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Summary: We consider the identification problem for the model of Lee and
Carter (1992). The parameters of this model are known only to be identi-
fied up to certain transformations. Forecasts from the model may therefore
depend on the arbitrarily chosen identification scheme. A condition for in-
variant forecasts is proposed. A number of standard forecast models are
analyzed.
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1 Introduction

The model of Lee and Carter (1992) is used widely in demography, actuarial
mathematics, and social sciences. It describes the logarithm of mortality
through two interlinked time scales

µx,t = αx + βxκt, (1)

where x = 1, . . . , X is the age and t = 1, . . . , T is the calendar time. Lee
and Carter (1992) recognised from the outset that this paramerization is not
identified and suggested a particular identification scheme. An important
part of the model is that it is easy to extrapolate the time-varying parameter
κt in order to make forecasts of future mortality. Other identification schemes
could, however, be used. It is therefore important to chose an extrapolation
method, so that the forecast of future mortality does not depend on the
particular identification scheme.

This type of issue is common for over-parametrized models where it is of
interest to interpret and forecast the parameters involved. The problem has
recently been analysed for the age-period-cohort model by Kuang, Nielsen
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and Nielsen (2008a,b, 2010). In that work it is characterized which plots of
the estimated age-period-cohort parameters are meaningful and which are
not meaningful and it is characterized which forecast methods are invariant
to arbitrary identification schemes. Here the same analysis is made for the
Lee-Carter model. It is found that when the calendar parameter is identified
by an arbitrary identification scheme such as that proposed by Lee and Carter
then forecasts must be location-scale preserving. It is interesting to note that
the issues that arise for the age-period-cohort model forecasts of arbitrarily
identified parameters have to be linear-trend preserving. The implications
for applied work are therefore somewhat different for the Lee-Carter model
and the age-period-cohort model.

In practice Lee-Carter models are often applied to different data sets
such as for women and men or for different countries. It is then of interest
to compare the estimated calendar effects from different data sets. Due to
the identification issue this has to be done with some care.

2 Identification

Lee and Carter (1992) describe the over-parametrization issue as follows.
Suppose that a set of parameters

θ = (α1, . . . , αX , β1, . . . , βX , κ1, . . . , κT ) ∈ R2X+T

is given. Then for any scalar c and any scalar d 6= 0 it holds that

µx,t = αx + βxκt = (αx − βxc) + (
βx

d
) {d(κt + c)} . (2)

This shows that the parametrization θ is equivalent to a parametrization θ†

where α†x = αx − βxc, β†x = βx/d, κ†t = d(κt + c). There are two approaches
to address this lack of identification. The first approach is to construct a
new parametrization which is invariant to the identification problem. Such a
parametrization is suggested below. This parametrization can be estimated,
interpreted and extrapolated freely without any worries about the identi-
fication issue. The second approach, which is used in the literature, is to
choose some arbitrarily chosen identification scheme which also solves the
estimation problem. However, interpretation and extrapolation have to be
done with great care to ensure that this is invariant to the arbitrarily chosen
identification scheme.
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The standard identification choice is that of Lee and Carter (1992). They
suggested a parameter θ◦, say, by the identifying constraints

∑X
x=1 β◦x = 1

and
∑T

t=1 κ◦t = 0, which implies that α◦x has interpretation as the average

over time of µx,t, that is α◦x = T−1
∑T

t=1 µx,t.
A noteworthy alternative identification scheme was also mentioned by

Lee and Carter (1992, §6). This is to let α∗x = µx,T , which comes about
by choosing β∗1 = 1 and κ∗T = 0. This parametrisation can be derived
from the standard Lee-Carter identification using the relations (2). With
the standard identification it holds µ1,T = α◦1 + β◦1κ

◦
T while the second iden-

tification gives µ1,T = α∗1 + β∗1κ
∗
T = α∗1 where α∗1 = α◦1 − β◦1c, which shows

that c = −κ◦T . Moreover, the second identification gives β∗1 = 1 where
β∗1 = β◦1/d showing that d = β◦1 . The opposite transformation back to
the standard Lee-Carter identification is then given by c†, d† solving simi-
lar equations. First, by the Lee-Carter identification 1 =

∑X
x=1 β◦x where

β◦x = β∗x/d
† showing d† =

∑X
x=1 β∗x. Secondly, by the Lee-Carter identification

α◦1 = T−1
∑T

t=1 µ1,t = α∗1 − β∗1c
† while T−1

∑T
t=1 µ1,t = α∗1 + β∗1T

−1
∑T

t=1 κ∗t
with β◦1 = 1 showing that c† = −T−1

∑T
t=1 κ∗t .

In the following it is checked that the standard Lee-Carter identification
identifies the parameters uniquely. The proof is inspired by Kuang, Nielsen
and Nielsen (2008a) and is given in the appendix.

Theorem 1 Let µ = (µx,T , x = 1, . . . , X, t = 1, . . . , T ), where µx,t satis-
fies (1) for some θ. Then the standard Lee-Carter parametrization θ◦ where∑X

x=1 β◦x = 1 and
∑T

t=1 κ◦t = 0, satisfies

(i) θ◦ is a function of θ.

(ii) µ is a function of θ through θ◦.

(iii) The parametrization of µ by θ◦ is exactly identified. That is, if θ† 6=
θ‡ are two parameters satisfying the standard Lee-Carter identification
then µ(θ†) 6= µ(θ‡).

(iv) Equivalent results could be formulated for parametrizations θ† implied
by (2) for arbitrary choices of c and d 6= 0.

The transformation (2) shows that a graph of estimated calendar param-
eters κ̂t can be interpreted up to scale and location. In other words the y-axis
of the graph does not have any particular meaning. This is not a problem
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when looking at a single graph from a single data set. As will be discussed
below, problems can arise when comparing estimates from different samples
or when extrapolating.

The age-period model, µx,t = αx + βt, and the age-period-cohort model,
µx,t = αx + βt + γx−t + δ, have related but different interpretational issues as
discussed in Kuang, Nielsen and Nielsen (2008a). In the age-period model
parameters are determined up to their location since µx,t = (αx + c) + (βt −
c). This means that the estimated scale is comparable accross datasets,
whereas the levels are not. For the age-period-cohort model parameters are
determined up to linear trends since µx,t = (αx + a − dx) + (βt + b + dt) +
{γx−t + c + d(x − t)} + (δ − a − b − c). In that case parameters are only
interpretable up to an arbitrary linear trend, which in practice makes them
uninterpretable even when looking at a single data set.

The arbitrariness of the above mentioned parametrizations can be avoided
through a parametrization which is invariant to the transformations outlined
in (2). A parametrization that is a maximal invariant under those transfor-
mations can be constructed by choosing a suitable (2X +T − 2)-dimensional
subset of the parameters µt,x. To do this note that the model expression (1)
implies that

βx

β1

=
µx,T − µx,1

µ1,T − µ1,1

, β1(κt − κ1) = µ1,t − µ1,1, αx + βxκ1 = µx,1. (3)

It then follows that the original parameter µx,t satisfies the relation

µx,t = µx,1 +
µx,T − µx,1

µ1,T − µ1,1

(µ1,t − µ1,1). (4)

This shows that µx,t is a function of

µ1,1, . . . , µX,1, µ1,T − µ1,1, . . . , µX,T − µX,T , µ1,2 − µ1,1, . . . , µ1,T−1 − µ1,1,

or equivalently of the parameter vector

ξ = (µ1,1, . . . , µX,1, µ1,T , . . . , µX,T , µ1,2, . . . , µ1,T−1)
′ ∈ R2X+T−2. (5)

As the invariance issue only relates to the parameters θ and not to the pa-
rameter µ from which ξ is defined then ξ is invariant. The parameter ξ is
also a maximal invariant since for ξ† 6= ξ‡ then µ(ξ†) 6= µ(ξ‡). Therefore ξ is
the basis for a unique parametrization of µ/ These results are summarized
as follows.

4



Theorem 2 The parameter ξ ∈ R2X+T−2 is a maximal invariant of θ under
the transformations (2) and satisfies

1. for any θ then µ is a function of θ through ξ due to (4),

2. for any ξ 6= ξ† then µ(ξ) 6= µ(ξ†).

Since ξ is a maximal invariant any plot based on ξ is meaningful. A
plot of the calendar effect with a meaningful scale can therefore be done by
plotting µ1,t or, equivalently, µx,t. The plot of µx,t will show the development
in mortality over time for individuals of age x. Alternatively, a plot of µx,t−
µx,1 = βx(κt−κ1) will avoid the parameter αx,t. Such plots based on different
data sets are comparable accross datasets.

Parameters following a particular identification scheme can be recovered
from the invariant parametrization. With the identification β∗1 = 1 and
κ∗T = 0 the individual parameters are recovered by

α∗x = µx,T , β∗x =
µx,T − µx,1

µ1,T − µ1,1

, κ∗t = µ1,t − µ1,1.

Likewise, with the Lee-Carter identification
∑X

x=1 β◦x = 1 and
∑T

t=1 κ◦t = 0
then α◦x = µx,t − β◦xκ

◦
t where

β◦x =
µx,2 − µx,1∑X

i=1(µi,2 − µ1,i)
, κ◦t =

(µx,t − µx,1)− 1
T

∑T
j=1(µx,j − µx,1)

β◦x
.

A consequence of the latter derivation is that Lee-Carter β◦x-parameters will
be differ by a scale factor when applied to a full data set on the one hand
and a sub-set of the data only including ages up to age X0 say. This in turn
implies that the κ◦t -parameters will differ by a scale factor in the full data and
in the sub-set. This effect will also be found when comparing two unrelated
data sets.

3 Forecasting

Suppose now that an estimate θ̂ is available for a particular identification
scheme for the original parameter θ. The aim is to forecast µx,t for some
t = T + h beyond the last observed period T . This is done by extrapolating
the time-varying parameter estimates κ̂t into κ̃T+h and then constructing
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the forecast as µ̃x,T+h(θ̂) = α̂x + β̂xκ̃T+h. The forecast is age-specific which
Lee and Carter (1992) saw as an advantage although it comes about in a
somewhat uncontrolled fashion which has prompted extentions and variations
of the model in various directions, see for instance Girosi and King (2008).
However, the question of interest here is whether the forecast depends on
the chosen parametrization. Ideally the forecast should be invariant to the
parametrization but this invariance will depend on the choice of forecasting
method. Two approaches that give invariant forecasts are discussed in the
following.

The first approach is to base forecasts on the maximal invariant ξ given
in (5). Suppose an estimate ξ̂ is available which implies a series µ̂1,t for
t = 1, . . . , T . Since this series is invariant to the transformations in (2) then
an h-step ahead forecast µ̃1,T+h based on µ̂1,t for t = 1, . . . , T will also be
invariant regardless of the forecasting method applied.

The second approach is to use an identification such as the Lee-Carter
identification and choose forecasts which are invariant. To characterize the
invariant forecast methods transform θ into θ† by (2) and apply the forecast
chosen rule, κ̃T+h(κ̂

†), that is

µ̃x,T+h(θ̂
†) = α̂†x + β̂†xκ̃T+h(κ̂

†) = (α̂x − β̂xc) + (
β̂x

d
)κ̃T+h{d(κ̂ + c)}.

This forecast will be invariant to the chosen identification scheme when this
expression does not depend on the arbitrary constants c, d. A condition for
invariance then follows.

Theorem 3 The forecast µ̃x, T + h is invariant to the identification scheme
if and only if for arbitrary c and d 6= 0

κ̃T+h{d(κ̂ + c)} = dκ̃T+h(κ̂) + dc.

In other words, the forecast method for the time-varying component κt must
be location-scale preserving.

It is interesting to compare this result with the corresponding result for
the age-period-cohort model in Kuang, Nielsen and Nielsen (2008b). For that
model forecasts of for instance the period parameter must be location and
trend preserving, but need not preserve the scale.

Fortunately there are many location-scale preserving forecasts. First of
all, the forecast method preferred by Lee and Carter (1992) is location-scale
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preserving. This is a random walk with an estimated intercept:

κ̃T+h = κ̃T+h−1 + νc + εh,

where νc is estimated by the average of growth rates ν̂c = (T−1)−1
∑T

t=2(κ̂t−
κ̂t−1). For a moment let εh = 0 so as to focus on point forecasting. The
point forecast is a linear trend: κ̃T+h = κ̂T + ν̂ch. This is location-scale
preserving since κ̂T is location-scale preserving and ν̂c is location invariant,
that is κ̃T+h{d(κ̂ + c)} = d(κ̂T + c) + dν̂ch = dκ̃T+h(κ̂) + dc. Note that the
slope of line, in h, is dν̂c which is proportional to the arbitrarily chosen scale
coefficient d. The coefficient d or equivalently the scaling of βx and hence of
κt may be different for different samples and have to be handled with care
as discussed in §4.

Theorem 3 also covers distribution forecasts. To see this include random
innovations εh in the derivations above to generate a random walk around
the linear trend. Suppose εh is chosen as zero-mean normal with variance
σ̂2(κ̂) = (T − 2)−1

∑T
t=2(κ̂t − κ̂t−1 − ν̂c)

2. Then it holds that the standard
error is location invariant and scale preserving in that σ̂{d(κ̂ + c)} = dσ̂(κ̂).
When combined with the linear trend which is location-scale preserving the
overall forecast is location-scale preserving.

For the above Lee-Carter forecast the intercept may be substantially im-
portant in generating a linear trend. When evaluating this forecast in terms
of its location-scale preserving properties the intercept is, however, not cru-
cial. The pure random walk model κ̃T+h = κ̃T+h−1+εh would also be location-
scale preserving. Both of these methods evolve around random walks and are
characterised as I(1)-methods in the econometric literature. If the estimates
κ̂t are trending but not exactly linearly trending it may be appropriate to
forecast using a cummulated random random walk which extrapolates the
linear trend in the last two estimates κ̂T−1, κ̂T . This would be called an
I(2)-method.

Methods that are based on stationary time series can also be location-
scale preserving. Such methods are called I(0)-methods. For these methods
it is important to include an intercept. Some simple examples of location-
scale preserving forecasts are the average κ = T−1

∑T
t=1 κ̂t and the estimate

for the last observed calendar time κ̂T , as well as a linear trend fitted to the
estimates κ̂ by least squares.

A simple autoregression without an intercept will, however, not preserve
location-scale. In its simplest form let κ̃T+1 = ρκ̂T for some ρ 6= 1. This
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could come about if the time-varying series were considered on the original
scale and it were desirable to forecast exp(κT+1) by {exp(κ̂T )}ρ. For this
forecast it holds that κ̃T+1{d(κ̂ + c)}ρd(κ̂T + c) = dρκ̂T + ρc 6= dρκ̂T +
ρc. In practice one might estimate ρ by the least squares coefficient ρ̂ =∑T

t=2 κ̂tκ̂t−1/
∑T

t=2 κ̂2
t−1 which would in general be different from unity and

therefore have the invariance problem. Another forecast that is not location-
scale preserving would be κ̃T+1 = κ̂δ

T .
An autoregression with an intercept will, however, be location-scale pre-

serving. That is
κ̃T+h = ρκ̃T+h−1 + νc + εh,

where ρ and νc are estimated by the least squares method. To see this define
κ = (T−1)−1

∑T
t=2 κ̂t and κ−1 = (T−1)−1

∑T
t=2 κ̂t−1. Then ρ is estimated by

ρ̂ =
∑T

t=2 κ̂t(κ̂t−1−κ−1)/
∑T

t=2(κ̂t−1−κ−1)
2 which is location-scale invariant

while νc is estimated by κ − ρ̂κ−1 which becomes d(κ − ρ̂κ−1) + d(1 − ρ̂)c
when transforming by (2). The expression of Theorem 3 is then, for a one-
step-ahead point forecast,

κ̃T+1(dκ + c) = ρ̂{d(κ̂T−1 + c)}+ d(κ− ρ̂κ−1) + d(1− ρ̂)c

= d(ρ̂κ̂T−1 + κ− ρ̂κ−1) + c

as desired.
It is popular to use autoregressive integrated moving average (ARIMA)

models in the forecasting. As long as an intercept is included the theoretical
maximum likelihood estimators will be location-scale preserving. In practice
these models are estimated using numerical algorithms that depend on for
instance the chosen convergence criteria. The standard advice in such situ-
ation is to seek to standardize data and orthogonalize regressors. However,
with the Lee-Carter identification the scale is deliberately chosen to be rather
extreme so that the numerical accuracy may be poor. The bottom line is
that the ARIMA estimation algorithms are only location-scale preserving up
to an approximation. We compared algorithms in R and OX in this respect
and found that the the OX algorithm based on Doornik and Ooms (2003)
is more precise but still with problems with respect to numerical accuracy
when used uncritically. A further development is to use ARIMA models with
structural breaks as in Coelho and Nunes (2011). These will be location-scale
preserving up to the accuracy of the estimation algorithm.

The results are summarised in Table 1. Clements and Hendry (1999,
§5) discuss the relative merits of I(0), I(1) and I(2)-forecasting methods in a
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Table 1: Invariance properties of various forecasting models
Order of integration Invariant forecasts Non-invariant forecasts
I(0) xt = νc + εt xt = εt

xt = νc + νlt + εt

xt = ρxt−1 + νc + εt xt = ρxt−1 + εt

I(1) ∆xt = νc + εt

∆xt = εt

standard time series context. They are concerned with possible structural
changes near the end of the sample or in the beginning of the forecast period
which can be detrimental to forecasts. The I(0)-methods tend to be preferable
if they describe the sample variation in-sample and structural changes are
neither observed at the end of sample nor expected out-of-sample, whereas
the higher order integrated methods tend to be more robust to structural
changes out-of-sample. The same issues arise when forecasting with the
age-period-cohort model as shown in Kuang, Nielsen and Nielsen (2008b).
Kuang, Nielsen and Nielsen (2010) discuss the relative merit of the different
forecasting methods in the context of insurance data using an extended chain
ladder model which is a variant of the age-period-cohort model.

4 Multi-sample problem

In applications it is often of interest to compare the development of mortality
in muliple populations such as women/men or accross countries. One popular
approach is to perform a Lee-Carter analysis separately on each data set and
then compare the estimates of the time-varying parameters. It has been
found that the relative performance of such graphs accross samples does
not reflect what is otherwise known about the substantial context. Li and
Lee (2005) attributes this finding to an unpublished manuscript by Lee and
Nault from 1993 and suggest that the different samples are modelled jointly
so that the calendar effect for women/men are viewed as deviations from an
population average.

It is, however, not impossible to compare estimates from separate Lee-
Carter analyses. An increasingly popular approach is to fit a vector au-
toregression to the estimates κ̂i,t from the two or more samples and apply
a cointegration analysis. The motivation would be that the series κ̂i,t for
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t = 1, . . . , T share a common random walk trend as in the Lee-Carter fore-
cast, while the individual series from the different samples deviate from that
common trend in a stationary fashion. Such an approach was suggested by
Renshaw and Haberman in a discussion paper from 2003 and followed up
by Lazar and Denuit (2009). Since the scale and level of the series κ̂i,t for
t = 1, . . . , T are not defined cointegration analysis should be done with some
care. Using the above analysis the potential problems can be addressed.

Cointegration analysis of vector autoregressions has been suggested by
Johansen (1988, 1995), see also Hendry and Nielsen (2007). The first step of
a cointegration analysis is to determine the cointegration rank. Collect first
the estimates κ̂i,t from samples i = 1, . . . , p as a vector kt, say. Various choices
can be made with respect to the specification of the vector autoregression.
The choice matching the Lee-Carter forecast would be

∆kt = Π

(
kt−1

t

)
+ ν + εt, t = 2, . . . , T,

where ∆kt = kt − kt−1 and Π ∈ Rp×(p+1). The cointegration rank r =
rank(Π) is determined by first finding the residuals from regressing ∆kt and
(k′t−1, t)

′, on an intercept and then finding the squared canonical correlations
of these residuals. The squared canonical correlations are invariant to the
undetermined level and scale of the series kt, see discussion of Nielsen and
Rahbek (2000). The asymptotic distribution of the relevant rank test statistic
is non-standard and tabulated by Johansen (1995).

When the matrix Π is found to have reduced rank r it can be written
as Π = α(β′, δ′) where α, β ∈ Rp×r and δ ∈ R1×r. The Granger-Johansen
representation shows that κt = C

∑t
s=2 εs+Yt+τc+τlt, where C is a function

of the dynamic parameters with the property that β′C = 0, Yt is a mean-zero
stationary process, and τc, τl depend on parameters and initial observations
in such a way that β′κt + δ′t is stationary around a constant level.

The cointegrated model where Π = α(β′, δ′) has an identification prob-
lem of its own in that α, (β′, δ′)′ are not identified, only the linear vector
spaces spanned by them are identified. This is a point that is dealt with by
Johansen, who suggests just-identified estimates of these parameters based
on the canonical correlation method.

When applying the cointegration model to the time-varying estimates kt

a different identification issue arises. Since the scales of the series ki,t are
not identified then the linear spans of α, β are not invariant to the scales
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of ki,t. This lack of invariance is not detrimental in that Johansen’s just-
identified estimates combine in such a way that predictions from the model
are location-scale preserving as required in Theorem 3.

Invariance problems only arise when interpreting or restricting the coin-
tegration parameters. In the context of two samples representing women
and men it would be tempting to impose the restriction β = (1,−1)′. The
idea is that the difference between the series for women and men should be
stationary. Since the linear spans of α, β depend on the scaling of the series
ki,t this will however result in predictions that are no longer location-scale
preserving.

There is one restriction that can be imposed without problems. This
is the restriction that the linear trend parameter is zero, δ = 0, so that
stationary variation for women/men around the common random walk trend
is not following a linear trend. In practice this restriction ensures that the
different populations are not drifting apart.

The estimated cointegration model for the time-varying parameter kt can
be extrapolated beyond the last observed period T and combined with es-
timates of the age-dependent parameters to provide a forecast of the future
mortality. If the applied time series model is stable within sample and contin-
ues to be correct out of sample then simple predictions from the time series
model will result in forecasts with good properties. However, if there is a
structural change in the level of the time-dependent parameter kt near the
end of the sample or in the begining of the forecast period then forecasts will
have poor properties. Hendry (2006) discusses how to forecast from cointe-
gration models in the presence of level shifts. Suppose the estimated model
satisfies the linear trend restriction δ = 0 so

∆kt = α̂β̂kt−1 + ν̂ + ε̂t.

In face of structural shifts near the last sample period T a robust fore-
cast is achieved by leaving the cointegration approach aside and double
differencing the time-varying parameter kt through the forecast equation
∆k̃T+h = ∆k̃T+h−1. As discussed above this idea approach has been found
to be favourable in the context of out-of-sample level shifts by Clements and
Hendry (1999, §5). The reason this works is that it gets around the problem
that shifts to the deterministic term ν are rather pernicious to forecasting.
Hendry (2006) discusses how to forecast robustly in the light of the cointe-
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gration model. The idea is to difference the cointegration equation as

∆k̃T+h = ∆k̃T+h−1 + α̂β̂∆k̃T+h−1.

This forecast is found to perform favourably to double differencing in that
forecast variances do not build up. Comparing to the double differencing
equation the difference is inclusion of the term α̂β̂∆k̃T+h−1 which has zero
mean and is therefore robust to level shifts and which also captures the
dynamic term that was found to be of significance in-sample.

A different type of structural breaks are those happening in the middle
of the sample corresponding to wars or variations in economic conditions.
In contrast to breaks around the last sample period, T , those breaks can
be modelled more actively. Johansen, Mosconi and Nielsen (2000) have sug-
gested a cointegration model that allows for such changes in the slope of the
linear trend.

Appendix

Proof of Theorem 1

(i) For any θ then construct θLC by d =
∑X

x=1 βx and c = −T−1
∑T

t=1 κt

(ii) Use that one can transform θLC into the original θ by dLC = 1/d and
cLC = −cd and that the parametrisation (2) is invariant to c, d.

(iii) consider θ† 6= θ‡.
If α†x 6= α‡x for some x then T−1

∑T
t=1 µ†x,t = α†x 6= α‡x = T−1

∑T
t=1 µ‡x,t.

If α†x = α‡x for all x but κ†t 6= κ‡t for some t then, since
∑X

x=1 βx = 1, it

holds
∑X

x=1 µ†x,t = κ†t −
∑X

x=1 α†x 6= κ‡t −
∑X

x=1 α‡x =
∑X

x=1 µ‡x,t

If α†x = α‡x for all x and κ†t = κ‡t for all t but β†x 6= β‡x for some x then
µ†x,2 − µ†x,1 = β†x(κ

†
2 − κ†1) 6= β‡x(κ

‡
2 − κ‡1) = µ‡x,2 − µ‡x,1.

(iv) Exploit the relation (2).
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