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Abstract

This paper introduces a new class of multivariate volatility models that utilizes high-frequency

data. We discuss the models�dynamics and highlight their di¤erences from multivariate GARCH

models. We also discuss their covariance targeting speci�cation and provide closed-form formu-

las for multi-step forecasts. Estimation and inference strategies are outlined. Empirical results

suggest that the HEAVY model outperforms the multivariate GARCH model out-of-sample,

with the gains being particularly signi�cant at short forecast horizons. Forecast gains are ob-

tained for both forecast variances and correlations.

Keywords: HEAVY model; GARCH; multivariate volatility; realized covariance; covariance

targeting; multi-step forecasting; Wishart distribution.
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1 Introduction

This paper introduces a new class of multivariate volatility models capable of producing precise

multi-step forecasts of the conditional covariance matrix of daily returns. Multivariate volatility

models have been the focus of a voluminous literature summarized recently by Bauwens et al.

(2006) and Asai et al. (2006), where the focus in the latter is on multivariate stochastic volatility.

The covariance matrix of daily asset returns is a key input in portfolio allocation, option pricing

and �nancial risk management. An interesting question is whether the increasing availability of

high-frequency �nancial data enables the development of more accurate forecasting models for the

conditional covariance of daily returns. We address this question by studying a new class of models

which utilize high-frequency data for the objective of multi-step volatility forecasting. We call this

class multivariate High-frEquency-bAsed VolatilitY (HEAVY) models.

Volatility forecasts from HEAVY models have some properties that distinguish them from those

of multivariate GARCH models. HEAVY models have a relatively short response time which means

they are likely to perform well in periods where the level of volatility or correlation is subject to

abrupt changes. HEAVY models also have short-run momentum e¤ects so that volatility forecasts

may exhibit a continuation of upward (or downward) trends in volatility before mean reverting.

The univariate HEAVY model was introduced in Shephard and Sheppard (2010) where it is

shown - for a wide spectrum of asset classes - that the HEAVY model outperforms the GARCH

model in- and out-of-sample. The forecast gains tend to be more pronounced at short forecast

horizons, typically the �rst few days. In the empirical section of this paper, we show similar results

in a multivariate setting. The multivariate analysis poses additional interesting questions such as

whether the forecast gains are due to the variance forecasts of individual assets, their correlations

or a combination of both. We develop a novel out-of-sample model evaluation strategy to address

this question.

To highlight the distinction between HEAVY and GARCH models, and how HEAVY models

di¤er from recently proposed models which also utilize high-frequency data, we start with a brief

overview of the univariate HEAVY model of Shephard and Sheppard (2010). Let FLFt and FHFt
respectively denote the information set generated by low-frequency (i.e. daily) and high-frequency

(i.e. intra-daily) data up to time t, where t = 1; 2; :::; indexes days. Also let rt denote the (de-

meaned) daily return and vt denote the realized measure (e.g. realized variance) at time t. The

univariate HEAVY model in its linear speci�cation is the 2-equation system

E[r2t jFHFt�1 ] := ht = ch + bhht�1 + ahvt�1;

E[vtjFHFt�1 ] := mt = cm + bmmt�1 + amvt�1;

while the GARCH model is

E[r2t jFLFt�1] := h�t = cg + bgh�t�1 + agr2t�1:
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The primary distinction between HEAVY and GARCH models is the conditioning information

set used in modelling the conditional variance of daily returns. The �rst equation of the HEAVY

model uses the lagged realized measure, vt�1, to drive to dynamics of ht, whereas the GARCH

model uses the lagged squared return. The second equation of the HEAVY model is needed for

multi-step forecasts of ht.

The HEAVY model utilizes recently developed estimators of ex post volatility of daily returns

that have proven to be more precise compared to squared returns. Realized variance is the �rst

realized measure to be systematically studied and used in modelling and forecasting the volatility

of daily returns. Andersen and Bollerslev (1998) show that the realized variance has a much

lower noise-to-signal ratio than the daily squared return when used as proxies for the unobserved

variance, while Barndor¤-Nielsen and Shephard (2002) formalize the econometrics of the realized

variance. In the context of multi-step forecasting, Shephard and Sheppard (2010) show that the

use of the realized kernel of Barndor¤-Nielsen et al. (2008) leads to notable in- and out-of-sample

improvements in predicting ht, especially at short forecast horizons.

Univariate HEAVY models are related to recently proposed models by Engle (2002), Engle

and Gallo (2006), Cipollini et al. (2007), Brownlees and Gallo (2010) and Hansen et al. (2011).

Engle (2002) models volatility using a multiplicative error model (MEM).1 He applies this model to

squared returns and realized volatility as separate models, but they were not considered as a system

for multi-step forecasting of the conditional variance of daily returns. These models are usually

referred to as GARCH-X models when both vt�1 and r2t�1 appear in the ht equation. Engle and

Gallo (2006) model a 3-variable system comprising the squared return, the high-minus-low price

range and the realized variance in an MEM setup. Cipollini et al. (2007) allow for contemporaneous

correlations in a 4-variable vector MEM including the absolute daily return and three realized

measures, and tackle the problem of a suitable multivariate density choice using copulas.

The papers by Brownlees and Gallo (2010) and Hansen et al. (2011) are the closest in structure

to the univariate HEAVY model. The model in Brownlees and Gallo (2010) has a HEAVY-like

structure with the di¤erence being that it uses a smoothed version of the realized measure to drive

ht by specifying the latter as an a¢ ne function of mt. Hansen et al. (2011) treat the dynamics

of the realized measure di¤erently. While the HEAVY model postulates GARCH-type dynamics

for the realized measure by modelling its conditional expectation, Hansen et al. (2011) relate the

realized measure itself to ht and a term that captures leverage e¤ects.

Multivariate volatility models are becoming increasingly important not only because of their

direct application in portfolio allocation and asset pricing, but also due to the insights they provide

into risk management practices. Using low-frequency data, Brownlees and Engle (2010) portray the

importance of modelling conditional correlations for systemic risk management, where they show

that a rise in a �rm�s stock volatility and correlation with the market magni�es its contribution to

1An MEM can be used for any non-negative valued process which can be modelled as i.i.d. innovations from a

density with non-negative support scaled by a conditionally deterministic factor.
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systemic risk. Highly leveraged �nancial companies in the recent �nancial crisis are a case in point.

The work of Hansen et al. (2010), which is independent and concurrent, utilizes realized measures in

modelling a stock�s conditional beta in a GARCH-like framework. Our primary empirical example

focuses on the returns of Bank of America and an S&P 500 exchange traded fund during the recent

�nancial crisis, which relates to the applications in these papers.

There is some recent research that focuses only on modelling and forecasting the realized co-

variance matrix; see, for example, Voev (2008), Chiriac and Voev (2011) and Bauer and Vorkink

(2011). The focus in these studies is on developing parsimonious models to forecast the realized

covariance matrix. In contrast, this paper develops a framework for forecasting the covariance of

daily returns which also requires forecasts of the realized measure. We �nd the realized measure

to be a more precise factor to drive the volatility dynamics for daily returns compared to the outer

product of daily returns which is used in GARCH models.

Jin and Maheu (2010) pursue an objective similar to ours by utilizing realized measures to

improve the density forecasts of multivariate daily returns; however, their model is di¤erent from

ours as it is cast in the multivariate stochastic volatility framework. In addition, they propose a

di¤erent nexus between the dynamics of daily returns and the realized measure. The implication

of this is that our model is much easier to estimate and allows for straightforward out-of-sample

model evaluation since we provide closed-form forecasting formula.

The structure of the paper is as follows: Section 2 introduces multivariate HEAVY models with

some detailed analysis of their properties using a linear speci�cation. Section 3 discusses estimation

and inference. In Section 4, we present the out-of-sample model evaluation framework. Section 5

contains the results of our empirical analysis, while Section 6 concludes the paper. Appendix A

includes de�nitions and results from matrix algebra and matrix calculus which are used in some

of the derivations and proofs. Appendix B derives the second moments�structure implied by the

model. Appendix C gives a brief overview of the Wishart distribution which we employ in specifying

the density of the innovations. All proofs are collected in Appendix D.

2 Multivariate HEAVY Models

2.1 De�nitions and Notation

Let the multivariate log-price process be given by the (k � 1) vector Y �� , where � 2 R+ represent
continuous time. Suppose we observe m+1 intra-daily prices, assumed to be uniformly spaced, so

that the jth intra-daily vector of returns on day t is given by

Rj;t = Y
�
(t�1)+ j

m

� Y �
(t�1)+ (j�1)

m

; j = 1; :::;m; t = 1; 2; :::.

Assuming, for instance, 24-hour trading means m = 1440 and Rj;t is the vector of returns for

the jth minute on day t. The vector of daily returns is Rt =
Xm

j=1
Rj;t. The outer product of daily

returns is the (k � k) matrix denoted by Pt = RtR
0
t. The realized measure on day t is a (k � k)
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matrix denoted by Vt. One example of Vt which we use in this paper is the realized covariance

(RCt) matrix de�ned as

RCt =

mX
j=1

Rj;tR
0
j;t:

Barndor¤-Nielsen and Shephard (2004) show that, in the absence of market microstructure

noise, RCt is a mixed normal consistent estimator of the quadratic covariation of Y �� as m!1. In
the presence of market microstructure noise, RCt is a biased estimator. Therefore, in practice one

needs to sample sparsely and use subsampling. An alternative is to use a noise-robust estimator

such as the realized kernel of Barndor¤-Nielsen et al. (2008, 2011).

Letting FLFt and FHFt be as de�ned previously, the HEAVY model is the 2-equation system

E[PtjFHFt�1 ] = E[RtR0tjFHFt�1 ] := Ht; (1)

E[VtjFHFt�1 ] :=Mt; (2)

where, for simplicity, we assume E[RtjFHFt�1 ] = 0 so that Ht is the conditional covariance matrix

of daily returns, or alternatively, the conditional expectation of the outer product of daily returns.

We will occasionally use Et[�] := E[�jFHFt ] to denote the expectation conditional on FHFt . Thus,

the two latent conditional �rst moments (Ht, Mt) are assumed FHFt�1 -measurable.
We shall call (1) and (2) the HEAVY-P and HEAVY-V equations, respectively. HEAVY models

can be equivalently represented as

Pt = H
1
2
t "tH

1
2
t ; (3)

Vt =M
1
2
t �tM

1
2
t ; (4)

where "t and �t are (k � k) symmetric innovation matrices satisfying Et�1["t] = Et�1[�t] = Ik,

where Ik is an identity matrix. We have de�ned the symmetric square root of a generic positive

semide�nite matrix A, denoted by A
1
2 , using the spectral decomposition such that A

1
2 = U�

1
2U 0

where U is a matrix containing the eigenvectors of A, and �
1
2 is a diagonal matrix containing

the square root of the eigenvalues of A. This representation is a matrix-variate generalization of

the univariate MEM introduced in Engle (2002) and the vector MEM presented in Cipollini et al.

(2007).

Since our focus is on multivariate volatility models, we use the terms HEAVY and GARCH to

refer to their multivariate formulation unless otherwise stated. The di¤erence between the HEAVY-

P equation and the GARCH model is the conditioning information set. GARCH models condition

on FLFt�1 and thus Ht is in�uenced by the squares and cross products of past daily returns (i.e. lags
of Pt). In the HEAVY-P equation, we condition on FHFt�1 which enables us to use lags of Vt to
project the path of Ht.

Equations (1) and (2), or equivalently (3) and (4), de�ne a class of models which links the

dynamics of Ht to the realized measure, Vt. This becomes clear once we specify the dynamic

equations for Ht andMt, where it is assumed that both are FHFt�1 -measurable. Choosing a particular
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speci�cation for the dynamics of Ht andMt yields a particular model within the HEAVY class. For

ease of presentation, we will focus in the rest of this paper on one particular speci�cation within the

HEAVY class which is akin to a multivariate GARCH(1,1) model, and we shall refer to it simply

as the HEAVY model.

2.2 Model Parameterization

One of the main challenges in multivariate volatility modelling is to ensure that the conditional

covariance matrix is positive semide�nite. In the GARCH literature, this task was approached using

the BEKK parameterization introduced by Engle and Kroner (1995). We can adopt that approach

to our model, which we call BEKK-type parameterization although the models are distinct. The

BEKK-type parameterization is

Ht = CHC
0
H +BHHt�1B

0
H +AHVt�1A

0
H ; (5)

Mt = CMC
0
M +BMMt�1B

0
M +AMVt�1A

0
M : (6)

The (k�k) matrices AH , BH , AM and BM each have k2 free parameters, while CH and CM are

(k�k) lower triangular matrices each with k� = k(k+1)=2 free parameters. The parameterization
in (5) and (6) guarantees that Ht and Mt are positive semide�nite for all t assuming H0 and M0

are positive semide�nite. If, in addition, CH and CM are full rank matrices, then Ht and Mt are

positive de�nite for all t. We refer to AH , BH , AM and BM as the dynamic parameters, which are

of main interest to us. Sometimes we consider CH and CM to be "nuisance parameters".

Remark 1 Although our interest is to obtain multi-step forecasts of Ht, forecasts from (6) are

needed due to the presence of Vt�1 in (5). Forecasting the realized measure itself has been the focus

of a number of recent studies (e.g. Andersen et al. (2003, 2007, 2011)). We note that postulating

GARCH-type dynamics for the realized measure is consistent with its empirical properties such as

time-varying volatility of realized volatility and evidence of excess kurtosis; see Corsi et al. (2008).

Therefore, (6) may produce accurate forecasts of Mt.

The unrestricted BEKK-type parameterization in (5) and (6) has O(k2) parameters. To avoid

the curse of dimensionality one could impose that AH , BH , AM and BM are scalars or diagonal

matrices, which yields the scalar or diagonal HEAVY model, respectively. In either case, the

resulting equations for the diagonal elements of Ht and Mt would constitute univariate HEAVY

models. The equations for the o¤-diagonal elements would also have a HEAVY structure in which

the conditional covariances are driven by their own lags and the corresponding realized covariances.

If the elements of AH , BH , AM and BM are unrestricted (i.e. a full HEAVY parameterization),

the multivariate HEAVY model no longer comprises univariate HEAVY models, since in this case

the evolution of every element in Ht and Mt will be in�uenced by own as well as cross-asset e¤ects.
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Example 1 Let aij denote the (i; j)th element of any matrix A. The Ht equation in a bivariate
diagonal HEAVY model is given by 

h11;t h12;t

h21;t h22;t

!
=

 
c11;H 0

c21;H c22;H

! 
c11;H 0

c21;H c22;H

!0

+

 
b11;H 0

0 b22;H

! 
h11;t�1 h12;t�1

h21;t�1 h22;t�1

! 
b11;H 0

0 b22;H

!

+

 
a11;H 0

0 a22;H

! 
v11;t�1 v12;t�1

v21;t�1 v22;t�1

! 
a11;H 0

0 a22;H

!
:

To better understand the dynamics, we express (5) and (6) in vector form.2 De�ne pt :=

vech(Pt), vt := vech(Vt), ht := vech(Ht) and mt := vech(Mt), where the vech operator stacks the

lower triangular part including the main diagonal of a (k � k) symmetric matrix into a (k� � 1)
vector, k� = k(k+1)=2. These (k��1) vectors retain the unique elements of the matrices of interest
to us. An equivalent representation of (3) and (4) is

Pt = Ht +H
1
2
t ("t � Ik)H

1
2
t ; Vt =Mt +M

1
2
t (�t � Ik)M

1
2
t ;

which, using the vech notation, can be expressed as

pt = ht + e"t; vt = mt + e�t;
where e"t = vech(H 1

2
t ("t�Ik)H

1
2
t ) = Lk(H

1
2
t 
H

1
2
t )Dkvech("t�Ik) and e�t = vech(M 1

2
t (�t�Ik)M

1
2
t ) =

Lk(M
1
2
t 
M

1
2
t )Dkvech(�t� Ik). The second equality in each expression follows from (A.1), and Lk

and Dk are, respectively, the elimination and duplication matrices de�ned in Appendix A. This

representation is particularly convenient since e"t and e�t are vector martingale di¤erence sequence
with respect to FHFt�1 .

Similarly, (5) and (6) can be written as

ht = CH +BHht�1 +AHvt�1; (7)

mt = CM +BMmt�1 +AMvt�1; (8)

where CH = Lk(CH 
CH)Dkvech(Ik), BH = Lk(BH 
BH)Dk and AH = Lk(AH 
AH)Dk, where
we make use of (A.1). CM , BM , and AM are de�ned similarly using the parameters of (6). CH and

CM are (k� � 1) vectors, while AH , BH , AM and BM are (k� � k�) matrices. The elimination and
duplication matrices, Lk and Dk, are non-stochastic matrices of zeros and ones, so the parameters

in (7)-(8) are uniquely identi�ed from (5)-(6) and vice versa.

2We use matrix results which are collected in Appendix A for ease of reference.
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Example 2 The vech representation of the Ht equation of the bivariate diagonal HEAVY model

in Example 1 is0B@ h11;t

h21;t

h22;t

1CA =

0B@ c211;H
c11;Hc21;H

c221;H + c
2
22;H

1CA+
0B@ b

2
11;H 0 0

0 b11;Hb22;H 0

0 0 b
2
22;H

1CA
0B@ h11;t�1

h21;t�1

h22;t�1

1CA

+

0B@ a211;H 0 0

0 a11;Ha22;H 0

0 0 a222;H

1CA
0B@ v11;t�1

v21;t�1

v22;t�1

1CA :
By substituting ht = pt � e"t and mt = vt � e�t into (7) and (8), it is straightforward to show

that the HEAVY model has the following VARMA(1,1) representation 
pt

vt

!
=

 
CH

CM

!
+

 
BH AH

0 BM +AM

! 
pt�1

vt�1

!
+

 e"te�t
!
�
 
BH 0

0 BM

! e"t�1e�t�1
!

since
�e"0t;e�0t�0 is a vector martingale di¤erence sequence with respect to FHFt�1 , assuming Var[�e"0t;e�0t�0]

exists. The coe¢ cient matrix attached to
�
p0t�1; v

0
t�1
�0 determines the persistence of the HEAVY

system. For covariance stationarity, the eigenvalues of this matrix must be less than one in modulus.

Since it is block triangular, its eigenvalues are members of the multiset of the eigenvalues of BH and

(BM +AM ).3 In the following assumption we explicitly state this covariance stationarity condition,

where for any (k � k) matrix A with eigenvalues �1; :::; �k, �(A) := max
i
j�ij denotes the spectral

radius of A.

Assumption 1 In the HEAVY model given by (7) and (8), �(BH) < 1 and �(BM +AM ) < 1.

Remark 2 The covariance stationarity condition in Assumption 1 is analogous to the one given in
Engle and Kroner (1995). This can be seen by noting that for any square matrix A, D+k (A
A)Dk
and (A 
 A) have the same eigenvalues by Magnus and Neudecker (1999, Theorem 1, Chapter 2)

and Magnus (1988, Theorem 4.10), where D+k = (D0kDk)
�1D0k is the Moore-Penrose inverse of

Dk. Also, it holds that for any square matrix A, D
+
k (A 
 A)Dk = Lk(A 
 A)Dk; see Lutkepohl

(1996, Section 9.5.5). Thus, BH = Lk(BH 
 BH)Dk and (BH 
 BH) have the same eigenvalues.
A similar argument applies to (BM +AM ).

2.3 Covariance Targeting

The covariance targeting parameterization was introduced by Engle and Mezrich (1996) for the

univariate GARCH model. This allows the unconditional moments of the model to be estimated by

the empirical moments, and means its forecast tends to the unconditional moments as the forecast

3A multiset is a set that allows for some or all of its elements to be repeated. This general de�nition is needed to

allow for the case when BH and (BM +AM ) have some common eigenvalues.
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horizon tends to in�nity. The dynamic parameters would then be estimated using a quasi-likelihood.

Here we discuss unique issues related to restricted models and derive the covariance targeting

parameterization of the HEAVY model, which is not immediately straightforward. The multivariate

HEAVY model di¤ers from previous ARCH-type models by using a shock other than the outer-

product of returns to model the conditional covariance. This has an unintended consequence of

changing the interpretation of the estimated parameters when the dynamics of the model are

restricted from the full speci�cation in (5), as is the case when AH is assumed to be diagonal or

scalar.

Let 
H := E[Pt] = E[Ht] and 
M := E[Vt] = E[Mt].4 Taking unconditional expectation of (5)

and (6) gives


H = CHC
0
H +BH
HB

0
H +AH
MA

0
H ; 
M = CMC

0
M +BM
MB

0
M +AM
MA

0
M :

De�ne � = 

1
2
M


� 1
2

H as a useful expression relating 
H to 
M . It is worth noting that although



1
2
M and 


� 1
2

H are both symmetric matrices, � is not necessarily symmetric. Consider the case

when � 6= Ik so that the unconditional expectation of the realized measure is not equal to the

unconditional expectation of the outer-product of returns. In this case it may be tempting to

rede�ne the HEAVY-P equation (5) in terms of the rotated realized measure eVt�1 = ��1Vt�1 ���1�0.
The unrestricted HEAVY-P equation is invariant to this transformation since

Ht = CHC
0
H +BHHt�1B

0
H +AHVt�1A

0
H

= CHC
0
H +BHHt�1B

0
H +

�
AH�

�
��1Vt�1

�
��1

�0 �
AH�

�0
= CHC

0
H +BHHt�1B

0
H +A

�
H
eVt�1A�0H ;

where A
�
H = AH�. However, this invariance does not hold when AH is assumed to be diagonal or

scalar. For example, suppose AH is restricted to be scalar (i.e. AH = �HIk, where �H is scalar) and

so all series have common loadings on the realized measure. The only case where a model driven

by the rotated realized measure, eVt�1, will correspond to a model driven by the unrotated realized
measure, Vt�1, occurs when � is diagonal with a single, common value in all non-zero locations.

The two parameterizations of the HEAVY-P equation will only produce the same �t if ��H = �H�,

which is only possible if � / Ik. The diagonal case is similar, only that the set of models where the
two parameterizations are equivalent occurs when � is diagonal.

These two model speci�cations lead to two di¤erent methods to covariance target. Letting

!H and !M denote vech(
H) and vech(
M ), respectively, the following proposition gives two

covariance targeting parameterizations of the HEAVY model.

4Since our model is formulated for the squares and cross-products of daily returns (elements of Pt) and the realized

variances and covariances (elements of Vt), the elements of 
H are the unconditional variances and covariances of

daily returns, while the elements of 
M denote the unconditional expectation of realized variances and covariances.
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Proposition 1 The covariance targeting parameterization of the HEAVY model in (7) and (8) is

ht = (Ik� �BH �AH�)!H +BHht�1 +AHvt�1; (9)

mt = (Ik� �BM �AM )!M +BMmt�1 +AMvt�1; (10)

where � = Lk(�
 �)Dk, � = 

1
2
M


� 1
2

H , !H := vech(
H), !M := vech(
M ), and Lk and Dk denote

respectively the elimination and duplication matrices of order k. An alternative covariance targeting

parameterization for (7) is

ht = (Ik� �BH �A�H)!H +BHht�1 +A�Hevt�1; (11)

where evt = ��1vt is a rotated realized measure such that E[evt] = !H .
Remark 3 While the covariance targeting speci�cation in (9)-(10) is a reparameterization of the
original model in (7)-(8), the speci�cation (11)-(10) corresponds to a di¤erent model which uses a

rotated rather than the original realized measure. This is why the coe¢ cient matrix on evt�1 is now
denoted by A�H . The two models coincide, implying A

�
H = AH� holds, if and only if both A

�
H and

AH are fully parameterized matrices as discussed above. Using (11)-(10) has the advantage that

it is easier to impose the condition �(BH + A�H) < 1 during estimation; see Assumption 2 below.

Imposing the condition �(BH + AH�) < 1 is more involved, particularly in the diagonal and full

HEAVY models since � is a (k� � k�) matrix with non-zero elements.

For the covariance targeting parameterization to be sensible, we need (9)-(10), or alternatively

(11)-(10), to be consistent with a positive de�nite long run target for Ht and Mt. Therefore, we

replace Assumption 1 with the following assumption which guarantees both covariance stationarity

of ht and mt as well as having positive de�nite targets.

Assumption 2 In the covariance targeting parameterization of the HEAVY model given by (9)-

(10), �(BH +AH�) < 1 and �(BM +AM ) < 1. In the covariance targeting parameterization of the

HEAVY model given by (11)-(10), �(BH +A�H) < 1 and �(BM +AM ) < 1.

Estimating the model in its covariance targeting speci�cation given by (9)-(10) can be carried

out in two steps. In the �rst step, we replace 
H and 
M with their moment estimators,

b
H = T�1 TX
t=1

Pt; b
M = T�1
TX
t=1

Vt;

which also gives the estimates b� = b
 1
2
M
b
� 1

2
H and b� = Lk(b�
 b�)Dk. In the second step, we estimate

the dynamic parameters (AH , BH , AM and BM ) given b�. Alternatively, if the covariance targeting
speci�cation is given by (11)-(10), the estimate b� is used to compute the rotated realized measureevt = b��1vt, which is then used in (11) replacing the original realized measure.

9



We can also express the unconditional moments in terms of the model parameters. By taking

unconditional expectation of (7) and (8), it is straightforward to show that the unconditional

expectation of pt and vt is given by

!H = (Ik� �BH)�1
�
CH +AH(Ik� �BM �AM )�1CM

�
; (12)

!M = (Ik� �BM �AM )�1CM ; (13)

where we substituted for !M into the equation for !H . Equations (12) and (13) allow for com-

puting the long-run covariance matrices implied by a set of parameter estimates when the model

is not in its covariance targeting speci�cation, and the expression in (13) is analogous to that of

GARCH processes. In Appendix B, we derive the unconditional second moments of pt and vt,

which correspond to the fourth moments of the returns (i.e. kurtosis) and second moments of the

realized measure (i.e. volatility of volatility).

2.4 Multi-Step Forecasting

We are primarily interested in forecasting the conditional covariance of daily returns, Ht. One-step

forecasts are directly computable using (7), which expresses Ht in its vech form. To compute s-step

forecasts for s = 2; 3; :::, we need the forecasts from (8) as well to compute the s-step conditional

expectation of the realized measure appearing in the right-hand-side of (7).

Given the intact structure of the model, we are able to derive a closed-form expression for

the s-step forecast of Ht, that is E[Ht+sjFHFt ], or equivalently, E[ht+sjFHFt ]. This is given in the

following proposition.

Proposition 2 Let the model be given by (7) and (8), then the s-step forecast of ht is

Et[ht+s] =

s�1X
i=1

Bi�1H CH +B
s�1
H ht+1

+

s�1X
i=1

Bi�1H AH

8<:
s�i�1X
j=1

(BM +AM )
j�1CM + (BM +AM )

s�i�1mt+1

9=; ; (14)

where ht+1 and mt+1 are FHFt -measurable. Alternatively, let the model be given by (9) and (10),

then the s-step forecast of ht is

Et[ht+s] = !H +B
s�1
H (ht+1 � !H) +

s�1X
i=1

Bi�1H AH(BM +AM )
s�i�1(mt+1 � !M ): (15)

The di¤erence between (14) and (15) is that the latter is obtained under a covariance targeting

speci�cation in which the constant terms CH and CM are replaced with expressions involving !H
and !M as shown in 2.3. In (14), Assumption 1 implies that Et[ht+s] ! !H as s ! 1 since the

coe¢ cients on ht+1 and mt+1 will tend to zero, while the limit of the constant terms including CH

10



(BM +AM )

0.900 0.950 0.990 0.995 0.999

AH = 0:2

0.65 6 8 18 31 138

0.70 8 11 33 62 292

BH 0.75 10 15 52 99 475

0.80 13 20 76 145 699

0.85 18 28 106 204 989

AH = 0:3

0.65 10 15 58 112 543

0.70 12 19 74 143 698

BH 0.75 14 23 93 180 881

0.80 17 28 116 226 1105

0.85 22 36 146 285 1394

Table 1: Covariance targeting scalar HEAVY model half-life (in days) for di¤erent parameter values. The �gures

are approximations to the nearest integer.

and CM will simplify to the right hand side of (12). In (15), we also have that Et[ht+s] ! !H as

s!1; however, in this case Assumption 2 is the operative assumption since the derivation of this
equation is based on the covariance targeting speci�cation.

Remark 4 In deriving (15), we focused on the covariance targeting speci�cation given by (9)-(10)
since it is more constructive to think about the persistence of the HEAVY model as discussed below.

To forecast using the covariance targeting speci�cation in (11)-(10), A�H will appear in (15) instead

of AH . Thus, the term (mt+1 � !M ) must be pre-multiplied by ��1 to ensure positive de�niteness
of the forecast matrix Et[Ht+s].

A measure of persistence usually used in GARCH models is the half-life of a deviation of the

1-step forecast of ht from its long run, which is the number of days, s, it takes for half of this

deviation to disappear. This can be computed using (15). Table 1 gives an approximation to

the nearest integer of the half-life of the covariance targeting scalar HEAVY model for di¤erent

parameter values.5 Generally, our empirical results indicate that the HEAVY model half-life is

substantially shorter than that of the GARCH model suggesting its forecasts respond faster to

abrupt changes in the level of volatility or correlation.

The short-run momentum in HEAVY forecasts can also be seen from (15). In GARCH models

only the gap (ht+1 � !H) appears in the forecast formula which implies monotonic mean reversion
to !H as the forecast horizon increases. In (15), the presence of the additional gap (mt+1 � !M )

5 In computing the half-life, we assume that the two gaps, (ht+1 � !H) and (mt+1 � !M ), are of equal size which
is set, without loss of generality, equal to a (k�� 1) vector of ones. This enables comparison with the GARCH model
half-life since its forecast formula contains only the gap (ht+1 � !H). Also implicit in our assumption is that both
gaps have the same sign which is in line with our empirical �nding that ht and mt tend to be very highly correlated.
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implies that mean reversion is not necessarily monotonic. We demonstrate this property in our

empirical analysis; see Figure 4 and related discussion.

3 Estimation and Inference

3.1 The Distribution of "t and �t

For the HEAVY model in (3) and (4)

Pt = H
1
2
t "tH

1
2
t ; Vt =M

1
2
t �tM

1
2
t ;

the natural choice for the density of the innovation matrices, "t and �t, is the Wishart distribution.

It is an appropriate choice in models where the support of the random variable of interest is

restricted to the space of positive semide�nite matrices.6 Appendix C provides an overview of the

Wishart distribution including the de�nitions and notation used in this section.

In GARCH models, the vector of daily returns is usually modelled as Rt = H
1
2
t �t with �t

i:i:d:�
N(0; Ik), which motivates quasi-maximum likelihood estimation (QMLE). The HEAVY-P equa-

tion is expressed for the outer product of returns, Pt, and in this case we have Pt = RtR
0
t =

H
1
2
t �t�

0
t(H

1
2
t )
0 = H

1
2
t "tH

1
2
t , where "t = �t�

0
t. The assumption that �t

i:i:d:� N(0; Ik) implies that "t
follows a Wishart distribution.

One of the key results on Wishart distributions is that if any matrix S � Wk(n;�), then

ASA0 � Wk(n;A�A
0) for any (k � k) nonsingular matrix A. Assuming a Wishart density for "t

and �t implies that Pt and Vt are assumed to be conditionally Wishart distributed. However, one

distinction between the density of "t and �t relates to the di¤erences in the ranks of Pt and Vt.

The matrix Pt = RtR0t has rank 1 by construction if there is at least one non-zero return in the Rt
vector. Whether using the realized covariance estimator or the realized kernel of Barndor¤-Nielsen

et al. (2008), the matrix Vt is guaranteed to be full rank under standard regularity conditions. This

di¤erence in rank entails that "t should have a singular Wishart density and �t a standardized

Wishart density. The discussion in Appendix C makes it clear that this distinction is necessary for

the two conditional moment assumptions Et�1["t] = Ik and Et�1[�t] = Ik to be satis�ed.

Therefore, we assume "t
i:i:d:� SINGWk(1; Ik) and �t

i:i:d:� SWk(k; Ik). The densities of "t and

�t are given by (C.2) and (C.1), respectively. Thus we have that PtjFHFt�1 � SINGWk(1;Ht)

and VtjFHFt�1 � SWk(k;Mt) since Ht and Mt are FHFt�1 -measurable. The distinction between the
densities of "t and �t is of no consequence to QMLE as we show in a moment. However, it is

important to have an appropriately speci�ed model satisfying the conditional moment assumptions

Et�1["t] = Et�1[�t] = Ik.
7

6Some recent multivariate stochastic volatility models also employ the Wishart distribution to model time-varying

correlations; see Chib et al. (2009) and the references cited therein, and also Jin and Maheu (2010).
7One can test for the Wishart distributional assumption by making use of the corollary that if S �Wk(n;�), then

a0Sa
a0�a � �

2
(n) for any (k � 1) vector a 6= 0; see Gupta and Nagar (2000). Also, conditional moment tests can be used
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3.2 Quasi-Maximum Likelihood Estimation

The HEAVY model is parameterized with a �nite-dimensional (��1) parameter vector � 2 � � R�.
Decompose � = (�0H ; �

0
M )

0 where the (�H � 1) vector �H and (�M � 1) vector �M denote the

parameter vectors of the HEAVY-P and HEAVY-V equations, respectively. Let �0 = (�0H;0; �
0
M;0)

0

denote the true parameter vector. The log-likelihood for the tth observation will be denoted by

lH;t(�H) and lM;t(�M ). Inference for the HEAVY model will be based on QMLE of the following

two log-likelihood functions

lH;t(�H) = cH �
1

2

�
log jHtj+ tr(H�1

t Pt)
�
; lM;t(�M ) = cM � k

2

�
log jMtj+ tr(M�1

t Vt)
�
;

where cH and cM are constants with respect to �H and �M ; see (C.2) and (C.1) respectively.

Thus the distinction between the densities of "t and �t is of no consequence for QMLE of the

model parameters. Engle and Gallo (2006) argue similarly for the Gamma density where the shape

parameter is of no consequence when estimating the scale parameter by QMLE.

We assume the initial values, H0 and M0, are known and are positive semide�nite. We also

assume that �H and �M are variation free in the sense of Engle et al. (1983), which allows for

equation-by-equation estimation. This assumption is not essential and is only used to simplify

estimation and inference. The QML estimator is b� = (b�0H ;b�0M )0 whereb�H = argmax
�H2�

LH;t(�H); b�M = argmax
�M2�

LM;t(�M );

and LH;t(�H) =
XT

t=1
lH;t(�H), LM;t(�M ) =

XT

t=1
lM;t(�M ).

For the BEKK model, Comte and Lieberman (2003) show strong consistency of QMLE by

verifying the conditions given in Jeantheau (1998). Hafner and Preminger (2009) show similar

results for the VEC model which nests the BEKK model, and their results also apply to integrated

processes. An important condition to establish strong consistency results is for the model to admit

a strictly stationary and ergodic solution, which we assume for the HEAVY model.

Before discussing the asymptotic distribution of b�, we �rst give results on the score vector in
the following proposition. It will be convenient to consider the score for each equation separately.

Proposition 3 (i) The score vectors, SH;t(�H) =
@lH;t(�H)

@�0H
and SM;t(�M ) =

@lM;t(�M )

@�0M
of dimen-

sions (1� �H) and (1� �M ), respectively, are given by

SH;t(�H) =
@lH;t(�H)

@�0H
=
1

2

�
(vec(Pt))

0 � (vec(Ht))0
�
(H�1

t 
H�1
t )

@vec(Ht)

@�0H
; (16)

SM;t(�M ) =
@lM;t(�M )

@�0M
=
1

2

�
(vec(Vt))

0 � (vec(Mt))
0� (M�1

t 
M�1
t )

@vec(Mt)

@�0M
: (17)

(ii) Under Et�1["t] = Ik and Et�1[�t] = Ik, the score vectors evaluated at the true parameter

values are martingale di¤erence sequence with respect to FHFt�1 .

to detect misspeci�cation.
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Remark 5 The scores have a similar structure to those of GARCH models (e.g. Bollerslev and

Wooldridge (1992)). In analogy with generalized least squares, the terms in square brackets can

be considered "errors", while (H�1
t 
 H�1

t ) and (M�1
t 
 M�1

t ) are weights and the derivatives
@vec(Ht)
@�0H

and @vec(Mt)
@�0M

are instruments which are orthogonal to the errors at the maximum likelihood

estimator, which is a condition for consistency.

To discuss the asymptotic distribution of the QML estimator, b�, we de�ne the (1� �) combined
score vector St(�) = (SH;t(�H); SM;t(�M )). Having established that the scores are martingale

di¤erence sequence with respect to FHFt�1 , it can be shown under certain regularity conditions (e.g.
Comte and Lieberman (2003)) that

p
T
�b� � �0� d�! N(0; I�1J I�1);

where

J = E
�
St(�)

0St(�)
�
= E

24 @lH;t(�H)
@�H

@lH;t(�H)

@�0H

@lH;t(�H)
@�H

@lM;t(�M )

@�0M
@lM;t(�M )
@�M

@lH;t(�H)

@�0H

@lM;t(�M )
@�M

@lM;t(�M )

@�0M

35 ;
I = �E

�
@St(�)

@�

�
= �E

24 @2lH;t(�H)

@�H@�
0
H

0

0
@2lM;t(�M )

@�M@�
0
M

35 :
The block diagonality of the Hessian, I, is due to the assumption that �H and �M are variation

free, which implies that equation-by-equation standard errors are correct for the HEAVY system.

With covariance targeting, a two-step estimation procedure is adopted and in this case the score

vector will no longer be a martingale di¤erence sequence, but it will still have mean zero at the

true parameter value. Also, the Hessian will be no longer block diagonal due to accounting for

the accumulation of estimation error from the �rst step. We formalize inference in the case of

covariance targeting in the following subsection.

3.3 Two-Step Estimation Under Covariance Targeting

Under the covariance targeting speci�cation in (9) and (10), the parameter vectors �H and �M are

decomposed into �H = (!0H ;e�0H)0 and �M = (!0M ;
e�0M )0 and are to be estimated in two steps. The

unconditional moments, !H and !M , will be estimated in the �rst step by a moment estimator

b!H = T�1 TX
t=1

pt; b!M = T�1
TX
t=1

vt;

and then e�H and e�M will be estimated by QMLE in the second step. The asymptotics of the

QML estimator in this two-step procedure is a direct application of two-step GMM estimation

discussed in Newey and McFadden (1994). De�ne elH;t(!H ; !M ;e�H) and elM;t(!M ;e�M ) to be the
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tth observation log-likelihoods for the covariance targeting HEAVY model given by (9) and (10).

Two-step estimation gives the following (1� �) vector of moment conditions

eSt(e�) =  (pt � !H)0; @elH;t
@e�0H ; (vt � !M )0;

@elM;t

@e�0M
!
; e� = (!0H ;e�0H ; !0M ;e�0M )0;

which is no longer martingale di¤erence sequence with respect to FHFt�1 . In this case
p
T
�b� � �0� d�! N(0; I�1J (I�1)0);

where

J = Var

"
1p
T

TX
t=1

eSt(e�)# ;

I = �E
"
@ eSt(e�)
@e�

#
= �E

266666664

�Ik� @2elH;t
@!H@e�0H 0 0

0
@2elH;t
@e�H@e�0H 0 0

0
@2elH;t
@!M@e�0H �Ik� @2elM;t

@!M@e�0M
0 0 0

@2elM;t

@e�M@e�0M

377777775
;

and in implementation we use a HAC estimator (e.g. Newey and West (1987)) to estimate J .

Remark 6 With the covariance targeting speci�cation in (9)-(10), the variation freeness property
between the parameters of the HEAVY-P and HEAVY-V equations no longer holds, since � which

appears in the HEAVY-P involves the parameter !M of the HEAVY-V equation. Thus, the block
@2elH;t
@!M@e�0H now appears in the Hessian to account for this dependence in the second step of estimation.

4 Model Evaluation

Our objective is to evaluate the out-of-sample performance of the HEAVY model compared to the

GARCH model. We base our analysis on loss functions by de�ning an integrable loss function L :

Rk�k++ �H ! R+, where Rk�k++ is the space of positive de�nite (k� k) matrices, and H is a compact

subset of Rk�k++ denoting the set of models under comparison. Let the loss function Lt;s(�t+s;Ha
t+sjt)

denote the loss at time t resulting from the s-step forecast using model a. The �rst argument of Lt;s
is the actual (unobserved) covariance matrix, �t+s, and the second argument is its s-step forecast

using model a conditional on time t information, Ha
t+sjt.

One practical issue is that �t+s is unobservable so the analysis will be based on some proxy

denoted by b�t+s. In our empirical application, we use Vt+s as proxy such that b�t+s = Vt+s. We

use a quasi-likelihood (QLIK) loss function of the form

Lt;s(�t+s;H
a
t+sjt) = log

���Ha
t+sjt

���+ tr((Ha
t+sjt)

�1b�t+s); (18)

15



which provides a consistent ranking of volatility models in the sense of Patton (2011) and Patton

and Sheppard (2009) as it is robust to noise in the proxy b�t+s; see also Laurent et al. (2009).
The loss function evaluates the s-step predicted density from model a using the proxy b�t+s as

data.8 Note that even if - at time t - the true density of Rt+1 is normal (i.e. the density of Pt+1 is

Wishart), this result does not hold under temporal aggregation unless the conditional covariance

matrix is constant. Therefore the s-step density will not be normal implying that the density

used for the QLIK loss function (18) is misspeci�ed. However, the loss di¤erence between two

competing models a and b, Lt;s(�t+s;Ha
t+sjt)�Lt;s(�t+s;H

b
t+sjt), can be interpreted as a Kullback-

Leibler distance which yields a valid assessment even if both models are misspeci�ed.

Generally, if we let the true density of a random vector be denoted by g(y) and the model

density be denoted by f(y; �), then the Kullback-Leibler (KL) distance is de�ned as

KL =

Z
log

�
g(y)

f(y; �)

�
g(y)dy = Eg log g(y)� Eg log f(y; �):

If the KL distance is used as a criterion for model comparison, the term involving the true

density g(y) drops out. For instance, a relative KL (RKL) distance for two competing models a

and b is given by

RKL(a; b) = [Eg log g(y)� Eg log fa(y; �a)]�
h
Eg log g(y)� Eg log f b(y; �b)

i
= Eg log f

b(y; �b)� Eg log fa(y; �a):

Although Eg(�) is an expectation with respect to the true density, it can be consistently es-
timated using T�1

XT

t=1
log ft(yt; �). Cox (1961) proposes a likelihood ratio test based on this

approach. Vuong (1989) provides the theoretical framework in the case of nested and non-nested

models. Similar approaches are proposed for out-of-sample model selection in Amisano and Giaco-

mini (2007) and Diks et al. (2008).

We denote the loss di¤erence between the HEAVY and GARCH models by

Dt;s = Lt;s(�t+s;H
HEAV Y
t+sjt )� Lt;s(�t+s;HGARCH

t+sjt ); t = Q;Q+ 1; :::; T � s;

where Lt;s(�) is given by (18), T is the size of the full sample and Q is the size of the estimation

window. We assume Q is �xed so that we use a rolling-window of data to estimate the model

parameters, which gives T �Q�s+1 data points for out-of-sample model evaluation. The average
loss is denoted by

Ds =
1

T �Q� s+ 1

T�sX
t=Q

Dt;s

which is used to test H0 : E[Dt;s] = 0, for all s, against a two-sided alternative. Let D
�
s denote the

average loss evaluated at the true parameter value, then we have
8Note (18) is the negative of the log-likelihood of a multivariate normal density excluding the constant terms. The

switched sign is due to de�ning (18) as a "loss" function.
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p
T (Ds �D

�
s)

d�! N(0;�s);

where �s is the asymptotic variance of Dt;s estimated using a HAC estimator (e.g. Newey and West

(1987)). Signi�cantly negative values of the test statistic indicate superior forecast performance

of the HEAVY model. This predictive ability test was �rst introduced by Diebold and Mariano

(1995), and later formalized by West (1996) and Giacomini and White (2006).

We extend this strategy in the context of multivariate volatility models by conducting separate

tests for forecasts of the individual variances and also for the dependence structure of the group of

assets under consideration. Consider the margins-copula decomposition of the log-likelihood of Rt,

log f(X) =

kX
i=1

log fi(xi) + log c(F1(x1); F2(x2); :::; Fk(xk)); (19)

where f(X) is the joint density of the returns of the k assets, fi(xi) and Fi(xi), i = 1; :::; k, are

respectively the density and cumulative distribution function of asset i returns, and c(�) is the
copula density.9 The normality assumption for Rt implies that f(X), fi(xi) and c correspond to

the multivariate normal density, normal density and normal copula, respectively.

We decompose the QLIK loss in (18) in a similar fashion to (19). So computing the loss

in (18) based on the whole forecast matrix (Ha
t+sjt) corresponds to log f(X), while computing

the loss based on a particular diagonal element of Ha
t+sjt, say h

a
ii;t+sjt, corresponds to log fi(xi).

The latter corresponds to the loss encountered in forecasting the individual variance for asset i,

and we compute it for all k assets. We compute the loss attributed to forecasting the dependence

structure (summarized by the copula contribution) as the residual, i.e. corresponding to log f(X)�Xk

i=1
log fi(xi). Based on this QLIK loss decomposition, we conduct the predictive ability test,

outlined above, separately for each margin (i.e. individual variance) as well as the copula. Due to

the normality assumption, the copula parameter is the conditional correlation matrix of the daily

returns, thus we use the terms margins-copula and variances-correlations interchangeably.

5 Empirical Application

We use high-frequency data on Spyder (SPY), an S&P 500 exchange traded fund, along with some

of the most liquid stocks in the Dow Jones Industrial Average (DJIA) index. These are: Alcoa

(AA), American Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General

Electric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), and

Exxon Mobil (XOM). The sample period is 1/2/2001 to 31/12/2009 and the source of the data is

the TAQ database. We choose the starting date for the sample to be after decimal pricing had

been fully implemented in the NYSE, which took place on 29/1/2001.

9Nelsen (2006) and Patton (2009) provide recent reviews of copula theory and �nancial applications.
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We focus on the realized covariance matrix as our choice for Vt. In estimating the realized

covariance matrix, we use 5-minute returns with subsampling. We exclude the opening and closing

15 minutes of trading to control for overnight e¤ects. For the daily return, we focus on the open-

to-close returns which of course ignore overnight e¤ects, and for consistency with the realized

covariance estimator we compute the open-to-close daily returns over the same interval. Our

estimation and forecast evaluation computations were repeated using the noise-robust realized

kernel of Barndor¤-Nielsen et al. (2011) with the results being qualitatively similar in general.10

The main focus of our empirical application will be on modelling and forecasting the conditional

covariance matrix of a stock (BAC) and an index (S&P 500) using the scalar HEAVY model. Most

of the model�s features can be readily seen in this bivariate model which is analyzed in 5.1.1. In

5.1.2, we analyze other pairs of assets using the scalar HEAVY model. In 5.2, we report estimation

and forecast evaluation results for the bivariate diagonal HEAVY model and highlight di¤erences

from the scalar HEAVY case. Finally, in 5.3 we report estimates for the scalar HEAVY model with

10 assets using covariance targeting.

5.1 Bivariate Scalar HEAVY Model

5.1.1 S&P 500 and Bank of America

Figure 1 contains the annualized realized volatility of SPY and BAC, their realized correlation

and realized beta for BAC over the full sample. The sharp increase in volatility in 2008-2009 is

associated with the turmoil in �nancial markets during the recent �nancial crisis. The increase

in BAC volatility is much more pronounced especially after the collapse of Lehman Brothers in

mid September 2008. BAC realized correlation with the market seems to have been relatively high

during the crisis, and its realized beta increased sharply and was very volatile during this period.

For the scalar HEAVY model, the parameters AH and BH in (5) are replaced with aHIk and

bHIk, respectively, where aH and bH are scalars. The same applies to (6). The quadratic forms in

(5) and (6) imply that the scalar HEAVY parameterization is

Ht = CHC
0
H + b

2
HHt�1 + a

2
HVt�1; Mt = CMC

0
M + b

2
MMt�1 + a

2
MVt�1:

In the vech representation (7), AH and BH are replaced with a2HIk� and b
2
HIk� , respectively,

and the same applies to the dynamic parameters in (8). So the vech parameterization is

ht = CH + b
2
Hht�1 + a

2
Hvt�1; mt = CM + b

2
Mmt�1 + a

2
Mvt�1;

where CH = Lk(CH
CH)Dkvech(Ik) and CM = Lk(CM
CM )Dkvech(Ik). The parameterization
of the corresponding GARCH and GARCH-X speci�cations is analogous, where in the GARCH-

X model we use AGX and DGX to denote the coe¢ cients on vt�1 and pt�1, respectively. We

include the estimates of the GARCH and GARCH-X models for comparison with the HEAVY-P

10These are not reported in the interest of parsimony, but are available upon request.
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Figure 1: SPY and BAC annualized realized volatility, realized correlation and BAC realized beta.

equation. In Table 2, we present the parameter estimates, the log-likelihoods at the estimated

parameters and the decomposition of the log-likelihood of the HEAVY-P and GARCH equations

into their respective margins�and copula log-likelihoods. For ease of interpretation, we only report

the parameter estimates for the models�vech representation excluding the constant terms unless

otherwise stated.

The estimate of BH implies that the elements of Ht will be smooth, although less smooth

than the corresponding estimates from the GARCH model with the estimate of BG equal to 0.934.

For the HEAVY-V equation, the BM coe¢ cient is relatively small implying that the estimated

conditional moments will be somewhat erratic. In terms of magnitude, these estimates are largely

in line with the estimates from the univariate HEAVY model in Shephard and Sheppard (2010),

and they also suggest a somewhat high level of persistence. Compared to the nesting GARCH-X

model, there is no loss of �t when moving to the HEAVY-P model since the coe¢ cient on pt�1
(DGX) is not statistically signi�cant. This is not the case when moving from GARCH-X to GARCH

which suggests that vt�1 e¤ectively crowds out pt�1.

The log-likelihood and its decomposition into marginal and copula likelihoods indicate an im-

provement in �t of the HEAVY-P equation compared to the GARCH model. Note that the two

models are non-nested so direct LR tests are not possible; however, we will present below the out-

come of the predictive ability tests discussed in Section 4. Although non-nested, the decomposition

suggests that the HEAVY-P equation improves on GARCH for both the margins and the copula.
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HEAVY-P GARCH GARCH-X HEAVY-V

AH BH AG BG AGX BGX DGX AM BM

SPY-BAC
(st. error)

0:214
(0:054)

0:727
(0:068)

0:062
(0:010)

0:934
(0:011)

0:187
(0:056)

0:741
(0:068)

0:019
(0:012)

0:421
(0:033)

0:574
(0:033)

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

Margin 1 (SPY) -658 -713 55

Margin 2 (BAC) -1593 -1648 55

Copula 815 808 7

Joint distribution -1436 -1553 117

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

Margin 1 (SPY) -3.72 -3.03 -2.33 -1.23 0.84 1.87

Margin 2 (BAC) -3.27 -2.45 -1.70 -0.58 1.06 2.04

Copula -3.37 -3.22 -3.39 -3.28 -3.26 -3.85

Joint distribution -4.32 -3.78 -3.23 -2.33 -0.07 1.03

Table 2: Scalar HEAVY estimation and forecast evaluation results for SPY-BAC. Upper panel: parameter estimates

of HEAVY, GARCH and GARCH-X with standard errors reported in parentheses. Middle panel: decomposition of

the log-likelihood at the estimated parameter values. Bottom panel: t-statistics of the predictive ability tests for

HEAVY versus GARCH.

The �t of the model can be analyzed through the residual plots shown in Figure 2. In Pt =

H
1
2
t "tH

1
2
t and Vt = M

1
2
t �tM

1
2
t , it is assumed that "t and �t are Wishart distributed. This implies

that for daily returns Rt = H
1
2
t �t, �t

i:i:d:� N(0; Ik), where "t = �t�
0
t. Figure 2 plots the elements ofb�t = bH� 1

2
t Rt in the left panel and b�t = cM� 1

2
t VtcM� 1

2
t in the right panel, where bHt and cMt are the

estimated conditional moments, and b�t and b�t are the residuals from �tting the model. The elements
of b�t (assumed to be a random vector with a standard multivariate normal distribution) seem to

have expectation zero as assumed, and their covariance hovers around zero. For b�t (assumed to be
a random matrix following a standardized Wishart distribution with an identity scale matrix), its

diagonal elements seem to be centred around one, and the o¤-diagonal element (b�12;t) is roughly
centred around zero.11

Another interesting feature from the residual analysis is that it displays evidence of the leverage

e¤ect between the returns and the realized measure. This is shown in Figure 3. The upper-left chart

shows the scatter plot of the b�1;t = bH� 1
2

11;tr1;t and b�11;t = cM� 1
2

11;tV11;t
cM� 1

2
11;t which are the innovations

to the daily return and realized measure of SPY, respectively.12 The lower-left chart displays the

innovations to the daily return and realized measure of BAC. The right panel charts correspond

to the same plots but mapped into copula space where the empirical distribution function is used

11To improve the plots, we removed two large outliers in the HEAVY-V equation residuals corresponding to the

realized variances of SPY and BAC on 27/2/2007, due to the 9% fall in the Shanghai stock exchange index that day.
12We use R1;t to denote the �rst element of Rt, which is the SPY return on day t.
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Figure 2: Residual plots for the SPY-BAC scalar HEAVY model.

to transform the innovations into probability integral transforms. The leverage e¤ect can be seen

clearly in the right panel. For instance, large negative innovations to SPY returns tend to be

associated with large positive innovations to the realized measure indicating higher volatility in

response to bad news. The same applies to BAC innovations.

The bottom panel of Table 2 gives the results of the predictive ability tests. We estimate the

model using a rolling-window of 1486 observations and then use the parameter estimates to obtain

forecasts of Ht at horizons s = 1; 2; 3; 5; 10; 22 days using (14). The size of the rolling window

is chosen such that our forecasts start at 3/1/2007. The reported �gures are t-statistics to test

equal predictive ability and signi�cantly negative t-statistics favour the HEAVY model over the

GARCH model. The results show that the HEAVY model forecasts outperform GARCH forecasts

especially at short forecast horizons. This is true for the whole covariance matrix forecast as well

its decomposition into its margins and copula, which provides further insight into the source of

the forecast gains. The copula gains are maintained at longer forecast horizons indicating that the

realized measure provides valuable information for forecasting the conditional correlation.

As pointed out earlier, the forecast pro�le of the HEAVY model is distinct from that of the

GARCH model particularly over short forecast horizons due to momentum e¤ects. This can be seen

by considering the forecasts of the SPY-BAC conditional correlation (implied by the forecasts of

Ht) over the period 03/11/2008 to 30/09/2009. This is an interesting period for analysis as it marks
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Figure 3: Left panel: scatter plots of SPY and BAC residuals in the HEAVY-P and HEAVY-V equations. Right

panel: same plots mapped into probability integral transforms (PITs).

a very volatile period during the 2007-2009 �nancial crisis. The solid lines are the 1-step forecasts,

and at selected points we plot - using dashed lines - the forecast pro�le at this date for 22 days

into the future. We do this only for selected peak and trough points for clarity of illustration. The

momentum e¤ects in the HEAVY model can be readily seen. Whereas the GARCH correlation

forecasts monotonically mean reverts, the HEAVY forecast displays some short run momentum

in�uenced by the deviation of the realized measure from its long-run value before ultimately mean

reverting. Interestingly, the plot also shows how the 1-step forecasts from both models diverge in

some periods pointing to important di¤erences in the information content of the realized measure

and the outer product of daily returns.

It is interesting to track the model�s performance in relation to the accuracy of the realized

measure. For this purpose, we report in Table 3 the parameter estimates, log-likelihood gains and

out-of-sample performance using various sampling intervals for the realized covariance estimator.

The table also includes results when using the realized kernel as the realized measure. In general,

the results indicate that when sampling between 5 and 15 minutes, the parameters estimates of the

HEAVY and GARCH-X models are rather stable implying similar persistence levels, and indeed

the estimates become very close when sampling at 30 minutes. At 1-minute sampling, there is

substantial drop in the estimate of BH and a moderate increase in AH . Using the realized kernel
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Figure 4: One-step and multi-step forecasts for the SPY-BAC conditional correlation.

leads to a noticeable decline in the smoothing parameters in both equations of the HEAVY model

as well as the GARCH-X model. In terms of forecasting performance, the results are similar.

5.1.2 Other Asset Pairs

We also estimate the scalar HEAVY model for other pairs of assets in the DJIA index. The pairing

of the assets is chosen by selecting companies in the same sector (e.g. BAC-JPM and IBM-MSFT),

where we expect more persistent correlation dynamics, and also pairs of companies in di¤erent

sectors. The objective is to track the HEAVY model�s performance in each case. Table 4 reports

the parameter estimates for the HEAVY, GARCH and GARCH-X models. One notable feature is

that the estimates do not display large variation across the di¤erent pairs. As in the SPY-BAC

case, inclusion of the realized measure crowds out the outer product of returns as the coe¢ cient

DGX is statistically insigni�cant in all cases.

The decomposition of the log-likelihood gains shows that the HEAVY model gains are obtained

for each pair with respect to both margins and the copula with only one exception. The HEAVY

model overall log-likelihood gain for the joint distribution is uniform across all pairs. The predictive

ability test results indicate that the HEAVY model performs better than GARCH for all asset

pairs, with the gains being particularly signi�cant at short forecast horizons. We do not report
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HEAVY-P GARCH-X HEAVY-V Joint LL

AH BH AG BG DGX AM BM gain/loss

RC 1-min 0.256 0.597 0.128 0.741 0.052 0.527 0.471 65

RC 5-min 0.214 0.727 0.187 0.741 0.019 0.421 0.574 117

RC 10-min 0.202 0.760 0.189 0.764 0.011 0.362 0.633 120

RC 15-min 0.185 0.787 0.169 0.793 0.012 0.300 0.696 116

RC 30-min 0.143 0.842 0.134 0.843 0.009 0.236 0.759 107

Realized kernel 0.213 0.677 0.194 0.689 0.015 0.508 0.488 128

Joint distribution predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

RC 1-min -3.59 -3.08 -2.47 -1.82 0.30 1.50

RC 5-min -4.32 -3.78 -3.23 -2.33 -0.08 1.03

RC 10-min -4.08 -3.70 -3.21 -2.35 -0.23 0.99

RC 15-min -4.26 -3.87 -3.34 -2.64 -0.26 1.11

RC 30-min -3.81 -3.34 -2.75 -2.01 -0.13 1.12

Realized kernel -4.25 -3.76 -3.23 -2.63 -0.46 1.00

Table 3: Scalar HEAVY estimation and forecast evaluation results for SPY-BAC using di¤erent realized measures.

Upper panel: scalar HEAVY and GARCH-X parameter estimates using di¤erent sampling intervals in constructing

the realized covariance and also using the realized kernel. Log-likelihood gains are reported in last column. Bottom

panel: t-statistics of the predictive ability tests for HEAVY versus GARCH.

the margins-copula decomposition for these tests in the interest of brevity, but they show that the

HEAVY model gains are maintained for some of the margins and also for the copula of some of the

pairs. In no case was the GARCH model signi�cantly favoured at any horizon except for the BAC

and JPM margins towards the end of the forecast horizon.

5.2 Bivariate Diagonal HEAVY Model

In this subsection we discuss the estimation and forecast evaluation results for the diagonal HEAVY

model. We exclude the GARCH-X model results to improve presentation noting that its results are

in line with the those of the scalar model. For the diagonal HEAVY model in the bivariate case,

the parameters AH and BH are given by the diagonal matrices

AH =

 
a11;H 0

0 a22;H

!
; BH =

 
b11;H 0

0 b22;H

!
;

and the same applies to AM and BM . The top panel of Table 5 presents estimates of the diagonal

elements of the parameter matrices in (5) and (6) in order along with those of the corresponding

GARCH model. These are easier to interpret when expressed in terms of the parameters of the

vech representation in (7) and (8), which are reported underneath. Note that if AH is, for instance,

a (2� 2) diagonal matrix, then AH will be a (3� 3) diagonal matrix; see Example 2. The �rst and
third diagonal elements of AH will be the squares of the diagonal elements of AH , and the second
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HEAVY-P GARCH GARCH-X HEAVY-V

AH BH AG BG AGX BGX DGX AM BM

BAC - JPM 0.260 0.639 0.062 0.938 0.180 0.702 0.046 0.450 0.550

IBM - MSFT 0.179 0.762 0.051 0.941 0.135 0.794 0.026 0.309 0.676

XOM - AA 0.188 0.737 0.057 0.935 0.114 0.804 0.034 0.315 0.667

AXP - DD 0.201 0.743 0.045 0.951 0.183 0.754 0.010 0.357 0.638

GE - KO 0.220 0.727 0.039 0.957 0.205 0.740 0.007 0.344 0.651

HEAVY-P log-likelihood gains/losses (+/-) relative to GARCH

Margin 1 Margin 2 Copula Joint LL

BAC - JPM 44 58 8 110

IBM - MSFT 30 37 17 84

XOM - AA 44 31 -7 69

AXP - DD 56 49 16 121

GE - KO 47 34 9 90

Joint distribution predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

BAC - JPM -4.09 -3.41 -2.78 -1.98 0.45 1.32

IBM - MSFT -2.92 -2.60 -2.38 -1.94 -1.56 -0.46

XOM - AA -2.76 -2.09 -2.05 -1.76 -1.32 -0.80

AXP - DD -3.46 -3.09 -2.84 -2.39 -1.28 0.18

GE - KO -2.80 -2.66 -2.41 -2.21 -0.91 1.00

Table 4: Scalar HEAVY estimation and forecast evaluation results for other pairs of assets. Upper panel: parameter

estimates of HEAVY, GARCH and GARCH-X. Middle panel: HEAVY-P log-likelihood gains/losses relative to

GARCH. Bottom panel: t-statistics of the predictive ability tests for HEAVY versus GARCH.
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HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

SPY-BAC
(st. error)

0:447
(0:048)

0:477
(0:057)

0:858
(0:033)

0:844
(0:041)

0:238
(0:023)

0:262
(0:035)

0:968
(0:006)

0:964
(0:010)

0:632
(0:025)

0:663
(0:033)

0:768
(0:022)

0:748
(0:028)

AH BH AG BG AM BM

Var. eqn. (SPY) 0.200 0.736 0.057 0.938 0.400 0.590

Var. eqn. (BAC) 0.228 0.713 0.069 0.929 0.439 0.560

Cov. eqn. 0.213 0.725 0.063 0.933 0.419 0.575

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

Margin 1 (SPY) -659 -713 54

Margin 2 (BAC) -1592 -1647 55

Copula 816 809 7

Joint distribution -1435 -1552 117

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

Margin 1 (SPY) -3.86 -3.24 -2.77 -1.78 0.27 1.50

Margin 2 (BAC) -3.17 -2.45 -1.79 -0.80 0.89 1.90

Copula -3.29 -3.02 -3.04 -3.04 -2.99 -3.88

Joint distribution -4.38 -3.79 -3.27 -2.54 -0.46 0.70

Table 5: Diagonal HEAVY estimation and forecast evaluation results for SPY-BAC. Upper panel: parameter

estimates of HEAVY and GARCH with standard errors reported in parentheses. Middle panel: decomposition of

the log-likelihood at the estimated parameter values. Bottom panel: t-statistics of the predictive ability tests for

HEAVY versus GARCH.

diagonal element of AH will be the product of the two diagonal elements of AH .

The estimates of the diagonal elements are rather similar within each parameter matrix, except

for the HEAVY-V equation. Since the diagonal HEAVY models nests the scalar HEAVY model,

we can test for the restriction using a Wald test. The scalar restriction is not rejected for both

the HEAVY and GARCH models at the 5% signi�cance level. The log-likelihood decomposition

results are similar to the scalar model and show improvements in both margins and the copula.

The bottom panel of Table 5 shows that the diagonal HEAVY model provides superior forecasts

with the gains being particularly signi�cant at short forecast horizons.

We also report estimation results for the diagonal model using other pairs of assets in Table

6. For brevity, we only report parameter estimates for the vech representation. The parameter

estimates show some variation within and across pairs. The Wald test results indicate that the

scalar model restrictions are rejected at the 5% signi�cance level only for the XOM-AA pair in

the HEAVY-P equation, and only for the AXP-DD pair in the GARCH model. The scalar model

restrictions for the HEAVY-V equation are not rejected in any of the pairs. The �gures in the

middle panel shows that the HEAVY model gains over GARCH in terms of the joint distribution

log-likelihood are uniform across all pairs. The gains in the margins and the copula - not reported
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HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Variance (BAC) 0.267 0.638 0.051 0.947 0.433 0.566

Variance (JPM) 0.256 0.634 0.074 0.925 0.473 0.526

Covariance (BAC-JPM) 0.262 0.636 0.061 0.936 0.452 0.546

Variance (IBM) 0.187 0.761 0.052 0.939 0.331 0.652

Variance (MSFT) 0.172 0.764 0.049 0.945 0.291 0.695

Covariance (IBM-MSFT) 0.180 0.763 0.050 0.942 0.311 0.673

Variance (XOM) 0.175 0.713 0.073 0.907 0.338 0.644

Variance (AA) 0.180 0.784 0.043 0.952 0.285 0.698

Covariance (XOM-AA) 0.178 0.748 0.056 0.929 0.310 0.670

Variance (AXP) 0.218 0.738 0.065 0.931 0.371 0.628

Variance (DD) 0.186 0.740 0.031 0.963 0.338 0.645

Covariance (AXP-DD) 0.201 0.739 0.045 0.947 0.354 0.636

Variance (GE) 0.211 0.750 0.042 0.956 0.354 0.645

Variance (KO) 0.283 0.610 0.037 0.957 0.331 0.653

Covariance (GE-KO) 0.245 0.676 0.039 0.956 0.342 0.649

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

BAC - JPM -2828 -2936 108

IBM - MSFT -2295 -2380 85

XOM - AA -3415 -3485 71

AXP - DD -3155 -3271 116

GE - KO -2211 -2304 93

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

BAC - JPM -3.78 -3.13 -2.47 -1.68 0.69 1.84

IBM - MSFT -2.91 -2.59 -2.39 -1.94 -1.57 -0.49

XOM - AA -2.84 -2.15 -2.14 -1.87 -1.42 -0.93

AXP - DD -3.24 -2.94 -2.75 -2.33 -1.43 -0.24

GE - KO -2.87 -2.71 -2.50 -2.25 -1.04 0.83

Table 6: Diagonal HEAVY parameter estimates for other pairs of assets. Upper panel: parameter estimates of

HEAVY and GARCH. All coe¢ cients are statistically signi�cant at the 5 percent signi�cance level. Middle panel:

HEAVY-P and GARCH log-likelihood at the estimated parameter values. Bottom panel: t-statistics of the

predictive ability tests for HEAVY versus GARCH.
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for brevity - mirror the results in the scalar model; see middle panel of Table 4. The t-statistics

of the predictive ability tests in the bottom panel indicate that the HEAVY model consistently

outperforms the GARCH model.

5.3 Covariance Targeting Scalar HEAVY Model

In this section, we estimate the scalar HEAVY model including all 10 DJIA assets. We show the

estimation results for both the original HEAVY speci�cation and the covariance targeting model

given by (11)-(10). We focus on this covariance targeting speci�cation since it is easier to handle the

parameter restrictions required for covariance stationarity and positive de�niteness of the target;

see Remark 3. For the GARCH model, we also estimate its covariance targeting parameterization

which has a similar structure to (10). With covariance targeting, the number of parameters to be

estimated through numerical optimization is reduced from 57 to 2 parameters per equation, where

the latter are the dynamic parameters of interest.

Table 7 presents the estimates of the dynamic parameters for the HEAVY and GARCH models.

The parameter estimates show some di¤erences compared to the average estimate from the bivariate

models for the same assets. The estimates of the smoothing parameters (BH , BM and BG) have

all increased especially BM , while the estimates of (AH , AM and AG) are now smaller. The log-

likelihood decomposition results show uniform gains for the HEAVY model in all margins and the

copula. The copula gains seem particularly impressive. In terms of parameter estimates and the

log-likelihood decomposition, the covariance targeting model shows only slight di¤erences compared

to the non-targeting speci�cation.

In Figure 5, we present summary results of the predictive ability tests for the covariance tar-

geting scalar HEAVY and GARCH models. The �gure shows the t-statistics for tests for the joint

distribution, copula and the minimum, maximum, and median t-statistics for the ten margins. In

the �rst three days, the HEAVY model gains are con�rmed for the joint distribution, all margins

and the copula. The gains of the joint distribution are maintained up to 11 days ahead, then it falls

into the insigni�cance region before improving again towards the end of the forecast horizon. For

the margins, the median t-statistics show gains up to 7 days ahead. The copula gains are main-

tained throughout until the end of the forecast horizon, which is consistent with the substantial

overall gain in the copula log-likelihood discussed above.

6 Conclusion

This paper introduces a new class of multivariate volatility models with robust performance in out-

of-sample prediction of the covariance matrix for a collection of �nancial assets. While GARCH

models - in their many variations - have proved successful in the past two decades, the increasing

availability of high-frequency data provides important additional information. Utilizing this infor-

mation to forecast the conditional variance of daily asset returns has already borne fruit in the
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Scalar HEAVY model

HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Dynamic param.
(st. error)

0:141
(0:021)

0:792
(0:037)

0:024
(0:002)

0:973
(0:001)

0:247
(0:011)

0:744
(0:010)

Log-likelihood decomposition

HEAVY-P GARCH HEAVY-P gains

Margin 1 (BAC) -1611 -1696 85

Margin 2 (JPM) -1999 -2098 99

Margin 3 (IBM) -1267 -1323 56

Margin 4 (MSFT) -1471 -1525 54

Margin 5 (XOM) -1331 -1420 89

Margin 6 (AA) -2332 -2381 49

Margin 7 (AXP) -1957 -2034 77

Margin 8 (DD) -1530 -1595 65

Margin 9 (GE) -1532 -1590 58

Margin 10 (KO) -911 -956 45

Copula 4861 4661 200

Joint distribution -11080 -11958 878

Covariance targeting scalar HEAVY model

HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Dynamic param.
(st. error)

0:177
(0:022)

0:818
(0:023)

0:022
(0:001)

0:977
(0:001)

0:234
(0:009)

0:761
(0:010)

Log-likelihood decomposition

HEAVY-P GARCH HEAVY-P gains

Margin 1 (BAC) -1616 -1753 138

Margin 2 (JPM) -1985 -2119 133

Margin 3 (IBM) -1257 -1327 69

Margin 4 (MSFT) -1464 -1525 61

Margin 5 (XOM) -1340 -1424 84

Margin 6 (AA) -2324 -2379 55

Margin 7 (AXP) -1940 -2046 106

Margin 8 (DD) -1528 -1592 64

Margin 9 (GE) -1521 -1595 74

Margin 10 (KO) -911 -954 43

Copula 4781 4629 151

Joint distribution -11105 -12084 978

Table 7: Scalar HEAVY estimates for 10 DJIA assets. Upper panel: parameter estimates and log-likelihood

decomposition for scalar HEAVY and GARCH without covariance targeting. Bottom panel: parameter estimates

and log-likelihood decomposition for the covariance targeting scalar HEAVY and GARCH.
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Figure 5: Predictive ability tests�t-statistics for the covariance targeting scalar HEAVY and GARCH models.

univariate case as documented by several recent studies.

Our study is one of the �rst to document this feature in the multivariate case using a relatively

large group of assets. We present our results in the framework of the multivariate HEAVY class of

models. Using a linear speci�cation, we discuss in some detail the model�s dynamic properties, its

covariance targeting representation, and provide closed-form forecasting formulas. We show how

the pro�le of forecasts from HEAVY models di¤ers from GARCH models, in particular with regard

to its persistence and short-run momentum e¤ects. We also discuss QMLE of HEAVY models

under the assumption of a Wishart distribution for the innovation matrices.

In an application to an S&P 500 ETF and 10 stocks from the DJIA index, we put the HEAVY

and GARCH models to the challenging test of forecasting the assets�conditional covariance matrix

during the recent �nancial crisis. We show that forecasts from the HEAVYmodel dominate GARCH

forecasts with the gains being particularly signi�cant at short forecast horizons. The results seem

consistent across di¤erent pairs of assets and also when using all ten assets in a covariance targeting

model. The HEAVY model�s relatively short memory compared to GARCH models seems to enable

it to e¢ ciently track sudden changes in volatility and the dependence structure of the assets. With
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regard to the latter, our results for overall log-likelihood decompositions and predictive ability tests

strongly suggest that high-frequency data provides quite important information for modelling and

forecasting conditional correlations.

For future research, a number of extensions could potentially add to our understanding of how

best to model and forecast multivariate volatility. It would be interesting to add asymmetric e¤ects

to the HEAVY model to explicitly capture the leverage e¤ect and see how this improves its forecast

performance. It might also be bene�cial to use a long-run/short-run component model in the

dynamic equations to separate out transitory movements in volatility.

A Matrix Algebra and Matrix Calculus

Most of the results in this appendix can be found in Magnus (1988) and Magnus and Neudecker

(1999). The vec operator stacks the columns of a (k � k) matrix into a (k2 � 1) vector. The vech
operator stacks the lower triangular part including the main diagonal of a (k�k) symmetric matrix
into a (k� � 1) vector, k� = k(k + 1)=2.

For any matrices A(k � l), B(l � m) and C(m � n), vec(ABC) = (C 0 
 A)vec(B). For any
(k � k) matrix A, the (k� � k2) elimination matrix Lk is de�ned such that vech(A) = Lkvec(A),
while for any (k � k) symmetric matrix A, the (k2 � k�) duplication matrix Dk is de�ned such
that vec(A) = Dkvech(A). Let �ij be a (k � k) matrix with 1 in its (i; j)th position and zeros
elsewhere. Then Lk and Dk can be obtained using Lk =

X
i�j
vech(�ij)(vec(�ij))

0 and Dk =X
i>j
vec(�ij + �ji)(vech(�ij))

0 +
X

i=j
vec(�ij)(vech(�ij))

0.

The above results can be combined to give the following result for any (k � k) matrices A, B
and C with B being symmetric

vech(ABC) = Lkvec(ABC) = Lk(C
0 
A)vec(B) = Lk(C 0 
A)Dkvech(B): (A.1)

For a (k� l) matrix function F (X) and a (m�n) matrix of variables X, the derivative of F (X)
with respect to X, denoted by the (kl �mn) matrix DF (X), is given by

DF (X) =
@vec(F (X))

@(vec(X))0
:

Also for any (k � k) matrix A,

@A�1

@A
= �((A�1)0 
A�1); @ log jAj

@A
= (vec((A�1)0))0; and

@tr(AX)

@X
= (vec(A0))0:

B Second Moments�Structure

Since the model is expressed for pt (i.e. for the squares and cross-products of daily returns), we are

able to obtain explicit expressions for the fourth moment of returns by deriving Var[pt]. Similarly,
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by deriving Var[vt], we are able to analyze the second moment of the realized measure which gives

an expression for the volatility of volatility; see Engle (2002) and Corsi et al. (2008) for a discussion

of modelling the volatility of volatility using the VIX and realized volatility, respectively.

The following proposition gives the structure of second moments of the matrix of outer product

of daily returns and the realized measure, which is derived under the assumption that conditional

moment assumptions that Et�1["t] = Et�1[�t] = Ik hold. The expressions in equations (B.1) and

(B.2) can be simpli�ed further by assuming a Wishart distribution for the innovation matrices "t
and �t, which gives (B.3) and (B.4).

Proposition 4 (i) Under the assumption that "t and �t obey the conditional moment assumptions,
Et�1["t] = Et�1[�t] = Ik, the second moments of pt and vt are given by

Var[pt] = E
�
ZH;tVart�1[vech("t)]Z

0
H;t

�
+Var [ZH;tvech(Ik)] ; (B.1)

Var[vt] = E
�
ZM;tVart�1[vech(�t)]Z

0
M;t

�
+Var [ZM;tvech(Ik)] ; (B.2)

where ZH;t = Lk(H
1
2
t 
H

1
2
t )Dk and ZM;t = Lk(M

1
2
t 
M

1
2
t )Dk.

(ii) Under the additional assumption that "t and �t are i:i:d: Wishart distributed, the second

moments of pt and vt are given by

E[ptp
0
t] = 2D

+
k E [(Ht 
Ht)]L

0
k + E[hth

0
t]; (B.3)

E[vtv
0
t] = 2D

+
k E [(Mt 
Mt)]L

0
k + E[mtm

0
t]; (B.4)

where D+k = (D
0
kDk)

�1D0k is the Moore-Penrose inverse of the duplication matrix, Dk.

Dropping the t subscripts to avoid cluttered notation, the second moment structure of pt given

in (B.3) will have the following structure in the 2-dimensional case

E[pp0] = E

0B@ r41 r31r2 r21r
2
2

r31r2 r21r
2
2 r1r

3
2

r21r
2
2 r1r

3
2 r42

1CA = E

0B@ 3h211 3h11h12 2h212 + h11h22

3h11h21 2h221 + h11h22 3h12h22

2h221 + h11h22 3h21h22 3h222

1CA ;
where lower case letters, r1 and r2, are the daily returns for assets 1 and 2, respectively, and hij ,

i; j = 1; 2, are the elements of Ht. Applying a vec operator to (B.3) gives a similar result to (10) in

Hafner (2003), which discusses the fourth moment structure of GARCH models when Ht follows a

GARCH speci�cation and daily returns are assumed to be normally distributed.

The result in equation (B.4) seems novel in the context of realized measures. In the univariate

case, Corsi et al. (2008) estimate the volatility of realized volatility by utilizing consistent estimators

of the integrated quarticity of returns, such as realized quarticity, realized quad-power quarticity

and realized tri-power quarticity. In an application to S&P 500 index futures, they show that the

unconditional distributions of these three measures exhibit skewness and leptokurtosis even after

applying a log transformation. In addition, they also exhibit time variation and volatility clustering,

which prompts the authors to develop a GARCH-type model for realized volatility. Engle (2002)

also discusses di¤erent models for the volatility of volatility using the VIX time series.
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C The Wishart Distribution: An Overview

The Wishart distribution is the matrix-variate generalization of the �2 distribution. It is the sam-

pling distribution of the sample covariance matrix for random draws from the multivariate normal

distribution; see Gupta and Nagar (2000) for a detailed treatment. We begin our overview by

relating the Wishart distribution to the multivariate normal and the matrix-variate normal. Let

x1; :::; xn be independent random vectors drawn from the (centered) multivariate normal distribu-

tion where each (k� 1) vector xi � Nk(0;�), i = 1; :::; n. Then the (k� n) matrix X = (x1; :::; xn)

has a matrix variate normal distribution denoted as X � Nk;n(0;�
 In). If n � k, then S = XX 0

is a positive de�nite (k � k) matrix and follows a (centered) Wishart distribution, denoted as S �
Wk(n;�), where n is integer degrees of freedom and � is the scale matrix. The unconditional

moments of S are given by E(S) = n�, and Var(vec(S)) = 2nDkD
+
k (�
 �).

The density of S is given by

Wk(n;�) =
jSj

n�k�1
2

2
nk
2 �k(

n
2 ) j�j

n
2

exp

�
�1
2
tr(��1S)

�
; n � k;

where �k
�
n
2

�
= �k(k�1)=4

Yk

j=1
�
�
n
2 + (1� j)=2

�
is the multivariate gamma function. It is also

useful to de�ne a standardized Wishart distribution such that if S � SWk(n;�), where SWk denote

a standardized Wishart distribution of dimension k, we have that E(S) = � instead of E(S) = n�

under the non-standardized Wishart. Note that SWk(n;�) is equivalent to Wk(n; n
�1�). In this

case, the density of S is given by

SWk(n;�) =
n
nk
2 jSj

n�k�1
2

2
nk
2 �k(

n
2 ) j�j

n
2

exp
�
�n
2
tr(��1S)

�
; n � k: (C.1)

If the (k � n) matrix X does not have full column rank (i.e. n < k), S = XX 0 follows instead

a singular Wishart distribution; see Uhlig (1994) and Srivastava (2003). Uhlig (1994) derives the

density of the singular Wishart as

SINGWk(n;�) =
�(�kn+n

2)=2
��� eS���n�k�12

2
nk
2 �n(

n
2 ) j�j

n
2

exp

�
�1
2
tr(��1S)

�
; n < k; (C.2)

where eS is a diagonal matrix containing the non-zero eigenvalues of S along the main diagonal.
One of the key results onWishart distributions is that if S �Wk(n;�), thenASA0 �Wk(n;A�A

0)

for any (k�k) nonsingular matrix A. Srivastava (2003) extends this result to the singular Wishart
case. Based on the ranks of Pt and Vt, we use this result in specifying the distribution of the

innovation matrices "t and �t as discussed in 3.1.
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D Technical Proofs

D.1 Proof of Proposition 1

By taking unconditional expectation of (7) and (8) we have

!H = CH +BH!H +AH!M ; !M = CM +BM!M +AM!M : (D.1)

By de�nition � = 

1
2
M


� 1
2

H , which implies 

1
2
M = �


1
2
H , and 
M = 


1
2
M


1
2
M = �
H�

0 using

the fact that 

1
2
M and 


1
2
H are symmetric since we obtain the matrix square root by the spectral

decomposition. Thus !M := vech(
M ) = vech(�
H�
0) = Lk(�
 �)Dk!H using (A.1) for the last

equality.

Let � = Lk(�
 �)Dk and substitute the last result for !M in the �rst expression in (D.1). By

collecting terms we have that the intercept coe¢ cients are given by CH = (Ik� � BH � AH�)!H
and CM = (Ik� �BM �AM )!M , which when substituted in (7) and (8) gives the stated result.

The proof for (11) follows by noting that E[evt] = ��1E[vt] = ��1!M = !H , where the last

equality follows from above by de�ning � = Lk(�
 �)Dk. The rest follows by the same arguments
in the proof of (8).

D.2 Proof of Proposition 2

We start with the proof of (14). The 1-step forecast of ht is Et[ht+1] = ht+1, since ht+1 is FHFt -

measurable. From (7), the 2-step forecast is

Et[ht+2] = Et[CH +BHht+1 +AHvt+1] = CH +BHht+1 +AHEt[vt+1]:

The 3-step forecast is

Et[ht+3] = Et[CH +BHht+2 +AHvt+2] = CH +BHEt[ht+2] +AHEt[vt+2]

= (Ik� +BH)CH +B
2
Hht+1 +AHEt[vt+2] +BHAHEt[vt+1];

where the last equality follows by substituting for Et[ht+2] from above and collecting terms. By

forward iteration, it is straightforward to show that

Et[ht+s] =
s�1X
i=1

Bi�1H CH +B
s�1
H ht+1 +

s�1X
i=1

Bi�1H AHEt[vt+s�i]: (D.2)

Now �nd an expression for Et[vt+s�i] in terms of mt+1, which is FHFt -measurable. We start

with the 1-step forecast of vt which is Et[vt+1] = mt+1 by de�nition. The 2-step forecast is

Et[vt+2] = Et[Et+1[vt+2]] = Et[mt+2] = Et[CM +BMmt+1 +AMvt+1]

= CM + (BM +AM )mt+1;
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since Et[vt+1] = mt+1. The 3-step forecast is

Et[vt+3] = Et[Et+1[vt+3]] = Et[CM + (BM +AM )mt+2] = CM + (BM +AM )Et[mt+2]

= (Ik� + (BM +AM ))CM + (BM +AM )
2mt+1;

where the second equality follows by substitution from above with a 1-period forward iteration, and

the last equality follows by substituting for mt+2, applying the expectations operator and collecting

terms. By forward iteration, we have the following formula for the s-step forecast of vt

Et[vt+s] =
s�1X
j=1

(BM +AM )
j�1CM + (BM +AM )

s�1mt+1: (D.3)

Using (D.3) to substitute for Et[vt+s�i] in (D.2), while adapting the summation limits by re-

placing s in (D.3) with (s� i) gives the stated result.
The proof of (15) follows similar steps. We start by taking unconditional expectations of (7)

and (8) which gives

!H = CH +BH!H +AH!M ; !M = CM +BM!M +AM!M ;

so that the constant terms can be expressed as CH = !H � BH!H � AH!M and CM = !M �
BM!M �AM!M . Substituting these expressions in (7) and (8) gives

ht = !H �BH!H �AH!M +BHht�1 +AHvt�1

= !H +BH(ht�1 � !H) +AH(vt�1 � !M );

mt = !M �BM!M �AM!M +BMmt�1 +AMvt�1

= !M +BM (mt�1 � !M ) +AM (vt�1 � !M ):

Forward iteration of these equations as illustrated in the proof of (14) yields (15).

D.3 Proof of Proposition 3

We derive the score vector and prove that it is a martingale di¤erence sequence only for the HEAVY-

P equation. The derivation for the HEAVY-V equation is analogous. We derive the (1� �H) score
vector @lH;t(�H)@�H

from the log-likelihood equation which gives

@lH;t(�H)

@�0H
= �1

2

@ log jHtj
@�0H

� 1
2

@tr(H�1
t Pt)

@�0H

= �1
2

@ log jHtj
@Ht

@Ht
@�0H

� 1
2

@tr(H�1
t Pt)

@H�1
t

@H�1
t

@Ht

@Ht
@�0H

= �1
2
(vec(H�1

t ))0
@vec(Ht)

@�0H
+
1

2
(vec(Pt))

0(H�1
t 
H�1

t )
@vec(Ht)

@�0H
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=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� (vec(H�1
t ))0

� @vec(Ht)
@�0H

=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� (vec(H�1
t HtH

�1
t ))0

� @vec(Ht)
@�0H

=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� ((H�1
t 
H�1

t )vec(Ht))
0� @vec(Ht)

@�0H

=
1

2

�
(vec(Pt))

0 � (vec(Ht))0
�
(H�1

t 
H�1
t )

@vec(Ht)

@�0H
;

where in the second equality we used the chain rule and the matrix derivatives in the third equality

are obtained using the rules stated in Appendix A.

The score vector is a martingale di¤erence sequence such that Et�1[
@lH;t(�H)

@�0H
] = 0 as the condi-

tional expectation of the term in square brackets is 0 since

Et�1
�
(vec(Pt))

0 � (vec(Ht))0
�
= Et�1[(vec(Pt))

0]� Et�1(vec(Ht))0] = 0;

where we use Et�1[(vec(Pt))0] = (vec(Ht))
0, which follows directly by applying a vec operator to

(3) and using the conditional moment assumption Et�1["t] = Ik.

D.4 Proof of Proposition 4

We only show the proof for (B.1) and (B.3), as (B.2) and (B.4) follows similar arguments. We start

from pt := vech(Pt) = vech(H
1
2
t "tH

1
2
t ) = Lk(H

1
2
t 
 H

1
2
t )Dkvech("t), where the last result follows

from (A.1). Let ZH;t = Lk(H
1
2
t 
H

1
2
t )Dk, which is FHFt�1 -measurable. Also, let Vart[�] := Var[�jFHFt ]

denote the variance conditional on FHFt . Using the variance decomposition, we obtain

V [pt] = E [Vart�1[pt]] + Var [Et�1[pt]]

= E [Vart�1[ZH;tvech("t)]] + Var [Et�1[ZH;tvech("t)]]

= E
�
ZH;tVart�1[vech("t)]Z

0
H;t

�
+Var [ZH;tEt�1[vech("t)]]

as ZH;t is FHFt�1 -measurable. As Et�1["t] = Ik by assumption, it follows that Et�1[vech("t)] =

vech(Ik). Thus the last equation can be simpli�ed to give (B.1).

For (B.3), "t
i:i:d:� Wk(1; Ik) so PtjFHFt�1 � Wk(1;Ht) using the property of quadratic forms for

Wishart and singular Wishart matrices; see respectively Gupta and Nagar (2000, Theorem 3.3.1)

and Srivastava (2003, Corollary 3.5). Since PtjFHFt�1 � Wk(1;Ht), we have that Vart�1[vec(Pt)] =

2DkD
+
k (Ht
Ht) where Dk is the duplication matrix, and D

+
k = (D

0
kDk)

�1D0k is its Moore-Penrose

inverse. This result follows from Magnus (1988, Theorem 10.1) by noting that conditioning on

FHFt�1 enables us to treat Ht as a nonstochastic matrix. Therefore

Vart�1[pt] = Vart�1[Lkvec(Pt)] = LkVart�1[vec(Pt)]L
0
k

= 2LkDkD
+
k (Ht 
Ht)L

0
k = 2D

+
k (Ht 
Ht)L

0
k;
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where the last equality follows since LkDk = Ik� by Magnus (1988, Theorem 5.5). We obtain the

unconditional second moment of pt using the variance decomposition

Var[pt] = E [Vart�1[pt]] + Var [Et�1[pt]] = E
�
2D+k (Ht 
Ht)L

0
k

�
+Var [ht]

= 2D+k E [(Ht 
Ht)]L
0
k +Var [ht] :

We can write Var[pt] = E[ptp0t]�E[pt]E[pt]0 and Var[ht] = E[hth0t]�E[ht]E[ht]0. By noting that
E[pt] = E [Et�1[pt]] = E[ht], we can simplify the last equation to

E[ptp
0
t] = 2D

+
k E [(Ht 
Ht)]L

0
k + E[hth

0
t];

which gives the stated result.
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