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Summary: We derive the parameter restrictions that a standard equity market
model implies for a bivariate vector autoregression for stock prices and dividends, and
we show how to test these restrictions using likelihood ratio tests. The restrictions,
which imply that stock returns are unpredictable, are derived both for a model without
bubbles and for a model with a rational bubble. In both cases we show how the
restrictions can be tested through standard chi-squared inference. The analysis for
the no-bubble case is done within the traditional Johansen model for I(1) variables,
while the bubble model is analysed using a co-explosive framework. The methodology
is illustrated using US stock prices and dividends for the period 1872-2000.
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1 Introduction

During the 1980s rational speculative asset bubbles were a hot topic in both theoreti-
cal and empirical asset pricing. Tirole (1982, 1985) and Diba and Grossman (1988a),
among others, investigated the conditions under which bubbles could occur as an equi-
librium phenomenon under rational expectations and informationally e¢ cient capital
markets, and Flood and Garber (1980), West (1987), Diba and Grossman (1988b),
and Froot and Obstfeld (1991) developed econometric testing procedures for rational
bubbles. During the 1990s the research agenda for bubbles was broadened to include
irrational motives for the occurance of bubbles. Here, the main focus was on how
investor overoptimism and herding behaviour may generate - through various ampli-
fying feed-back mechanisms - long-lasting and irrational deviations between market
prices and fundamental values (e.g. Shiller, 2000, and Shleifer, 2000), or on how
rational and irrational agents together may generate long-lasting bubbles in models
with limits to arbitrage (e.g. Abreu and Brunnermeier, 2003).
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The increased recent focus in the literature on irrational and behavioral motives
for bubbles has not diminished the professions interest in rational bubbles. Some re-
searchers continue to consider rational bubbles more plausible than irrationally gen-
erated bubbles (e.g. Leroy, 2004), and the dramatic stock price increases during the
1990s have led to a revival of econometric analyses of rational bubbles, see e.g. Bohl
(2003), Engsted (2006), and Balke and Wohar (2009). The characterizing feature of
a rational bubble is that it is explosive, i.e. it generates an explosive root in the au-
toregressive representation for prices. Diba and Grossman (1988b) used Bhargava�s
(1986) von Neumann-like statistic to test the null hypothesis of a unit root against
the explosive alternative. They also tested for cointegration between prices and fun-
damentals (dividends), arguing that in a constant discount factor present value model
cointegration precludes bubbles while no cointegration would be consistent with the
presence of a rational bubble. Diba and Grossman�s methodology has been one of
the most cited and applied methodologies in the empirical bubble literature, and the
appealing feature of the approach is that it explicitly addresses the explosive nature
of a rational bubble. However, the approach has a number of important limitations,
as emphasized by Engsted (2006). In particular, by using Bhargava�s (1986) test
for explosiveness the variable under consideration needs to be at most a �rst-order
autoregressive process, and in carrying out this test the discount factor cannot be
estimated but is assumed to be known in advance.
In the present paper we suggest an econometric procedure for analyzing rational

bubbles that overcomes the limitations of Diba and Grossman�s procedure, and at the
same time contains statistical tests of restrictions directly implied by the presence of
a rational bubble. Our procedure builds on the co-explosive framework developed by
Nielsen (2010) and originally designed for hyper-in�ation data, see Nielsen (2008a).
It is similar in spirit to the work of Campbell and Shiller (1987, 1988a) and Johansen
and Swensen (1999, 2004), but with some important di¤erences. Campbell and Shiller
investigate the present value model for stock prices without bubbles. Similar to the
analysis in Diba and Grossman (1988b), a central variable in Campbell and Shiller�s
analysis is the �spread�, St = Pt � Dt=R, between prices Pt and dividends Dt nor-
malized by a constant expected return R: They show that if prices and dividends
satisfy a vector autoregression integrated of order one, then St will be a cointegrating
relation and the short term dynamics will satisfy certain restrictions. They propose
a two-step procedure in which St is �rst constructed through a single-equation coin-
tegration regression. In a second step additional restrictions implied by the model
are imposed on the short term dynamics of a vector autoregression for the �spread�
St and the dividend growth �1Dt = Dt �Dt�1: As shown by Johansen and Swensen
(1999, 2004) then, given St; the latter restrictions can also be imposed on a vector
autoregression for the observables Pt and Dt.
We review how the restrictions in terms of cointegration and short term dynamics
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can be imposed jointly on a cointegrated vector autoregression for Pt; Dt:A key feature
of these restrictions is that excess returns follow a martingale di¤erence sequence. In
this context the unknown constant expected return parameter, R, is just-identi�ed.
If the focus is on the estimation of R in the no-bubble model, only little is gained by
the joint estimation approach compared to the two-step procedure. The advantages
of the joint approach do, however, become apparent in the bubble case.
In the bubble situation the vector autoregression of prices Pt and dividends Dt

involves both a unit root and an explosive root as alluded to by Diba and Grossman
(1988b). The �spread�St is then a cointegrating relation in the sense of not hav-
ing a unit root while being explosive, so it is not immediately clear how to estimate
the �spread� St in a �rst step of a two-step approach. Instead, the joint restric-
tions relating to the cointegrating relation St; the short term dynamics, as well as
non-explosiveness of dividends Dt, can be viewed as joint restrictions on the vector
autoregression for Pt; Dt: These restrictions can be analysed in the context of the
co-explosive model suggested by Nielsen (2010). We show how the restrictions can
be tested through standard �2 inference. It is worth noting that in the bubble model
the return parameter R is actually over-identi�ed.
We illustrate the methodology using annual US stock prices and dividends for

the period 1872-2000. We analyse both the full period and a smaller sub-period,
1974-2000. We �nd clear evidence of prices being explosive while dividends are non-
explosive. We also �nd a common unit root between prices and dividends (i.e. �cointe-
gration�). The over-identifying restrictions implied by the bubble model are rejected
at standard signi�cance levels in the full sample but not in the sub-sample. Hence,
our empirical analysis provides some support for the rational bubble hypothesis.
The rest of the paper is organized as follows. In §2 we describe the standard

equity market model for stock price determination and explain what a rational bubble
implies for prices in this model. We derive the restrictions that the no-bubble model
implies for the standard I(1) cointegrated vector autoregression, and we compare these
restrictions with the restrictions derived by Johansen and Swensen (1999, 2004). Next,
we derive the testable restrictions of a rational bubble on a bivariate co-explosive
vector autoregression for prices and dividends. §3 contains the likelihood analyses of
the models with the various tests on the cointegrating and co-explosive vectors, their
associated factor loadings, and the remaining short term parameters. §4 contains
the asymptotic analysis with limiting distributions of parameter estimates and test
statistics. §5 reports the empirical results of using the co-explosive framework to
analyse US stock prices and dividends. In §6 we brie�y compare our testing procedure
with earlier bubbles tests. Finally, §7 concludes while proofs are given in an appendix.
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2 Stock price determination with and without bubbles

The standard stock price determination model is presented along with the well-known
bubble solution. As this model does not specify the behaviour for dividends it is only a
partial model so a joint model for prices and dividends is needed for empirical analysis.
It is reviewed how the model without bubbles can be embedded in a cointegrated
vector autoregression. This leads on to showing how the model with bubbles can be
embedded in a co-explosive vector autoregression.

2.1 Standard model for stock price determination

The standard model for stock price determination is

Pt =
1

1 +R
Et(Pt+1 +Dt+1); (2.1)

where Pt and Dt are real stock prices and dividends, respectively, and R is the ex-
pected (required) one-period return on the stock which is assumed to be constant and
positive, i.e. R > 0. The conditional expectations operator Et is taken with respect to
the information set at time t, which contains current and past prices and dividends,
i.e. Ps; Ds for s � t, but the exact dependence is left unspeci�ed for the moment.
The stock price determination model has some implications for the variable St �

Pt �Dt=R; which is called a �spread�by Campbell and Shiller (1987, 1988a). Sub-
tracting Pt from equation (2.1), and multiplying by 1 +R, gives the equation

Et�1Mt = 0 where Mt = Pt +Dt � (1 +R)Pt�1: (2.2)

In other words, Mt is a martingale di¤erence. De�ning the one-period stock return
as Rt = (Pt+Dt�Pt�1)=Pt�1, then (2.2) implies that P�1t�1Et�1Mt = Et�1Rt�R = 0.
Thus, the economic interpretation of (2.2) is that the one-period stock return in excess
of a constant mean is a martingale di¤erence and thereby unpredictable given lagged
information, i.e. the classical version of The E¢ cient Markets Hypothesis, c.f. Leroy
(1989). This martingale di¤erence can be expressed in terms of the �spread�variable
by adding and subtracting RPt, and writing price growth as �1Pt � Pt�Pt�1, to get

Mt = (1 +R)�1Pt �RSt: (2.3)

Equation (2.3) shows that if, as often assumed, Xt = (Pt; Dt) is an I(1) variable then
St must be a cointegrating relation and related to �1Pt in a speci�c way.
This cointegrating relationship can also be formulated as a link between dividend

growth �1Dt and the spread. To see this add and subtract f(1 +R)=Rg�1Dt to get

Mt = �1+RSt + (1 +R
�1)�1Dt; (2.4)
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where �1+RSt � St � (1 +R)St�1: Equation (2.4) shows that if Pt is explosive, as in
a rational bubble, while Dt remains I(1), then St will be explosive but without a unit
root. The explosiveness is eliminated by the operator �1+R.
As indicated, the stock price model is a partial model. In order to make inter-

esting statements and to make inference, some further assumptions to the stochastic
behaviour of Xt are needed. In e¤ect the partial model is completed by making an
assumption to the behaviour of dividends. At �rst it is useful to discuss the present
value formulation of the model, which is common in the literature.

2.2 Present value formulation

The stock price determination model is often stated by writing prices as a present
value of expected future dividends. Speci�cally, the model (2.1) has solution

Pt =
1P
s=1

EtDt+s

(1 +R)s
+ bBt; (2.5)

for b 2 R and where Bt obeys (c.f. Diba and Grossman, 1988a,b)

Bt =
1

1 +R
EtBt+1: (2.6)

The variable Bt is called a rational bubble, the component of stock prices that re-
�ects self-ful�lling rational expectations of future price increases independently of
fundamentals EtDt+s. To see that (2.5) and (2.6) solve (2.1) insert these on the right
hand side of (2.1). The solution (2.5) requires that the sum

P1
s=1(1 + R)

�sEtDt+s is
well-de�ned.
The rational bubble Bt de�ned by (2.6) also satis�es

�1+RBt+1 � Bt+1 � (1 +R)Bt = �t+1;

where the rational expectations error �t+1 = Bt+1 �EtBt+1 satis�es Et�t+1 = 0. Since
1 +R > 1, the bubble is explosive so unless b = 0 it induces explosiveness in Pt.
The present value formulation implies an interesting behaviour for the "spread"

variable St = Pt �Dt=R: Due to the identity R�1 =
P1

s=1(1 +R)
�s then

St = Pt �
1

R
Dt =

1P
s=1

Et(Dt+s �Dt)

(1 +R)s
+ bBt:

Noting that Dt+s � Dt =
Ps

r=1�1Dt+r with �1Dt+r � Dt+r � Dt+r�1, and that
(1 +R)r

P1
s=r(1 +R)

�s = (1 +R)=R; this in turn implies

St = Pt �
1

R
Dt =

1 +R

R

1P
r=1

Et(�1Dt+r)

(1 +R)r
+ bBt: (2.7)
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This equation shows that St enherits its stochastic behaviour from �1Dt and Bt:
In the following we will make some additional assumptions to the stochastic be-

haviour of Xt and study their implications. In a �rst step Xt is assumed vector
autoregressive in which case the model (2.1) implies certain linear restrictions on the
vector autoregressive coe¢ cients. The solutions with and without bubbles emerge
if some additional assumptions are imposed. The �rst case reviews Campbell and
Shiller (1987, 1988a) and Johansen and Swensen (1999, 2004) where the bubble is
absent, b = 0: Here Xt is assumed to have a unit root so �1Dt, St and, hence, �1Pt
are stationary and linked as in (2.3). In the second case a bubble is present so b 6= 0:
Here Xt is assumed to have a unit root and an explosive root so �1Dt and �1+RSt
are stationary and linked through (2.4).

2.3 A vector autoregressive framework

The model (2.1) has some interesting implications if Xt = (Pt; Dt) is assumed vector
autoregressive. This assumption is common in the literature, see e.g. Campbell and
Shiller (1988a) and Johansen and Swensen (1999, 2004), and it is testable. For the
moment no assumptions are made to the location of the characteristic roots. A vector
autoregression of order k has the format

Xt =
kP
j=1

AjXt�j + �+ "t; (2.8)

where Aj 2 R2�2 and � 2 R2. The errors, "t, are independent N2(0;
)-distributed,
or more generally a martingale di¤erence sequence.
To see the implications of (2.1) for the vector autoregression (2.8), it is convenient

to write (2.8) in companion form

Xt = AXt�1 + �+ et

where

A =

�
A1; : : : Ak�1 Ak
I2k�2 0

�
; Xt�1 =

0B@ Xt�1
...

Xt�k

1CA ; � =

�
�
0

�
; et =

�
"t
0

�
:

Equation (2.2) implies that the companion vector Xt satis�es

� 0Et�1Xt = 0 where � 0 = f1; 1;�(1 +R); 0; : : : ; 0g:

As the innovations satisfy Et�1et = 0, it must hold that � 0A = 0, which is equivalent
to the constraints, for j = 2; : : : ; k;

(1; 1)A1 = (1 +R; 0); (1; 1)Aj = 0; (1; 1)� = 0: (2.9)
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Thus, (2.1) together with the vector autoregressive assumption implies the constraints
(2.9). Some further assumptions to the locations of the characteristic roots of the
vector autoregression are needed for two reasons: �rst, to be able to distinguish
between the cases with and without bubbles, and, secondly, to be able to conduct
reliable inference about the constraints (2.9).

2.4 The case without a rational bubble

We now analyse the standard case without a rational bubble. Campbell and Shiller
(1987, 1988a) discuss this case under the additional assumption that the vector au-
toregression has one unit root in such a way that the spread, St = Pt � Dt=R, and
dividend growth, �1Dt, are stationary. Campbell and Shiller estimate the struc-
tural parameter R super-consistently in a �rst-step cointegration regression, and this
parameter is subsequently treated as known in a vector autoregressive analysis for
�1Dt are St. They derive the restrictions that (2.1) implies for this particular vec-
tor autoregression. Johansen and Swensen (1999, 2004) instead work with a vector
autoregression for Xt = (Pt; Dt)

0 and show how the restrictions implied by (2.1) can
be tested in an I(1) framework. In their theoretical analysis they assume that the
cointegrating vector St is known; however, in their empirical illustrations they discuss
the case of unknown cointegration vector. We discuss the latter case in further detail.
It is convenient to reparametrise the vector autoregression in error correction form:

�1Xt = �Xt�1 +
k�1P
j=1

�j�1Xt�j + �+ "t; (2.10)

where �;�j 2 R2�2 and � 2 R2: This is equivalent to the vector autoregression (2.8)
with � =

Pk
j=1Aj � I2 and �j = �

Pk
`=j+1A`; see Johansen (1995, §4.1). The

restrictions to the Aj-coe¢ cients in (2.9) are then equivalent to, for j = 1; : : : ; k � 1;

(1; 1)� = R(1;�1=R); (1; 1)�j = 0; (1; 1)� = 0: (2.11)

These are the restrictions discussed in the theory part of Johansen and Swensen (1999,
2004) under the assumption that Xt � I(1) and reduced rank of �.
With the assumption that Xt is I(1) with one unit root and the remaining roots

stationary, � has a rank of unity so � = ��0 where � 2 R2�1 is the cointegrating
vector and � 2 R2�1 is the associated vector of factor loadings. The restriction
(1; 1)� = R(1;�1=R) in (2.11) then implies that

� = (1;�1=R)0: (2.12)

The last argument also shows that (1; 1)� = R. It is interesting to note that these
arguments do not exploit the multiplicity of the unit root so they would also apply
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to I(2) situations and explosive situations as will be seen in §2.5. Note also that the
restriction in (2.12) identi�es the parameter R as pointed out in connection with the
illustration of Johansen and Swensen (2004).
Another representation of the process is the Granger-Johansen representation:

With the assumption that Xt is I(1) with one unit root, and the remaining roots sta-
tionary, the process can be interpreted through its Granger-Johansen representation,
see Johansen (1995, Theorem 4.1). This shows that �0Xt and �1Xt can be given a
stationary distribution while

Xt = C
tP
s=1

"s + Yt + � c + � lt;

where C = �? (�
0
?	�?)

�1 �0? for 	 = I2 �
Pk�1

j=1 � while Yt is a stationary process.
The deterministic components are � l = C� while � c depends on parameters and the
initial observations. The linear trend is avoided by assuming � = �� for some � 2 R
so � l = C� = 0: The restriction (1; 1)� = 0 in (2.11) along with the �nding that
(1; 1)� = R then implies that � = 0:
We now have two sets of restrictions: those in (2.11) arising from the vector

autoregressive assumption, and the restrictions to � and � arising from the unit root
assumption. These restrictions imply

(1; 1)� = R; � = (1;�1=R)0; (1; 1)�j = 0; (1; 1)� = 0; (2.13)

in which R appears twice, or, equivalently,

(1; 1)�(0; 1)0 = �1; � = (1;�1=R)0; (1; 1)�j = 0; (1; 1)� = 0: (2.14)

With these restrictions the model (2.10) can be rewritten in terms of an equation for
the martingale di¤erence Mt in (2.2) and an equation for dividend growth. These
equations are obtained by taking the linear combinations (1; 1)�1Xt and (0; 1)�1Xt

of equation (2.10). They are given by

Mt = "M;t; (2.15)

�1Dt = �DSt�1 +
k�1P
j=1

�j;D�1Xt�j + �D + "D;t; (2.16)

where (�D;�j;D; �D) = (0; 1)(�;�j; �) while "M;t = (1; 1)"t and "D;t = (0; 1)"t: These
equations show that in the context of a vector autoregression for Xt, which is I(1),
then the stock price model implies that Mt is a martingale di¤erence along with an
equation for dividend growth in terms of the lagged "spread" and lagged growth of
dividends and prices. In other words, the equation for dividends show how the partial
model (2.1) is completed in the context of an I(1) vector autoregression. Johansen
and Swensen (2004) discuss equations for (1 + R)�1Mt and �1(Pt � Dt) which will
give an equivalent representation of the model.
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2.4.1 Weak exogeneity

We close this section with a brief discussion of weak exogeneity. A feature of equation
(2.16) is that there is feedback from the lagged �spread�, St�1, to dividend growth,
�1Dt. For a �rst order model, k = 1; the only feedback is through the coe¢ cient �D
which has to be positive under the I(1) assumption. In other words, dividends cannot
be weakly exogenous for the �spread�. In higher-order models there are two sources
of feedback: directly from St�1 with coe¢ cient �D as well as through lagged price
growth with coe¢ cients �j;D(1; 0)0: In this situation the I(1) assumption is consistent
with the coe¢ cient �D being positive or negative or indeed zero.
For a �rst order model, k = 1; the argument is as follows. The Granger-Johansen

representation (Johansen 1995, Theorem 4.2) gives a condition for stationarity of
St = �0Xt which is that j1 + �0�j < 1: Due to the restriction (1; 1)� = R we can
write � = (�;R � �)0 for some parameter �: Since � = (1;�1=R) in (2.13) then
1 + �0� = 1 + � � (1 � �=R): This is bounded by one in absolute value when j�j <
R=(1 + R): In particular, the coe¢ cient �D = R � � must be in the positive range
from R2=(1 + R) > 0 to R + R=(1 + R): In particular, the possibility that �D = 0,
implying that dividends form a pure random walk, is then ruled out.
For a second order model, k = 2; it is complicated to analyse the characteristic

polynomial in general. An example, that obeys (2.2) and where �D = 0, is

�1

�
Pt
Dt

�
=

�
R
0

�
St�1 +

�
�2R
2R

�
�1Pt�1 + "t;

for which the characteristic polynomial is (1�z)f1� (1�R)zg giving a unit root and
a stationary root of 1=(1 � R) > 1: In this example the apparent explosive reaction
in prices to St�1, and the lack of reaction in dividends to St�1, are compensated for
by the lagged price growth. This example is akin to the example in Johansen (1995,
Exercise 4.3). It shows that for k > 1, one should be careful in interpreting the signs
and magnitudes of the individual factor loadings in �. All one can say is that under
the stock price model (2.1), the restriction (1; 1)� = R has to hold, see (2.13).
In summary, in the context of the cointegrated vector autoregression (2.10), the

stock price model (2.1) without a bubble implies the parameter restrictions in (2.13).
These restrictions imply thatMt, as de�ned in (2.2), is a martingale di¤erence mean-
ing that stock returns are unpredictable. In §3 we explain how to test these restrictions
within a likelihood framework.

2.5 The case with a rational bubble

The case with a rational bubble can be analysed much the same way as the case
without a bubble. In this case the additional assumption is made that the vector
autoregression has one unit root, and one explosive root � > 1.
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Before exploiting the additional assumptions to the characteristic roots it is con-
venient to reparametrise the vector autoregression in error correction form aimed at
co-explosive behaviour, c.f. Nielsen (2010):

�1��Xt = �1��Xt�1 +���1Xt�1 +
k�2P
j=1

�j�1��Xt�j + �+ "t; (2.17)

where ��Xt � Xt��Xt�1, and where �1;��;�j 2 R2�2 and � 2 R: This is equivalent
to the vector autoregression (2.8) with

�1 =
�

1� �; �� = ��
 
Ip +�1 �

k�1P
j=1

��j�j

!
; �j =

k�1P
l=j+1

�j�l�l; (2.18)

see Nielsen (2010, §2.3). The restrictions to the �; �j; and � coe¢ cients in (2.11) are
then equivalent to, for j = 1; : : : ; k � 2;

(1; 1)�1 =
R

1� �(1;�1=R); (1; 1)�j = 0; (1; 1)� = 0; (2.19)

(1; 1)�� =
��
1� �(R;�1)� �(1; 1) =

��
1� �(R + 1� �;��): (2.20)

The additional assumptions that Xt has one unit root and one explosive root and
that the remaining roots are stationary are accommodated by reduced rank restric-
tions so �1 = �1�

0
1 and �� = ���

0
� where �1; �1; ��; �� 2 R2: The process can be

interpreted through its Granger-Johansen representation. Such a representation was
given in Nielsen (2010, Theorem 1) and a more detailed version is given as Theorem
A.1 in the Appendix. This shows that �01��Xt; �

0
��1Xt and �1��Xt can be given a

stationary distribution while

Xt =
1

1� �C1(A1 +
tP
s=1

"s) +
1

�� 1C��
t(A� +

tP
s=1

��s"s) + Yt + � :

Here Yt is some stationary process, A1; A� depend on parameters and initial values.
The impact matrices satisfy �01C1 = 0 so �

0
1Xt has no random walk component while

�0�C� = 0 so �0�Xt has no explosive component. Thus, �1 are cointegrating vectors
and �� are co-explosive vectors. The explosive common trend �

t(A� +
Pt

s=1 �
�s"s)

then represents the bubble Bt in (2.6). Detailed de�nitions of these coe¢ cients are
given in Theorem A.1 in the appendix.
With the above assumptions, three additional restrictions emerge and the restric-

tions (2.19)-(2.20) simplify. In order to match the explosive common trend and the
bubble, it must hold that � = 1 + R, see (2.6). The additional restrictions can be
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deduced in two ways. First, ��Xt and ��St must be non-explosive while �1Dt has no
unit root. Equation (2.4) then implies that ��St and �1Dt must both be stationary.
Thus, St is the cointegrating relation and Dt is the co-explosive relation so that

�1 = (1;�1=R)0; �� = (0; 1)
0: (2.21)

Secondly, following Nielsen (2010), the assumption to the roots implies that �1;��
both have rank of unity so �1 = �1�

0
1 and �� = ���

0
� where �1; �1; ��; �� 2 R2�1:

Since the explosive root is � = 1 +R, the restrictions (2.19)-(2.20) simplify as

(1; 1)�1 = (�1; 1=R); (1; 1)�� = f0;�(1 +R)2=Rg; (1; 1)�j = 0; (1; 1)� = 0:

This in turn implies the expressions for �1 and �� in (2.21). The latter argument also
shows that (1; 1)�1 = �1 and (1; 1)�� = �(1 +R)2=R:
We now have two sets of restrictions: those in (2.19)-(2.20) arising from the vector

autoregressive assumption as well as the restriction to �, �1 and �� arising from the
assumptions to the characteristic roots. These restrictions together imply

(1; 1)�1 = �1; �1 = (1;�1=R)0; � = 1 +R; (1; 1)� = 0;

(1; 1)�� = �(1 +R)2=R; �� = (0; 1)
0; (1; 1)�j = 0: (2.22)

With these restrictions the model (2.17) can be rewritten in terms of an equation
for the martingale di¤erence Mt in (2.2) and an equation for dividend growth. These
equations arise by taking the linear combinations (1; 1)�1��Xt and (0; 1)�1��Xt of
equation (2.17). They are given by

Mt = "M;t; (2.23)

�1��Dt = �1;D��St�1 + ��;D�1Dt�1

+
k�2P
j=1

�j;D�1��Xt�j + �D + "D;t; (2.24)

where (�1;D; ��;D;�j;D; �D) = (0; 1)(�1; ��;�j; �) while "M;t = (1; 1)"t and "D;t =
(0; 1)"t: These equations show that in the context of a vector autoregression for Xt,
which is I(1) with an explosive root, the stock price model implies that Mt is a
martingale di¤erence along with an equation for dividends in terms of the lagged
"spread" and lagged �ltered growth of dividends and prices. As before, the equation
for dividends shows how the partial model (2.1) is completed in the context of an
explosive vector autoregression.
There are no simple restrictions to the feedback coe¢ cients �1;D and ��;D in the

dividend equation (2.24). This is because the simplest model has two lags, k = 2;
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for which the dynamics is rather complicated as we saw for the non-bubble model in
§2.4.1. As an illustration, parametrise the model (2.17) with restrictions (2.22) as

�1��

�
Pt
Dt

�
=

�
�

�1� �

�
��St�1 +

�



�(1 +R)2=R� 


�
�1Dt�1 + "t:

The characteristic polynomial is (1 � z)f1 � (1 + R)zgf1 + (
 � � � �=R)zg; which
has one unit root, one explosive root at 1=(1 + R), and one stationary root if �1 <

 � � � �=R < 1: It links �1;D and ��;D in a complicated way. For instance, it is
possible that �1;D = 0; that is � = �1; as long as �1 < 
 + 1 + 1=R < 1; that is
j��;D + 1 +Rj < 1.
In summary, in the context of the co-explosive vector autoregression (2.17), the

stock price model (2.1) with a bubble implies the parameter restrictions in (2.22).
Just as in the case with no bubble, these restrictions imply that Mt, as de�ned in
(2.2), is a martingale di¤erence meaning that stock returns are unpredictable. In the
next section we explain how to test these restrictions within a likelihood framework.

3 Likelihood analysis of the models

In the previous section the stock price model was analysed in the context of a vec-
tor autoregression for Xt = (Pt; Dt)

0. In particular, it was shown which parameter
restrictions are implied by a rational bubble. In the following it is shown how these
parameter restrictions can be tested through a likelihood analysis.

3.1 Unrestricted vector autoregression

The data consists of a bivariate time series X1�k; : : : ; X0; X1; : : : ; XT where Xt =
(Pt; Dt)

0: The unrestricted vector autoregression of (2.8) is of the form

M: Xt =
kP
j=1

AjXt�j + �+ "t; (3.1)

conditional on the initial observations X1�k; : : : ; X0: The parameters satisfy Aj 2
R2�2; � 2 R2 and "t are independently N2(0;
)-distributed. While the normality as-
sumption is important for de�ning the likelihood it can be replaced with a martingale
di¤erence assumptions for most purposes. Indeed, for consistency of the estimators
and all but one of the suggested tests, martingale di¤erence assumptions su¢ ce.
From the least squares estimates of the dynamic parameters Aj the characteristic

roots can be computed. A �rst indication of explosiveness would be if one of these
roots appear in the explosive region.
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To secure that this model is statistically well-speci�ed, the usual diagnostic tests
are carried out as far as they are valid in the presence of both a unit root and an
explosive root. Nielsen (2006a,b, 2008b) has shown that the usual procedures for lag-
length determinations are valid. This includes the information criteria approaches of
Schwarz (1978) and Hannan and Quinn (1979) and the auxillary regression approaches
of Godfrey (1978), Breusch (1978) and Pagan (1984). Engler and Nielsen (2009)
show that QQ-plots for comparing the empirical distribution of the residuals with a
normal distribution are valid. The properties of tests for autoregressive conditional
heteroskedasticity by Engle (1982) and the recursive Chow-type tests of Doornik and
Hendry (2001) are currently explored by one of us.

3.2 Testing the cointegration rank

The next step in the analysis is to establish the cointegration rank. With that in
mind the model is reparametrised in error correction form, as in (2.10), as

M: �1Xt = �Xt�1 +
k�1P
j=1

�j�1Xt�j + �+ "t: (3.2)

The cointegration rank hypothesis of interest is that

H1: r = rank(�; �) = 1 or (�; �) = �(�0 + �0) for �; � 2 R2�1; � 2 R:

Under this reduced rank hypothesis, we denote the model M1. The constant is re-
stricted to the cointegrating space partly because it is appropriate in the empirical
illustration and partly because it simpli�es the determination of the rank, see Nielsen
and Rahbek (2000). It would be possible to extend the analysis to the case of an
unrestricted constant or even a restricted linear trend.
In practice, the rank is estimated through a sequential testing procedure as shown

by Johansen (1995, §13), see also Nielsen and Rahbek (2000). The rank is estimated
to be unity if the hypothesis

H1;0: � = 0; � = 0;

is rejected and the hypothesis

H1;1: rank(�; �) � 1;

cannot be rejected. By testing the hypotheses in this sequence the asymptotic prop-
erties of the rank estimator can be controlled.
Results concerning the likelihood ratio tests for these hypotheses against M are

available for both the non-bubble and the bubble case. In the non-bubble case it
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can be assumed that the process is I(1), that is, it has unit roots of multiplicity one
along stationary roots. This situation is analysed by Johansen (1995, Theorem 6.2)
and the test statistics are found to have Dickey-Fuller type distributions. For the
bubble case where the process also has one explosive root, results are available for
the univariate case in Nielsen (2001) and for the multivariate case in Nielsen (2010,
Theorem 4). Strictly speaking, the latter multivariate result covers the situation
with a linear trend component, but the result could presumably be extended to the
speci�cation of deterministic components used here.
The further analysis now depends on the presence of an explosive root and hence a

bubble. For the non-bubble case the analysis is given in §3.3, whereas for the bubble
case the analysis is given in §3.4.

3.3 Testing the model without a bubble

The theory model without a bubble implies the restricted model given by (2.15)-(2.16).
The errors "M;t and "D;t may be correlated, but by assuming normality and letting !
denote the population regression coe¢ cient of "D;t = (0; 1)"t on "M;t = (1; 1)"t, these
equations can be rewritten as

Mt = "M;t;

�1Dt = �DSt�1 +
k�1P
j=1

�j;D�1Xt�j + �D + !Mt + "D�M;t;

where the errors "M;t and "D�M;t = "D;t � !"M;t are uncorrelated. The likelihood
implied by these equations is maximised through a pro�le argument. For a known
R, the pro�le likelihood is maximised by estimating these two unrelated regressions.
The likelihood is then maximised by maximising over R:
The likelihood ratio test statistic for the restrictions (2.14) within the model M1

would presumably by �2 with 1+2(k�1)+1 = 2k degrees of freedom. In order to prove
this formally one would have to combine techniques from two sets of results. The �rst
result concerns a test for the restrictions on � in the model M1: Boswijk and Doornik
(2004) show that this is �2: The second result concerns a test for the restrictions
on the �j-parameters. Johansen (1995, Theorem 13.5) shows that the unrestricted
estimators �̂j in model M1 are asymptotically normal which would presumably imply
that the test on the �j-parameters is also �2: Johansen and Swensen (2004, Remark
4) discuss the joint test of all the restrictions, albeit with a known value of R:

3.4 Testing the model with a bubble

We now derive the tests of the restrictions implied by the bubble hypothesis, i.e.
(2.22). First, we reparametrise the vector autoregression in co-explosive form and,
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based on that, we then set up null hypotheses on the cointegrating and co-explosive
vectors, their factor loadings, and the remaining short term parameters. In the end
this leads to a four-step procedure for testing for bubbles.

3.4.1 Testing that dividends are non-explosive

Suppose the cointegrating rank has been determined to be unity by the approach
in §3.2 and that estimated parameters imply one explosive root, �̂, say. The vector
autoregressive model can then be rewritten in co-explosive form as discussed in §2.5:

M1: �1��Xt = �1�
0
1��Xt�1 + ���

0
��1Xt�1 +

k�2P
j=1

�j�1��Xt�j + �+ "t: (3.3)

Estimates for the parameters can be computed from those of a standard cointegrated
vector autoregression using the identities (2.18). By construction the estimate �̂��̂

0
�

will have reduced rank of unity, so the estimates �̂�; �̂� 2 R2 can be found as the left
and right eigenvectors, respectively.
A central assumption in §2.5 is that dividends are di¤erence stationary without

any explosive features. This results in a simple hypothesis on the co-explosive vector

HD : �� = (0; 1)
0:

Under the hypothesis HD, the model M1 reduces to

M1D: �1��Xt = �1�
0
1��Xt�1 + ���1Dt�1 +

k�2P
j=1

�j�1��Xt�j + �+ "t: (3.4)

The likelihood of the model M1D is analysed through a pro�le argument. For
a given �, the likelihood is maximised by a reduced rank regression of �1��Xt on
��Xt�1 correcting for �1Dt�1, lags �1��Xt�j, and a constant. This in turn can be
maximised by a grid search over �:
The likelihood ratio test statistic for testing HD in M1 is asymptotically �2(p� 1)

as shown by Nielsen (2010, Corollary 1). In our case the dimension of Xt is p = 2.
This result requires that a certain linear combination of the innovations are normally
distributed. The linear combination in question is � 0"t where � is the orthogonal
complement of 	���?:

3.4.2 Testing the link between the spread and the explosive root

Conditional on HD above, the restriction between the cointegrating vector and the
explosive root can be formulated as a "spread" restriction:

HS : �1 = (1;�1=R)0; where R = �� 1:
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Under this restriction, the model reduces to

M1DS: �1��Xt = �1��St�1 + ���1Dt�1 +
k�2P
j=1

�j�1��Xt�j + �+ "t; (3.5)

where St = Pt� 1
R
Dt is denoted the "spread". Again, the likelihood is maximized over

�. The likelihood ratio test statistic for testing HS in M1D is asymptotically �2(1).
We do not show this directly. Rather, in §4 we show that the test statistic for the
joint hypothesis HS;HB in M1D is a sum of two �2 statistics of which one corresponds
to the test for HS in M1D:

3.4.3 Testing the martingale di¤erence restrictions

The �nal set of restrictions in (2.22) implied by the theory model with a bubble is:

HB : (1; 1)�1 = �1; (1; 1)�� = �(1 +R)2=R; (1; 1)�j = 0; (1; 1)� = 0:

In combination with the restricted constant, � = �1�
0, the above constraints imply

that � = 0: Under these restrictions, the model reduces to the least squares regressions
given by (2.23)-(2.24). As in section 3.3 the errors may be correlated, so by assuming
normality and letting ! denote the population regression coe¢ cient of "D;t = (0; 1)"t
on "M;t = (1; 1)"t, these equations can be rewritten as

M1DSB: Mt = "M;t; (3.6)

�1Dt = �1;D��St�1 + ��;D�1Dt�1

+
k�2P
j=1

�j;D�1��Xt�j + �D + !Mt + "D�M;t; (3.7)

where the errors "M;t and "D�M;t = "D;t�!"M;t are uncorrelated. We denote this model
M1DSB. The likelihood implied by these equations is maximised through a pro�le
argument using that for a known R the regressions (3.6) and (3.7) are unrelated. The
likelihood is then maximised by maximising over R:
The likelihood ratio test statistic for the restricted model M1DSB, i.e. (3.6)-(3.7),

within the model M1D, is shown to be asymptotically �2(2k) in §4.

3.5 Summary of procedure for testing the model with a bubble

To summarize, our suggested procedure for testing for a rational bubble consists of
the following four steps:
Step 1 : Fit an unrestricted VAR model for Xt = (Pt; Dt)

0 and check that it is
econometrically well-speci�ed using misspeci�cation tests. Compute the characteristic
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roots from the matrix lag polynomial and see if the largest root is larger than 1, i.e.
� > 1. Test that the cointegration rank is r = 1 using Johansen�s test. The restricted
model is denoted M1:
Step 2 : Given a cointegration rank of r = 1 and that � > 1, test the hypothesis

HD: �� = (0; 1)
0, meaning that Dt is non-explosive. The restricted model is denoted

M1D: The test statistic for HD in M1 is asymptotically �2(1).
Step 3 : Test the hypothesis HS: �1 = (1; �R�1)0 with R = �� 1. This restriction

relates the expected return in the theory model linearly to the explosive root in the
econometric model. The restricted model is denoted M1DS: The test statistic for HS
in M1D is asymptotically �2(1).
Step 4 : Test the �nal restrictions implied by the bubble model, HB: (1; 1)�1 = �1;

(1; 1)�� = �(1 + R)2=R; (1; 1)� = 0, and (1; 1)�j = 0: Together with the restriction
in HS, these restrictions imply a martingale di¤erence sequence for stock returns.
The restricted model is denoted M1DSB: The test statistic for HB is asymptotically
�2(2k � 1) if tested against M1DS and �2(2k) if tested against M1D:

4 Asymptotic analysis

Under the bubble hypothesis the conditions for the Granger-Johansen representation
(Nielsen 2010, Assumption 1) reduce as follows.

Assumption A Under the bubble hypothesis the parameters satisfy (2:22) with R >
0: In addition, the parameters satisfy
(i) The nonstationary characteristic roots of Xt are at 1 or 1 +R:
(ii) det(�01?	1�1?) 6= 0 and det(�0�?	���?) 6= 0 where

	1 = I2 +R
�1���

0
� �

k�2P
j=1

�j; 	� = I2 �R�1�1�01 �
k�2P
j=1

��j�j:

The basic building blocks for the asymptotic theory are given by Lai and Wei
(1985) and later adaptations by Nielsen (2005) to the case with deterministic terms.
While the likelihood funtion is based on the assumption of independent, normal inno-
vations the assumptions to the innovations can be relaxed in the asymptotic theory.
The relaxed assumptions have to be formulated with two types of results in mind.
On the one hand it is needed that the main component of the explosive common
trend,

Pt
s=1 �

�s"s; converges. The Marcinkiewicz-Zygmund Theorem, see Lai and
Wei (1983), shows that this process converges to a random vector almost surely. It
su¢ ces to assume that ("t;Ft) is a martingale di¤erence sequence for some �ltration
Ft satisfying the following condition.

Assumption B For some 
 > 2 it holds supt Ef("0t"t)2+
jFt�1g <1 a:s:
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On the other hand it is necessary that the normalised random walk T�1=2
Pt

s=1 "s
converges to a Brownian motion. The assumption of Chan and Wei (1988) to the
conditional variance of "t is adopted since Assumption B already bounds the condi-
tional moments.

Assumption C Suppose E ("t"0tjFt�1) = 
 a:s: where 
 is positive de�nite.

Under these assumptions it can be shown that the likelihood ratio test statistic
for the explosive rational bubble model M1DSB against M1D is asymptotically �2: The
test statistic can be decomposed as

LR(HB;HSjM1D) = LR(HAjM1D) + LR(HBjM1DA);

where HA is the hypothesis related to the extended cointegration vector (�
0
1; �) =

(1;�R�1; 0). Accordingly the �rst statistic relates to the restrictions on the cointe-
gration vectors while the second statistic relates to the restrictions on the adjustment
vectors �1; ��;�j: In the asymptotic analysis it is found that LR(HB;HSjM1D) is the
sum of two components: one involving a mixed Gaussian term and one involving a
central limit theorem. This corresponds to the results for the I(1)-model, see Johansen
(1995, §13), but the proof is somewhat more complicated.

Theorem 4.1 Suppose model M1DSB is satis�ed. Assume A, B, C. Then the test
statistic LR(HB;HSjM1D) is asymptotically �2(2k):

The proof is given in the appendix. It is related to the analysis in Nielsen (2010).
Because the model M1DSB is analysed by regression the likelihood function can be
analysed in a di¤erent way that gives rise to stronger results than in the above paper.
Indeed, a global consistency result can be formulated.
The estimators in the model M1DSB are asymptotically normal. The estimator

for R converges at an exponential rate (1 +R)T while the adjustment coe¢ cients are
standard T 1=2-consistent. Theorem B.11 in the appendix gives a precise statement.

5 Empirical illustration: The US stock market

We apply the methods to the annual US stock price and dividend series tabulated by
Robert J. Shiller and available at www.robertshiller.com. Here, Pt is the real S&P
Composite stock price index at January at year t, and Dt denotes the associated real
dividends paid during year t � 1. These data have been used in numerous previ-
ous studies, including many of the earlier empirical bubble studies mentioned in the
introduction (and in section 6 below).
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Figure 1: Data for prices, Pt; and dividends, Dt; and their di¤erences. Note the
exponential behaviour of Pt and �1Pt and the lack of exponential behaviour for
dividends.

Figure 1 shows prices and dividends in levels and di¤erences over the full sample
period. An exponential pattern is seen both for levels and di¤erences of Pt while Dt

appears not to have exponential growth. The dramatic price increases that took place
during the 1990s, and which have led many to argue that a bubble was driving the
market in that period, are clearly seen in the �gure. Shiller (2000), however, argues
that not just the 1990s, but also some earlier periods (e.g. the 1920s and 1960s) were
driven by speculative bubbles. We will therefore analyse both the full sample period
1872-2000 as well as a more recent sub-sample, 1974-2000. The full sample analysis
serves mainly as an illustration as the empirical model is misspeci�ed for the full
sample, presumably due to the multiple bubbles. The sub-sample analysis is more
substantial as it has one dominant bubble and the empirical model is well-speci�ed.
The software OxMetrics by Doornik and Hendry (2001) is used for the analysis.

5.1 Full sample period, 1872-2000

Here the full sample is analysed using the procedure summarised in §3.5. The initial
cointegration analysis is similar to that reported by Engsted (2006).
The �rst step is to �t a bivariate unrestricted vector-autoregression for Xt = (Pt;

Dt)
0. The Hannan-Quinn criterion picks a two-lag model. Table 1 shows speci�cation
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Test Pt Dt Test system
�2normality (2) 14:9

[<0:001]
24:7
[<0:001]

�2normality (4) 39:5
[<0:001]

Far;1�2 (2; 120) 1:6
[0:21]

2:7
[0:07]

Far;1�2 (8; 234) 1:7
[0:10]

Farch;1�1 (1; 120) 16:7
[<0:001]

1:2
[0:28]

Table 1: Speci�cation tests for the unrestricted vector autoregression with 2 lags.
US 1871 - 2000. All tests are asymptotically valid regardless of the location of the
parameters. For the normality tests see Engler and Nielsen (2009), for autoregressive
tests see Nielsen (2006a,b), for ARCH test see Doornik and Hendry (2001). p-values
in square brackets.

Hypothesis Likelihood Test statistic p-value
r � 2 494.19
r � 1 492.25 LR(r � 1jM) = 3:9 0:44
r = 0 480.80 LR(r = 0jM) = 26:8 0:004

Table 2: Cointegration rank determination with constant restricted to cointegration
space. Critical values based on Johansen (1995, Table 15.2) and Doornik (1998).

tests for this model. While the speci�cation appears to capture the autocorrelation in
the data, it fails with respect to normality and autocorrelation in the squared resid-
uals. Various recursive tests not shown here also indicate that the model parameters
may not be stable over time. In the subsequent section 5.2 we analyse a sub-samble
without this speci�cation problem. Nonetheless, for comparison with existing results
in the literature we do not attempt to obtain a better speci�ed model for the full
sample, and continue with the model as it is.
The four characteristic roots of the unrestricted vector autoregression, M; are

1.183, 0.9404 and 0.1103�0.1904i. The largest root is clearly above one, and the
second largest root is below - but close to - one. The unrestricted maximum likelihood
value is 494.19, see Table 2.
The cointegration rank can be determined through Johansen�s rank test with a

constant restricted to the cointegration space. This test applies even with an explosive
root. The results are reported in Table 2. The restricted model M1 with no cointe-
gration, r = 0; is �rmly rejected, whereas the hypothesis of at most one cointegrating
relation, r � 1 cannot be rejected, with a maximum likelihood value of 492.25. Thus a
single unit root appears present as required in the theory model, meaning that prices
and dividends are �cointegrated�in the sense that they share an I(1) trend. Impos-
ing a unit root as in model M1 changes only slightly the largest characteristic root,
to �̂ = 1:190. The estimated cointegrating vector is �̂1 = (1;�22:2): This implies
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Model Hypothesis Likelihood Test statistic d.f. p-value
M1 H1; r = 1 492.25
M1D H1; HD 491.93 LR(HDjM1) = 0:64 1 0:42
M1DS H1; HD; HS 491.12 LR(HSjM1D) = 1:62 1 0:20

LR(HSjM1) = 2:26 2 0:32
M1DSB H1; HD; HS; HB 485.23 LR(HBjM1DS) = 11:80 3 0:008

LR(HBjM1D) = 13:40 4 0:009
LR(HBjM1) = 14:04 5 0:015

Table 3: Tests of the rational bubble restrictions. See section 3.4 for a description of
the various models and hypotheses.

an expected annual real return of R̂ = 1=22:2 = 4:5%: This value is quite low and
1 + R̂ = 1:045 deviates somewhat from the explosive root estimate. Below we test
whether they are statistically di¤erent.
The next step is to test the hypothesis HD, i.e. that the co-explosive vector takes

the form �0� = (0; 1) implying that dividends are non-explosive. The model here is
M1D in (3.4) which for a given � is estimated by reduced rank regression, c.f. section
3.4.1. The maximum likelihood estimate of � is then obtained by a grid search over �
with �̂ = 1:192: The estimated cointegrating vector is �̂1 = (1;�20:7) with an implied
expected annual real return of R̂ = 4:9%: The maximum likelihood value is 491.93,
and the �2(1) test statistic for the hypothesis HD is 0.64 with a p-value of 0.42, see
Table 3. Thus, we cannot reject that dividends are non-explosive.
The third step is to test the hypothesis HS which relates R in the cointegrating

vector to the explosive root �, i.e. �1 = (1; �1=R)0 and � = 1 + R, see section 3.4.2.
The model here is M1DS as in (3.5). The explosive root is estimated by �̂ = 1:138
implying an expected annual real stock return of R = 13:8%. The likelihood value is
491.12. The test statistic for the hypothesis HS is 1.62 with a p-value of 0.20 if tested
against M1D and 2.26 with a p-value of 0.32 in the �2(2) distribution if tested against
M1: Thus, despite the estimated di¤erence between R and �� 1 seen above, they are
not statistically di¤erent.
The estimated system (3.5) under M1DS with R̂ = 0:138 is (with standard errors

in parentheses):

�1��Pt = �0:856
(0:088)

(��St�1 + 0:083
(0:024)

)� 14:0
(4:4)

�1Dt�1;

�1��Dt = �0:0086
(0:0016)

(��St�1 + 0:083
(0:024)

)� 0:926
(0:080)

�1Dt�1;

�̂PP = 0:261; �̂DD = 0:00475; corr = �0:0064:

The last line reports the estimated residual standard deviations for the two equations
along with the residual correlation. As seen, the estimated adjustment coe¢ cients are
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b�1 = (b�1;P ; b�1;D)0 = (�0:856; �0:0086)0 and b�� = (b��;P ; b��;D)0 = (�14:0; �0:926)0,
all highly statistically signi�cant. As also seen, these unrestricted estimates are not
wildly at odds with the restrictions in (2.22), that is, (1; 1)�1 = �1 and (1; 1)�� =
�(1 + R)2=R = �9:38 (for R = 0:138); whereas the constraint (1; 1)� = 0 appears
invalid. In the �nal step we explicitly test these restrictions.
The last step is to test the bubble hypothesis HB. In the restricted model M1DSB

the explosive root is estimated by �̂ = 1:102 implying an expected annual real stock
return of R = 10:2%. The likelihood value is 485.23. The test statistics for the
hypothesis HB are 11.80 (p-value: 0.008) in M1DS and 14.04 (p-value: 0.015) in M1.
Thus the stock price model with a rational bubble is not supported by the data.
The problem in rejecting the bubble hypothesis lies primarily with the restriction

to the constant and to some extent with the restriction to �1. We tried to impose the
restrictions (1; 1)�� = �(1+R)2=R, (1; 1)�1 = �1; and (1; 1)� = 0 individually on the
model M1DS: This gave test statistics of 1.50 (p-value: 0.22), 2.88 (p-value: 0.09) and
4.34 (p-value: 0.04), respectively, in a �2(1) distribution. Imposing both (1; 1)�1 = �1
and (1; 1)�� = �(1 +R)2=R; but leaving the restricted constant unconstrained, gave
a test statistic of 5.08 (p-value: 0.08).
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Figure 2: Results from M1DSB applied to full sample. (a) shows �1Dt and the �t -
note that �t drifts towards the end. (b) shows Mt - note drifting mean after 1960.
(c) shows Pt and the estimated explosive trend. (d) shows Pt minus explosive trend
along with random walk trend.

It is interesting to consider graphical properties of the rejected bubble model
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M1DSB: The equations (3.6), (3.7) for the martingale di¤erence Mt and dividend
growth �1Dt were �tted. The drifting tendencies in panels (a) and (b) of Figure 2
contribute to the rejection of HB: Panel (c) shows the actual prices Pt and the explosive
trend for Pt computed using the formula (��1)�1(1; 0)C��t(A�+

Pt
s=1 �

�s"̂s) given in
Theorem A.1. This explosive trend is the estimated bubble component in the model.
We see that the model implies that the bubble contributes with a substantial part
of the movements in prices over time. Panel (d) compares the non-explosive part of
Pt; that is the di¤erence between Pt and the explosive trend, with the random walk
trend (1� �)�1(1; 0)C1(A1 +

Pt
s=1 "̂s), see Theorem A.1.

The conclusion from the above results is that US stock prices are explosive while
dividends are non-explosive, and the two variables have a common stochastic I(1)
trend. The over-identifying restrictions implied by a standard stock price model with
a constant discount rate and a rational bubble are however not supported at stan-
dard signi�cance levels, implying that excess returns do not behave as a martingale
di¤erence. However, since the speci�cation tests in Table 1 show evidence of mis-
speci�cation, we are reluctant to interpret these results as providing strong evidence
against the standard stock price model. We consider the results indicative of the
presence of a bubble.

5.2 Sub-sample, 1974-2000

In this section we will analyse a smaller sub-sample that contains data for 1976-2000,
using the 1974 and 1975 observations as initial observations in the estimation of the
vector autoregression. By letting the sample start in the 1970s we are also able to
focus on the recent "bubble period" that ended in 2000 and - according to Shiller
(2000) - began to build up already from the beginning of the 1980s. The proposed
method is designed to work well for such a single bubble period.
Tables 4 and 5 report, respectively, speci�cation tests for an unrestricted model

with two lags and tests for the cointegration rank. There is no evidence of mis-
speci�cation so the unrestricted vector autoregression seems to be econometrically
well-speci�ed. The characteristic roots are 1.258, 0.675�0.354i, and �0:295, thus
clearly indicating an explosive root in the system. The rank tests point to a cointe-
gration rank of unity, although the rejection of the hypothesis of no cointegration is
marginal. Imposing a unit root changes only slightly the largest root, to 1.223. In
the following we will assume the presence of a unit root.
The estimated cointegration vector is �01 = (1; 29:296). As seen, the coe¢ cient to

Dt has the �wrong�sign implying a negative expected return. However, inspection
of the likelihood function reveals that it is extremely �at around the optimum; and
tests of the hypotheses that either (1; 0) or (0; 1) are contained in the cointegration
space cannot be rejected at the 5% level of signi�cance, which implies that we can
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Test Pt Dt Test system
�2normality (2) 0:6

[0:73]
1:7
[0:42]

�2normality (4) 2:0
[0:74]

Far;1�2 (2; 18) 0:1
[0:95]

1:4
[0:26]

Far;1�2 (8; 30) 1:4
[0:22]

Farch;1�1 (1; 23) 0:3
[0:58]

0:6
[0:44]

Table 4: Speci�cation tests for the unrestricted vector autoregression with 2 lags.
US 1973 - 2000. All tests are asymptotically valid regardless of the location of the
parameters. For the normality tests see Engler and Nielsen (2007), for autoregressive
tests see Nielsen (2006a,b), for ARCH test see Doornik and Hendry (2007). p-values
in square brackets.

Hypothesis Likelihood Test statistic p-value
r � 2 108.71
r � 1 105.91 LR(r � 1jM) = 5:6 0:23
r = 0 98.21 LR(r = 0jM) = 21:1 0:04

Table 5: Cointegration rank determination with constant restricted to cointegration
space. US 1973 - 2000. Critical values based on Johansen (1995, Table 15.2) and
Doornik (1998).

treat either Pt or Dt as having no unit root. Thus, unfortunately the data are not
very informative about the value of the expected return parameter R.
Table 6 reports the various tests associated with the bubble hypothesis. First, the

HD hypothesis that dividends are non-explosive gives a p-value of 0.99 while �̂ = 1:224
is nearly unchanged. This is as expected from Figure 1 which clearly shows that the
explosive root in the system belongs to Pt and not Dt. Second, the HS hypothesis
that �01 = (1;�1=R) with � = 1 + R, gives a p-value of 0.57 when tested against
M1D and b� = 1:263, which implies R = 26:1%, clearly not an economically reasonable
estimate of the expected annual return.
Testing the �nal hypothesis, HB, gives a p-value of 0.07 if tested against model

M1DS, and a p-value of 0.19 if tested against model M1. The decision not to reject the
hypothesis HB is marginal against M1DS albeit more convincing against M1; so all in
all the sub-sample is more supportive of the standard stock market model than the
full sample. As for the full sample the di¢ culties arise from the constant. Imposing
only (1; 1)�1 = �1 and (1; 1)�� = �(1 + R)2=R but leaving the restricted constant
unconstrained gives a likelihood of 104.68, so a test statistic of 2.20 (p-value: 0.33)
against M1DS: Thus the test statistic for M1DSB against this intermediate hypothesis
is 4.89 (p-value: 0.027).
Proceeding with the model M1DSB we note that the estimate of the explosive root
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Model Hypothesis Likelihood Test statistic d.f. p-value
M1 H1; r = 1 105.91
M1D H1; HD 105.91 LR(HDjM1) = 0:0002 1 0:99
M1DS H1; HD; HS 105.75 LR(HSjM1D) = 0:32 1 0:57

LR(HSjM1) = 0:32 2 0:85
M1DSB H1; HD; HS; HB 102.20 LR(HBjM1DS) = 7:10 3 0:07

LR(HBjM1D) = 7:40 4 0:12
LR(HBjM1) = 7:40 5 0:19

Table 6: Tests of the rational bubble restrictions. US 1973 - 2000. See section 3.4 for
a description of the various models and hypotheses.

now becomes b� = 1:156 (standard error: 0.023) implying R̂ = 15:6% which is lower
than before but still quite high. Here the standard error is computed from the second
derivative of the pro�le likelihood and is valid under the normality assumption which
is not rejected. The estimated model under M1DSB can be presented in two ways.
First, the system representation is

�1��Pt = �1:0032
(0:0014)

��St�1 � 7:92
(0:16)

�1Dt�1

�1��Dt = 0:0032
(�)

��St�1 � 0:65
(�)
�1Dt�1

�̂PP = 0:362; �̂DD = 0:00292; corr = �0:262;

while the martingale representation, as in (3.6) and (3.7), is

Mt = "̂M;t

�1Dt = 0:0032
(0:0015)

��St�1 + 0:51
(0:17)

�1Dt�1 � 0:0021
(0:0017)

Mt + "̂D�M;t;

�̂MM = 0:126; �̂DD�M = 0:00295; corr = 0:

Figure 3 shows a graph ofMt along with graphs of actual and �tted values of �1Dt as
well as a break down of the explosive trend and the random walk trend as for Figure
2. Note the improved �t for the sub-sample as compared with the full sample.
The conclusion from this sub-sample analysis, 1974-2000, is that real stock prices

clearly contain an explosive component, and the formal restrictions implied by the
rational bubble model cannot be rejected statistically at conventional signi�cance
levels, although the test for the bubble hypothesis itself, HB againstM1DS; is marginal.
The analysis does provide a rather high value of the expected return parameter R.
It is also found that two quite di¤erent models for the relation between prices and
dividends are both consistent with the data: Either Pt does share the unit root in
Dt (i.e. �cointegration�between Pt and Dt), or it does not. The data are simply not
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Figure 3: Results from M1DSB applied to sub-sample. (a) shows �1Dt and the �t.
(b) shows Mt. (c) shows Pt and the estimated explosive trend. (d) shows Pt minus
explosive trend along with random walk trend.

able to discriminate between these two hypotheses. From an economic point of view
(c.f. Shiller, 2000), and looking at �gure 1, it is not totally unreasonable to consider
prices during the 1980s and 1990s as being bubble-driven with no connection at all
to fundamental variables like dividends.

6 Comparing our test with earlier bubble tests

In this section we brie�y discuss our bubble testing procedure in relation to other
bubble tests proposed in the literature. Earlier in the paper we discussed Diba and
Grossman�s (1988b) approach and, as we saw, in contrast to their analysis our ap-
proach makes it possible to estimate both the explosive root and the cointegrating
vector between the I(1) components of Pt and Dt, and it allows testing the restriction
that a rational bubble imposes on the relation between the the explosive root and the
cointegrating vector.
An important assumption in both Diba and Grossman and our analysis is that the

discount factor, i.e. expected return, is constant. Craine (1993) modi�ed Diba and
Grossman�s approach by showing that with a time-varying (but stationary) discount
factor, the price-dividend ratio, Pt=Dt, should be stationary under no bubbles. The
appealing feature of Craine�s approach is that no unknown cointegrating vector has
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to be estimated. It su¢ ces to just test the stationarity of Pt=Dt. On the other hand,
no other testable restrictions follow from this approach. When we �t a �rst order
autoregression to Pt=Dt on our US 1872-2000 data, the autoregressive root is above
one (1:0465) and the null hypothesis of a unit root against the one-sided explosive
alternative is strongly rejected at the right tail of the Dickey-Fuller distribution (ADF-
value: 1:04), consistent with the results in §5.
A potential weakness of cointegration based tests for bubbles is that they will

have di¢ culties discovering periodically collapsing bubbles. Evans (1991) showed
that in a �nite sample unit root and cointegration tests will typically not identify the
explosive component of periodically collapsing bubbles. Our co-explosive framework
may not perform well in that situation. Indeed, the IT bubble is so dominant that
explosiveness is picked up in a full sample ending in the years 1996 to 2000 but not
if ending in 1995, thus supporting Evans� (1991) conjecture; see also discussion of
Engsted (2006). When looking exclusively at the sub-sample from 1974 onward with
a single bubble the explosiveness is, however, picked up. For instance for the sample
ending in 1990 there is an explosive root of 1.10.
In this paper we have con�ned attention to stochastic explosive bubbles driven by

extraneous sources. We have not considered the kind of purely deterministic explosive
bubbles analysed by Flood and Garber (1980), or the �intrinsic� explosive bubble
analysed by Froot and Obstfeld (1991) where the bubble is a non-linear deterministic
function of fundamentals. For the kind of stochastic bubbles we analyse, West (1987)
devised an often cited Hausman-type speci�cation test, which compares two sets of
estimates of the underlying asset pricing model. The �rst set of estimates is consistent
both with and without a bubble, whereas the second set is only consistent in the
absence of a bubble. The speci�cation test then tests for equality of the two sets of
estimates. Thus, the null hypothesis is no bubble, while the presence of a bubble
should lead to rejection of the null hypothesis. One troublesome aspect of West�s
procedure (noted by West himself in West (1985), i.e. the working paper version of
West (1987)), is that the test is not consistent: under the alternative hypothesis that
bubbles are present, the probability that the test will reject the null of no bubbles will
not go to unity asymptotically. The problem is directly a result of the explosiveness
of prices under the alternative. The testing procedure we develop in the present paper
does not face such problems because our null hypothesis explicitly involves bubbles.
Finally, in some recent literature (e.g. Cochrane, 2008; Balke and Wohar, 2009),

bubbles are discussed within the log-linearized present value model of Campbell and
Shiller (1988b). However, that model is based on a Taylor series expansion around
the unconditional mean log dividend-price ratio which needs to be stationary in order
for the log-linearization to be valid. Thus, that model in fact rules out bubbles from
the outset.
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7 Conclusions

In this paper we have developed a procedure for testing a constant discount rate equity
market model within a vector autoregressive framework. The special feature of our
approach is that it allows for both unit roots in prices and dividends and an explosive
root due to a rational speculative bubble. The analysis has been conducted within the
co-explosive vector autoregressive framework of Nielsen (2010), which is an extension
of the standard Johansen model for I(1) variables to the case with one explosive root
in the system. We have developed likelihood ratio tests of various restrictions implied
by the bubble model; these restrictions can be tested using standard �2-inference.
In an empirical illustration using US stock market data that includes the "bubble

period" in the 1990s, we �nd stong evidence of an explosive root in stock prices, while
dividends do not contain explosive elements, thus lending support to the argument
that US stock prices in part have been driven by a speculative bubble. For the full
sample 1872-2000 the bubble restrictions are, however, rejected at standard signif-
icance levels - and this is when ignoring that the empirical model is mis-speci�ed.
For the sub-sample analysis for the period 1974-2000 the empirical model appears
well-speci�ed and the bubble restrictions cannot be rejected.
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A Appendix: Granger-Johansen representation

In this appendix a detailed representation theorem is derived for the co-explosive
equation

�1��Xt = �1�
0
1��Xt�1 + ���

0
��1Xt�1 +

k�2P
j=1

�j�1��Xt�j + �1�
0 + "t (A.1)

in which �1; �1; ��; �� 2 R2 and �0 2 R.
The following notation is used throughout the appendices: For a matrix � with full

column rank let � = �(�0�)�1 while �? denotes a basis to the orthogonal complement
of the span of � so �0?� = 0 and (�; �?) is invertible.

Theorem A.1 Suppose Assumption A holds. Then it holds

Xt =
1

1� �C1(A1 +
tP
s=1

"s) +
1

�� 1C��
t(A� +

tP
s=1

��s"s) + Yt �
�1�

0

1� �:

where Yt = �UUt and

	x = Ip +
�y�

0
y

y � x �
k�2P
j=1

x�j�j

Cx = x�x?(�
0
x?	x�x?)

�1�0x?;

Ax = 	x�yX0 �
�y�

0
y

y � x�xX0 +
k�2P
j=1

�j
j�1P
h=0

xh�j�x�yX�h;

�U = (G1;�; G�;1; H1;�;1 +H�;1;1; : : : ; H1;�;k�2 +H�;1;k�2);

Ut�1 = f(�01��Xt�1 + �
0)0; (�0��1Xt�1)

0;�1��Xt�1; : : : ;�1��Xt�k+2g;

Gx;y = � Cy�x
(y � x)2 �

Cx	x�x
x� y +

x�x
x� y ; Hx;y;n =

Cxx
n�1

x� y
k�2P
j=n

�jx
�j:

The process Ut satis�es a �rst order vector autoregression and can be given a station-
ary initial distribution.

Remark A.2 A similar result can be derived for the model with a linear trend

�1��Xt = �1(�
0
1; �

0)

�
��Xt�1
(1� �) t

�
+ ���

0
��1Xt�1 +

k�2P
j=1

�j�1��Xt�j + �+ "t;

see Nielsen (2010). De�ne coe¢ cients � c; � l by

� l = C1�=(1� �) + (C1	1 � Ip)�1�01;
�01� c = �01(	1C1 � Ip)�=(1� �) + �01	1(C1	1 � Ip)�1�01 + �01�=(1� �):
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Then ~Xt = Xt��1�01� c�� lt solves the homogeneous solution (A:2): As a consequence

Xt =
1

1� �C1(A1 +
tP
s=1

"s) +
1

�� 1C��
t(A� +

tP
s=1

��s"s) + Yt + �1�
0
1� c + � lt:

Proof of Theorem A.1. Homogeneous equation. Let ~Xt = Xt + �1�
0=(1� �):

Insert �1Xt = �1
~Xt and �

0
1��Xt�1 = �

0
1��

~Xt � �0 in (A.1) to see that ~Xt solves

�1��
~Xt = �1�

0
1��

~Xt�1 + ���
0
��1

~Xt�1 +
k�2P
j=1

�j�1��
~Xt�j + "t: (A.2)

It su¢ ces to �nd the representation for this homogeneous equation. For the general
case subtract �1�

0=(1� �) from the representation.
Some identities. Note �rst that

(y � x)�x
~Xs�1 = �2

x
~Xs ��x�y

~Xs;
j�1P
h=0

xh�2
x�y

~Xs�h = �x�y
~Xs � xj�x�y

~Xs�j:

Representation for �0x?�y
~Xt: It is �rst argued that

x�x?�
0
x?�y

~Xt = Cxx
t(Ax +

tP
s=1

x�s"s) + Cx
�y�

0
y

y � x�x
~Xt

�Cx	x�x�0x�y
~Xt � Cx

k�2P
j=1

�j
j�1P
h=0

xh�j�x�y
~Xt�h: (A.3)

To get that expression pre-multiply the model equation by �0x? and insert the above
identities to get

�0x?�x�y
~Xs = �0x?"s + (y � x)

�1 �0x?�y�
0
y(�

2
x
~Xs ��x�y

~Xs)

+�0x?
k�2P
j=1

x�j�j(�x�y
~Xs �

j�1P
h=0

xh�2
x�y

~Xs�h)

Gather �x�y
~Xs-terms and use 	x = Ip + (y � x)�1 �y�0y �

Pk�2
j=1 x

�j�j to get

�0x?	x�x�y
~Xs = �

0
x?"s + �

0
x?
�y�

0
y

y � x�
2
x
~Xs � �0x?

k�2P
j=1

�j
j�1P
h=0

xh�j�2
x�y

~Xs�h:

Multiply with x�s and sum over s and multiply with xt to get

�0x?	x

�
�y

~Xt � xt�y
~X0

�
= �0x?

tP
s=1

xt�s"s + �
0
x?
�y�

0
y

y � x(�x
~Xt � xt�x

~X0)

��0x?
k�2P
j=1

�j
j�1P
h=0

xh�j(�x�y
~Xt�h � xt�x�y

~X�h):
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Pre-multiply �yXt with Ip = �x�
0
x + �x?�

0
x?; recall Ax and rearrange to get

�0x?	x�x?�
0
x?�yXt = �0x?x

t(Ax +
tP
s=1

x�s"s) + �
0
x?
�y�

0
y

y � x�x
~Xt

��0x?	x�x�0x�y
~Xt � �0x?

k�2P
j=1

�j
j�1P
h=0

xh�j�x�y
~Xt�h:

The matrix �0x?	x�x? is invertible by Assumption A, so pre-multiply with its inverse
and then by x�0x? to get (A.3).
Representation. Note the identity

Xt =
y�x

~Xt � x�y
~Xt

y � x =
y(�y?�

0
y? + �y�

0
y)�x

~Xt

y � x +
x(�x?�

0
x? + �x�

0
x)�y

~Xt

x� y :

Thus, ~Xt has the desired representation in which

Yt =
C1
1� �f

���
0
�

�� 1�1Xt �	1�1�01��Xt �
k�3P
h=0

(
k�2P
j=h+1

�j)�1��Xt�hg

+
C�
�� 1f

�1�
0
1

1� ���Xt �	����0��1Xt �
k�3P
h=0

�h(
k�2P
j=h+1

�j�
�j)�1��Xt�hg

+
1

1� ��1�
0
1��Xt +

�

�� 1���
0
��1Xt:

Rearrange the terms of Yt to get the desired expression for Yt:
The process Ut: The model equation implies a �rst order vector autoregression for

Ut: Assuming A this can be given a stationary initial distribution as stated in Nielsen
(2010, Theorem 1).
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B Appendix: Proof of asymptotic results

In this appendix the asymptotic results are proved.
The abbreviations a:s:; P and D are used for properties holding almost surely, in

probability, and in distribution respectively.

B.1 Notation and preliminary asymptotic results

B.1.1 Rotating the data vector

A feature of the vector autoregressive setup is its invariance to linear transformations.
In the main discussion of the results the vector Xt = (Pt; Dt)

0 is analysed. In the
proofs it is convenient to choose Xt in a di¤erent way. The issue is that the bubble
hypothesis is that

Mt = Pt +Dt � (1 +R)Pt�1 (B.1)

is a martingale di¤erence where the contemporaneous component of Mt is Pt + Dt:
For the proof it is convenient to choose

Xt =

�
Pt +Dt

Dt

�
=

�
1 1
0 1

��
Pt
Dt

�
: (B.2)

Accordingly the error term of the model equation is denoted

"t =

�
"M;t
"D;t

�
with 
 = Cov("t) =

�
�MM �MD

�DM �DD

�
;

and the conditional error "D�M;t = "M;t � !"D;t where ! = �DM��1MM : The spread is

St = �
0
1Xt = Pt �R�1Dt = (Pt +Dt)� GDt with G = R�1 + 1: (B.3)

Accordingly the cointegrating and the coexplosive vectors for the rotated system are

�1 =

�
1
�G

�
; �1? =

�
G
1

�
; �� =

�
0
1

�
; ��? =

�
1
0

�
: (B.4)

B.1.2 The data generating process

In the probabilistic analysis the properties of the likelihood function will be analysed
for each parameter (#�;
�) satisfying the restricted model M1DSB. Introduce the
vector S�t = (U�0t ; V �0t ;W �0

t )
0 where

U�t = f(��01���Xt)
0; (��0��1Xt)

0; (�1���Xt)
0; : : : ; (�1���Xt�k+3)

0g0; (B.5)

V �t = ��01?���Xt; W �
t = �

�0
�?�1Xt; R�

t = (M
�
t ; U

�0
t�1)

0: (B.6)
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The data generating process is

Mt = "
�
M;t; �1Dt = (!

�; ��0)0Rt + "
�
D�M;t; (B.7)

where #� = (!�; ��0)0 and ��0 = (��1;D; �
�
�;D;�

�0
1;D; : : : ;�

�0
k�2;D).

B.1.3 Some further parameters

From Nielsen (2010) it is known that the analysis of the unrestricted model M1D

involves the parameters

� �? = 	
�
��

�
�?; 	�� = Ip +

��1
1� ��

�
k�2P
j=1

��j� �
�
j ; (B.8)

as well as the projection matrices

P��? = �
�
?(�

�0
?


�1
� �

�
?)
�1� �0?


�1
� ; P�� = ��1(��01 
�1� ��1)�1��01 
�1� : (B.9)

In the restricted model M1DSB the restrictions (2.22) imply

� �? =

�
G�

�R�1� ��1;D �
Pk�2

j=1(1 +R�)
�j��j;DP

�
=

�
1 0
0 ���0

�
H�; (B.10)

where the coe¢ cient G� and the vector H� are given by

G� = R�1� + 1; H� = fG�; R�1� ; 0; (1 +R�)�1�
�
�?; : : : ; (1 +R�)

2�k�
�
�?g0: (B.11)

B.1.4 A preliminary asymptotic result

It is convenient to recall the following asymptotic result stated as Lemma A.1 in
Nielsen (2010), but derived from Chan and Wei (1988) and Nielsen (2005). Introduce
the block diagonal normalisation matrix NS = diag(IdimU ; NV ; NW ; 1) where

NV = diagfT�1=2Ip�r; (1� �)�1g; NW = T 1=2��T� : (B.12)

Lemma B.1 Let Xt satisfy M1DSB and be given by (B:7): Assume A, B, C. Let � be
a constant satisfying � < 
=(2 + 
); recalling 
 de�ned in Assumption B.
De�ne sample variances cvar(xt) = T�1

PT
t=1 xtx

0
t: Then stochastic matrices �WW ;

�V V ; �SS and a deterministic matrix �UU exist so

(i ) cvar("�t ) a:s:= 
� + o(T
��) + o(T ��1=2) for all � > 0:

(ii ) cvar(U�t�1) a:s:! �UU > 0:

(iii ) �̂WW = ��2T�
PT

t=1(W
�
t�1)

2 = ��2T� Tcvar(W �
t�1)

a:s:! �WW

a:s:
> 0:
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(iv ) �̂V V = cvar(NV V �t�1) D! �V V
a:s:
> 0:

(v ) cvar �NSS�t�1� D! �SS
a:s:
> 0:

De�ne sample correlations dcorr(xt; yt) = (PT
t=1 x


2
t )

�1=2PT
t=1 xty

0
t(
PT

t=1 y

2
t )

�1=2; so

(vi ) dcorr(S�t�1; "�t ) a:s:= o(T��=2):
(vii ) dcorrf(U�0t�1; V �0t�1; 1)0; "�tg = OP(T�1=2):
In addition it holds jointly for some stochastic matrices �V ";�U";�V U that

(vii ) �̂U� = T�1=2
PT

t=1(U
�
t�1)"

�0
t

D! �U": and �̂U�
a:s:
= o(T �) for all � > 0.

(viii ) �̂V � = T�1=2
PT

t=1NV (V
�
t�1)"

�0
t

D! �V ":

(ix ) �̂W� = �
�T
�
PT

t=1W
�
t�1�

�
t
a:s:
= o(T (1��)=2):

B.2 Some asymptotic results for a given value of R

The proof will involve analysis of product sums involving Rt de�ned as

Rt = (Mt; U
0
t�1)

0; Ut = f(�01��Xt)
0; (�0��1Xt)

0; (�1��Xt)
0; : : : ; (�1��Xt�k+3)

0g0:

for some �: Some expansions of these product sums are needed. It is convenient to
introduce the notation�

S�"M"M S�"MW
S�W"M

S�WW

�
=

1

T

TP
t=1

�
M�
t

W �
t�1

�
2
;�

S�DD�M S�"D�MR S�"D�MW
S�R"D�M S�RR S�RW

�
=

1

T

TP
t=1

�
"�D�M;t
R�
t

��
"�D�M;t;R�0

t ;W
�
t�1
�
;

the sum S�� = T
�1PT

t=1(�1Dt)
2 as well as the partial product sums�

S�RR�� S�RW ��
S�WR�� S�WW ��

�
=

�
S�RR S�RW
S�WR S�WW

�
�
�
S�R�
S�W�

�
S�1�� (S

�
�R; S

�
�W ) :

Lemma B.2 Assume A, B, C. De�ne DR = (R � R�) and IR = (R�1 � R�1� ). Let
opol = o(T

�k) for some �nite k not depending on R: Then

1

T

TP
t=1

"�D�M;tR0
t

a:s:
= S�"D�MR �DRS

�
"D�MW

H�0 + (DR + IR)opol;

1

T

TP
t=1

R�
tR0

t
a:s:
= S�RR �DRS�RWH�0 + (DR + IR)opol;

1

T

TP
t=1

RtR0
t

a:s:
= S�RR �DR(S�RWH�0 +HS�WR) +D2RH�S�WWH�0

+(DR + IR)(1 + �T�DR +DR + IR)opol:
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In particular it holds

1

T

TP
t=1

"�D�M;tM
0
t

a:s:
= S�"D�M"M �DR(G

�S�"D�MW + opol);

1

T

TP
t=1

M2
t

a:s:
= S�"M"M � 2DR(G

�S�"MW + opol) +D
2
RfG�2S�WW + o(1)g:(B.13)

Proof of Lemma B.2. Identities. Recall the de�nition of X in (B.2) and of
the cointegrating and the coexplosive vectors in (B.4). Then it holds0BB@

�01�1+R

�0��1

�01?�1+R

�0�?�1

1CCAXt�1 =

0BB@
1 � 1

R
�(1 +R) 1+R

R

0 1 0 �1
1 R �(1 +R) �R(1 +R)
1 0 �1 0

1CCA
0BB@
Pt�1
Dt�1
Pt�2
Dt�2

1CCA
which has the solution0BB@

Pt�1
Dt�1
Pt�2
Dt�2

1CCA =

0BB@
�R 0 �1 1 +R
1 1 +R �R 0
�R 0 �1 1
1 1 �R 0

1CCA
0BB@

1
1+R2

�01�1+R
1
R
�0��1

1
R(1+R2)

�01?�1+R
1
R
�0�?�1

1CCAXt�1: (B.14)

It also holds, see Nielsen (2010, equations A.17, A.18), that

�1�1+RXt�j = �1�1+R�Xt�j (B.15)

+ (R� �R)(1 +R�)�jf�1Xt�1 �
jX
l=1

(1 +R�)
l�1�1�1+R�Xt�lg:

Expansion of R. It is to be derived that Rt = (Mt; U
0
t�1)

0; see (B.6), satis�es

Rt = R�
t �DRH�W �

t�1 � (DRH2 + IRe2H0
3)(U

�0
t�1; V

�
t�1)

0;

for some matrices H2 2 R(2k�2)�(2k�1) and H3 2 R2k�1 not depending on R and where
e2 = (0; 1; 01�2(k�2))

0:
The expression for Mt: Since Mt = Pt + Dt � (1 + R)Pt�1 by (B.1) then Mt =

M�
t �DRPt�1. Due to (B.14) then Pt�1 is the sum of (R�1� + 1)W �

t�1 and some linear
combination of U�t�1; V

�
t�1:

The �rst coordinate of Ut�1 is �
0
1�1+RXt�1: Using (2.4) write

�01�1+RXt�1 = �1+RSt�1 =Mt�1 � (R�1 + 1)�1Dt�1:
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Writing Mt�1 =M
�
t�1 �DRPt�2 and adding and subtracting R�1� �1Dt�1 shows

�01�1+RXt�1 = �
�0
1�1+R�Xt�1 �DRPt�2 � IR�1Dt�1:

Due to (B.14) then Pt�2 is the sum of R�1� W
�
t�1 and some linear combination of

U�t�1; V
�
t�1; while �1Dt�1 is some other linear combination of U�t�1; V

�
t�1:

The second coordinate of Ut�1 is �
0
��1Xt�1 = �1Dt�1 and does not depend on R:

The remaining coordinates of Ut�1 are of the type �1�1+RXt�j: These are rewrit-
ten using (B.15). Thus, pre-multiplying �1Xt�1 by Ip = �

�
�?�

�0
�? + �

�
��

�0
� it is seen

that�1�1+RXt�j is the sum of�1�1+R�Xt�j�DR(1+R�)�j�
�
�?�

�0
�?�1Xt�1 and some

linear combination of U�t�1; V
�
t�1:

Product sums. The �rst component of interest is

1

T

TP
t=1

"�D�M;tR0
t
a:s
=
1

T

TP
t=1

"�D�M;tR�0
t �DR

1

T

TP
t=1

"�D�M;tW
�
t�1H0

� 1

T

TP
t=1

"�D�M;t(U
�0
t�1; V

�
t�1)(DRH0

2 + IRH3e
0
2):

The processes U�t�1; V
�
t�1 are of polynomial order, see Nielsen (2005, Theorem 5.1), so

T�1
PT

t=1 "
�
D�M;t(U

�0
t�1; V

�
t�1)

0 = opol a:s: Note that the �rst coordinate 1
T

PT
t=1 "

�
D�M;tMt

does not have an IR component.
By a similar argument then, with S1 = T�1

PT
t=1R�

t (U
�0
t�1; V

�
t�1)

0(DRH0
2+IRH3e

0
2);

1

T

TP
t=1

R�
tR0

t =
1

T

TP
t=1

R�
tR�0

t �DR
1

T

TP
t=1

R�
tW

�
t�1H�0 � S1;

The processes R�
t ; U

�
t�1; V

�
t�1 are of polynomial order, see Nielsen (2005, Theorem 5.1)

so
PT

t=1R�
t (U

�0
t�1; V

�
t�1)

0 = opol a:s:
By a similar argument then, with S1 as above and

S2 = DRH� 1

T

TP
t=1

W �
t�1(U

�0
t�1; V

�
t�1)(DRH0

2 + IRH3e
0
2);

S3 = (DRH2 + IRe2H0
3)
1

T

TP
t=1

(U�0t�1; V
�
t�1)(U

�0
t�1; V

�
t�1)(DRH0

2 + IRH3e
0
2);

it holds that

1

T

TP
t=1

RtR0
t =

1

T

TP
t=1

R�
tR�0

t �DR
1

T

TP
t=1

(R�
tW

�
t�1H�0 +H�W �

t�1R�
t )
0

+D2R
1

T

TP
t=1

H�(W �
t�1)

2H�0 � S1 � S 01 + S2 + S 02 + S3:

As argued above
PT

t=1R�
t (U

�0
t�1; V

�
t�1)

0 and
PT

t=1(U
�0
t�1; V

�
t�1)(U

�0
t�1; V

�
t�1) are of poly-

nomial order while T�1=2
PT

t=1R�
tW

�
t�1 = o(�

T
� ) a:s: by Lemma B.1(i,v,vi).

40



B.3 Consistency under HB

The expression for the martingale di¤erence Mt is quadratic in the unknown para-
meters, so global consistency can be proved under HB in contrast to the co-explosive
analysis in Nielsen (2010). The starting point is the pro�le log likelihood for the
parameter R: Let �̂2M(R) and �̂

2
D�M(R) denote the residual variances of the regression

equations (3.6), (3.7). Then the pro�le log likelihood is

`(R) = �T
2
logf�̂2M(R)�̂2D�M(R)g: (B.16)

The residual variances at R� satisfy the following results.

Lemma B.3 Assume A, B, C. Then
(i) �̂2M(R�) = T

�1PT
t=1M

�2
t = S�"M"M

a:s:! ��MM ;

(ii) �̂2D�M(R�)
a:s:! ��DD�M :

(iii) 2`(R�) = �T log det(S�"") + ��1DD�M �̂"D�MU���1UU �̂U"D�M + o(1):

Proof of Lemma B.3. (i) Use M�
t = "

�
M;t:

(ii) Note �̂2D�M(R�) = T�1
PT

t=1("
�
D�M;tjR�

t )
2: Since Rt = ("�M;t; U

�0
t�1)

0; see (B.6),
and "�D�M;t; "

�
M;t; U

�
t�1 are asymptotically uncorrelated then Lemma B.1(i) implies

�̂2D�M(R�)
a:s:
= S�"D�M"D�M�fS

�
"D�M"M

S��1"M"M
S�"M"D�M +S

�
"D�MU

S��1UU S
�
U"D�M

gf1+o(T�1=4)g:

Lemma B.1(ii,vii) shows S�"D�M"M ; S
�
"D�MU

= o(T�3=8) while S��1"M"M
; S��1UU converge so

�̂2D�M(R�)
a:s:
= S�"D�M"D�M�S

�
"D�M"M

S��1"M"M
S�"M"D�M�S

�
"D�MU

S��1UU S
�
U"D�M

+o(T�1); (B.17)

and in particular �̂2D�M(R�)! ��DD�M as desired.
(iii) Apply the expansion log(1 + h) = h + O(h2) to (B.17) keeping the �rst two

terms as the main term and noting S�"D�M"M ; S
�
"D�MU

= o(T�3=8) to get

� T logf�̂2D�M(R�)g
a:s:
= �T log(S�"D�M"D�M � S

�
"D�M"M

S��1"M"M
S�"M"D�M )

+ TS��1"D�M"D�M
S�"D�MUS

��1
UU S

�
U"D�M

+ o(1):

Insert this and �T logf�̂2M(R�)g = �T logS�"M"M into (B.16) to get

2`(R�) = �T log(S�"M"MS
�
"D�M"D�M

� S�2"D�M"M ) + TS
��1
"D�M"D�M

S�"D�MUS
��1
UU S

�
U"D�M

+ o(1):

Due to the identity

det(S�"") = detf
1

T

TP
t=1

�
"�M;t
"�D;t

�
2
g = detf 1

T

TP
t=1

�
"�D�M;t
"�D;t

�
2
g

the �rst term of 2`(R�) is �T log det(S�""): For the second term note S�UU ! ��UU and
S�"D�M"D�M ! �DD�M while T 1=2S�"D�MU = �̂"D�MU :
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Lemma B.4 Consider the maximum likelihood estimators under HB. Assume A, B,
C. Then R̂�R = o(T 1=2��T ) a:s:

Proof of Lemma B.4. Let R� denote the true value of R:
Likelihood value at R�: Lemma B.3 shows �̂

2
M(R�) = T

�1PT
t=1 "

�2
M;t and �̂

2
D�M(R�) =

T�1
PT

t=1("
�
D�M;tjR�

t )
2. Lemma B.1(i,vi) then implies

�̂2M(R�)
a:s:! ��2M ; �̂2D�M(R�)

a:s:! ��2D�M :

Likelihood value outside neighbourhood of R�: For any � > 0 consider an R so
jN�1

W (R�R�)j > �: It is to be shown that

lim infT!1 �̂
2
M(R�)

a:s:
= ��2M + �

2�P ; lim infT!1 �̂
2
D�M(R�)

a:s:

� �2D�M ;

where �P = G�2 limT!1 �
�2T
�

PT
t=1(W

�
t�1)

2 > 0 a:s: for �� = 1 +R�:
For the �rst result note that by (B.13) then

�̂2M(R)
a:s:
= S�MM + 2(R� �R)G�S�MW + (R� �R)2G�2S�WW +O(T

�1): (B.18)

Due to Lemma B.1(i,iii,vi) then

�̂2M(R)
a:s:
= ��2M + T

�1�2T� (R� �R)2�P + 2T�1=2�T� (R� �R)o(1) + o(1):

Thus, for any R outside a neighbourhood of R� this has the stated limes inferior.
For the second result write the residual variance as

�̂2D�M(R) =
1

T

TP
t=1

(�1DtjRt)
2:

As Mt = M�
t + (R� � R)Pt�1 the regressor Rt is a linear combination of M�

t ;S�t�1:
Moreover, �1Dt = �0�R�

t + "
�
D�M;t for some �� while R�

t is a linear combination of
M�
t ;S�t�1 and M�

t = "
�
M;t: Thus

�̂2D�M(R) �
1

T

TP
t=1

(�1DtjM�
t ;S�t�1)2 =

1

T

TP
t=1

("�D�M;tj"�M;t;S�t�1)2:

Since the sample correlations of "�D�M;t; "
�
M;t and S�t�1 vanish asymptotically then

�̂2D�M(R) has the stated limes inferior.
Continuity of likelihood function. The pro�le log likelihood `(R) is continuous and

will, asymptotically, attain its minimum in a compact interval jN�1
W (R�R�)j � � as

it is large outside the interval. This shows the desired consistency.
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B.4 Expanding likelihood under HB

The pro�le likelihood for R is analysed. The �rst Lemma expands log determinants.

Lemma B.5 log det(I + h) = tr(h)� 1
2
tr(h2) + 1

3
tr(h3) + O(jjhjj4):

Proof of Lemma B.5. The matrix h can be decomposed as h = AJA�1 where J
is a triangular, Jordan matrix with diagonal elements �j. Thus, I +h = A(I +J)A�1

and det(I + h) = det(I + J) =
Qdimh
j=1 (1 + �j): By the expansion log(1 + x) =

x� x2=2 + x3=6 + O(x4) it holds

log det(I + J) =
dimhP
j=1

log(1 + �j) =
dimhP
j=1

f�j �
1

2
�2j +

1

3
�2j +O(�

4
j)g:

Noting that tr(Jk) =
Pdimh

j=1 �
k
j and tr(A

k) = tr(Jk) the desired result follows.

The next step is to write the pro�le likelihood in terms quadratic functions in R:

Lemma B.6 Assume A, B, C. Under HB the pro�le likelihood has expansion

2f`(R)� `(R�)g
a:s:
= 2f~̀(R)� ~̀(R�)g+ o(1)

for jR�R�j � cT 1=2��T� for any c > 0: Here ~̀(R) = ~̀M(R) + ~̀R��(R)� ~̀R(R) with

~̀
M(R) = �T

2
log(S�"M"M � 2DRG

�S�"MW +D
2
RG�2S�WW );

~̀R��(R) = �T
2
log detfS�RR�� �DR(S�RW ��H�0 +H�S�WR��) +D2RH�S�WW ��H�0g;

~̀R(R) = �T
2
log detfS�RR �DR(S�RWH�0 +H�S�WR) +D2RH�S�WWH�0g:

Proof of Lemma B.6. Pro�le likelihood. This is given by

2`(R) = �T logf�̂2M(R)g � T logf�̂2D�M(R)g: (B.19)

It will be shown that this is quadratic in R up to an approximation.
Component involving �̂2M(R): Since �̂

2
M(R) = T

�1PT
t=1M

2
t consider the expansion

(B.13). Since DR = o(T 1=2��T� ) then

�̂2M(R)
a:s:
= S�"M"M � 2DRG

�S�"MW +D
2
RG�2S�WW + o(T

�1):

The expansion log(1 + h) = O(h) shows

logf�̂2M(R)g
a:s:
= log(S�"M"M � 2DRG

�S�"MW +D
2
RG�2S�WW ) + o(T

�1): (B.20)
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Component involving �̂2D�M(R): First, use partitioned inversion to get

logf�̂2D�M(R)g = log detfT�1
TP
t=1

(Rtj�1Dt)

2g

� log detfT�1
TP
t=1

(Rt)

2g+ logfT�1

TP
t=1

(�1Dt)
2g: (B.21)

The last term does not depend on R:
For the second term of (B.21) apply Lemma B.2 to get

1

T

TP
t=1

RtR0
t
a:s:
= S�RR �DR(S�RWH�0 +HS�WR) +D2RH�S�WWH�0 + o(T�1):

Applying the log determinant expansion in (B.5) it follows that

log detfT�1
TP
t=1

(Rt)

2g a:s:= ~̀

R(R) + o(T
�1): (B.22)

Apply a similar argument for the �rst term of (B.21) to get

log detfT�1
TP
t=1

(Rtj�1Dt)

2g a:s:= ~̀

R��(R) + o(T
�1): (B.23)

Pro�le likelihood expansion. Insert (B.22) and (B.23) into the expression for
log(�̂2D�M) in (B.21) and in turn insert this and the expression (B.20) for log(�̂

2
M)

into the pro�le likelihood (B.19) to get

2`(R)
a:s:
= 2~̀(R)� T log(S��) + o(1):

Finally note that `R(R�) = ~̀R(R�)� T log(S��):

The derivatives of the approximation ~̀ to the pro�le likelihood are considered.

Lemma B.7 Assume A, B, C. Under HB then

~̀0(R�) = �T� fG�S��1"M"M
�̂"MW +H�0(S��1RR���̂RW �� � S��1RR �̂RW )g;

~̀00(R�)
a:s:
= ��2T� ��WWfG�2S��1"M"M

+H�0(S��1RR�� � S��1RR )H�gf1 + o(1)g;

where �̂RW =
PT

t=1R�
tW

�
t�1: It holds that

~̀0(R�)
a:s:
= o(T 1=4�T� ); f~̀00(R�)g�1 = O(��2T� ); ~̀000(R�) = o(T

�3=4�3T� ):
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Proof of Lemma B.7. Term ~̀
M(R): This satis�es

�(2=T )~̀M(R) = log(S�"M"M ) + log(1 + h):

where h = �2DRG�S��1"M"M
S�"MW + D2RG�2S��1"M"M

S�WW : Apply the log expansion in
Lemma B.5. Rearrange to get an expansion in DR which is

log(1 + h) = �2DRG�S��1"M"M
S�"MW +D

2
RG�2(S��1"M"M

SWW � 2S��2"M"M
S�2"MW )

+D3RG�3(2S��2"M"M
S�"MWSWW �

8

3
S��3"M"M

S�3"MW ) + O(D
4
R)

Hence the coe¢ cient to DR gives the �rst derivative ~̀0M(R�) = TGS��1"M"M
S�"MW : Re-

placing TS�"MW = T 1=2(��T�
PT

t=1 "
�
M;tW

�
t�1)(T

�1=2�T� ) = T
1=2�̂"MWN

�1
W gives

~̀0
M(R�) = T

1=2GS��1"M"M
�̂"MWN

�1
W :

Likewise the second and third derivates are

~̀00
M(R�) = (2!)(�T=2)G�2(S��1"M"M

SWW � 2S��2"M"M
S�2"MW )

~̀000
M(R�) = (3!)(�T=2)G�3(2S��2"M"M

S�"MWSWW �
8

3
S��3"M"M

S�3"MW )

Noting that S��1"M"M
; SWWN

2
W = �̂WW are convergent while S�"MWNW = o(T�1=4) then

~̀00
M(R�) = �TG�2S��1"M"M

��WWN
�2
W f1 + o(1)g; ~̀000

M(R�)
a:s:
= o(T�3=4�3T� ):

Term ~̀R(R): This satis�es

�(2=T )~̀R(R) = log det(SRR) + log det(IdimR + h)

where h = �DRS��1RR (S
�
RWH�0+H�S�WR)+D2RS��1RRH�S�WWH�0: Apply the log expan-

sion in Lemma B.5. Rearrange to get an expansion in DR which is

log det(I + h) = �2DRtrfS��1RRS
�
RWH�0g+D2Rftr(S��1RRH�S�WWH�0)� tr(B2)=2g

+D3R(BS��1RRH�S�WWH�0=2� B3=3) + O(D4R);

where B = S��1RR (S
�
RWH�0 +H�S�WR): By considerations as above it is seen that B =

o(T�3=4�T� ) and the derivatives satisfy

~̀0
R(R�) = T 1=2trfH�0S��1RR �̂RWgN�1

W ;
~̀000
M(R�)

a:s:
= o(T�3=4�3T� );

~̀00
M(R�)

a:s:
= �T tr(H�0S��1RRH�)��WWN

�2
W f1 + o(1)g:

Term ~̀R��(R): Same derivation as for ~̀R(R) replacing SRR, SRW and SWW by
SRR��, SRW �� and SWW �� = SWWf1 + o(1)g:

The expressions for the ~̀0 and ~̀00 are simpli�ed using the parameter � �? from (B.10).
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Lemma B.8 Assume A, B, C. Under HB then

~̀0(R�)
a:s:
= �T� f� �0?
�1� �̂"W + o(T�1=4)g

�~̀00(R�)
a:s:
= �2T� �

�0
?


�1
� �

�
?�

�
WWf1 + o(1)g:

Proof of Lemma B.8. Product moment matrices. Recall from (B.7) that
�1Dt = (!�; ��0)R�

t + "
�
D�M;t and note !

� = ���1MM�
�
DM : It holds, for all � > 0; see

Lemma B.1(i,vii),

S�RR
a:s:!

�
��MM 0
0 ��UU

�
; (B.24)

S�R�
a:s:
=

�
��MM!

�

��UU�
�

�
=

�
��DM
��UU�

�

�
+ o(T ��1=2): (B.25)

Since �1Dt also satis�es �1Dt = �
�0R�

t + "
�
D;t then

S��
a:s:
= ��DD + �

�0��UU�
� + o(T ��1=2): (B.26)

Moreover, exploiting �1Dt = (!
�; ��0)R�

t + "
�
D�M;t and "

�
D;t = "

�
D�M;t + !

�"�M;t it holds

TSRW =
TP
t=1

�
"�M;t
U�t�1

�
W �
t�1; TS�W = �̂�W = (1; �0)

TP
t=1

�
"�D;t
U�t�1

�
W �
t�1: (B.27)

Information. Combine the expressions (B.24), (B.25), (B.26) to get

S�RR�� = S
�
RR � S�R�S�1��S��R

a:s:!
�
��MM 0
0 ��UU

�
�
�

��DM
��UU�

�

�
2
1

��DD + �
�0��UU�

� :

The partitioned inversion formula A�111�2 = A�111 + A
�1
11 A12A

�1
22�1A21A

�1
11 shows, noting

that !� = ���1MM�
�
DM ;

S��1RR�� � S��1RR

a:s:
=

�
���1MM 0
0 ���1UY

��
��DM
��UU�

�

�
(��DM ; �

�0��UU)

�
���1MM 0
0 ���1UU

�
��DD + �

�0��UU�
� � (��DM ; ��0��UU)

�
���1MM 0
0 ���1UU

��
��DM
��UU�

�

� + o(T�1=4)
=

1

��DD�M

�
!�

��

�
2
+ o(T�1=4): (B.28)

Further, note that S�"M"M
a:s:! ��MM while the de�nition of � �? in (B.10) implies

(!�; ��0)H = (!�;�1)� �?; G� = (1; 0)� �?: (B.29)
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Combining these expressions shows

G�2S��1"M"M
+H0(S�1RR�� � S�1RR)H

a:s:! � �0?f��1MM

�
1
0

�
2
+ ��1DD�M

�
!�

�1

�
2
g� �?:

Finally, the desired expression follows since by partitioned inversion


�1� = ��1MM

�
1
0

�
2
+ ��1DD�M

�
!�

�1

�
2
: (B.30)

Score. Combine (B.25), (B.26), (B.27) to get

�̂RW �� = �̂RW � S�R�S�1���̂�W
a:s:
= �̂RW �

1 + o(T ��1=2)

��DD + �
�0��UU�

�

�
��DM
��UU�

�

�
(1; ��0)�̂�W :

In a similar way write

S��1RR �̂RW = S��1RR��S
�
RR��S

��1
RR �̂RW

a:s:
= S��1RR��fI2 �

�
��DM
��UU�

�

�
1 + o(T ��1=2)

��DD + �
�0��UU�

�g(!�; ��0)�̂RW :

These expression combine as

S��1RR���̂RW �� � S��1RR �̂RW

a:s:
= S��1RR��

f1 + o(T ��1=2)g
��DD + �

�0��UU�
�

�
��DM
��UU�

�

�
f(!�; ��0)�̂RW � (1; ��0)�̂�Wg:(B.31)

Noting that, see (B.27),

�̂RW =

�
(1; 0)�̂"W
�̂UW

�
; �̂�W =

�
(0; 1)�̂"W
�̂UW

�
;

it is seen that (!�; ��0)�̂RW � (1; ��0)�̂�W = (!�;�1)�̂"W : The expression for S�1RR��
in (B.28) implies

S��1RR��

�
��DM
��UU�

�

�
a:s:
= f

�
���1MM 0
0 ���1UU

�
+

1

��DD�M

�
!�

��

�
2
g
�

��DM
��UU�

�

�
+ o(T ��1=2)

=

�
!�

��

�
��DD + �

�0��UU�
�

��DD�M
+ o(T ��1=2);
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where (!�; ��0)H� = (!�;�1)� �? by (B.10). Inserting these results in (B.31) shows

H�0(S��1RR���̂RW �� � S��1RR �̂RW )
a:s:
= � �0?

�
!�

�1

�
2
���1DD�M �̂"Wf1 + o(T ��1=2)g:

Further, note that S�"M"M
a:s:
= ��MM + T�1=4 and �̂"MW = (1; 0)�̂"W along with the

identies (B.29) to see

GS�1MM �̂"MW
a:s:
= ��1MM�

�0
?

�
1
0

�
2
�̂"Wf1 + o(T ��1=2)g:

Combining the two last expressions and noting �̂"W = o(T 1=4��) for some � > 0 shows

GS�1MM �̂"MW +H0(S��1RR���̂RW �� � S��1RR �̂RW )

a:s:
= � �0?f��1MM

�
1
0

�
2
+ ��1DD�M

�
!�

�1

�
2
g�̂"W + o(T�1=4):

Finally, the desired result follows by the partitioned inversion formula (B.30).

B.5 Improving the rate of consistency

Lemma B.9 Consider the maximum likelihood estimators in model M1DSB. Assume
A, B, C. Then R̂�R = o(T 1=4��T ) a:s:

Proof of Lemma B.9. Lemma B.4 shows that R̂ � R� = o(T 1=2��T ): Thus
it su¢ ces to analyse the pro�le likelihood `(R) in a neighbourhood of R�: Lemma
B.6 shows that the pro�le likelihood `(R) is maximised by maximising ~̀(R) up to an
error of order o(1) uniformly over intervals jR�R�j � cT 1=2��T� for any c > 0: Thus,
consider the approximate score equation

0 = ~̀0(R) = ~̀0(R�) + ~̀
00(R�)(R�R�) +

1

2
~̀000(R�)(R� �R�)2

for some R� so jR� �R�j � jR�R�j: Thus it holds

R�R� =
~̀0(R�) + 2

�1 ~̀000(R�)(R� �R�)2

�~̀00(R�)
: (B.32)

Insert the results of Lemma B.7 to get the desired result.
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Lemma B.10 Consider the maximum likelihood estimators in model M1DSB. As-
sume A, B, C. Then
(i) R̂�R�

a:s:
= f�~̀00(R�)g�1 ~̀0(R�) + o(T�1=4��T� ):

(ii) �T� (R̂�R�)� �?
a:s:
= P��?�̂"W�

��1
WWf1 + o(1)g+ o(1):

Proof of Lemma B.10. (i) Lemma B.9 shows that R̂ � R� = o(T 1=4��T ).
Insert this and the results of Lemma B.7 into (B.32) to get

R̂�R� = f�~̀00(R�)g�1 ~̀0(R�) + f�2~̀00(R�)g~̀000(R�)(R� �R�)2

where jR� � R�j � jR̂ � R�j: The second term is o(T�3=4�3T� )(T
1=4��T� )2��2T� =

o(T�1=4��T� ) so (i) follows.
(ii) Insert the expressions in Lemma B.8 into (i) so that

R̂�R�
a:s:
=
�T� f� �0?
�1� �̂"W + o(T�1=4)g

�2T� �
�0
?


�1
� �

�
?�

�
WW

f1 + o(1)g+ o(��T� ):

Rearrange to get the desired result.

B.6 Asymptotic distribution of estimators

Theorem B.11 Consider the maximum likelihood estimators in model M1DSB. As-
sume A, B, C. Then
(i) f(

PT
t=1M

2
t )
1=2(!̂ � !�); (

PT
t=1 U

2
t )
1=2(�̂ � ��)g D! N(0; �2DD�MI2k�1):

(ii) �̂MM ! �MM ; �̂DD�M ! �DD�M a:s:
(iii) Let H = (� �0?


�1
� �

�
?)
�1=2� �0?


�1
� f
PT

t=1 �
2(t�T )g�1=2

PT
t=1 �

t�T "�t : Then it holds
f�`00(R̂)g1=2(R̂�R�) = H + o(1) a:s:

(iv) If (� �0?

�1
� �

�
?)
�1=2� �0?


�1
� "

�
t are independent N(0; 1) then H is N(0; 1):

Proof of Theorem B.11. (i) Since �̂ � �� = o(T 1=4��T� ) by Lemma B.9 and
since �1Dt = (!

�; ��0)R�
t + "

�
D�M;t then Lemma B.2 implies that

(!̂ � !�; �̂0 � ��0)(
TP
t=1

R
2
t )

1=2 =
TP
t=1

"�D�M;tR0
t(

TP
t=1

R
2
t )

�1=2

a:s:
=

TP
t=1

"�D�M;tR�0
t (

TP
t=1

R�
2
t )�1=2 + o(1):;

which is asymptotic normal. Similarly
PT

t=1R
2
t =

PT
t=1R�
2

t f1 + o(1)g where R�
t

has asymptotically uncorrelated components "�M;t; U
�
t�1:

(ii) First, consider �̂MM = T�1
PT

t=1M
2
t : Since �̂ � �� = o(T 1=4��T� ) by Lemma

B.9 then Lemma B.2 implies �̂MM = T�1
PT

t=1M
�2
t +o(1) which has the desired limit.
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Secondly, consider �̂DD�M = T�1
PT

t=1(�1DtjRt). Noting �1Dt = (!�; ��0)R�
t +

"�D�M;t then in the same way Lemma B.2 implies �̂DD�M = T�1
PT

t=1 "
�2
D�M;t + o(1)

which has the desired limit.
(iii) Combine Lemmas B.6, B.8, B.10(ii) to see that

f�`00(R̂)g1=2(R̂�R�)
a:s:
= (� �0?


�1
� �

�
?)
�1=2� �0?


�1
� �̂"W�

��1=2
WW + o(1):

then �T� (R̂�R�) = (� �0?
�1� � �?)�1� �0?
�1� �̂"W���1WWf1+o(1)g+o(1) a:s: By an argument
as in Anderson (1959), see also Nielsen (2010, Theorem 4) then H = �̂"W�

��1=2
WW =

f
PT

t=1 �
2(t�T )g�1=2

PT
t=1 �

t�T "�t + o(1) giving the desired result.
(iv) Under the normality assumption then H is a linear combination of normals,

so normal itself.

B.7 Likelihood in restricted model

Lemma B.12 Consider the maximum likelihood estimators in model M1DSB. As-
sume A, B, C. Then

2`(R̂)
a:s:
= �T log det(S�"") + ��1DD�M �̂"D�MU���1UU �̂U"D�M

+ tr(
�1� P��?�̂"W�
��1
WW �̂W") + o(1):

Proof of Lemma B.12. The pro�le log likelihood is given in Lemma B.6 as

2f`(R̂)� `(R�)g = 2f~̀(R̂)� ~̀(R�)g+ o(1): (B.33)

Expanding ~̀(R̂) around R� then gives

2f~̀(R̂)� ~̀(R�)g = 2~̀0(R�)(R̂�R�) + ~̀00(R�)(R̂�R�)2 +
1

3
~̀000(R�)(R� �R�)3:

where jR� � R�j � jR̂ � R�j: Insert the expression for R̂ � R� from Lemma B.10(i)
and use the bound R̂�R� = o(T 1=4��T� ) from Lemma B.4 to get

2f~̀(R̂)� ~̀(R�)g
a:s:
= �f~̀00(R�)g�1f~̀0(R�)g2

+ofT�1=4��T� ~̀0(R�) + �
�2T
�

~̀00(R�) + T
3=4��3T�

~̀000(R�)g:

Insert the bounds and the expressions for the derivatives established in Lemmas B.7,
B.8 to see

2f~̀(R̂)� ~̀(R�)g
a:s:
= ��

2T
� f� �0?
�1� �̂"W + o(T�1=4)g2

�2T� �
�0
?


�1
� �

�
?�

�
WW

+ o(1):
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Noting that �̂"W = o(T 1=4) this reduces to

2f~̀(R̂)� ~̀(R�)g
a:s:
= �(� �0?
�1� � �?)�1� �0?
�1� �̂"W���1WW�

�
W"


�1
� �

�
? + o(1):

Taking trace and rearranging shows

2f~̀(R̂)� ~̀(R�)g
a:s:
= tr(
�1� P��?�̂"W�

��1
WW�

�
W") + o(1)

Insert this in (B.33) and use the expression for 2`(R�) in Lemma B.3.

B.8 Likelihood in unrestricted model

The unrestricted model M1D is now analysed. An expression for the likelihood value
was given in Nielsen (2010) but this is not directly applicable here and needs to be
elaborated. Lemma A.12 of the same paper gives an improved consistency rate for
some of the parameters of M1D. That result is now extended for all parameters. For
results in the unrestricted model the data generating process is

�1���Xt = �
�
1�

��0
1 ���X

�
t�1 + �

�
��

�0
��1Xt�1 +

k�2P
j=1

��j�1���Xt�j + "
�
t :

where ��1 = (�01; �
0)0 and ���X

�
t�1 = (���Xt�1; 1): This of course encompasses the

data generating process (B.7) under M1DSB:

Lemma B.13 Suppose M1D holds with �� � % for some % > 1: Assume A, B, C.
Recall the de�nitions of � �?;P��? ;P

�
� in (B:8); (B:9): Then

(i) �̂�� = T�1=2�̂"U��1UU + oP(T��) = OP(T�1=2):
(ii) ��1(�̂

�D
1 � ���1 )0�̂

�D
1?N

�1
V = T�1=2P���̂"V �̂�1V V + oP(T�1=2) = OP(T�1=2):

(iii) ��T� ��D0
PT

t=1 "̂
D
t W

�
t�1 = �

�T
� � �0

PT
t=1 "

�
tW

�
t�1 + oP(1):

(iv) 
̂D � 
� = T�1
PT

t=1f("�t )
2 � 
�g+ oP(T�1=2) = OP(T�1=2):
(v) � �?(�̂H���) = P�?

PT
t=1 "

�
tW

�
t�1f

PT
t=1(W

�
t�1)

2g�1f1+OP(T�1=2)g+oP(T�1=4��T� ):

Proof of Lemma B.13. Product moments. Let UDt�1; V
D
t�1 denote Ut�1; Vt�1

computed at �̂D: Combine (A.12) and the �rst display on p.911 of Nielsen (2010) to
get 0BBB@

ŜUU ŜUV ŜU" ŜUW
� ŜV V ŜV " ŜVW
� � Ŝ"" Ŝ"W
� � � ŜWW

1CCCA =
1

T

TP
t=1

0BB@
UDt�1
NV V

D
t�1

"�t
NWW

�
t�1

1CCA

2

(B.34)

=

0BB@
�UU + oP(1) oP(T

��=2) T�1=2f�̂U" + oP(1)g oP(T
��=2)

� �̂V V + oP(1) T�1=2f�̂V " + oP(1)g oP(T
��=2)

� � 
� + oP(1) T�1=2�̂"W
� � � �WW + oP(1)

1CCA
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where �̂W" = �
�T
�
PT

t=1W
�
t�1"

�
t ; �̂U" = T

�1=2PT
t=1 U

�
t�1"

�
t ; �̂V " = T

�1=2NV
PT

t=1 V
�
t�1"

�
t ;

and �̂V V = T�1
PT

t=1(NV V
�
t�1)


2:
(i) The estimator for �̂ is then

�̂ =
TP
t=1

(�1��̂Xt)(U
D
t�1)

0f
TP
t=1

(UDt�1)

2g�1:

An equation shown in the proof of Lemma A.7 of Nielsen (2010) gives

�1��̂Xt = "
�
t + (�+�̂U)U

D
t�1 + �̂VNV V

D
t�1 + �̂WW

�
t�1; (B.35)

where �̂U = (�̂D���)f��1=(1��̂D);��	D�̂ �1; �̂0D
Pk�2

j=1 �
�
j ; :::; �̂

k�3
D

Pk�2
j=k�2�

�
jg and �̂V =

��1�
��0
1 �̂

�D
1?N

�1
V (1� ��)=(1� �̂D) and �̂W = �(�̂D � ��)��D? : It follows that

�̂�� =
TP
t=1

"�t (U
D
t�1)

0f
TP
t=1

(UDt�1)

2g�1

+�̂U +
TP
t=1

(�̂VNV V
D
t�1 + �̂WW

�
t�1)(U

D
t�1)

0f
TP
t=1

(UDt�1)

2g�1:

Lemma A.11 of Nielsen (2010) shows that T 1=2�T� (�̂D � ��) and �
��0
1 �̂

�D
1?N

�1
V are

oP(T
��=2): This implies that �̂U ; �̂W = oP(�

�T
� T (1��)=2) and �̂V = oP(T

��=2): From
(B.34) it follows that

�̂�� = fT�1=2�"U + oP(T�1=2) + oP(T��)gf��1UU + oP(T��=2)g
+oP(�

�T
� T (1��)=2) + oP(T

��=2)oP(T
��=2) + oP(�

�T
� T (1��)=2)oP(T

(�1��)=2�T� ):

By Assumption B then � > 1=2 and the desired result follows.
(ii; iii) Statement of Lemma A.12(ii; iii) of Nielsen (2010).
(iv) The variance estimator is 
̂D = T�1

PT
t=1(�1��̂XtjUDt�1)
2: Due to (B.35)

then


̂D = T
�1

TP
t=1

("�t + �̂VNV V
D
t�1 + �̂WW

�
t�1jUDt�1)
2:

From (ii; iii) it follows that �̂V = �T�1=2P���̂"V �̂�1V V+oP(T��) = OP(T�1=2). Inserting
this and using (B.34) it follows that 
̂D = S�"" + T

�1G where

G = ��"U��1UU�U" + oP(1) + �̂WoP(�T� T�1��=2)
+P���̂"V �̂�1V V �̂V "P�0� � P���̂"V �̂�1V V �̂V " � �̂"V �̂�1V V �̂V "P�0�
+�̂W �̂WW �̂

0
Wf1 + oP(T�1=2)g+ ��T� (�̂W �̂W" + �̂"W �̂

0
W ):
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Since �̂W = oP(�
�T
� T (1��)=2); �̂WW = O(1) and SW" = oP(T

(1��)=2) and � > 1=2 then

G = ��"U��1UU�U" + P���̂"V �̂�1V V �̂V "P�0� � P���̂"V �̂�1V V �̂V " � �̂"V �̂�1V V �̂V "P�0�
+�̂W �̂WW �̂

0
W + �

�T
� (�̂W �̂W" + �̂"W �̂

0
W ) + oP(1); (B.36)

and G = oP(T 1=2): It follows that 
̂D = S�"" + oP(T
�1=2): Since S�"" = 
� +OP(T

�1=2)
the desired result follows.
(v) Lemma A.9 of Nielsen (2010) shows

�̂D0? 
̂
�1
D �

T
� (�̂H � ��)(��D? ŜWW �U � P̂���D? ŜWV �U Ŝ

�1
V V �U ŜVW �U)

= T 1=2�̂D?
̂
�1
D (Ŝ"W �U � P̂�Ŝ"V �U Ŝ�1V V �U ŜVW �U)

where P̂� = ��1(�̂
D0
1 
̂

�1
D ��1)

�1�̂D01 
̂
�1
D . Exploit the T

1=2-order of the �; �; � ;
 estima-
tors by (i; iii) as well as premultiplying the equation by � �?(�

�0
?


�1
� �

�
?)
�1 and post-

multiplying by Ŝ�1WW to get

� �?�
T
� (�̂H � ��) = f�T� (�̂H � ��)P�?P��� �?ŜWV �U Ŝ

�1
V V �U ŜVW �U Ŝ

�1
WW �U

+ P�?T 1=2(Ŝ"W �U � P��Ŝ"V �U Ŝ�1V V �U ŜVW �U)Ŝ
�1
WW �Ugf1 + OP(T�1=2)g:

Exploit the T�1=4�T� consistency of �̂H as well as (B.35) to get the desired result.

An expansion is needed for the variance estimator 
̂D in the unrestricted model
M1D. Theorem 3 of Nielsen (2010) shows that the estimator 
̂D; called 
̂H in that
paper, is consistent.

Lemma B.14 Suppose M1D holds with �� � % for some % > 1: Assume A, B, C.
Then

2^̀1D = �T log detS"�"� + tr(
�1� �̂"U��1UU �̂U")
+tr(
�1� P���̂"V��1V V �̂V ") + tr(
�1� P��?�̂"W �̂

�1
WW �̂W") + oP(1):

Proof of Lemma B.14. Combine (B.36) where �̂W = �(�̂D � ��)��D? with
Lemma B.13(v) to get 
̂D = S"�"� + T�1G where

G = ��̂"U��1UU �̂U" + P���̂"V �̂�1V V �̂V "P�0� � P���̂"V �̂�1V V �̂V " � �̂"V �̂�1V V �̂V "P�0�
+P��?�̂"W �̂

�1
WW �̂W"P�0�? � P

�
�?
�̂"W �̂

�1
WW �̂W" � �̂"W �̂�1WW �̂W"P�0�? + oP(1):

Use the log determinant expansion in Lemma B.5 to get

2^̀1D = �T log det 
̂D = �T log detS"�"� � tr(
̂�1D G):
Since 
̂D is consistent and P�0� 
�1� P�� = 
�1� P�� and P�0� 
�1� P�� = 
�1� P�� and using
the symmetry of the trace then

�tr(
̂�1D G) = trf
�1� (�̂"U��1UU �̂U" + P���̂"V��1V V �̂V " + P��?�̂"W �̂
�1
WW �̂W"g+ oP(1):

Insert this in the expression for 2^̀D to get the desired result.
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B.9 Proof of main theorem

Proof of Theorem 4.1. It holds that

LR(HB;HSjM1D) = 2^̀1D � 2^̀1DSB

Inserting results from Lemmas B.12, B.14 gives

LR = f�T log detS"�"� + tr(
�1� �̂"U��1UU �̂U") + tr(
�1� P���̂"V��1V V �̂V ")
+tr(
�1� P��?�̂"W �̂

�1
WW �̂W")g � f�T log det(S�"")

+��1DD�M �̂"D�MU�
��1
UU �̂U"D�M + tr(


�1
� P��?�̂"W�

��1
WW �̂W")g+ oP(1):

This reduces to

LR = tr(
�1� �̂"U�
�1
UU �̂U")� ���1DD�M �̂"D�MU�

�1
UU �̂U"D�M

+ tr(
�1� P���̂"V��1V V �̂V ") + oP(1):

In the �rst term partitioned inversion of 
�1� gives

tr(
�1� �̂"U�
�1
UU �̂U") = �

��1
MM �̂"MU�

�1
UU �̂U"M + �

��1
DD�M �̂"D�MU�

�1
UU �̂U"D�M

so the test statistic satis�es

LR = ���1MM �̂"MU�
�1
UU �̂U"M + tr(


�1
� P���̂"V��1V V �̂V ") + oP(1):

Since "M;t; Ut�1 are mutually independent a martingal central limit theorem, see
Brown and Eagleson (1971), gives that the �rst term is asymptotically �2 with
dimU = 2k � 2 degrees of freedom.
The term P���̂"V is the stochastic integral of B1;t;T = NV V �t�1 with respect to c =

T�1=2
Pt

s=1 �
�0
1 


�1
� "s: The processB1;t;T is a function of T

�1=2Pt
s=1 �

�0
1?"s: Thus, B1;t;T

andB1;t;T converge to asymptocally independent processes, so by a mixed Gaussian ar-
gument, see Johansen (1995, §13.1), the last term is �2 with dim(��01 


�1
� "t) dim(V ) =

2 degrees of freedom.
It is left to argue that the last term is asymptotically independent of the previ-

ous two. The last one is based on the processes B1;t;T ; B1;t;T which are asymptoti-
cally independent of �̂"M"D�M ; �̂"MU ; see Chan and Wei (1988, Theorem 2.2). Since
�̂"V ; �̂V V are functionals of B1;t;T ; B1;t;T then �̂"V ; �̂V V are asymptotically indepen-
dent of �̂"M"D�M ; �̂"MU :
It then follows that LR is asymptotically �2 with (2k � 2) + 2 = 2k degrees of

freedom.
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