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Abstract

Motivated by features of low latency data in finance we study in detail discrete-valued Lévy
processes as the basis of price processes for high frequency econometrics. An important case
of this is a Skellam process, which is the difference of two independent Poisson processes. We
propose a natural generalisation which is the difference of two negative binomial processes. We
apply these models in practice to low latency data for a variety of different types of futures
contracts.

Keywords: futures markets; high frequency econometrics; low latency data; negative binomial;
Skellam distribution.

1 Introduction

In this paper we provide an exploratory analysis of low latency financial data. Our focus is on the

unconditional distributional features of returns at times of trades only, establishing the framework

of discrete-valued Lévy processes as a fundamental starting point for models of low latency data.

This can be thought of as a first step towards more realistic stochastic process modelling, which in

particular would involve time-change to allow for volatility clustering and diurnal features.

Recently low latency data have become available for research. These data from specialist data

providers are recorded very close to the data exchange itself and are therefore of the highest available
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quality. Typically low latency data are added to the data providers database less than 1 millisecond

after they leave the exchange.

There has been considerable interest in using high frequency financial data to aid decision

making. Recent reviews are given by Russell and Engle (2010) and Bauwens and Hautsch (2009).

Leading applied reasons include:

(i) Building models to design efficient trading methods with low transaction costs. These meth-

ods are typically implemented electronically and are called “automated trading”. An interesting

recent example being Avellaneda and Stoikov (2008).

(ii) Harnessing the data to better estimate medium term financial volatility or dependence e.g.

by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008)

and Mykland and Zhang (2010).

(iii) Studies of the relationships between the many quantities of economic interest. For example

relationships between trade volumes and price changes have been studied by Potters and Bouchaud

(2003) and Lo and Wang (2010) amongst many and between order flow and tick price changes by

Weber and Rosenow (2005) and others.

In this paper we systematically develop a continuous time discrete-valued Lévy process which

has features which are attractive for low latency data. In particular this process delivers prices

which obey the tick structure we observe empirically in low latency data. Its most basic form is

based on the Skellam distribution and can be thought of as modeling price changes as the difference

between two scaled Poisson processes, but we also generalise this to processes based on the difference

of two negative binomial processes.

The structure of discrete-valued Lévy processes means our models will evolve over the tick struc-

ture of high frequency data. Related discrete-valued econometric models include those discussed

by, for example, Hausman et al. (1992), Rydberg and Shephard (2003), Russell and Engle (2006),

Hasbrouck (1999) and Hansen and Horel (2009).

The model we discuss in this paper is not fully fledged. However, it can be extended using

time-changes to yield volatility clustering as well as allowing serial correlation due to market mi-

crostructure effects. We have started working on these extensions in Barndorff-Nielsen et al. (2010)

which builds on the methods developed here.

The structure of this paper is as follows. In Section 2 we first discuss some features of low

latency data and their empirical statistics. We detail what we call pure mid-prices, which are a

variant on the usual mid-price changes which preserves the tick structure of the bid and ask prices

recorded in low latency data. Section 3 looks at the mathematics of discrete-valued continuous

time processes. We introduce the basic continuous time Skellam process and discuss its properties.
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We generalise it in a number of ways, to allow it to be more heavy tailed. We apply compound

Poisson processes to the financial data in Section 4 and fit the so-called ∆NB Lévy processes in

Section 5. We then draw some conclusions in Section 6. Derivations of important properties of

discrete-valued Lévy processes are in the Appendices.

2 Low latency data and discrete-valued distributions

2.1 Low latency futures data

We will study tick price processes in low latency data from futures exchanges. Futures exchanges

trade many assets ranging from equity indices to interest rate products and commodities. Liquidity

on the electronic marketplace in many of these futures contracts is good and the exchanges well

established. They are able to provide low latency data feeds recording every price and new order

update seen on the matching engine’s order book.

We study, in particular, futures data for the S&P500 (mini) contract, the US Treasury 10 year

note, the NYMEX benchmark Crude Oil contract and the IMM Eurodollar futures contract. These

markets are sufficiently different to demonstrate a range of tick price behaviours. These data was

provided to us by QuantHouse (www.quanthouse.com) from data feeds at the Chicago Mercantile

Exchange (CME) which is one of the largest Futures exchanges.

2.2 Mid-price changes

By ‘tick price process’ we refer to the continuous time evolution of the ‘best’ price in the market as

it changes over time from data update to update. The mid-price is the arithmetic average of the

best ask Pask,t and best bid price Pbid,t

Pmid,t = 0.5(Pask,t + Pbid,t), t ∈ R≥0.

This price is computed in continuous time and its value changes when either the ask or bid is

altered.

The minimum price change allowed by the exchange on any market, the ‘tick size’, means that

exchange prices map to the positive integers and mid-prices to the positive integers and half-integers.

We will do some rudimentary filtering by restricting attention to the period of the day when

the market trades actively and then selecting only those data updates at times when trades occur.

The times at which there are trades will be written as

τi, i = 1, 2, ..., N.

The justification being that when trades occur there is agreement by at least two market participants

about the market price and so we have more confidence in its accuracy. Figure 1 shows this for
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Figure 1: Euro-Dollar IMM FX futures contract on 10th November 2008. Top left: ask, bid and
pure mid-price for the first 80 trades of the day. Top middle: returns from pure mid-price. They
are all integers. Top right: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom left: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions. Bottom middle: fit of the Lévy ∆NB process compared to non-parametric fit.

the Euro-Dollar IMM FX futures contract during 10th November 2008, which had 33,074 trades

on that day. The left hand plots the bid and ask at the times of the first 80 trades. It also shows

the pure mid-prices, which we will define in a moment. The corresponding pure mid-price returns

are given in the middle of the top graphs in the figure. It shows integer returns, with most being

−1, 0 and 1. However, there is also a return of 2 ticks.

Consider changes in pmid,τi ,

c∗i =
Pmid,τi+1

− Pmid,τi
tickSize

, c∗i ∈
{
...,−1,−1

2
, 0,

1

2
, 1, ...

}
, (1)

between consecutive trades at times τi+1, τi. For the above contract the tick size is 0.0001 of a

unit, i.e. prices move from, for example, 1.2768 to 1.2767 U.S. Dollar to the Euro. Then these

changes c∗i mostly live on the integers but have some mass on the half integers mostly caused by

one sided moves in the spread, i.e. the ask moving up one tick but no move in the bid, causing the

spread to widen and the mid-price to move up by a half a tick. It turns out these spread induced

half tick changes are difficult to model for various reasons (including they make the distribution of
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price changes non-monotonic as we go away from zero) and we will show how to remove them in a

moment.

2.3 Pure mid-prices

We can reduce these spread induced changes by using what we call “pure mid-prices”. Pure mid-

prices move the price as little as possible subject to keeping the pure mid-price between the bid

and the ask at times of trade. This can be formalised in the following way.

Pure mid-prices are defined by the following criteria

Ppure,t = min
x

|x− Ppure,τi | , t ∈ (τi, τi+1]

subject to the discrete time constraining knots

Pbid,τi < Ppure,τi < Pask,τi , i = 1, 2, ..., N.

This means that pure mid-prices are not effected by a widening of the spread.

In tick space the assets we discuss in this paper will have a spread which will be one or more

ticks. As a result it makes sense from an econometric modelling viewpoint to add a second criteria

to scaled pure mid-prices — that they are half-integers. That is we only allow

Ppure,t
tickSize

∈
{
1

2
,
3

2
,
5

2
,
7

2
, ...

}
= Z≥0 +

1

2
.

Hence if, for example the tick size was one, Pask,τi = 101 and Pbid,τi = 100 then Ppure,τi = 100.5,

while if this is followed by Pask,τi+1
= 103 and Pbid,τi+1

= 101 then Ppure,t keeps at 100.5 until time

τi+1 when it instantly jumps up to Ppure,τi+1
= 101.5. Likewise if Pask,τi+1

= 102 and Pbid,τi+1
= 100

then Ppure,τi+1
= 100.5. This then delivers an integer return sequence from the half-integer scaled

pure mid-prices. This will turn out to be relatively easy to model1.

We should note that if the futures contract is traded on a so-called one-tick market (see, for

example, Field and Large (2008)), where depths are so large than the spread is always one tick

wide, then the pure mid-price and the usual mid-price will always be identical.

These remaks are illustrated in Figure 1 which plots (in the upper panel) returns on pure

mid-prices at the times of the trades that occurred on the Euro-Dollar FX contract during 10th

November 2008. Pure mid-prices returns are integers.

The top right hand graph and the bottom left hand graph holds some summaries of returns.

On the left are the correlograms and they show the usual small amount of negative autocorrelation

1Note both
Pask,t−Ppure,t

tickSize
∈ Z≥0 +

1

2
and

Ppure,t−Pbid,t

tickSize
∈ Z≥0 +

1

2
. Hence a very basic factor model for the bid

and ask in continuous time is to model a discrete-valued martingale
Ppure,t

tickSize
− 1

2
and two stationary non-negative

discrete-valued processes
Pask,t−Ppure,t

tickSize
− 1

2
and

Ppure,t−Pbid,t

tickSize
− 1

2
.
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due to market microstructure effects (e.g. Hansen and Lunde (2006) and the references contained

within it). The autocorrelation basically lasts one lag and is more modest for the pure mid-price

return series (it is well known the trades themselves will live on the lattice structure but will have

a great deal of autocorrelation). The latter point seems a robust feature across a lot of assets we

have studied. Interestingly the pure mid-price returns have less autocorrelation than the returns

from mid-prices, asks or bids.

The bottom left hand side plot shows the unconditional histogram for the pure mid-price returns

for the whole day of data. The non-parametrically estimated log-probabilities seem to be declining

roughly linearly in the tails for this dataset.

Standard deviation

# of trades Mid Ask Bid Pure

Euro 07/11/08 42,592 0.834 0.849 0.999 0.723
Euro 10/11/08 33,074 0.545 0.584 0.584 0.538

ESPC 10/11/08 163,970 0.260 0.267 0.268 0.260
CLN 10/11/08 90,762 0.822 0.937 0.990 0.760
TNC 10/11/08 26,764 0.319 0.326 0.324 0.318

Table 1: Summary statistics for the five low latency data sets used in this paper. Shows the sample
size on each day and the standard deviations of the returns, having scaled the returns so they are
in ticks. The returns are computed using mid-prices, asks, bids or using pure mid-prices.

The pictures change over time, but many features are constant. Figure 2 shows the analysis

on 7th November 2008, a US Non-farm payroll day. Now tick changes of order ±40 occur during

the day, just after the announcement, and the log probability plot shows more extended tails as a

consequence. Again the correlogram is closer to being white noise for the pure mid-price changes

than for the alternatives we considered.

For many other markets a similar picture holds for pure mid-price changes. Later we will

illustrate this using data from the Ten Year US treasury note (TNC), Nymex/CME benchmark

crude oil contract (CLN) and the mini S&P500 contract (ESPC).

For each of these series Table 1 provides summary statistics, indicating the number of low latency

returns available. The Table also shows the standard deviations when scaled prices are computed

using mid-prices, asks, bids and pure mid-prices. As expected the standard deviations are lower

for mid-prices than for asks and bids, which reflects their smaller amount of autocorrelation. An

interesting feature of the Table is that the standard deviation of the pure mid-price returns are

typically smaller than that for the mid-price returns.
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Figure 2: Euro-Dollar IMM FX futures contract on 7th November 2008. Top left: ask, bid and pure
mid-price for the first 80 trades of the day. Top middle: returns from pure mid-price. They are all
integers. Top right: correlogram for mid-price, ask, bid and pure mid-price for entire day. Bottom
left: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB distributions.
Bottom middle: fit of the Lévy ∆NB process compared to non-parametric fit.

7



3 Mathematics of discrete-valued Lévy process

3.1 Introduction

In order to build models of discrete-valued price changes it is important to have an understanding

of continuous time processes which can deliver independent and stationary increments which are

discrete-valued. These processes can be time-changed to deliver empirically plausible models with

both diurnal features and time-varying volatility, in the same way Brownian motion is often time-

changed to deliver stochastic volatility.

The basis of our analysis will be discrete-valued Lévy processes. Recall a càdlàg stochastic

process L = {Lt}t≥0 with L0 = 0 is a Lévy process if and only if it has independent and (strictly)

stationary increments. See the reviews of Lévy processes by, for example, Sato (1999) and Cont

and Tankov (2004). A discrete Lévy process has its law concentrated on Z = {i : i = 0,±1,±2, ...}.
The simplest example of this class is the Poisson process, but clearly this is not satisfactory for our

tick process.

The following theorem indicates the way we can build these kinds of models.

Theorem 1 Suppose L is a discrete-valued Lévy process. Then the Lévy measure ν of L is con-

centrated on Z\ {0} and has finite mass.

Proof. Given in the Appendix.

The finiteness of ν implies that L is of finite activity, i.e. it has at most finitely many jumps in

any finite time interval. Consequently, without loss of generality, L can be written in the form

Lt = L+
t − L−

t ,

where the paths of L+
t and L−

t can be deduced from the single path of Lt simply by summing the

positive and negative jumps of L separately. Thus L+ and L− are both discrete subordinators (Lévy

processes with non-negative increments2), whose Lévy measures ν+ and ν− are the restrictions of

ν to the positive and negative half axes, respectively. Since ν+ and ν− are both finite measures,

L+ and L− are compound Poisson (CP) processes, and, in obvious notation, L may be written as

Lt =

N+
t∑

j=1

C+
j −

N−
t∑

j=1

C−
j .

where
{
N+
t , N

−
t

}
are independent (homogeneous) Poisson processes with intensities ψ+ = ν ((0,∞))

and ψ− = ν ((−∞, 0)) ,while the C±
j are strictly positive integer innovations. The fact that they

2Discrete infinite divisibility for distributions on N0 = {i : i = 0, 1, 2, ...} is discussed briefly in Bondesson (1992)
and more extensively in Steutel and Van Harn (2004).
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are greater than or equal to one is important. Notice that with probability one the paths of N+
t

and N−
t jump at different times.

Remark 1 The tick process itself can be written as a compound Poisson process

Lt =
Nt∑

j=1

Cj ,

where Nt is the number of trades up to time t and Cj are the potential moves when there is

a trade. In this case Cj has an atom at 0 as many trades will not move the price. Without

observing the counting process Nt the process would not be identified due to the Cj having an atom

at zero. Compound Poisson models with general, not necessarily integer, returns have a long history,

examples include Press (1967) and Madan and Seneta (1984).

3.2 Cumulants

A characterising feature of Lévy processes is that, so long as they exist,

κj,t = tκj, j = 1, 2, ...,

where κj,t and κj are the j-th cumulant of Lt and L1, respectively.
3

The cumulant function of any Lévy process Yt has the form

C {θ ‡ Yt} = log [E exp {iθYt}] = tC {θ ‡ Y1} .

This implies for the discrete process L that

C {θ ‡ Lt} = tC
{
θ ‡ L+

1

}
+ tC

{
−θ ‡ L−

1

}

and consequently

κj,t = tκ+j + t (−i)j κ−j

where κ+j and κ−j denote the cumulants of L+
1 and L−

1 , respectively. Further, since L
± are compound

Poisson with rates ψ± we have

C
{
θ ‡ L±

1

}
= −ψ±

{
1− C

(
θ ‡ C±

1

)}

where C
(
θ ‡ C±

1

)
is the cumulant function of C±

1 . Hence

κ±j = −ψ±
(
1− µ′±j

)
= ψ±

(
µ′±j − 1

)
,

3Recall that the j-th cumulant of a random variable X can (assuming it exists) be calculated as

i
−j ∂j log E

(

eiθX
)

∂θj

∣

∣

∣

∣

∣

θ=0

.
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where the uncentred moments

µ′±j = E
{(
C±
1

)j}
= i−j

∂jE
(
eiθC

±
1

)

∂θj

∣∣∣∣∣∣
θ=0

.

Note that µ′±j ≥ 1 by construction.

3.3 Skellam Lévy process

In the simplest case where all the jumps are unit, then with probability one,

C±
n = 1,

so prices move a single tick at a time. Then L±
t = N±

t so

Lt = N+
t −N−

t .

We call this a Skellam Lévy process, for the process is the Lévy process generated from the Skellam

distribution, introduced by Irwin (1937). That distribution is the law of the difference of two

independent Poisson distributions, with parameters ψ+ and ψ−, say, and we will denote it by

Sk(ψ+, ψ−). Then we have the important result that

Lt ∼ Sk(tψ+, tψ−), (2)

and

Lt − Ls ∼ Sk((t− s)ψ+, (t− s)ψ−), t > s.

For k ∈ N0 the point probabilities of the Skellam distribution, Sk(ψ+, ψ−), are

pk =

∞∑

n=0

Pr(N+
t = n+ k) Pr(N−

t = n)

= e−ψ
+−ψ−

∞∑

n=0

(ψ+)
k+n

(ψ−)
n

n!(k + n)!
,

= e−ψ
+−ψ− (

ψ+
)k ∞∑

n=0

(ψ+ψ−)
n

n!(k + n)!

= e−ψ
+−ψ− (

ψ+
)k (√

ψ+ψ−
)−k

I|k|(2
√
ψ+ψ−),

where Ik(x) is a modified Bessel function of the first kind (Abramowitz and Stegun, 1970, p. 375,

(9.6.10))

Ik(x) =

(
1

2
x

)k ∞∑

n=0

(
1
4x

2
)n

n!Γ (k + n+ 1)
.
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By symmetry, the point probability for an arbitrary k ∈ Z can be expressed as

pk = e−ψ
+−ψ−

(
ψ+

ψ−

)k/2
I|k|(2

√
ψ+ψ−). (3)

Importantly E(Lt) = (ψ+ − ψ−) t and Var(Lt) = (ψ+ + ψ−) t. Hence if ψ+ = ψ− the process

is a martingale.

Remark 2 The most important special case is the standard Skellam process when ψ+ = ψ− =

1/2 and then

C {θ ‡ L1} =
1

2

(
−2 + eiθ + e−iθ

)
= −(1− cos θ).

We will use the notation St, t ∈ R≥0, S0 = 0, to denote the standard Skellam process. Clearly this

is a martingale with unit variance per unit of time and

St ∼ Sk

(
1

2
t,
1

2
t

)
, κ1 = 0, κ2 = 1, κ3 = 0, κ4 = 1.

Hence this is a discrete-value analogy of Brownian motion. This process has a unit expected number

of price changes per unit of time. Let us study the distribution of St/
√
t. Expanding in small θ,

C
{
θ ‡ St/

√
t
}
=
θ2

2
+

θ4

24t
+ ....

and hence, as t → ∞, so St/
√
t
d→ N(0, 1). Figure 3 shows the log-density of St/

√
t. It is slightly

sub-linear in the tails for small t and it becomes quadratic as t increases.

3.4 ∆NB Lévy process

3.4.1 Negative binomial precursor

We now study a more general model, based upon the negative binomial distribution. The negative

binomial distribution comes from mixing a Poisson

Pr(L+
1 = k|λ) = λke−λ

k!
, k = 0, 1, 2, ...,

with a random intensity parameter λ

λ ∼ Ga

(
r,

p

1− p

)
, p ∈ (0, 1) , r > 0, E(λ) = r

p

1− p
, Var(λ) = r

(
p

1− p

)2

,

which is gamma distributed. Then, the following is well known

Pr(L+
1 = k) =

∫∞
0

λke−λ

k! λr−1 exp{−λ(1−p)/p}
(

p

1−p

)r
Γ(r)

dλ = 1
k!

1
(

p

1−p

)r
Γ(r)

∫∞
0 λk+r−1 exp (−λ/p) dλ

= 1
k!

1
(

p

1−p

)r
Γ(r)

pr+kΓ (r + k)

= 1
k!

Γ(r+k)
Γ(r) (1− p)r pk,
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Figure 3: Log-density of the normal and Skellamn distributions for St/
√
t. Code: skellam.ox.

which is the negative binomial distribution, which we will write as NB (r, p). The first four cumu-

lants of NB (r, p) are

κ1 = r
p

1− p
, κ2 = r

p

(1− p)2
, κ3 = r

p+ p2

(1− p)3
, κ4 = r

p+ 4p2 + p3

(1− p)4
,

and the cumulant function is

C
{
θ ‡ L+

1

}
= r

{
log(1− p)− log(1− peiθ)

}
.

It follows immediately, as is well known, that this distribution is infinitely divisible and it supports

a negative binomial Lévy process with

L+
t ∼ NB (tr, p) .

This process is overdispersed as κ1,t/κ2,t = κ1/κ2 = 1−p ∈ (0, 1]. It is well known that the negative

binomial process can also be generated as

L+
t = N ◦ Tt = NTt ,

where the subordinator T is a gamma process stochastically independent from N a standard Poisson

process.
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We recall that the negative binomial nests the Poisson distribution. In fact, reparameterising

from (r, p) to (ψ, p) by letting

ψ = r
p

1− p
,

then

Pr(L+
1 = k) =

ψk

k!

Γ (r + k)

Γ (r)
(1− p)r+k

with

E(λ) = r
p

1− p
= ψ, Var(λ) = r

(
p

1− p

)2

= ψ
p

1− p
.

For fixed ψ, as p ↓ 0 so λ
p→ ψ. Hence, using this parameterisation, Poisson is the extreme case of

p = 0. We will use this ψ parameterisation in our empirical work.

Remark 3 The negative binomial process can be thought of as a compound Poisson process

L∗
t =

Nt∑

j=1

Xj , Xj ∼ i.i.d., X ⊥⊥ N,

where the innovations are logarithmic variables

Pr(Xj = k) =
pk

|log(1− p)| k , k = 1, 2, ...,

while Nt is a Poisson process with intensity

r |log(1− p)| = ψ
(1− p)

p
|log(1− p)| .

A derivation of this known result will be given in Example 2 below. This implies

log Pr(Xj = k) = k log p− log k − log {− log(1− p)} ,

so the log-histogram of the innovations will appear approximately linear in the tails. Statistically

this is a convenient form, it means the p parameter entirely controls the size of the moves and the

r parameter can be freely set to control the intensity of the moves. Note as p ↓ 0 so log(1 − p) ∼ p

so Pr(Xj = k) ≃ pk−1/k, which will have nearly all of its mass at one; furthermore, the intensity

tends to ψ.

3.4.2 ∆NB Lévy process in detail

We work with Lt where

Lt = L+
t − L−

t , L+
t ⊥⊥ L−

t , L+
t ∼ NB

(
tr+, p+

)
, L−

t ∼ NB
(
tr−, p−

)
,
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with p± ∈ (0, 1), r± > 0.

Introducing the rising factorial

(a)n = a (a+ 1) · · · (a+ n− 1) =
Γ (a+ n)

Γ (a)
,

we have

Pr(L+
1 = k) =

(r)k
k!

pk (1− p)r .

and, for k ∈ N0, the point probabilities of Lt are

pk =

∞∑

n=0

Pr(L+
t = n+ k) Pr(L−

t = n)

=

∞∑

n=0

(r+)n+k
(n+ k)!

(
p+

)n+k (
1− p+

)r+ (r−)n
n!

(
p−

)n (
1− p−

)r−

=
(
1− p−

)r− (
1− p+

)r+ (
p+

)k ∞∑

n=0

(r+)n+k
(n+ k)!

(r−)n
n!

(
p+p−

)n
.

Now,

(r)n+k = (r)k(r + k)n

and

Γ (n+ k + 1)

Γ (k + 1)
= (k + 1)n,

so

pk =
(
1− p−

)r− (
1− p+

)r+ (p+)
k
(r+)k

Γ (k + 1)

∞∑

n=0

(r+ + k)n
(k + 1)n

(r−)n
n!

(
p+p−

)n

=
(
1− p−

)r− (
1− p+

)r+ (p+)
k
(r+)k
k!

F
(
r+ + k, r−; k + 1; p+p−

)
,

where

F (α, β; γ; z) =
∞∑

n=0

(α)n (β)n
(γ)n

zn

n!
, z ∈ [0, 1) , α, β, γ > 0, (4)

is the classical hypergeometric function which has many properties and applications (see, for exam-

ple, (Abramowitz and Stegun, 1970, Ch. 15)). To be explicit, here α = r+ +m > 0, β = r− > 0,

γ = m+ 1 ≥ 1, z = p+p− ∈ (0, 1). By symmetry, for any k ∈ Z,

pk =





(1− p−)
r−

(1− p+)
r+ (p+)

k
(r+)k
k! F (r+ + k, r−; k + 1; p+p−) , k ≥ 0

(1− p−)
r−

(1− p+)
r+ (p−)

|k|
(r−)|k|

|k|! F (r+, r− + |k| ; |k|+ 1; p+p−) , k ≤ 0.
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This seems to be a new type of four parameter distribution. We write it as a ∆NB(r+, p+, r−, p−)

distribution or, using the parametrisation discussed above,

∆NB(ψ+, p+, ψ−, p−).

The latter is convenient for us as it allows a simple comparison with the Skellam distribution and

it will be used throughout our empirical work.

The hypergeometric function appears in most standard packages precoded. In this paper we will

approximate the hypergeometric function by using the sum (4) always employing 10,000 terms4.

This worked well in practice in our applications when we checked it against simulated data.

Clearly

C {θ ‡ L1} = C
{
θ ‡ L+

1

}
+C

{
−θ ‡ L−

1

}
= r+

{
log(1− p+)− log(1− p+eiθ)

}

+r−
{
log(1− p−)− log(1− p−e−iθ)

}
,

which directly demonstrates it is infinitely divisible. We call the resulting Lévy process a ∆NB

process and it has the property that

Lt ∼ ∆NB(tr+, p+, tr−, p−),

or in the alternative parameterisation Lt ∼ ∆NB(tψ+, p+, tψ−, p−).

Then

κ1 = r+
p+

1− p+
− r−

p−

1− p−
, κ2 = r+

p+

(1− p+)2
+ r−

p−

(1− p−)2
,

κ3 = r+
p+ + p+2

(1− p+)3
− r−

p− + p−2

(1− p−)3
, κ4 = r+

p+ + 4p+2 + p+3

(1− p+)4
+ r−

p− + 4p−2 + p−3

(1− p−)4
.

Remark 4 This distribution is distinct from a symmetric Skellam distribution Sk(ψ,ψ) with gamma

distributed intensity ψ. Hence this process is not a Skellam process time changed by a gamma pro-

cess.

Remark 5 The most important special case is the standard symmetric process when

r+ = r− = r, p+ = p− = p, r =
1

2

(1− p)2

p
,

then at time one

κ1 = 0, κ2 = 2r
p

(1− p)2
= 1, κ3 = 0, κ4 = 2r

p + 4p2 + p3

(1− p)4
=

1 + 4p+ p2

(1− p)2
.

4When computing the log-likelihood for this distribution, we first fully enumerate the probability functions for
integers between the smallest and largest observed return. We then use this as a lookup table for the likelihood
evaluation. This tends to be very fast in practice as the fixed cost of enumeration is dominated by the cost of
carrying out the calculations N1 times.
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Figure 4: Top figures: sample path from the standard ∆NB (with p+ = 0.32) and Skellam Lévy
processes. Bottom figures: log-histogram from the increments of ∆NB and Skellam Lévy process.
Code: hyper.ox.

Thus unlike the standard Skellam distribution it does deliver the flexibility to deliver any value of

κ4 ≥ 1. Of course as p+ ↓ 0 so κ4 ↓ 1 (the standard Skellam case), while as p+ ↑ 1 then κ4 ↑ ∞.

Figure 4 compares a sample path from the standard ∆NB process, given in part (a) of the Figure,

to that of a standard Skellam process, given in part (b). Clearly the ∆NB process has a smaller

number of jumps, but some of the jumps are more than a single tick. Part (c) shows a log-histogram

from the increments of the ∆NB process for one thousandth of a unit of time. It shows a very large

probability of a zero, with some probability at ±1. What is important is there is a small positive

probability of moves to ±2 and even some observed ±3. For the Skellam process the corresponding

log-histogram has no mass outside ±1. This is important empirically.

3.4.3 A generic precursor5

The discussion of the negative binomial distribution, as a gamma time-changed Poisson process, is

nested within the following setup which maybe useful for the development of more general models.

Let N be a Poisson process with unit intensity and T be a subordinator (i.e. a non-negative Lévy

processes) such that N ⊥⊥ T and let

L+ = N ◦ T
5This subsection can be skipped on first reading without losing the tread of the argument.
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be the subordination of N by T i.e. L+
t = NTt .

To analyse this class it is helpful to take a step back and introduce some well known mathematics

through the kumulant function

K (θ ‡X) = log E {exp(−θX)}

for a random variable X ≥ 0. Then it is well known that the Lévy-Khintchine representation for

all non-negative Lévy processes can be written as

K{θ ‡ L+
t } = −atθ − t

∫ ∞

0

(
1− e−θu

)
ν (du ‡ L1) , (5)

where the drift a ≥ 0 and ν is a measure on R>0 such that
∫∞
0 min{1, y}ν

(
du ‡ L+

1

)
< ∞. Hence

all non-negative processes can be classified by their Lévy measure ν
(
du ‡ L+

1

)
and the drift.

Theorem 2 L+ = N ◦ T can be written as a compound Poisson process

L+
t =

N∗
t∑

j=1

Uj, Uj ∼ i.i.d., N∗ ⊥⊥ U,

where N∗
t is a Poisson process with constant rate

κ = −K(1 ‡ T1) <∞

and

Pr(Uj = m) = qm = κ−1ψm, ψm =

∫ ∞

0

um

m!
e−uν (du ‡ T1) .

Proof. Given in the Appendix.

This result gives a complete characterisation of this class of time-changed processes, showing it

is always representable as a compound Poisson process. Further, the rate of the intensity is known,

as is the probability function of the innovations Uj .

Example 1 Suppose T1 ∼ IG (δ, γ), which means it is inverse Gaussian. Then

ν (du ‡ T1) =
δ√
2π
u−

3

2 e−
1

2
γ2u, K(θ ‡ T1) = δ

{
γ −

(
γ2 + 2θ

)1/2}
,

so that

ψm =
δ√
2π

1

m!

∫ ∞

0
ume−uu−

3

2 e−
1

2
γ2udu =

δ√
2π

1

m!

Γ
(
m− 1

2

)
(
1 + γ2

2

)m− 1

2

=
δ

π
(2)

1

2 B

(
3

2
,m− 1

2

)
1

(
1 + 1

2γ
2
)m− 1

2

, (6)

where B (, ) is a beta function and the intensity is κ = δ
{(
γ2 + 2

)1/2 − γ
}
.
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Example 2 This example reproduces results from the previous subsection but uses a different route.

Suppose T1 ∼ Ga (r, 1/α), so relating to previously α = (1− p)/p. For this process

ν (du ‡ T1) = ru−1e−αu, K(θ ‡ T1) = −r log
(
1 +

θ

α

)
.

So writing ω = (1 + α)−1 = p, then

ψm =
r

m!

∫ ∞

0
e−uum−1e−αudu = r

ωm

m
, κ = r log

(
1 +

1

α

)
= r |log (1− ω)| . (7)

The latter term is the intensity of the Poisson process. Hence the law of the innovations for this

compound Poisson process is

Pr(Uj = m) =
1

| log(1− ω)|
ωm

m
.

That is, the innovations follow the logarithmic distribution, which is well known to be infinitely

divisible. Furthermore, the law of L+
1 is the negative binomial with point probabilities

Pr(L+
1 = k) =

(k+r−1
k

)
(1− ω)rωk.

It is well known that a Poisson number of i.i.d. logarithmic variables follows a negative binomial

distribution and that the negative binomial is infinitely divisible. In fact, the negative binomial has

the stronger property of being discrete selfdecomposable, cf. Steutel and Van Harn (2004).

4 Fitting CP processes to futures tick data

4.1 General case

As we discusses in Section 3.1 one approach is to model

Lt =

Nt∑

j=1

Cj ,

where {Cj} are i.i.d. discrete innovations independent from the Poisson process N which in turn

generates the times of trades. If Cj has a distribution called G, then we will call Lt a CP-G process.

One approach to inference is to estimate the intensity of N by counting the number of data

points during a day and separately estimating the probability function of C. We will focus on this

approach in this section, but ignoring the intensity aspect of it.

Write a sample of innovations as C1, ..., CN1
and then a simple non-parametric estimate of the

discrete probabilities is

pk =
1

N1

N1∑

j=1

1Cj=k, k ∈ Z,
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which we will compare to various parametric fits written as gk = Pr(Cj = k).

Throughout we will use the log-likelihood as a measure of fit for G. It is defined as

logL(G) =

N1∑

j=1

log gCj
,

evaluating the probability function only at points where there have been observations. Notice that

logL(p) maximises the potential log-likelihood, for pk is the non-parametric maximum likelihood

estimator of Pr(Cj = k).

4.2 CP-Skellam and CP-∆NB processes

Table 2 shows the ML estimates of the innovation distributions in the CP-Skellam and CP-∆NB

cases for the Euro-Dollar IMM FX futures contract on 7th and 10th of November, 2008. Figures

1 and 2 shows the corresponding computed probability function, as well as superimposing the

corresponding non-parametric fit, in the lower left graphs.

In the case of the relatively tranquil 10th November sample path, the Skellam distribution is

not too poor, it is slightly thinner in the tails than the data and perhaps struggles at ±4 ticks.

The ∆NB is statistically stronger, but there are small signs that even it is not sufficiently fat tailed.

The difference between the CP-Skellam and CP-∆NB is modest although statistically significant

(recall the ∆NB nests the Skellam model as a special case).

CP-Skellam CP-∆NB logL

ψ̂+ ψ̂− ψ̂+ ψ̂− p̂+ p̂−

Euro 7/11/08 0.1810 0.1817 -38,705
0.1734 0.1742 0.2366 0.2286 -37,542

Euro 10/11/08 0.1328 0.1375 -24,739
0.1314 0.1360 0.0868 0.0700 -24,655

ESPC 10/11/08 0.0329 0.0339 -47,002
0.0329 0.0338 0.0072 0.0087 -46,993

CLN 10/11/08 0.1334 0.1378 -72,669
0.1254 0.1298 0.4619 0.4525 -64,237

TNC 10/11/08 0.0539 0.0516 -10,662
0.0539 0.0517 0 0 -10,662

Table 2: ML estimation of CP-Skellam and CP-∆NB models. Each fit is for data from the 7th or
10th of November, 2008.

For the much more challenging 7th November case the differences are more stark. The Skellam

log-probability function looks sub-linear and cannot really deal with data which are at ±8 ticks.

The ∆NB log-probability function is linear in the tails, like a Laplace distribution. There is some

evidence that the data would prefer something even fatter tailed.
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Figure 5: Nymex/CME benchmark crude oil contract (CLN) on 10th November 2008. Top left:
ask, bid and pure mid-price for the first 80 trades of the day. Top middle: returns from pure mid-
price. They are all integers. Top right: correlogram for mid-price, ask, bid and pure mid-price
for entire day. Bottom left: log-histogram of pure mid-price returns: non-parametric, Skellam and
∆NB distributions. Bottom middle: fit of the Lévy ∆NB process compared to non-parametric fit.

4.3 Other examples

4.3.1 Oil futures

Next we will look at the Nymex/CME benchmark crude oil contract (CLN) series on 10th November

2008. The tick size is 0.01 of a unit, i.e. prices move from, for example, 64.41 to 64.42 dollars per

barrel. On the 10th November there were 90,762 trades.

The results from the Skellam and ∆NB distribution are given in Table 2 and Figure 5. It

shows again the ∆NB distribution doing much better in the tails of the distribution and having

a substantially higher likelihood. Here p+ and p− have roughly similar values, which means the

estimated distribution is roughly symmetric in this case. Interestingly the ∆NB tails decay less

fast than linearly. Indeed this is a pretty heavy tailed discrete-valued process.
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Figure 6: Ten Year US treasury note (TNC) contract on 10th November 2008. Top left: ask, bid
and pure mid-price for the first 80 trades of the day. Top middle: returns from pure mid-price.
They are all integers. Top right: correlogram for mid-price, ask, bid and pure mid-price for entire
day. Bottom left: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB
distributions. Bottom middle: fit of the Lévy ∆NB process compared to non-parametric fit.

4.3.2 Ten Year US treasury note

The Ten Year US treasury note (TNC) series on 10th November 2008 has a tick size of 1
64 of a

dollar, so the movements are from, for example, 11534
64 to 11535

64 dollars. On the 10th November

there were 26,754 trades. Of these observations only a tiny fraction of moves in the pure mid-price

which are larger than ±1 hence for this dataset the Skellam distribution will be nearly satisfactory.

This is reflected in Table 2 which shows no improvement by using the more complicated ∆NB

distribution with the estimated p+ and p− parameters being close to zero. The resulting graphs

are in Figure 6. In this case the correlogram for the pure mid-price is better than that for the

mid-price.

4.3.3 The mini S&P500 contract

Finally we look at the mini S&P500 contract (ESPC) series on 10th November 2008. The corre-

sponding graphs are in Figure 7. The tick size is 0.25 of a unit, i.e. prices move from, for example,

952.00 to 951.75 dollars. On the 10th November there were 163, 974 trades. Again for these
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data the Skellam distribution is satisfactory as there is hardly any mass outside ±1 ticks. This

is reflected in Table 2 which shows no improvement by using the more complicated ∆NB model.

The correlogram for pure mid-prices changes is very slightly better than the correlogram for the

mid-price changes.

5 Estimating ∆NB Lévy processes from futures tick data

5.1 Econometric framework

We now turn to estimating Skellam and ∆NB Lévy processes directly from futures tick data.

We will write a continuous time pure mid-price process during a single day as

Lt = L0 +
Nt∑

j=1

Cj = L0 +

N+
t∑

j=1

C+
j −

N−
t∑

j=1

C−
j , t ∈ [0, 1],

where Nt is the number of trades up to time t, N+
t are the number of trades which deliver an

uptick in the price and N−
t are the number of trades which yield an downtick in the price. Clearly

Nt ≥ N+
t +N−

t as many trades occur without the pure mid-price moving. Here the innovations

are C+
j , C

−
j ∈ {1, 2, ...}. One of the attractive features of the high frequency data is that we are

able to separately observe the five processes

Nt, N
+
t , N

−
t , C

+
j , C

−
j .

This is helpful econometrically. This component view of high frequency data echoes earlier work

by, for example, Engle (2000), Rydberg and Shephard (2003), Barndorff-Nielsen et al. (2009) and

Russell and Engle (2010).

Remark 6 We can go from a compound Poisson process {Nt, Cj} for trades, which includes inno-

vations of zeros, into a Lévy model for
{
N+
t , N

−
t , C

+
j , C

−
j

}
which exclude the zeros. In particular,

writing intensities as λ, then

λ+ = λPr(Cj ≥ 1), λ− = λPr(Cj ≤ −1),

Pr(C+
j = k) =

Pr(Cj = k)

Pr(Cj ≥ 1)
, Pr(C−

j = k) =
Pr(Cj = −k)
Pr(Cj ≤ −1)

, k = 1, 2, ....

5.2 Skellam Lévy process and one-tick markets

For a Skellam Lévy process then

Lt − Ls ∼ Sk((t− s)ψ+, (t− s)ψ−), t > s.
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But in continuous time the price process is constant until an innovation hits. These are
{
C+
j , C

−
j

}

and are degenerate, being a sequence of ones with probability one. Hence in that case

Lt = L0 +N+
t −N−

t , t ∈ [0, 1].

This process does not allow instantaneous moves in the price of more than one tick, which limits its

direct application to so-called one-tick markets (see, for example, Field and Large (2008)). Hence

the Skellam Lévy process is fundamentally different from the CP-Skellam process. In the latter

cases the innovations can be larger than one. This single tick empirical limitation of the Skellam

Lévy process means we will not continue with its application here.

5.3 ∆NB Lévy process

The ∆NB Lévy process is more flexible. Recall that

Lt − Ls ∼ ∆NB((t− s) r+, p+, (t− s) r−, p−), t > s.

However, we will make inference using the entire path of the process. Recall from Remark 3 that

N+
t is a Poisson process with intensity

−r+ log(1− p+)

while C+
j are i.i.d. and follow a logarithmic distribution with

Pr(C+
j = k) =

(p+)
k

|log(1− p+)| k , k = 1, 2, ....

Throughout we use the parameterisation r+ p+

1−p+ = ψ+, so that

E
(
L+
t |L+

0

)
= L+

0 + tψ+.

Hence we can carry out ML estimation on the sample of innovations. The resulting log-likelihood

is, conditional on N+
1 ,

logL(p+;C+
1 , ..., C

+
N1

|N+
1 ) = const+



N+

1∑

j=1

C+
j


 log p+ −N+

1 log
{
− log(1− p+)

}
,

which delivers p̂+. This is particularly easy to compute, with the sufficient statistic
∑N+

1

j=1C
+
j /N

+
1 .

Having estimated p+ we estimate the intensity of N+
t as λ̂+ = N+

1 and then estimate

ψ̂+ = − p̂+

1− p̂+
λ̂+/ log(1− p̂+).

The same approach is used on N−
t and C−

j . This means this approach to estimation is extremely

simple.
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All of the resulting fits look at the entire day and the results are given in Table 3. The table

shows the counted up and down moves on each day which determines the intensity of the process,

while the estimated ψ+ and ψ− are the estimated expected total up and down ticks seen during

the day. In the ESPC and TNC these are slightly above the counts, for the other assets they are

quite a lot above the counts due to those series having quite frequent multiple tick moves. The

tail thickness of up moves is determined by p+ and show quite thick tails for the Euro and CLN

futures prices.

Day’s intensity Estimated ∆NB Lévy process

Up Down ψ̂+ ψ̂− p̂+ p̂−

Euro 10/11/08 3,468 3,633 3,861 4,015 0.1902 0.1785
Euro 7/11/08 5,298 5,348 6,513 6,544 0.3294 0.3235
CLN 10/11/08 7,320 7,649 10,612 11,009 0.5043 0.4978
TNC 10/11/08 1,363 1,308 1,373 1,312 0.0144 0.0060
ESPC 10/11/08 5,148 5,292 5,232 5,382 0.0317 0.0330

Table 3: ML estimation of ∆NB Lévy process. Each fit uses all the data on that day. Up moves
records the number of upmovements during the day, downmoves looks at down moves. Recall
ψ+ = E(L+

1 ) and ψ
− = E(L−

1 ).

The fitted probabilities for the Pr(C+
j = k) from the ∆NB Lévy process are shown in the

middle of the bottom row of graphs in Figures 1, 2, 6, 5 and 7 for the five series, together with a

non-parametric fit. The graphs are reasonably promising, although there is some evidence that the

distribution is slightly too thin for the Euro series on the 7th November. The Figures also shows

the probabilities for Pr(C−
j = k), the results are broadly similar. Of course there is no probability

at the atom zero for these innovations.

6 Conclusion

In this paper we developed an exploratory analysis of highly discrete low latency financial data. Our

focus is on the unconditional distributional features of returns at times of trades only, establishing

the framework of discrete-valued Lévy processes as a fundamental starting point for models of low

latency data. This can be thought of as a first step towards more realistic stochastic process

modelling, which in particular would involve time-change to allow for volatility clustering and

diurnal features.

In this work high quality, low latency tick price data from futures exchanges were used. With

these we demonstrated that the CP-Skellam process (a compound Poisson process with Skellam

innovations) provides a good fit to the unconditional distribution of mid-price changes on ‘nor-

mal’ days. Further we exhibit how unconditional price change distributions are affected by large
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Figure 7: Mini S&P500 contract (ESPC) on 10th November 2008. Top left: ask, bid and pure
mid-price for the first 80 trades of the day. Top middle: returns from pure mid-price. They are all
integers. Top right: correlogram for mid-price, ask, bid and pure mid-price for entire day. Bottom
left: log-histogram of pure mid-price returns: non-parametric, Skellam and ∆NB distributions.
Bottom middle: fit of the Lévy ∆NB process compared to non-parametric fit.

economic events such as the release of US non-farm payroll numbers. On those days the quality

of Skellam fits tends to be poor. We also used the data to illustrate differences between the em-

pirical, unconditional price change distributions of different futures markets showing, for example,

log-linear tails for Crude Oil futures price changes. Such markets also pose fitting problems for the

simple Skellam distribution.

We have addressed the cases where simple Skellam fitting proves inadequate. Our mathemat-

ical theory has developed alternative distributions to the Skellam. Notable amongst these is the

Delta Negative Binomial distribution (∆NB) for which we have derived a tractable distribution

law. This distribution is more flexible and consequently more able to model the pure mid-price

innovations for futures prices.

We should mention the following. The simple binomial model of Cox et al. (1979) is related to

the simple Skellam process in continuous time. Over a very small amount of time, in the Skellam

process with probability one the price either stays the same, goes up one tick or goes down one

tick. Hence the model is closest to a continuous time trinomial tree, discussed by for example Hull
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and White (1996) and Boyle (1986). A recent paper on this subject is, for example, Yuen and

Yang (2010). Related mathematical finance work is carried out by Kirch and Runggaldier (2004)

who look at modelling derivative prices based upon Poisson processes.

Finally, the basic building blocks developed here can be extended to allow for volatility clustering

using a time-change, while it would be attractive to allow for limited amounts of autocorrelation to

deal with the remaining microstructure noise in the pure mid-price. We have started working on

these extensions in Barndorff-Nielsen et al. (2010) which builds on the methods developed here.
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A Appendix

A.1 Proof of Theorem 1

Proof Clearly L has no Gaussian component and so its Lévy-Ito representation has the form

Lt = at+

∫ t

0

∫

|x|≥ε
xN(dxds) +

∫ t

0

∫

|x|<ε
x(N(dxds)− ν(dx)ds) (A.1)

for any ε > 0 and whereN is a Poisson random measure with compensator E{N(dxds)} = ν(dx)ds.

Since L is taking integer values only, by choosing ε < 1 the last term in (A.1) disappears, and it

follows that a must be 0. Thus, in fact,

Lt =

∫ t

0

∫

R

xN(dxds).

Furthermore, again since L is integer valued, for any i ∈ Z and t > 0 we have that N((i−1, i)×[0, t])

is almost surely 0 and therefore

E{N((i − 1, i)× [0, t])} = ν((i− 1, i))t = 0

implying that ν is concentrated on Z\{0}.
The discrete nature of L also means that, splitting its jumps into positive and negative values,

we can reexpress L as the difference L+−L− between two discrete subordinators L+ and L−. Now,

any subordinator T has a kumulant function of the form

K{θ ‡ Tt} = t

∫ ∞

0
(1− e−θx)ν̃(dx)
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with ν̃ being the Lévy measure of T1, and it follows that for the integral to converge ν̃ must have

finite mass. The same is therefore true of the mass of ν which equals the sum of the masses of the

Lévy measures ν+ and ν− of L+ and L−.

A.2 Proof of Theorem 2

Proof. The kumulant functions (log Laplace transforms) of L+ and T are related by

K̄
(
θ ‡ L+

t

)
= log E

{
exp(−θL+

t )
}
= tK̄

((
1− e−θ

)
‡ T1

)
.

Now

K̄
((

1− e−θ
)
‡ T1

)
=

∫ ∞

0

{
e−(1−e

−θ)u − 1
}
ν (du ‡ T1) .

Then

K̄
((

1− e−θ
)
‡ T1

)
=

∫ ∞

0

(
e−u − 1

)
ν (du ‡ T1) +

∫ ∞

0

(
ee

−θu − 1
)
e−uν (du ‡ T1)

= K̄{1 ‡ T1}+
∞∑

m=1

e−mθ
∫ ∞

0

um

m!
e−uν (du ‡ T1)

= K̄{1 ‡ T1}+
∞∑

m=1

e−mθψm,

where, crucially,

ψm =

∫ ∞

0

um

m!
e−uν (du ‡ T1) .

Using the fact that K̄
(
0 ‡ L+

t

)
= 0 we obtain

K̄
(
θ ‡ L+

t

)
= t

∞∑

m=1

(
e−mθ − 1

)
ψm.

Consequently, as is easily checked by direct calculation, the Lévy measure of L+ equals

ν
(
dx ‡ L+

t

)
= t

∞∑

1

ψmδm (dx)

where δm denotes the delta measure at m. It follows in particular that

ν
(
(0,∞) ‡ L+

t

)
= t

∫ (
1− e−u

)
ν (du ‡ T1) = −tK̄ (1 ‡ T1) <∞

and hence L+ is representable as a compound Poisson process of rate κ = ν
(
(0,∞) ‡ L+

1

)
and with

innovation summands U1, U2, ... having probability law

P (dx ‡ U) =
ν
(
dx ‡ L+

1

)

ν
(
(0,∞) ‡ L+

1

) . (A.2)

In other words, the point probabilities of U are

qm = κ−1ψm.

This completes the proof.
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