2-1-1996 3,322 MSCI France 60 1-7-1999 2,455
FTSE 100 15 20-10-1997 2,862 MSCI UK 60 8-6-1999 2,451
German DAX 15 2-1-1996 3,317 MSCI Italy 60 1-7-1999 2,437
Italian MIBTEL 60 3-7-2000 2,194 MSCI Japan 15 2-12-1999 2,240
Milan MIB 30 60 2-1-1996 3,310 MSCI South Korea 60 3-12-1999 2,263
Nikkei 250 60 5-1-1996 3,177 MSCI Mexico 60 4-10-2002 1,612
Spanish IBEX 5 2-1-1996 3,288 MSCI Netherlands 60 1-7-1999 2,454
S&P TSE 15 31-12-1998 2,546 MSCI World 60 11-2-2001 2,101

British Pound 2 3-1-1999 2,584
Euro 1 3-1-1999 2,600
Swiss Franc 3 3-1-1999 2,579
Japanese Yen 2 3-1-1999 2,599

Table 1: A description of the “OMI’s realised measures library,” version 0.1. The Table shows how
each measure is built and the length of time series available denoted T . “Med dur” denotes the
median duration in seconds between price updates during September 2008 in our database. All
data series stop on 27th March 2009.

for that asset then the database records it as missing, except for days when all the markets are

simultaneously closed in which case the day is not recorded in the database. An example of this is

that Saturdays are never present in the library. Summary features of the library will be discussed

in the next subsection.

Realised variances (1) are computed by first calculating 5 minute returns (using the last tick

method) and subsampling this statistic using every 30 seconds10. Realised kernels are computed in

tick time using every available data point, after cleaning.

The library is based on underlying high frequency data, which we obtain through Reuters. We

are not in a position to make available this base data, or its cleaned version, for commercial reasons

as Reuters owns the copyright to it. Although the raw data is of high quality it does need to be

cleaned so it is suitable for econometric inference. Cleaning is an important aspect of computing

realised measures. Although realised kernels are somewhat robust to noise, experience suggests

that when there are misrecordings of prices or hit large amounts of turbulence at the start of a

trading day then they may sometimes give false signals. Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009) have studied systematically the effect of cleaning on realised kernels, using cleaning

methods which build on those documented by Falkenberry (2002) and Brownlees and Gallo (2006).

Our data has more variation in structure than that dealt with in Barndorff-Nielsen, Hansen, Lunde,

10For our MSCI index data we only have raw returns at the 1 minute level, which meant that when we subsampled
at the 30 second level we produce the same RV twice (this has no impact as we divide everything by two).
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Asset r2
t RV KV

Avol sd acf1 Avol sd acf1 Avol sd acf1
Dow Jones Industrials 19.4 4.81 .125 15.2 1.94 .663 15.0 1.95 .655
Nasdaq 100 28.1 8.35 .180 17.8 2.22 .664 18.7 2.52 .646
S&P 400 Midcap 21.7 5.68 .260 13.5 1.90 .800 13.7 1.96 .799
S&P 500 20.8 5.46 .209 15.5 2.09 .699 15.9 2.14 .701
Russell 3000 20.3 5.32 .127 14.3 1.86 .694 14.5 1.90 .697
Russell 1000 20.4 5.38 .125 14.7 1.91 .692 14.9 1.94 .695
Russell 2000 23.3 6.02 .313 13.2 1.85 .715 13.4 1.96 .720
CAC 40 23.7 5.95 .236 18.1 2.18 .662 18.3 2.21 .669
FTSE 100 20.7 4.66 .229 15.2 1.62 .645 15.6 1.74 .620
German DAX 25.1 6.57 .163 21.1 3.10 .659 21.3 3.22 .626
Italian MIBTEL 20.1 5.07 .218 13.1 1.34 .665 13.7 1.52 .662
Milan MIB 30 23.2 5.69 .214 16.5 1.84 .624 17.0 1.99 .615
Nikkei 250 24.9 6.96 .241 16.0 1.37 .691 16.5 1.48 .668
Spanish IBEX 23.7 6.57 .295 16.7 1.76 .639 16.5 1.73 .655
S&P TSE 20.9 5.54 .292 14.1 1.82 .785 14.3 1.89 .774

MSCI Australia 16.4 3.05 .229 8.8 0.53 .763 9.1 0.57 .749
MSCI Belgium 23.4 10.5 .159 16.4 1.66 .718 16.1 1.84 .684
MSCI Brazil 43.7 24.3 .155 28.5 6.30 .796 29.6 7.21 .749
MSCI Canada 19.5 5.05 .320 12.6 1.67 .819 13.1 1.88 .761
MSCI Switzerland 20.6 5.25 .330 14.5 1.44 .727 14.5 1.56 .700
MSCI Germany 25.7 6.94 .163 21.1 3.10 .677 20.8 2.99 .692
MSCI Spain 24.0 6.08 .225 17.5 1.84 .690 17.6 1.92 .676
MSCI France 23.9 6.29 .238 18.2 2.23 .682 18.4 2.32 .669
MSCI UK 20.0 4.95 .233 15.6 1.84 .615 15.7 1.89 .649
MSCI Italy 21.4 5.35 .247 16.0 1.82 .672 16.2 1.93 .670
MSCI Japan 23.7 6.40 .273 14.2 1.27 .746 14.4 1.26 .755
MSCI South Korea 32.0 9.63 .131 21.6 2.61 .700 21.9 2.80 .682
MSCI Mexico 29.6 11.8 .144 16.3 2.59 .675 17.5 2.87 .678
MSCI Netherlands 23.9 6.14 .281 17.7 2.09 .733 17.9 2.25 .716
MSCI World 17.7 4.22 .250 13.1 1.44 .766 13.6 1.68 .691

British Pound 9.2 0.75 .215 9.8 0.51 .876 9.4 0.51 .879
Euro 10.4 0.79 .103 11.1 0.45 .668 10.5 0.45 .658
Swiss Franc 11.0 0.91 .133 11.6 0.39 .690 10.8 0.38 .650
Japanese Yen 10.9 1.32 .134 11.6 0.64 .698 11.2 0.63 .696

Table 2: Calculations use 100 times differences of the log price (ie roughly % changes). Avol is
the square root of the mean of 252 times either squared returns or the realised measure. It is the
approximate annualised volatility. The sd is the daily standard deviation of % daily returns or
realised measure. Same data is used to compute the acfs (serial correlations) at 1 lag.

and Shephard (2009) and so we discuss how our methods use their rules.

Most of the datasets we use are based on indexes, which are updated at distinct frequencies.

Some indexes, such as the DAX and Dow Jones index, are updated every second or a couple of

seconds. Most are updated every 15 or 60 seconds. The only data cleaning we applied to this was

that applied to all datasets, called P1, given below.

All data

P1. Delete entries with a time stamp outside the interval when the exchange is open.

Quote data for the exchange rates is very plentiful and has the virtue of having no market

closures. We use four rules for this, given below as Q1-Q4. Q1 is by far the most commonly

20



used.

Quote data only

Q1. When multiple quotes have the same timestamp, we replace all these with a single entry with

the median bid and median ask price.

Q2. Delete entries for which the spread is negative.

Q3. Delete entries for which the spread is more that 50 times the median spread on that day.

Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations

from a rolling centered median (excluding the observation under consideration) of 50 obser-

vations (25 observations before and 25 after).

In addition we have made various manual edits in the library when the results we unsatisfactory.

Some of these were due to rebasing of indexes, which had their biggest effects on daily returns. It

is the hope of the editors of the library that as it develops then the degree of manual edits will

decline.

3.2 Summary statistics for the library

Table 2 gives summary statistics for the realised measures and squared daily returns for each asset.

The Table is split into three sections, which are raw indexes, MSCI indexes and exchange rates all

quoted against the US Dollar.

The Avol number takes either squared returns or the realised measure and multiplies them by

252 and then averages the value over the sample period. We then square root the result and report

it. This is so that the Avol number is on the scale of an annualised volatility, which is familiar

in financial economics. It shows the raw common indexes have annualised volatility for returns of

usually just over 20%, with the corresponding results for the realised variance measures typically

being around 16% and the realised kernels around the same level. Of course the realised measures

miss out on the overnight return, which accounts for their lower level. The MSCI indexes have

more variation in their Avol levels, sometimes going into the 30s and in one case the 40s. The

overnight effects are large again. In the exchange rate case the Avols are lower for squared returns

and in this case the realised measures have roughly the same average level — presumably as there

is no overnight effect. The Avol for realised kernels is typically a little higher than for the realised

variance, but the difference is very small.

The sd figures are standard deviations of percentage daily squared movements or realised mea-

sures, not scaled to present annualised quantities (as this would make them inelegantly large).
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They show much higher standard deviations for squared returns than for their realised measure

cousins. This is the expected result.

The acf figures are the serial correlation coefficients at one lag. It shows the modest degree of

serial correlation of squared returns and much higher numbers of the realised variances and realised

kernels. This is the result we expected from the econometric literature on realised measures.

4 Empirical analysis with a large cross-section

4.1 Estimated models

In this section we will take each univariate series of returns and realised measures and fit a HEAVY

model together with the tracking GARCH

σ2
t = µG (1 − αG − βG) + αGr

2
t−1 + αGσ

2
t−1,

and the non-tracking GARCHX models. The HEAVY models are setup in their tracking parame-

terisation

µt = µR (1 − αR − βR) + αRRMt−1 + βRµt−1, αR + βR < 1,

ht = µ (1 − ακ− β) + αRMt−1 + βht−1, κ =
µR
µ

≤ 1, α+ β < 1.

In the GARCH and HEAVY cases they are estimated using a two step approach, using unconditional

empirical moments for µG, µR and µ and then maximising the Gaussian quasi-likelihoods for

(αG, βG), (αR, βR) and (α, β). The same estimation strategy is used for the GARCH model, but

for the GARCHX model optimisation of the quasi-likelihood is used for all the parameters in the

model.

For multistep ahead forecasts there are some arguments which favour imposing a unit root on

the HEAVY-RM model, in which case we model

µt = αRRMt−1 + (1 − αR)µt−1, αR < 1, (23)

ht = ω + αRMt−1 + βht−1, α+ β < 1,

which means it has no tracking features at all. It would seem illogical to want to impose tracking

on HEAVY-r at the same time as using an integrated model for realised measures.

The results are presented in some detail in Table 3 for the dynamic parameters. In the HEAVY-r

model the momentum parameter β is typically in the range from 0.6 to 0.75, but there are exceptions

which are typically exchange rates where there is very considerable memory. The HEAVY-RM

models show a very large degree of persistence in the series with αR being typically in the region

of 0.35 to 0.45, and αR + βR being close to one. For currencies using realised measures improves

the fit of the model, but the improvement is modest.
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Asset HEAVY-r GARCHX GARCH HEAVY-RM Integrated
α β αX βX γX αG βG αR βR αIG αIR

Dow Jones Industrials .407 .737 .407 .737 .000 .082 .912 .411 .567 .062 .336
Nasdaq 100 .730 .658 .439 .744 .051 .081 .916 .428 .567 .063 .349
S&P 400 Midcap .848 .641 .270 .794 .083 .100 .886 .392 .603 .073 .333
S&P 500 .378 .773 .378 .773 .000 .076 .918 .417 .564 .054 .340
Russell 3000 .448 .747 .448 .747 .000 .081 .911 .403 .574 .059 .313
Russell 1000 .397 .768 .397 .768 .000 .078 .916 .402 .577 .057 .315
Russell 2000 .949 .678 .244 .812 .102 .106 .885 .387 .622 .077 .322
CAC 40 .526 .674 .526 .674 .000 .081 .917 .417 .573 .067 .350
FTSE 100 .613 .656 .613 .656 .000 .105 .892 .441 .556 .085 .369
German DAX .447 .673 .447 .673 .000 .093 .903 .457 .536 .075 .376
Italian MIBTEL .806 .630 .806 .630 .000 .107 .889 .512 .486 .080 .436
Milan MIB 30 .496 .748 .342 .779 .047 .102 .895 .484 .518 .075 .417
Nikkei 250 .508 .772 .508 .772 .000 .079 .905 .346 .641 .065 .295
Spanish IBEX .640 .669 .481 .713 .035 .113 .885 .393 .603 .084 .343
S&P TSE .643 .692 .637 .693 .002 .067 .930 .362 .635 .054 .324

Index’s median .526 .678 .447 .744 .000 .082 .905 .411 .573 .067 .340

MSCI Australia .214 .645 .976 .668 .043 .098 .894 .324 .670 .069 .292
MSCI Belgium .769 .568 .374 .692 .093 .143 .854 .399 .608 .105 .359
MSCI Brazil .662 .652 .661 .653 .001 .096 .876 .433 .536 .071 .375
MSCI Canada .515 .765 .485 .769 .009 .074 .914 .364 .630 .060 .329
MSCI Switzerland .699 .638 .699 .638 .000 .131 .860 .474 .508 .093 .425
MSCI Germany .568 .592 .568 .592 .000 .107 .885 .461 .529 .083 .388
MSCI Spain .589 .659 .589 .659 .000 .090 .907 .417 .579 .067 .365
MSCI France .596 .628 .596 .628 .000 .090 .908 .453 .543 .074 .386
MSCI UK .582 .616 .582 .616 .000 .110 .886 .456 .543 .086 .393
MSCI Italy .583 .659 .583 .659 .000 .100 .896 .537 .462 .075 .467
MSCI Japan .741 .720 .741 .720 .000 .088 .902 .459 .533 .075 .387
MSCI South Korea .765 .661 .765 .661 .000 .071 .928 .432 .564 .059 .392
MSCI Mexico .872 .711 .723 .725 .032 .095 .885 .364 .624 .068 .328
MSCI Netherlands .538 .678 .538 .678 .000 .105 .889 .453 .541 .084 .396
MSCI World .339 .798 .339 .798 .000 .084 .910 .377 .610 .068 .340

MSCI’s median .596 .659 .589 .661 .000 .096 .894 .433 .543 .074 .386

British Pound .162 .810 .162 .810 .000 .042 .950 .283 .699 .035 .264
Euro .055 .936 .034 .947 .013 .030 .969 .247 .746 .028 .223
Swiss Franc .046 .948 .045 .947 .002 .027 .971 .239 .748 .024 .220
Japanese Yen .173 .772 .173 .772 .000 .048 .934 .398 .552 .035 .341

Currency’s median .109 .873 .104 .879 .001 .036 .959 .265 .722 .031 .244

Table 3: Fit of GARCH and HEAVY models for various indexes and exchange rates. The cross-sectional

median takes the median of the parameter estimates for the indexes. GARCH and HEAVY-RM models are

esimated using the tracking parameterisation. Integrated models are IGARCH and Int-HEAVY-RM.
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When we allow for realised measures in the GARCH model, that is we specify the GARCHX

model, typically the γX parameter is estimated to be on its boundary at exactly zero. There are

eight exceptions to this, but the use of robust standard errors (not reported here) suggest only a

couple of them are statistically significant. These two are the S&P 400 Midcap and Russell 2000.

In those cases the realised kernel may not have dealt correctly with the dependence in their high

frequency data induced by the staleness of the prices for some of the components of the index.

Compare to GARCHX Impose unit root Compare to GARCHX Impose unit root

Asset HEAVY-r GARCH GARCH HEAVY-RM MSCI Index HEAVY-r GARCH GARCH HEAVY-RM

DJI 0.0 -199.5 -48.4 -19.5 Australia -6.6 -96.6 -31.2 -3.9

Nasdaq 100 -15.9 -108.5 -31.1 -14.4 Belgium -22.7 -66.2 -60.2 -4.1

S&P 400 Midcap -64.6 -61.8 -61.4 -11.0 Brazil 0.0 -60.2 -35.5 -7.1

S&P 500 0.0 -211.1 -50.6 -17.9 Canada -0.4 -75.0 -22.9 -4.4

Russell 3000 0.0 -187.3 -49.8 -21.1 Switzerland 0.0 -153.4 -65.8 -9.1

Russell 1000 0.0 -186.3 -45.3 -20.0 Germany 0.0 -136.9 -45.0 -10.

Russell 2000 -163.2 -64.9 -57.4 -13.3 Spain 0.0 -106.7 -31.5 -7.5

CAC 40 0.0 -149.1 -30.8 -14.5 France 0.0 -158.3 -27.7 -9.4

FTSE 100 0.0 -125.5 -32.4 -12.3 UK 0.0 -134.3 -37.1 -9.3

German DAX 0.0 -153.4 -47.0 -16.0 Italy 0.0 -154.7 -38.3 -8.7

Italian MIBTEL 0.0 -141.2 -40.5 -9.9 Japan 0.0 -111.8 -33.7 -6.2

Milan MIB 30 -16.5 -100.7 -48.3 -13.0 South Korea 0.0 -118.6 -15.1 -4.1

Nikkei 250 0.0 -116.5 -64.5 -9.9 Mexico -3.4 -61.2 -36.5 -3.5

Spanish IBEX -9.3 -113.9 -59.0 -12.1 Netherlands 0.0 -117.8 -40.8 -7.6

S&P TSE -0.0 -120.8 -17.3 -5.6 World 0.0 -92.9 -25.6 -6.3

Index’s median 0.0 -125.5 -48.3 -13.3 Median 0.0 -111.8 -35.5 -7.1

British Pound 0.0 -50.4 -16.0 -1.8

Euro -2.7 -18.5 -6.0 -1.6

Swiss Franc -0.1 -33.0 -5.9 -1.7

Japanese Yen 0.0 -67.4 -38.6 -8.4

Currency’s median 0.0 -41.7 -11.0 -1.8

Table 4: Twice the likelihood change by imposing restrictions on the model. Left hand side shows twice

the the likelihood change compared to GARCHX model. The right hand side compares the unconstrained

GARCH and HEAVY-RM models with those which impose a unit root.

Also given in the Table is the median of the estimators for three blocks of the assets which

provides a guide to the typical behaviour.

Finally, the Table also records the estimate value of αR for the integrated HEAVY model. This

does not change very much from the estimated HEAVY model, but there are small drops in the

estimates are typical.

Table 4 shows the change in the log-likelihood function by moving to the HEAVY-r and GARCH

models from the nesting GARCHX model. In the GARCH case the changes are always very large,

in the HEAVY-r case the changes are usually zero. However, there are a couple of cases where

the reduction in likelihood is quite large. The Table also shows the impact on the likelihood by

imposing unit roots on the GARCH and HEAVY-RM models. The effect on the HEAVY-RM

model is more modest than in the GARCH case.

Table 5 shows the HEAVY’s model’s average in sample iterated multistep ahead QLIK loss

compared to the GARCH model, using the methodology discussed in Section 2.3.4. Here the

parameters are estimated using the Gaussian quasi-likelihood, which means they are tuned to

perform best at one-step ahead forecasting. The forecast horizon varies over 1, 2, 3, 5, 10 and 22

lags. Two models are fitted. The left hand side shows the result for the standard HEAVY model
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which is estimated using a tracking parameterisation. The right hand side shows the corresponding

result for the “integrated HEAVY” model, which is discussed in (23). Recall that negative values

t-statistics indicate a statistically significant preference for HEAVY models.

The results are striking. It shows that in sample and pointwise the standard HEAVY model

forecast-dominates the GARCH model, but that the outperformance gets weaker as the forecast

horizon increases. At short lags the integrated HEAVY model performs more poorly than the

unconstrained HEAVY model, but its forecast performance at higher lags is much better than

GARCH and the degree of outperformance does not get worse as the forecast horizon increases. In

other words, in terms of longer term forecasting, the HEAVY model benefits from imposing a unit

root on the dynamic for the realised measures.

This picture is remarkably stable across assets with two counter examples. There are two cases

where there was worse performance and that was the mid-cap series Russell 2000 and the S&P 400

Midcap. These have lower quasi-likelihoods and this underperformance continues when applied at

multistep ahead periods.

4.2 Direct forecasting

The above estimation strategy fixes the parameters at the MQLE values and uses these to iterate

through the multistep ahead forecast formula to produce multistep ahead forecasts and correspond-

ing estimated losses. We now move on to a second approach, which allows different parameters to

be used at different forecast horizon, maximising the multistep step ahead forecast quasi-likelihood

for the HEAVY-RM model. Recall this is called the direct parameter estimator.

We first focus on the estimated parameters which come out from this approach, highlighting

results from the Dow Jones Industrials example. The left of Figure 1 shows a plot of the estimated

memory in the HEAVY-RM and GARCH models

(αR + βR)s+1 , and (αG + βG)s+1 (24)

plotted against s when we use the quasi-likelihood, which is tuned to perform well at one-step.

We see although the estimated values of these parameters are not very different, at long lags the

difference becomes magnified. By the time we are one month out the HEAVY-RM model wants to

give around a half the weight on recent past data and half the weight on the unconditional mean.

In the GARCH model the figures are very different, it wants around 85% of the weight to come

from the recent data and only 15% to come from the unconditional mean. GARCH is stronger in

this aspect.

The top left of Figure 1 also shows the profile of (24) now for the directly estimated parameters,

tuning each estimator to the appropriate forecast horizon. When we do this the persistence of
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t-statistic for non-nested LR tests for iterative forecasts
Horizon h = s + 1: HEAVY model Horizon h = s + 1: Int HEAVY model

Asset 1 2 3 5 10 22 1 2 3 5 10 22

Dow Jones Industrials -5.72 -3.79 -3.07 -2.98 -2.16 0.78 -5.65 -3.71 -3.02 -2.75 -2.40 0.03
Nasdaq 100 -2.49 -0.46 -0.34 -0.72 1.03 -0.42 -2.47 -0.46 -0.33 -0.57 1.25 -0.02
S&P 400 Midcap 0.07 1.19 1.14 0.16 0.25 -0.41 0.16 1.21 1.15 0.38 0.72 0.64
S&P 500 -6.12 -4.50 -3.98 -4.14 -1.92 0.90 -6.01 -4.43 -3.91 -3.89 -1.51 0.81
Russell 3000 -5.69 -3.97 -3.25 -4.01 -1.82 -0.12 -5.52 -3.82 -3.20 -3.87 -1.75 -0.29
Russell 1000 -5.40 -3.88 -3.25 -3.88 -1.65 0.33 -5.25 -3.74 -3.20 -3.74 -1.67 0.06
Russell 2000 1.70 2.32 2.24 1.28 1.45 0.41 1.73 2.24 2.12 1.35 1.54 0.89
CAC 40 -4.43 -3.04 -2.32 -0.78 -0.17 1.56 -4.38 -2.96 -2.15 -0.70 -0.36 0.88
FTSE 100 -5.18 -3.34 -2.61 -1.71 -0.17 -0.10 -5.08 -3.19 -2.39 -1.62 -0.27 0.11
German DAX -5.15 -3.40 -2.79 -1.10 -0.92 -0.47 -5.23 -3.40 -2.65 -0.68 -0.61 0.34
Italian MIBTEL -4.13 -3.20 -3.22 -1.73 -0.86 -0.86 -4.02 -2.91 -2.66 -1.24 -0.14 -0.89
Milan MIB 30 -1.89 -0.98 -0.91 -0.17 -0.05 -0.08 -1.88 -0.89 -0.71 0.09 0.51 0.05
Nikkei 250 -3.87 -2.55 -2.06 -0.56 0.32 0.53 -3.63 -2.38 -1.75 -0.19 0.77 1.76
Spanish IBEX -2.81 -2.51 -1.37 -0.63 -1.13 -0.61 -2.81 -2.46 -1.18 -0.53 -0.98 0.07
S&P TSE -5.17 -4.44 -3.57 -2.23 -0.89 -0.23 -5.16 -4.40 -3.49 -2.04 -0.59 0.22

MSCI Australia -3.14 -1.94 -2.57 -1.87 -2.35 -2.89 -3.14 -1.93 -2.54 -1.80 -1.70 -2.05
MSCI Belgium -1.21 -1.21 -1.08 -1.75 -2.05 -2.14 -0.85 -1.04 -0.94 -1.59 -1.62 -0.58
MSCI Brazil -3.54 -2.19 -1.40 -1.22 -1.35 -0.22 -3.31 -2.01 -1.01 -0.84 -0.49 0.45
MSCI Canada -3.90 -3.15 -3.11 -2.47 -1.73 -1.03 -3.91 -3.14 -3.07 -2.34 -1.42 -0.43
MSCI Switzerland -4.33 -3.01 -2.23 -1.94 -0.37 -1.50 -4.15 -2.87 -2.12 -1.88 0.13 0.50
MSCI Germany -5.31 -4.50 -3.90 -2.45 -1.15 -1.45 -5.33 -4.43 -3.54 -1.64 -0.56 -0.07
MSCI Spain -3.71 -2.59 -2.05 -1.22 -0.39 -0.55 -3.44 -2.36 -1.74 -1.06 -0.14 -1.05
MSCI France -5.67 -4.56 -3.33 -1.69 -0.64 -0.06 -5.52 -4.31 -2.96 -1.33 -0.46 -0.08
MSCI UK -5.54 -3.98 -3.20 -2.30 -0.42 -0.48 -5.17 -3.59 -2.92 -2.19 -0.47 -0.24
MSCI Italy -5.38 -3.78 -3.32 -2.71 -1.02 -0.36 -5.29 -3.48 -2.96 -2.23 -0.63 -0.79
MSCI Japan -5.30 -3.06 -2.28 -0.61 -0.09 0.62 -5.08 -2.90 -2.00 -0.25 0.31 1.44
MSCI South Korea -4.79 -2.61 -2.29 -2.32 -0.49 2.74 -4.73 -2.53 -2.23 -2.25 -0.34 2.18
MSCI Mexico -2.47 -1.79 -1.80 -1.21 -1.96 -1.26 -2.43 -1.73 -1.68 -1.03 -1.72 -1.04
MSCI Netherlands -4.81 -3.34 -2.33 -2.14 -1.39 -1.46 -4.40 -3.06 -2.06 -1.79 -0.93 -0.57
MSCI World -5.57 -4.37 -3.39 -2.02 -1.26 -0.37 -5.04 -3.97 -3.00 -1.41 -1.16 -0.10

British Pound -3.33 -2.99 -2.06 -1.81 -1.44 -2.25 -3.36 -2.99 -2.02 -1.72 -1.16 -1.45
Euro -1.14 -0.75 -0.63 -0.36 -0.22 -0.16 -1.11 -0.71 -0.59 -0.29 -0.16 0.10
Swiss Franc -2.55 -2.82 -2.81 -2.08 -2.18 -2.32 -2.54 -2.82 -2.79 -2.00 -2.05 -1.86
Japanese Yen -2.97 -2.35 -1.30 -0.25 -0.79 0.65 -2.88 -2.20 -1.16 -0.32 -0.64 0.12

Table 5: In-sample likelihood ratio tests where the loss generated by HEAVY and GARCH models.
Negative values favour HEAVY models. Both models are estimated using the quasi-likelihood, ie
tuned to one-step ahead predictions.
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Figure 1: Direct method. Estimates of (αR + βR)s+1 and (αG + βG)s+1 drawn against forecast
horizon s+ 1.

the HEAVY-RM model jumps up beyond the level of the GARCH model. This is caused by a

reduction in αR from around 0.4 for small numbers of periods ahead to around 0.2 for longer periods

ahead. As αR decreased βR increased even more so leading to an increase in the estimated value

of αR + βR for large s. The increase in the level of the curve for the GARCH model in comparison

is similar.

When we compare the forecast performance of the directly estimated GARCH and HEAVY

models using the QLIK loss functions we see in Table 6 that the HEAVY models are systematically

much better. This improvement is now sustained at quite long horizons and holds for standard

HEAVY models and integrated versions.

An important question is how well we forecast the variance of the sum of s period returns.

Again the forecast outperformance of HEAVY models appears for nearly all assets and forecast

horizons. The results are given in Table 6.
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Pointwise Comparison Cumulative Comparison
Direct HEAVY Direct Int. HEAVY Direct HEAVY Direct Int. HEAVY

vs. Direct GARCH vs. Direct GARCH vs. Direct GARCH vs. Direct GARCH

Asset 1 10 22 1 10 22 5 10 22 5 10 22

Dow Jones Industrials -5.72 -3.34 -0.95 -5.65 -3.50 -0.30 -4.40 -4.32 -3.60 -4.48 -4.52 -3.71
Nasdaq 100 -2.49 -0.51 -0.54 -2.47 -0.23 0.12 -0.88 -0.17 -0.45 -0.79 0.03 0.02
S&P 400 Midcap 0.07 0.55 0.24 0.16 0.81 1.00 0.78 0.80 0.54 0.89 1.06 1.15
S&P 500 -6.12 -4.52 -0.24 -6.01 -4.63 0.25 -5.43 -4.95 -2.84 -5.46 -5.12 -2.88
Russell 3000 -5.69 -4.24 -1.15 -5.52 -4.17 -0.27 -4.86 -4.61 -3.63 -4.78 -4.55 -3.30
Russell 1000 -5.40 -4.11 -0.69 -5.25 -4.17 -0.00 -4.75 -4.44 -3.09 -4.72 -4.52 -2.94
Russell 2000 1.70 1.56 0.81 1.73 1.66 1.17 2.01 1.97 1.59 1.99 1.99 1.76
CAC 40 -4.43 -0.98 -0.34 -4.38 -0.91 0.59 -2.98 -1.87 -1.40 -2.88 -1.79 -0.69
FTSE 100 -5.18 -1.97 -1.32 -5.08 -1.81 0.28 -3.46 -2.44 -2.35 -3.25 -2.08 -1.09
German DAX -5.15 -1.18 -1.48 -5.23 -0.72 0.64 -3.70 -2.84 -2.84 -3.47 -2.04 -0.92
Italian MIBTEL -4.13 -1.61 -1.52 -4.02 -1.08 -0.35 -3.17 -2.23 -2.32 -2.85 -1.84 -1.37
Milan MIB 30 -1.89 -0.37 -1.51 -1.88 -0.25 0.20 -1.07 -0.97 -1.73 -0.96 -1.08 -0.96
Nikkei 250 -3.87 -0.11 0.51 -3.63 0.18 1.03 -2.07 -1.05 -0.05 -1.84 -0.70 0.50
Spanish IBEX -2.81 -0.90 -0.73 -2.81 -1.02 -0.11 -2.02 -2.27 -1.82 -1.96 -1.94 -0.85
S&P TSE -5.17 -2.37 -1.83 -5.16 -2.24 -1.10 -4.14 -2.95 -2.50 -4.04 -2.92 -2.55

MSCI Australia -3.14 -2.17 -2.84 -3.14 -2.09 -1.69 -2.51 -2.62 -3.42 -2.47 -2.45 -2.73
MSCI Belgium -1.21 -1.89 -1.67 -0.85 -1.68 0.07 -1.60 -1.93 -2.23 -1.37 -1.68 -1.43
MSCI Brazil -3.54 -1.56 0.03 -3.31 -1.04 0.74 -2.91 -2.03 -0.96 -2.47 -1.37 -0.24
MSCI Canada -3.90 -2.41 -1.69 -3.91 -2.30 -1.02 -3.47 -2.71 -2.40 -3.41 -2.55 -2.20
MSCI Switzerland -4.33 -1.95 -1.44 -4.15 -1.74 0.67 -3.10 -2.19 -2.14 -2.98 -1.71 -0.49
MSCI Germany -5.31 -2.27 -1.50 -5.33 -1.51 0.48 -4.83 -3.03 -2.80 -4.37 -2.15 -1.13
MSCI Spain -3.71 -1.30 -1.50 -3.44 -1.12 -0.73 -2.62 -1.82 -1.84 -2.38 -1.69 -1.37
MSCI France -5.67 -1.61 -1.23 -5.52 -1.22 0.21 -4.25 -2.58 -2.20 -3.93 -2.05 -1.04
MSCI UK -5.54 -2.43 -1.65 -5.17 -2.27 0.09 -3.84 -2.96 -2.54 -3.57 -2.59 -1.35
MSCI Italy -5.38 -2.86 -2.19 -5.29 -2.43 -0.58 -4.10 -3.47 -3.72 -3.85 -3.52 -2.60
MSCI Japan -5.30 -0.72 0.27 -5.08 -0.38 0.75 -2.88 -2.21 -1.17 -2.55 -1.65 -0.26
MSCI South Korea -4.79 -2.30 1.21 -4.73 -2.13 1.06 -3.46 -2.71 -0.33 -3.39 -2.51 0.05
MSCI Mexico -2.47 -1.47 -1.56 -2.43 -1.45 -1.27 -1.95 -2.12 -2.19 -1.90 -2.07 -2.27
MSCI Netherlands -4.81 -2.14 -2.99 -4.40 -1.81 -0.83 -3.29 -2.59 -2.90 -2.99 -2.19 -1.81
MSCI World -5.57 -2.25 -0.86 -5.04 -1.93 0.04 -4.05 -3.16 -2.69 -3.60 -2.86 -2.10

British Pound -3.33 -1.74 -2.20 -3.36 -1.69 -1.44 -2.60 -2.18 -2.65 -2.59 -2.12 -2.34
Euro -1.14 0.05 -0.14 -1.11 0.09 0.11 -0.60 -0.24 -0.40 -0.55 -0.19 -0.26
Swiss Franc -2.55 -1.65 -2.50 -2.54 -1.61 -2.30 -2.66 -2.58 -3.17 -2.64 -2.56 -3.08
Japanese Yen -2.97 -1.78 -1.25 -2.88 -1.71 0.05 -2.22 -2.24 -2.36 -2.16 -1.98 -1.42

Table 6: In-sample t-stat based LR tests comparing losses generated by the HEAVY and GARCH
models. Negative values favour the HEAVY model. The left columns of each panel compared
HEAVY and GARCH models using horizon tuned parameters and the right columns compare
Integrated HEAVY against a standard GARCH model using horizon tuned parameters.
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4.3 Out-of-Sample Performance

An out-of-sample exercise was conducted to assess the performance of HEAVY models in a more

realistic scenario. All models were estimated using a moving window with a width of 4 years (1,008

observation) and parameters were updated daily. Forecasts were then produced for 1- through

22-steps ahead. Table 7 contains the results of this exercise based on two comparisons. The

first comparison is based on direct estimation of both the HEAVY-RM model and its GARCH

competitor. In both cases parameters were optimized to fitting the realized measure (HEAVY-

RM) or squared return (GARCH) at the forecasting horizon. All HEAVY models used the same

HEAVY-r model which was optimized for the 1-step horizon. The second compares the performance

of the Integrated HEAVY-RM specification with a standard GARCH, where both sets of parameters

were optimized for 1-step prediction. The standard HEAVY model with based on 1-step tuning is

not included since the memory parameter chosen was often implausibly small. Neither the directly

estimated HEAVY model nor the Integrated HEAVY suffer from this issue.

The left panel contains pointwise comparisons which assess the forecasting performance at

a specific horizon where performance is assessed using Giacomini and White (2006) tests which

evaluate the loss of both the innovation and the parameter estimation uncertainty. These results

strongly favor the HEAVY models in both cases, especially at shorter horizons. The results for the

S&P 400 Midcap index and the Russell 2000 further highlight the strength of the HEAVY model

– despite decidedly worse performance in full-sample comparisons, HEAVY models outperform

GARCH models in out-of-sample evaluation. This difference is likely due to the higher signal-to-

noise ratio of realized measures.

The right panel contains cumulative comparisons for the two sets of models. Cumulative loss

measures the performance on the total variation over the forecast horizon, and so the 1-step is

identical to the pointwise (and so replaced by the 5-step horizon). HEAVY models perform well at

all horizons, with statistically significant outperformance in most series while never being outper-

formed by GARCH-based forecasts.

4.4 Parameter stability

Figure 2 shows time series plots of the estimated HEAVY and GARCH parameters estimated using

the quasi-likelihood based on a moving window of four years of data, recording the estimates at

the time of the last data point in the sample. The top of the plot shows very dramatic percentage

changes in the GARCH αG parameter while relatively modest movements in the corresponding

HEAVY parameter αR.

The bottom of Figure 2 shows the rolling estimate of the persistence parameters for the GARCH
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Pointwise Comparison Cumulative Comparison
Direct HEAVY Int. HEAVY Direct HEAVY Int. HEAVY

vs. Direct GARCH vs. GARCH vs. Direct GARCH vs. GARCH

Asset 1 10 22 1 10 22 5 10 22 5 10 22

Dow Jones Industrials -5.94 -2.74 0.39 -5.81 -3.04 -0.60 -5.19 -4.87 -2.83 -4.83 -4.75 -3.03
Nasdaq 100 -5.43 -1.00 -2.67 -5.28 -3.55 -2.55 -4.51 -3.50 -2.94 -4.33 -4.64 -3.45
S&P 400 Midcap -2.87 -0.81 -2.50 -2.98 -0.07 -1.25 -2.01 -1.89 -1.29 -1.90 -2.47 -2.50
S&P 500 -6.55 -1.96 0.24 -6.57 -3.14 -0.34 -5.40 -4.55 -2.03 -5.12 -4.79 -2.67
Russell 3000 -6.00 -1.87 -0.88 -5.89 -3.48 -1.17 -5.29 -4.37 -2.64 -5.22 -5.23 -3.49
Russell 1000 -6.01 -1.82 -0.66 -5.90 -3.41 -0.91 -5.37 -4.36 -2.53 -5.24 -5.22 -3.24
Russell 2000 -0.97 0.20 -0.80 -1.07 0.24 -0.73 0.17 0.48 -0.42 -0.43 -0.11 -0.30
CAC 40 -4.82 -0.20 -2.08 -4.76 -1.06 -1.46 -4.31 -1.76 -1.72 -4.02 -2.72 -2.07
FTSE 100 -5.45 -2.02 -2.84 -5.57 -1.72 -2.13 -3.78 -2.90 -2.85 -3.85 -2.86 -2.44
German DAX -3.96 -2.49 -3.57 -4.12 -2.11 -1.32 -3.84 -3.33 -4.02 -3.89 -3.25 -2.55
Italian MIBTEL -2.87 -0.81 -2.50 -2.98 -0.07 -1.25 -1.88 -1.61 -2.61 -1.51 -0.71 -0.86
Milan MIB 30 -4.18 -1.13 -3.33 -4.28 -1.19 -1.41 -3.36 -2.94 -3.69 -3.27 -2.59 -2.32
Nikkei 250 -3.35 -0.64 -0.03 -3.36 -0.68 0.93 -3.74 -3.35 -0.37 -3.41 -2.76 -0.90
Spanish IBEX -3.13 -0.52 -2.96 -3.19 -0.87 -1.28 -2.88 -2.10 -2.06 -2.54 -1.68 -1.33
S&P TSE -3.29 -1.78 -0.46 -3.25 -1.03 0.63 -3.07 -2.36 -1.72 -2.91 -1.97 -0.53

MSCI Australia -2.60 -2.15 -1.65 -2.61 -1.48 -1.25 -2.01 -2.10 -2.91 -1.95 -1.79 -1.49
MSCI Belgium -3.28 -3.69 -3.29 -3.26 -2.79 -3.54 -3.16 -3.67 -4.79 -2.52 -2.63 -3.45
MSCI Brazil -2.21 -1.52 0.54 -2.27 -1.65 -0.62 -1.58 -1.61 -0.97 -1.46 -1.57 -0.92
MSCI Canada -3.41 -1.98 -1.49 -3.34 -1.04 0.17 -3.01 -2.30 -1.88 -2.81 -1.82 -0.85
MSCI Switzerland -5.15 -2.22 -2.65 -5.13 -1.90 -2.91 -4.47 -3.34 -3.83 -4.64 -3.25 -3.81
MSCI Germany -3.15 -3.67 -1.93 -3.18 -1.93 -1.64 -3.26 -3.46 -3.95 -2.83 -2.35 -1.97
MSCI Spain -2.82 -1.39 -2.88 -2.84 -0.96 -1.28 -2.89 -2.38 -2.30 -2.50 -1.68 -1.23
MSCI France -4.38 -2.06 -2.81 -4.39 -1.31 -2.01 -4.64 -2.91 -3.67 -3.99 -2.64 -2.12
MSCI UK -4.30 -1.09 -3.13 -4.32 -1.56 -3.04 -3.79 -2.74 -2.29 -3.25 -2.60 -2.52
MSCI Italy -4.08 -2.64 -2.88 -4.08 -1.40 -2.19 -3.37 -3.78 -4.53 -3.02 -2.38 -2.44
MSCI Japan -2.73 -0.18 -0.25 -2.62 0.15 0.60 -2.72 -1.79 -0.58 -2.43 -1.44 -0.58
MSCI South Korea -4.08 0.14 1.12 -4.10 -1.68 0.18 -2.65 -1.62 0.34 -3.06 -2.74 -1.38
MSCI Mexico -2.23 -1.34 -0.63 -2.24 -1.28 -0.92 -1.53 -1.47 -0.89 -1.47 -1.43 -1.09
MSCI Netherlands -4.58 -3.35 -3.08 -4.55 -2.36 -1.62 -4.21 -4.21 -3.54 -4.09 -3.28 -2.49
MSCI World -3.30 -0.08 0.20 -3.59 -0.93 -1.15 -2.07 -1.22 -0.99 -2.41 -1.73 -1.29

British Pound -2.53 -1.53 -1.60 -2.59 -0.94 -0.97 -2.24 -1.90 -1.82 -2.16 -1.65 -1.24
Euro -1.05 -0.03 0.70 -1.03 -0.69 -0.56 -0.65 -0.10 0.08 -0.85 -0.69 -0.58
Swiss Franc -2.09 -0.82 -2.33 -2.10 -1.58 -2.32 -2.12 -1.51 -1.94 -2.24 -2.03 -2.22
Japanese Yen -2.22 -1.12 -1.34 -2.22 -1.44 -0.54 -1.82 -1.76 -1.64 -1.75 -1.85 -1.23

Table 7: Out-of-sample t-stat based LR tests comparing losses generated by the HEAVY and
GARCH models. Negative values favour the HEAVY model. The left columns of each panel com-
pared HEAVY and GARCH models using horizon tuned parameters and the right columns compare
Integrated HEAVY against a standard GARCH model using 1-step-ahead tuned parameters.
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Figure 2: Recurisve parameter estimates using a quasi-likelihood for GARCH and HEAVY model.

model αG + βG and the HEAVY-RM model αG + βG. The latter shows consistently less memory

than the former, but interestingly the two sequences of parameter estimates are moving around in

lock step.

The top of Figure 2 shows a rolling estimate of the HEAVY-r’s α parameter which controls

the immediate impact on the predicted conditional variance of the lagged realised measure. It is a

volatile picture, but the percentage moves are actually quite modest.

4.5 Properties of the innovations

One way of thinking about the performance of the model is by computing the one-step ahead

innovations from the model

ζ̂t = rt/h
1/2
t , η̂t = (RMt/µt)

1/2 , t = 2, 3, ..., T.

In this section we will do this based on the model fitted using the quasi-likelihood criteria.

Figure 3 shows these innovations for the Dow Jones Index example, which is pretty typical of

results we have seen for other series. In the top left hand side of the Figure we have a time series

plot of ζ̂t. It does not show much volatility clustering, but there are some quite large negative

31



innovations, with a couple of days reporting falls which are larger than −5. These happened at

the start of 1996 and at the start of 2007. Notice there are no remarkable moves during the credit

crunch.

In the top right hand side of the Figure 3 there is a time series plot of η̂t, which has large moves

in at the same time as the large moves in ζ̂t. This is confirmed in the bottom left hand side of

the Figure, which cross plots ζ̂t and η̂t, which suggests some dependence in the bottom right hand

quadrant. The bottom right shows the empirical copula for ζ̂t and η̂t, from which it is hard to see

much dependence, although there is little mass in the bottom left hand quadrant and a cluster of

points in the bottom right.

Asset min(ζ̂t) max(ζ̂t) E(ζ̂
3

t ) Sd(ζ̂
2

t ) Sd(η̂t) r(ζ̂t, η̂t) rs(ζ̂t, η̂t) rs(ζ̂
2

t , η̂t)

Dow Jones Industrials -6.19 3.15 -.336 1.82 .270 -.313 -.280 .165
Nasdaq 100 -5.90 4.25 -.149 1.66 .264 -.321 -.323 .091
S&P 400 Midcap -7.47 3.51 -.366 1.87 .257 -.351 -.334 .130
S&P 500 -6.86 3.61 -.396 1.90 .270 -.331 -.312 .147
Russell 3000 -7.01 3.97 -.338 1.88 .276 -.339 -.335 .137
Russell 1000 -7.40 3.91 -.346 1.92 .275 -.337 -.329 .140
Russell 2000 -7.08 3.48 -.385 1.83 .285 -.289 -.264 .193
CAC 40 -4.37 3.64 -.212 1.53 .262 -.350 -.323 .214
FTSE 100 -4.29 3.90 -.307 1.52 .263 -.330 -.312 .195
German DAX -5.30 3.79 -.216 1.59 .259 -.396 -.367 .218
Italian MIBTEL -4.90 3.40 -.464 1.63 .255 -.430 -.421 .158
Milan MIB 30 -5.38 4.87 -.076 1.79 .263 -.334 -.339 .156
Nikkei 250 -5.78 3.95 -.343 1.77 .260 -.198 -.162 .211
Spanish IBEX -6.95 5.19 -.237 1.92 .262 -.328 -.297 .206
S&P TSE -5.82 3.48 -.225 1.63 .254 -.282 -.286 .182

MSCI Australia -6.19 3.63 -.318 1.75 .238 -.244 -.207 .111
MSCI Belgium -5.78 3.04 -.391 1.77 .239 -.310 -.267 .208
MSCI Brazil -5.08 3.61 -.194 1.59 .258 -.327 -.311 .132
MSCI Canada -4.52 3.47 -.232 1.58 .247 -.309 -.298 .177
MSCI Switzerland -5.98 3.43 -.453 1.84 .231 -.396 -.346 .209
MSCI Germany -4.94 3.21 -.333 1.57 .246 -.390 -.370 .223
MSCI Spain -5.48 3.63 -.211 1.60 .243 -.312 -.297 .210
MSCI France -4.55 3.06 -.249 1.48 .250 -.345 -.335 .211
MSCI UK -4.71 3.17 -.381 1.60 .251 -.347 -.328 .190
MSCI Italy -4.44 3.17 -.392 1.56 .241 -.396 -.385 .177
MSCI Japan -5.95 3.41 -.351 1.69 .235 -.274 -.212 .161
MSCI South Korea -5.64 3.37 -.239 1.71 .222 -.233 -.229 -.001
MSCI Mexico -5.19 3.75 -.107 1.74 .241 -.262 -.222 .239
MSCI Netherlands -5.00 3.23 -.296 1.55 .242 -.368 -.352 .216
MSCI World -5.36 4.34 -.197 1.62 .259 -.227 -.225 .313

British Pound -3.58 3.76 -.061 1.51 .170 -.050 -.030 .344
Euro -4.20 3.48 .060 1.54 .196 .014 .017 .335
Swiss Franc -4.49 3.91 -.182 1.57 .184 -.101 -.080 .344
Japanese Yen -4.65 3.71 -.322 1.80 .222 -.193 -.128 .357

Table 8: Descriptive statistics of the estimated innovations ζ̂t and η̂t from the fitted HEAVY model.
Their empirical variance and mean were, respectively, very close to one and so are not reported
here. First five columns are estimated moments of their marginal distributions. r denotes the
correlation, rs is the Spearman rank correlation coefficient.

Summary statistics for the innovations for all the series are given in Table 8. We have chosen
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Figure 3: Innovations ζ̂t and η̂t from the HEAVY model fitted to the DJI. Top left: the HEAVY-r
model innovations ζ̂t, which should be roughly martingale difference sequences with unit variance.
The top right is η̂t with should have unit conditional means and be uncorrelated. Botton left is
a cross plot of ζ̂t and η̂t, while bottom right is the equivilent version mapped into copula spaces
using the marginal empirical distributions functions to calculate the empirical copula measure.

not to report the estimated E(ζ̂
2

t ) and E(η̂t) as these are for all series extremely close to one. Here

r denotes the estimated correlation coefficient and rs denotes the Spearman’s rank coefficient. We

will first focus on the first row, the Dow Jones series. The raw correlation shows a large amount of

negative correlation between the ζ̂t and η̂t for all the equity series. This negative dependence is a

measure of statistical leverage — that is falls in equity prices are associated with rises in volatility.

For exchange rates the correlation is roughly zero. The Spearman’s rank correlations show the same

pattern, while ζ̂
2

t , η̂t are mildly positively correlated based on ranks.

The other features of the Table which are interesting is that there is strong evidence that ζ̂t has

a negative skew and that the standard deviation of ζ̂
2

t is not far from two. The latter suggests that

the marginal distribution of ζ̂t is not very thick tailed. These results are common across different

series except for the exchange rates which are closer to symmetry, except for the Yen.
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4.6 Volatility hedgehog plots

It is challenging to plot sequences of multistep ahead volatility forecasts. We carry this out using

what we call “volatility hedgehog plots” and illustrate it through the credit crunch of late 2008.

An example of this is Figure 4, which is calculated for the MSCI Canada series. It plots the time

series of one step ahead forecasts from the HEAVY-r model ht; these are joined together using a

thick solid red line. For a selected number of days (if all days are plotted then it is hard to see the

details) we also draw off the one step ahead forecast the corresponding multistep ahead forecast

drawn using a red dotted line over the next month. The corresponding results for the GARCH

model are also shown using a thick blue line with added symbols, with the multistep ahead forecasts

being shown using a dashed line.

The Figure shows the GARCH model always slowly mean reverting back to its long term

average. In this picture it also shows from the start of September a sequence of upward moves in

the volatility, caused by the slow adjustment of the GARCH model.

The HEAVY model has a rather different profile. This is most clearly seen by the highest

volatility point, where the multistep ahead forecast shows momentum. This is highlighted by

displaying an ellipse. The model expected volatility to increase even further than we had already

seen in the data. The other features which are interesting is that the HEAVY model has, in the first

half of the data sample, much higher levels of volatility. After the end of October volatility falls,

with the HEAVY model indicating very fast falls suggesting a lull in volatility during November

2008, before it kicks back up in December before falling to around 45% for the remaining 3 months

of the data. GARCH models do not see this lull, instead from half way through October until the

end of December the GARCH model shows historically very high levels of volatility with a slow

decline.

Overall the main impressions we get from this graph is the slow and steady adjustments of

the GARCH model and the more rapid movements implied by the HEAVY model. There is some

evidence that GARCH was behind the curve during the peak of the financial crisis, while HEAVY

models rapidly adjust. Likewise it looks like GARCH’s volatility was too high during late December

and early January as the model could not allow the conditional variance to fall rapidly enough.

The momentum effects of the HEAVY model are not very large in these figures but they do have

an impact. Basically local trends are followed through before mean reversion overcomes them.

More dramatic momentum effects can be seen from the Swiss Franc case, which is the most

extreme example of momentum we have seen in our empirical work. For the HEAVY model β is

much higher than is typical for equities, being around 0.95. This means the momentum feature has

considerable memory. The result is some interesting arcs which appear in the volatility hedgehog
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Figure 4: Volatility hedgehog plot for annualised volatility for the MSCI Canada series. The
hedgehog plots are given for both HEAVY and GARCH models. Areas of momentum are indicated
by elipses.

plot given in Figure 5. The evidence in Table 3 is that the HEAVY model is a better fit than for

GARCH models but the difference is very modest for exchange rates in the library while for other

assets it is quite substantial.

5 Extensions

5.1 A semiparametric model for Fζ,η

The joint distribution of the innovations Fζ,η can be approximated by the joint empirical distribu-

tion function, which can be used inside a bootstrap procedure.

We could impose a model on the joint distribution via the following simple structure. Let

ηt ∼ Fη and

ζt|ηt
L
= β {ηt − E(ηt)} + η

1/2
t εt, εt ∼ Fε, ηt ⊥⊥ εt.

This is a nonparametric location scale mixture11. Now εt = η
−1/2
t [ζt − β {ηt − E(ηt)}] and so we

11If the parametric assumption that Fη was a generalised inverse Gaussian distribution and Fε was Gaussian, then
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Figure 5: Extreme case of momentum. Volatility hedgehog plot for annualised volatility for the
Swiss Franc against the US Dollar. The hedgehog plots are given for both HEAVY and GARCH
models.

can be estimate the distribution functions Fη and Fε by their univariate empirical distribution

functions, having estimated β by using the fact that under this model Cov(ζt, ηt) = β.

5.2 Extending HEAVY-r

In some cases where the realised measure is inadequate it may be better to extend the HEAVY-r

model to allow a GARCHX structure. Then the HEAVY model becomes

Var(rt|FHF
t−1 ) = ht = ω + αRMt−1 + βht−1 + γr2t−1, β + γ < 1

E(RMt|FHF
t−1 ) = µt = ωR + αRRMt−1 + βRht−1, αR + βR < 1.

Then it is straightforward to see that r2t has an ARMA(2,2) representation with autoregressive

roots αR + βR and β + γ. The moving average roots are not changed by having γ > 0. Thus this

extension has more momentum than the standard HEAVY model.

the resulting distribution for ζt would be the well known generalised hyperbolic distribution.

36



The derivation of this result is as follows.

r2t = ht + ut, ht = ω + αRMt−1 + βht−1 + γrt−1, so

{1 − (β + γ)L} r2t = ω + αRMt−1 + (1 − βL) ut,

where L is the lag operator. Likewise

{1 − (αR + βR)L}RMt = ωR + (1 − βRL) vt, vt = RMt − µt.

Combining delivers the result. In particular

{1 − (β + γ)L} r2t = ω + α
{ ωR + (1 − βRL) vt−1}

{1 − (αR + βR)L} + (1 − βL)ut.

So

{1 − (αR + βR)L} {1 − (β + γ)L} r2t = {1 − (αR + βR)}ω + α { ωR + (1 − βRL) vt−1}

+ {1 − (αR + βR)L} (1 − βL) ut.

5.3 Missing data

Although much of financial data is of high quality, there are often gaps of various types due to public

holidays or datafeed breakdowns or concerns over opening and closing auctions in equity markets.

In the multivariate case missing data is very important due to asynchronous high frequency data

reflecting trading at different times and due to differential market openings and closing around

the globe when using low frequency daily data. Early analysis of some of these issues includes

Scholes and Williams (1977) and Lo and MacKinlay (1990). Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008b) look at estimating multivariate quadratic variation in the presence of non-

synchronous data. Burns, Engle, and Mezrich (1998) wrote about some aspects of asynchronous

data and market closures in the context of multivariate GARCH models. They fit a vector first

order moving average to returns and extract estimated prices which they call “synchronised.” Our

approach is distinct from this.

It is attractive to have a principled way of dealing with missing data. One approach is through a

data augmentation exercise, which is pursued in detail in Fiorentini, Sentana, and Shephard (2004).

However, that approach is certainly cumbersome.

The approach we use in this paper follows Shephard and Sheppard (2009), adapted to the

HEAVY model. There we replace the function of data in our models by the relevant conditional

expectations. In the GARCH case this is

σ2
t = ωG + αGE(r2t−1|FLF

t−1) + βGσ
2
t−1

= ωG + αG
{
E(r2t−1|FLF

t−1) − E(r2t−1|FLF
t−2)

}
+ (αG + βG)σ2

t−1.
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This is attractive as

E(r2t−1|FLF
t−1) − E(r2t−1|FLF

t−2)

is a martingale difference sequence with respect to FLF
t−2. This structure leaves us the generic task

of building a model for E(r2t−1|FLF
t−1).

In the HEAVY case we need to write

ht = ω + αE
(
RMt−1|FHF

t−1

)
+ βht−1,

µt = ωR + αRE
(
RMt−1|FHF

t−1

)
+ βRµt−1.

If the data is “missing at random” then one would replace

E(r2t−1|FLF
t−1) = σ2

t−1, E
(
RMt−1|FHF

t−1

)
= µt−1.

If the data is available then

E(r2t−1|FLF
t−1) = r2t−1, E

(
RMt−1|FHF

t−1

)
= RMt−1.

This principled way of dealing with missing data is helpful in the multivariate context, where

information in other series may allow us to model this conditional expectation sensibly. This is the

problem which Burns, Engle, and Mezrich (1998) attempted to address.

Example 1 Suppose we have a point in time when the realised measure is missing but we do have

squared returns. Then we need to compute

E
(
RMt−1|FHF

t−1

)
= E

(
RMt−1|FHF

t−2 , r
2
t−1

)
.

The simplest version of this would be to model

E
(
RMt−1|FHF

t−2 , r
2
t−1

)
= αMr

2
t−1 + βMµt−1, αM , βM ∈ [0, 1] .

This would imply

ht = ω + βht−1 + α
[
1Mt−1

{
αMr

2
t−1 + βMµt−1

}
+
(
1 − 1Mt−1

)
RMt−1

]

=

{
ω + βht−1 + αRMt−1, not missing
ω + βht−1 + αµt−1 + α

{
αMr

2
t−1 − (1 − βM )µt−1

}
, missing,

while

µt = ωR + βRµt−1 + αR
[
1Mt−1

{
αMr

2
t−1 + βMµt−1

}
+
(
1 − 1Mt−1

)
RMt−1

]

=

{
ωR + βRµt−1 + αRRMt−1, not missing
ωR + βRµt−1 + αRµt−1 + αR

{
αMr

2
t−1 − (1 − βM )µt−1

}
, missing.
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In practice we would expect αM to be quite small and βM to be close to one. It is somewhat tempting

to estimate αM , βM using an additional quasi-likelihood (like (16)), available for all the data in the

sample except when RMt is missing, or one can apply the above more directly. It is likely to former

does well if there is very little missing data and the latter is better for forecasting if there is a quite

a lot (using the theory of misspecified models).

6 Conclusions

In this paper we have given a self-contained and sustained analysis of a particular model of con-

ditional volatility based on high frequency data. HEAVY models are relatively easy to estimate

and have both momentum and mean reversion. We show these models are more robust to level

breaks in the volatility than conventional GARCH models, adjusting to the new level much faster.

Further, as well as showing mean reversion, HEAVY models exhibit momentum, a feature which is

missing from traditional models.

References

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing it up: Including jump components in
the measurement, modeling and forecasting of return volatility. Review of Economics and Statistics 89,
707–720.

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2009). Parametric and nonparametric measurement of
volatility. In Y. Aı̈t-Sahalia and L. P. Hansen (Eds.), Handbook of Financial Econometrics. Amsterdam:
North Holland. Forthcoming.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens (2001). The distribution of realized stock
return volatility. Journal of Financial Economics 61, 43–76.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of exchange rate
volatility. Journal of the American Statistical Association 96, 42–55. Correction published in 2003,
volume 98, page 501.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2003). Modeling and forecasting realized
volatility. Econometrica 71, 579–625.

Andersen, T. G., T. Bollerslev, and N. Meddahi (2006). Market microstructure noise and realized volatility
forecasting. Unpublished paper: Department of Economics, Duke University.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation.
Econometrica 59, 817–858.

Bandi, F. M. and J. R. Russell (2006). Seperating microstructure noise from volatility. Journal of Financial
Economics 79, 655–692.

Bandi, F. M. and J. R. Russell (2008). Microstructure noise, realized variance, and optimal sampling.
Review of Economic Studies 75, 339–369.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2008a). Designing realised kernels to
measure the ex-post variation of equity prices in the presence of noise. Econometrica 76, 1481–1536.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2008b). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-
synchronous trading. Unpublished paper: Oxford-Man Institute, University of Oxford.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2009). Realised kernels in practice:
trades and quotes. Econometrics Journal . Forthcoming.

39



Barndorff-Nielsen, O. E., S. Kinnebrouck, and N. Shephard (2009). Measuring downside risk: realised
semivariance. In T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series Econo-
metrics: Essays in Honor of Robert F. Engle. Oxford University Press. Forthcoming.

Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric analysis of realised volatility and its use in
estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64, 253–280.

Barndorff-Nielsen, O. E. and N. Shephard (2007). Variation, jumps and high frequency data in financial
econometrics. In R. Blundell, T. Persson, and W. K. Newey (Eds.), Advances in Economics and
Econometrics. Theory and Applications, Ninth World Congress, Econometric Society Monographs,
pp. 328–372. Cambridge University Press.

Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. Journal of Economet-
rics 51, 307–327.

Bollerslev, T. and J. M. Wooldridge (1992). Quasi maximum likelihood estimation and inference in dy-
namic models with time varying covariances. Econometric Reviews 11, 143–172.

Brownlees, C. T. and G. M. Gallo (2006). Financial econometrics at ultra-high frequency: data handling
concerns. Computational Statistics and Data Analysis 51, 2232–2245.

Brownlees, C. T. and G. M. Gallo (2009). Comparison of volatility measures: a risk management perspec-
tive. Journal of Financial Econometrics. Forthcoming.

Burns, P., R. F. Engle, and J. Mezrich (1998). Correlations and volatilities of asynchronous data. Journal
of Derivatives , 7–18.

Christensen, K. and M. Podolskij (2007). Asymptotic theory for range-based estimation of integrated
volatility of a continuous semi-martingale. Journal of Econometrics 141, 323–349.

Christensen, P. F., K. Jacobs, and Y. Wang (2008). Option valuation with long-run and short-run volatility
components. Journal of Financial Economics 90, 272–297.

Cipollini, F., R. F. Engle, and G. Gallo (2007). A model for multivariate non-negative valued processes in
financial econometrics. Unpublished paper: Stern School of Business, New York University.

Clements, M. P. and D. F. Hendry (1999). Forecasting Non-stationary Economic Time Series: The Zeuthen
Lectures on Economic Forecasting. Cambridge, Mass.: MIT Press.

Corradi, V. and W. Distaso (2006). Semiparametric comparison of stochastic volatility models using
realized measures. Review of Economic Studies 73, 635–667.

Corsi, F. (2009). A simple long memory model of realized volatility. Journal of Financial Econometrics 7,
174–196.

Cox, D. R. (1961a). Prediction by exponentially weighted moving averages and related methods. Journal
of the Royal Statistical Society, Series B 23, 414–422.

Cox, D. R. (1961b). Tests of seperate families of hypotheses. Proceedings of the Berkeley Symposium 4,
105–123.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business & Economic
Statistics 13, 253–263.

Drost, F. C. and T. E. Nijman (1993). Temporal aggregation of GARCH processes. Econometrica 61,
909–927.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of the
United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17, 425–446.

Engle, R. F. and J. P. Gallo (2006). A multiple indicator model for volatility using intra daily data. Journal
of Econometrics 131, 3–27.

Engle, R. F., D. F. Hendry, and J. F. Richard (1983). Exogeneity. Econometrica 51, 277–304.

Engle, R. F. and G. G. J. Lee (1999). A permanent and transitory component model of stock return
volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting. A Festschrift
in Honour of Clive W.J. Granger, pp. 475–497. Oxford: Oxford University Press.

Engle, R. F. and J. Mezrich (1996). GARCH for groups. Risk , 36–40.

Falkenberry, T. N. (2002). High frequency data filtering. Technical report, Tick Data.

40



Fan, J. and Y. Wang (2007). Multi-scale jump and volatility analysis for high-frequency financial data.
Journal of the American Statistical Association 102, 1349–1362.

Fiorentini, G., E. Sentana, and N. Shephard (2004). Likelihood-based estimation of latent generalised
ARCH structures. Econometrica 72, 1481–1517.

Ghysels, E., A. Rubia, and R. Valkanov (2009). Multi-period forecasts of volatility: Direct, iterated and
mixed-data approaches. Unpublished paper: Department of Economics, UNC at Chapel Hill.

Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Econometrica 74, 1545–1578.

Giot, P. and S. Laurent (2004). Modelling daily value-at-risk using realized volatility and ARCH type
models. Journal of Empirical Finance 11, 379–398.

Golub, G. H. and C. F. Van Loan (1989). Matrix Computations. Baltimore: John Hopkins University
Press.

Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise (with discussion).
Journal of Business and Economic Statistics 24, 127–218.

Heber, G., A. Lunde, N. Shephard, and K. K. Sheppard (2009). OMI’s realised measure library. Version
0.1, Oxford-Man Institute, University of Oxford.

Hendry, D. F. (1995). Dynamic Econometrics. Oxford: Oxford University Press.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter (2009). Microstructure noise in the continuous
case: the pre-averaging approach. Stochastic Processes and Their Applications . Forthcoming.

Lo, A. and C. MacKinlay (1990). The econometric analysis of nonsynchronous trading. Journal of Econo-
metrics 45, 181–211.

Maheu, J. M. and T. H. McCurdy (2009). Do high-frequency measures of volatility improve forecasts of
return distributions? Unpublished paper: Department of Economics, Toronto University.

Marcellino, M., J. H. Stock, and M. W. Watson (2006). A comparison of direct and iterated multistep ar
methods for forecasting macroeconomic time series. Journal of Econometrics 135, 499–526.

Patton, A. J. (2009). Volatility forecast evaluation and comparison using imperfect volatility proxies.
Journal of Econometrics . Forthcoming.

Patton, A. J. and K. K. Sheppard (2009a). Evaluating volatility forecasts. In T. G. Andersen, R. A. Davis,
J. P. Kreiss, and T. Mikosch (Eds.), Handbook of Financial Time Series, pp. 801–838. Springer Verlag.

Patton, A. J. and K. K. Sheppard (2009b). Good volatility, bad volatility: signed jumps and persistence
of volatility. Unpublished paper: Oxford-Man Institute, University of Oxford.

Rivers, D. and Q. H. Vuong (2002). Model selection for nonlinear dynamic models. The Econometrics
Journal 5, 1–39.

Scholes, M. and J. Williams (1977). Estimating betas from nonsynchronous trading. Journal of Financial
Economics 5, 309–27.

Shephard, N. and K. K. Sheppard (2009). Missing value based ARCH type model. Unpublished paper:
Oxford-Man Institute, University of Oxford.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Economet-
rica 57, 307–333.

Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: a multi-scale ap-
proach. Bernoulli 12, 1019–1043.

Zhang, L., P. A. Mykland, and Y. Aı̈t-Sahalia (2005). A tale of two time scales: determining integrated
volatility with noisy high-frequency data. Journal of the American Statistical Association 100, 1394–
1411.

41


