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I Introduction

Price controls in competitive markets can harm consumers in three ways.
Textbook analyses typically, and sometimes exclusively, focus on the cost of
reduced supply.1 A second cost, discussed at least since Friedman and Stigler
(1946) but rarely emphasized until Glaeser and Luttmer (1997, 2003), is that
the available supply will not necessarily be allocated to those with the highest
values.2 A third cost is the cost of rent-seeking behavior, such as queueing,
lobbying, and search costs. When do these costs outweigh the benefits of
lower prices, so price controls reduce consumer surplus?

We show that if output is allocated randomly among those prepared to
pay more than the controlled price and if supply is more elastic than de-
mand, then a price control always hurts consumers if demand is convex (e.g.,
linear, log-linear, etc.). Even with completely inelastic supply, total con-
sumer surplus falls whenever demand is log convex (constant elasticity is one
example).

Furthermore, these results are unaffected if rent-seeking alters the allo-
cation. Though rent-seeking leads to more-efficient-than-random allocation,
the costs it dissipates mean a price control is guaranteed to hurt consumers
under the identical conditions.3

Splitting the market between controlled and uncontrolled units also makes
no difference to these results. Even though all the highest-value consumers
can consume, the results are the same (although the magnitudes of con-
sumers’ losses are, of course, affected).4

1For example, the analyses in Taylor and Weerapana (2010, 177-78) and Boyes and
Melvin (2010, 194—95), which are widely-used textbooks in US universities and colleges,
simply assume efficient allocation without discussion.

2Welch (1974), Lott (1987, 1990), Palda (2000), and Luttmer (2007) discuss alloca-
tive costs in the context of minimum-wage legislation; and MacAvoy and Pindyck (1975),
Braeutigam and Hubbard (1986), and Davis and Kilian (2011) analyse the costs of re-
stricting new potential consumers’ access to the natural gas market. A clear exposition of
the standard theoretical analysis of these "allocative costs" is in Viscusi, Harrington, and
Vernon (2005).

3But rent-seeking typically makes rationing (even) more likely to reduce consumer sur-
plus if supply is elastic. These results also depend on rent-seeking costs being uncorrelated
with valuations, as we also discuss later.

4Examples of partially controlled markets include Manhattan real estate (where some
units are either rent-controlled or rent-stabilized while others are available to the highest
bidder), and the British healthcare system (where a small private market coexists with
a National Health Service which approximates random rationing since healthcare profes-
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Finally, while there is always a windfall gain to incumbent consumers,
these gains are often small. For example, below-market rents are typically
phased in over time by rent freezes rather than cuts, and turnover in rentals
is on average very high. So even when controls raise consumer surplus in
the short run because of the incumbent effect, and even though a gradual
implementation of rent control will also mean a slower decline in the value of
the marginal rental seeker, the mis-allocation effect alone can quickly cause
a net loss in consumer surplus.

Existing analyses fail to note that consumer surplus equals the area be-
tween the demand curve and the industry marginal-revenue curve up to the
market quantity in an uncontrolled market—even in a competitive market—see
figure 1. More generally, when goods are rationed, total consumer surplus
equals the sum of the values to consumers of the units they receive less the
sum of their marginal revenues.5 These facts are the key to the development
and interpretation of our results.

FIG. 1.–Alternative measures of Consumer Surplus.
In any market, including a competitive one, consumer surplus can be

measured as either [area I + area II] or [area II + area IV], since elementary
theory implies [area I + area III] = [area III + area IV].

sionals are roughly uniformly distributed across the population).
5For example, if the inverse demand curve were p = 100−q and soMR = 100−2q then

a consumer with a value of 70 (and so MR of 40) and a 50 percent chance of receiving
a unit would account for .5(70 − 40) = 15 in consumer surplus, and aggregating across
all consumers in this way correctly calculates total consumer surplus, even though the
measure cannot be used for determining the amount of consumer surplus that goes to the
individual consumer (which, of course, also depends on the market price).
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One caveat is that our analysis ignores distributional issues. Even when
price controls reduce aggregate consumer surplus, they redistribute it among
consumers.6

We begin in Section II by assuming that output is allocated randomly
among those willing to pay more than the controlled price, and then extend
the model to address non-random allocation. Section III generalizes the
model by incorporating rent-seeking and shows that secondary markets also
fit easily into our analysis. Section IV considers partially-controlled markets.
It shows that while splitting the market between uncontrolled and controlled
(rationed) units can increase consumer surplus, it can never be consumer-
optimal to use more than one control price. Section V concludes.

Appendix A illustrates our analysis by solving our model for a class of
examples that includes the standard constant-elasticity, log-linear, and linear
demand curves.

II The Basic Model: Rationing by Lottery

Consider a competitive industry with a demand curve D(p) formed by a
density of consumers −D′(v) ≥ 0 with unit demand at value v,7 and a supply
curve S(p).

We assume S ′(p) ≥ 0 (that is, no "backward-bending" supply). We also
assume that demand is finite at all p > 0, and that its elasticity at all prices
above some finite price is bounded strictly above 1. This condition ensures
that total consumer surplus in an uncontrolled market that clears at price p
(that is,

∫
∞

p
D(v)dv) is finite. So, for example, inelastic constant-elasticity

demand is ruled out.8

6We also ignore any effects on the provision of quality.
7We extend to consumers who individually have downward-sloping demand curves in

Section III.C.
8Our assumptions also ensure that a monopolist’s problem is well-defined. Although

our model is a competitive one, demand conditions we develop also apply to a capacity-
constrained monopolist and are related to the conditions that determine a monopolist’s
pass-through. See note 14.
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We assume in Sections II.A-II.B that if a regulator sets a price p below
the market clearing level then supply is randomly allocated among consumers
with value ≥ p.9 This is the standard assumption made in, for example,
Viscusi, Harrington, and Vernon (2005), but we will relax it in subsequent
sections of our paper.

So consumer surplus at the controlled price, CS(p), equals consumer
surplus if the market cleared at p, times the ratio of supply to demand,
S(p)/D(p) :

CS(p) =
S(p)

D(p)

[∫
∞

v=p

D(v)dv

]
. (1)

A. Measuring Consumer Surplus using Marginal Revenues
For any quantity in any market, price times quantity equals total rev-

enues equals the area under the monopolist marginal revenue (MR) curve.
Therefore, if all consumers with values above p are served, consumer surplus
equals the area between the demand curve and the marginal revenue curve,
in any market, including our competitive one.

It follows that the increment in total consumer surplus in an uncontrolled
market caused by a price reduction that leads to a one unit increase in
quantity is p − MR(p). So we can write Marginal Consumer Surplus as
MCS(p) ≡ [p−MR(p)], and also rewrite (1) as

CS(p) =
S(p)

D(p)

∫
∞

v=p

−D′(v)[v −MR(v)]dv =
S(p)

D(p)

∫
∞

v=p

−D′(v)[MCS(v)]dv

(2)

9For example, the 2012 British Olympic Committee distributed tickets using a random
allocation procedure, and prevented resale by printing recipients’ names on their tickets
and requiring them to turn up with picture IDs. More significant examples of (approx-
imately) random rationing without resale might include socialised health or education
systems.

4



since −D′(v) is the density of consumers with a value of v.10 We will also

write Average Consumer Surplus (per unit sold) as ACS(p) ≡
[
CS(p)
S(p)

]
=

[
1

D(p)

∫
∞

p
−D′(v)[MCS(v)]dv

]
.

Differentiating (2) with respect to price yields the change in consumer
surplus due to a small price cut :

−CS ′(p) = −D′(p)
S(p)

D(p)
[MCS(p)] + [D′(p)

S(p)

D(p)
− S ′(p)][ACS(p)]. (3)

Since S ′(p) ≥ 0, consumer surplus must decline if ACS(p) > MCS(p).
The intuition is trivial: with random allocation of a fixed number of units,

consumer surplus is proportional to Average CS, which of course declines if
Average CS > Marginal CS. If supply falls with price, that only reduces
consumer surplus further.

Figures 2A and 2B illustrate the result: figure 2A measures consumer
surplus conventionally, as in equation (1). Consumer surplus at the market
price pMarket is the heavily-shaded area, and the effect on consumer surplus of
reducing price to a controlled level pControl would be the sum of areas X (the
benefits to existing buyers) and Y (the benefits to new buyers), if supply
could expand from D(pMarket) to meet the new level of demand D(pControl).
So with random allocation of supply, the average consumer surplus per con-
sumer served, ACS, equals the average height of the whole area formed by
both the shaded areas together.

So figure 2A suffices to show that if demand is sufficiently "fat-tailed",
then average consumer surplus is decreasing in the price control, so rationing
hurts consumers. But figure 2B tells us how fat-tailed.

10We can derive (2) directly from (1) using MR(v) ≡ v + D(v)/D′(v) (the derivative
of total industry revenue vD(v) with respect to quantity D(v) in an uncontrolled market
with price v).
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FIG. 2.–Effect of a Price Control on Consumer Surplus.
A, measured traditionally; B, measured using Marginal Revenue.
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In figure 2B we have drawn the MR curve onto figure 2A. Because, as
we noted in figure 1, the area under the MR curve up to D(pMarket) equals
total revenue at that quantity, the heavily-shaded areas in figs. 2A and 2B
are equal and both represent consumer surplus at the market price, pMarket.
Likewise, because the area under the MR curve up toD(pControl) equals total
revenue at that quantity, the sum of the heavily- and lightly-shaded areas in
figs. 2A and 2B are also equal and would both represent consumer surplus
at the controlled price, pControl, if all the demand at that price could be
satisfied. The lightly-shaded areas in figs. 2A and 2B are therefore equal as
well, and represent the incremental consumer surplus from reducing the price
if supply could expand to meet the incremental demand.11 So if the average
height of the heavily-shaded area exceeds that of the lightly-shaded area in
figure 2B, i.e., ACS(p) > MCS(p), then Average CS falls, and therefore
total consumer surplus also falls, even with no fall in supply.

Results about the effects of price controls on consumer surplus now follow
straightforwardly:

PROPOSITION 1. When a rationed good is allocated randomly, con-
sumer surplus is always reduced by a tighter price control if demand is log-
convex.

Proof. If demand is log-convex, D′′(v)D(v) ≥ (D′(v))2, so MCS ′(v) ≥ 0
(since MCS(v) = v −MR(v) = −D(v)/D′(v)), and therefore ACS(v) >
MCS(v).12 QED

This result is also easy to see from figure 2B, since MCS(v) = v −
MR(v) = constant for log-linear demand, but demand is steeper than MR
(so consumers are hurt by price controls) for any log-convex demand, for

11Of course, only area Y of this incremental surplus would go to the new purchasers;
the area X + Y = Y + Z would be the incremental surplus gained by all consumers.

12The Proposition can, of course, be derived without measuring consumer surplus using
marginal revenue (see our 2009 and 2011 working papers), but the MR approach allows
easy extension to our subsequent analysis, especially in section III.
See, e.g., Prékopa (1971), An (1998), and Bagnoli and Bergstrom (2005) on log-

convexity.
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example, constant-elasticity demand.13,14

B. Elastic Supply
If ACS(p) < MCS(p) (i.e., demand is log-concave, such as linear, or is

a mixture of log-convex and log-concave), whether consumers are helped or
hurt by a price control depends on the elasticity of supply:

PROPOSITION 2. When a rationed good is allocated randomly, con-
sumer surplus is always reduced (increased) by a tighter price control if (i)
demand is convex (concave) and (ii) demand is locally less (more) elastic
than supply.

Proof. Dividing the right-hand side of (3) by S(p)/p yields

sign [−CS ′(p)] = sign[MCS(p) |Elasticity of Demand| −

ACS(p)(Elasticity of Supply + |Elasticity of Demand|)]

So if (Elasticity of Supply) ≥ |Elasticity of Demand|, then [−CS ′(p)] <
0 if MCS(p) < 2ACS(p). But every linear demand satisfies MCS(p) =
2ACS(p) (since marginal revenue is twice as steep as demand when demand
is linear). Furthermore, the linear demand that is tangent to any convex
demand curve at p has the same MCS(p) as the convex demand (because
MCS(p) = −D(p)/D′(p)), and has a lower ACS(p) than it (because the
convex demand is weakly higher everywhere). The results then follow (using

13The figures are drawn to scale for (inverse) demand which is linear (so MCS(p) =
p−MR(p) is increasing as price falls) for quantities below 0.36D(pMarket); then log-linear
(so MCS(p) = p −MR(p) is constant) for quantities up to 0.72D(pMarket); and finally
constant-elasticity plus a constant (so MCS(p) = p−MR(p) is decreasing as price falls)
for larger quantities. For this demand, ACS is increasing for quantities up to D(pMarket),
and then decreasing, so MCS < ACS between pMarket and pControl.

14Though the market we are modelling is competitive, these conditions for when con-
sumers gain also apply when a monopolist with a vertical marginal cost curve is selling
to capacity. The conditions also have other simple monopoly-theory interpretations. The
condition for the constant-marginal-cost monopolist, that would set price p, to generate
greater consumer surplus than profits is ACS(p) > MCS(p) (because its per-customer
profit = p − AC = p −MC = p −MR(p) = MCS(p)). The condition for such a mo-
nopolist to pass through > 100% of any (marginal) tax or cost increase is that demand is
log-convex (because its pass-through rate = dp

dMC =
dp
dMR =

slope of demand
slope of MR , see Bulow and

Pfleiderer (1982); this pass-through result extends to a broad class of Cournot oligopoly
contexts, see Weyl and Fabinger (2009, 2011), and the 2008 version of our current paper).
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a parallel logic for conditions that ensure increased consumer surplus).15

QED

So a pass-through rate of 50% or more in a competitive industry with
convex demand would imply consumers lose from a price control. (In a
competitive market, pass-through = [elasticity of supply/(elasticity of supply
+ |elasticity of demand |)].) Campa and Goldberg’s (2005) study based on
exchange-rate changes estimates short-run and long-run pass-through for 23
countries at .46 and .64, respectively, and other studies using exchange-rate
changes obtain similar results. Results such as these suggest that whether
a small regulated price cut would benefit consumers is likely to vary from
market to market.16

C. Incumbent Consumers vs. Newcomers
Thus far we have focused on the long-run distributional consequences of

price controls. But for durables such as rental apartments the inefficiencies
created by a price control will phase in gradually, so even if new tenants
receive less consumer surplus on average after controls are implemented, there
is a group of incumbents who receive a windfall transfer from the lower
prices. Following Glaeser and Luttmer (1997), we can model this by assuming
that the S(p) buyers with the highest values buy with probability λ + (1−
λ)S(p)/D(p), while the remaining D(p) − S(p) buy with probability (1 −
λ)S(p)/D(p) (so if λ = 1, the rationing is perfectly efficient).

Clearly if enough of the supply is allocated efficiently, and without any
reduction of supply, consumer surplus must rise. However, the conditions for

15This logic extends to give a more general result encompassing both Propositions 1 and
2. Let GK be the class of demands satisfyingMCS(p) = K[ACS(p)], for any constant, K.
Our logic implies a tighter control reduces (increases) consumer surplus if inverse demand
is always larger (smaller) than any member of GK to which demand is locally tangent,
and supply is locally more (less) than K − 1 times as elastic as demand. The case K = 1
and K = 2 imply Propositions 1 and 2, respectively, since G1 and G2 are the sets of
all log-linear demands, and all linear demands, respectively. (Any log-convex demand is
always above any log-linear demand to which it is tangent; for K �= 1, GK includes the
demands p = α− β(D(p))K−1, with α, β constants; see Appendix A.)

16Oligopolistic industries may have lower pass-through than competitive ones, so these
results may understate average pass-through in competitive markets and so overstate con-
sumers’ expected benefit from a price control. (Estimates of pass-through based on price
responses to excise taxes are generally higher than those based on exchange-rate changes.)
Economists tend to assume demand is convex, although relatively little is known about

actual functional forms—see, e.g., Blundell, Browning, and Crawford (2008) and the refer-
ences they cite.
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consumer surplus to fall still do not seem onerous. An argument paralleling
that of the previous subsection (see Appendix B, Section I) shows that for
any convex demand, consumers always lose from a small price cut below the
uncontrolled market price if supply is at least 1+λ

1−λ
as elastic as demand ; or for

any log-convex demand, if supply is at least λ
1−λ

as elastic as demand. And
we show in Section II of Appendix B that with demand of constant-elasticity
η, and (any functional form of) supply with elasticity ϕ, consumers always
lose from a small price cut below the market price if λ > ϕ+1

ϕ−η
.17

Furthermore, this model assumes prices are immediately reduced when
the control is announced. More commonly, price controls are phased in only
gradually by restraining price increases to below-market rates. Also, turnover
is on average high in markets such as that for rental accommodation. Both
these things reduce the relative importance of the incumbents’ windfall.18 So
even when controls raise consumer surplus in the short run because of the
incumbent effect, the misallocation effect alone can quickly cause a net loss
in consumer surplus. We illustrate this in Section III of Appendix B.

III A Model of Rationing with Rent-Seeking

Our basic model in which all consumers have an equal chance of being able to
buy at the controlled price, with no additional search or rent-seeking costs,
is a special case of a more general model in which consumers expend “effort”
competing for the rationed good:

17We also generalise the allocation process further, by assuming an additional fraction
of supply is allocated as inefficiently as possible above the controlled price—this case is
obviously extreme, but Glaeser and Luttmer (1997) point out, for example, that long-time
residents may have greater access to, but less desire for, rent-controlled apartments, than
transients.
With linear demand, a tighter price control must increase consumer surplus, absent

supply effects, however inefficiently supply is allocated. The reason is that linear demand
always satisfies p −MR(p) = vertical intercept of demand −p, so in this case the gain,
MCS(p) (= p − MR(p)), must exceed the loss, which is at most the loss (= vertical
intercept −p), if the highest value consumer is displaced.

18A gradual implementation of price control does also mean a slower decline in the value
of the marginal consumer, but some consumers with lower values than the current price
jump in straight away to capture the expected gains from being an incumbent in the
future.
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Let each consumer have a marginal cost of effort drawn from an arbitrary
distribution, independent of the consumer’s value. A consumer’s probability
of purchase is proportional to its effort. Competition determines the proba-
bility of purchase per unit of effort expended: if E is the sum of all consumers’
efforts, then E/S(p) of effort earns one unit. So a consumer who has mar-
ginal cost of effort c chooses effort E/S(p) if its value v ≥ p+ cE/S(p), and
expends no effort (and does not buy the good) otherwise. This condition de-
termines the total effort, E, expended in equilibrium, and so the equilibrium
allocation of the goods.19

Letting n(v, p) be the expected quantity per consumer bought by con-
sumers with value v when the price is p, equation (2) now generalises to:

CS(p) =

∫
∞

v=p

−D′(v) [v −MR(v)]n(v, p)dv =

∫
∞

v=p

−D′(v)[MCS(v)]n(v, p)dv

(4)
That is, (2) is the special case of (4) in which n(v, p) = S(p)/D(p), ∀v.

A direct way to obtain (4) uses an envelope-theorem argument à la Myerson
(1981) to compute the total surplus of all consumers with value v, and then
integrates by parts over all values v–see Appendix B, Section IV. But it is
more instructive to observe that because (we assumed) consumers’ effort costs
are independent of their values, our single demand curve with consumers who
face a distribution of effort costs is equivalent to a set of identical demand
curves where consumers from any given demand curve face the same effort
cost. Clearly the latter situation is equivalent to a set of identical demand
curves each of which faces a different "effective price". (This "effective price"
= p+cE/S(p), that is, the controlled price plus the equilibrium cost of effort
that consumers from that demand curve need to expend to obtain a unit.)

As usual, the crucial point is that we can write consumer surplus as the
integral of purchasing consumers’ values less their marginal revenues. And,
because the demand curves are identical scaled versions of the demand curve

19To see equilibrium is generally unique, observe a proportional increase in anticipated
E yields the same proportional increase in effort for those consumers who still purchase,
but reduces the number of purchasers, so yields a smaller than proportional increase in
actual E.
Since our risk-neutral consumers want at most one unit each, nothing would change if

we assume a single unit is allocated to each of the S(p) consumers who make the greatest
effort. (Technically, there is then no equilibrium if consumers make simultaneous effort
choices, but the outcome in the text is the equilibrium if consumers make sequential
choices; it is also the limit of equilibria of discrete versions of the simultaneous game.)
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of our original problem, the MR of a consumer with any given value is the
same as that value’s MR for the demand curve of our original problem. By
contrast, each consumer’s effective price depends upon which demand curve
it is from, so writing consumer surplus in the traditional way as the integral
of consumers’ values less their effective prices would be much less helpful.

So total consumer surplus is just the integral (over valuations) of con-
sumers’ values-minus-MRs (that is, their MCSs) times the total number of
units bought by consumers who have the given value: this is equation (4).

The intuition is straightforward: from consumers’ point of view, rent-
seeking costs simply increase (by differing amounts) the “effective price”s
they face. That the rent-seeking part of these effective prices is a social waste
is irrelevant to them. So consumer surplus equals the integral of purchasers’
values less their MRs, exactly as in our basic model without rent-seeking.20

Figure 2B illustrates this. Total consumer surplus is just the integral
of the shaded area but with each strip of height v −MR(v) (and of width
dq = −D′(v)dv, since −D′(v) is the density of consumers with value v)
weighted by the total number of units, n(v, p), that each bidder with value v
gets. Thus fig. 2B/equation (4) allows the computation of consumer surplus
knowing only the probabilities with which different types of consumers receive
units. (Of course, a consumer’s own per-unit surplus is not equal to the
height, v −MR(v), of “its” strip—the calculation applies only in aggregate.)

By contrast, the corresponding integral of the shaded area in figure 2A
measures consumer surplus only in our basic model (Sections II.A-II.B), and
not in our current more-general model; the height, v − p, of type v’s strip
in fig. 2A shows its per-unit gross surplus ignoring the resources it expends
on rent-seeking.21 And, as we noted above, consumers’ effective prices—and
therefore their rent-seeking costs—differ across consumers who have the same

20The integral of MR alone (with the same weights) is the sum of consumers’ pecuniary
expenditure on goods plus the value of their rent-seeking efforts valued at the costs the
rent-seekers themselves attribute to them.

21However, this integral,
∫
∞

p
−D′(v) [v − p]n(v, p)dv, does show the consumer surplus

that could be achieved by an informed principal who could allocate higher probabilities
to favoured types unconstrained by any need to impose greater costs (either through the
price charged, or through deadweight rent-seeking activities) on the favoured consumers.
(In the same way, the revenue of an ordinary monopolist—including one that sets different
prices at which consumers can buy goods with different probabilities—is the sum of the
MRs of the consumers it sells to, but the revenue of a monopolist that can somehow price
discriminate costlessly is the sum of the maximum willingnesses-to-pay of the consumers
it sells to.)
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value, v.
The implication is that if the demand curve is always steeper than the

MR curve, so (d/dv) [MCS(v)] > 0 (and also MCS(p) < ACS(p)–see
fig. 2B–so demand is log-convex), then any transfer of probability from a
higher-v consumer to a lower-v consumer reduces consumer surplus.

Furthermore, a tighter price control always results in some high-v con-
sumers being displaced by low-v consumers, and not vice versa (because the
equilibrium amount of effort required to obtain a unit is increased, so high-
v consumers who did not buy previously are more disadvantaged relative
to any low-v consumers who did and who must therefore have lower rent-
seeking costs). So, since any supply response only reduces consumer surplus
further,22 we can generalise Proposition 1:

PROPOSITION 3. When a rationed good is allocated to consumers who
engage in rent-seeking, consumer surplus is always reduced by a tighter price
control if demand is log-convex.

Of course, the converse also holds: if (d/dv) [MCS(v)] < 0 everywhere,
so MCS(p) > ACS(p), then a price control that does not cause a supply
cut must increase consumer surplus. In this case, because rent-seeking costs
that are independent of values must lead to a more-efficient-than-random
allocation (because there is less substitution of high-v by low-v consumers
than in a random allocation), the fact that MCS(v) is decreasing in v also
implies that no distribution of rent-seeking costs can yield greater consumer
surplus than a random allocation. The consumer surplus from a random
allocation will be equalled when at least a fraction S(p)/D(p) of consumers
have zero costs of rent-seeking; since no rent-seeking costs are then actually
incurred, this corresponds exactly to our basic model of random rationing in
Sections II.A-II.B.

Note that because rent-seeking yields a more efficient allocation than ran-
dom rationing (less substitution of high-v by low-v consumers), rent-seeking
must result in lower consumers’ losses from a tighter price control when de-
mand is log-convex, but also result in lower consumers’ gains from a tighter
price control when demand is log-concave and supply is inelastic.

22The effect of a price cut can be divided into the effect which would occur were supply
inelastic, and a supply effect. The latter effect always reduces consumer surplus (by the
sum of MCS = v−MR > 0 across all the consumers it displaces, since no consumers buy
as a result of the supply effect who would not buy in its absence).
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In the extreme case, if all consumers have identical costs of rent-seeking
activities, the available supply is efficiently allocated to the highest-value
consumers, exactly as in an uncontrolled market, but (with inelastic supply)
the entire price reduction is eaten up by the rent-seeking activity—so consumer
surplus is unaffected. And if there is any supply response at all, the "effective
price" to consumers rises—that is, more than the entire price reduction is eaten
up by the rent-seeking activity, and consumer surplus is reduced.

So with log-convex demand a price-control is always bad news for con-
sumers, though less so with rent-seeking, while with log-concave demand
rent-seeking reduces any benefits to consumers.23

A. Elastic Supply with Rent-Seeking
With inelastic supply, and either log-convex or log-concave demand, rent-

seeking always dampens but never reverses the effect on consumers of im-
posing a price-control. But the supply response to a price control (which
always hurts consumers24) is, of course, independent of whether or not there
is rent-seeking. So, when demand is log-concave and supply responds to
price, the overall effect on consumer surplus may turn from positive with
random rationing to negative with rent seeking.

We therefore now generalise Proposition 2 about any convex demand
(including mixtures of log-concave and log-convex) when supply is elastic.

PROPOSITION 4. When a rationed good is allocated to consumers who
engage in rent-seeking, consumer surplus is always less than in an uncon-
trolled market if (i) demand is convex and (ii) demand is sufficiently less
elastic than supply that D(p)/D(pM) ≤ S(pM)/S(p), in which pM is the
uncontrolled market price and p is the controlled price.

Proof. See Section V of Appendix B.

23If demand has both a log-concave section and a log-convex section at higher prices,
then rationing with rent-seeking may help consumers even when random rationing would
hurt them, if new consumers displace low-v low-MCS consumers, but would displace a
mixture of these and higher-v higher-MCS consumers with random rationing. For exam-
ple, with sufficiently inelastic constant-elasticity demand at high prices, linear demand at
lower prices, and sufficiently inelastic supply, we can find market- and controlled-prices
on the linear part of demand that lower consumer surplus with random allocation, but
raise it if half of consumers have no rent-seeking costs while the other half have identical
(positive) costs.

24See note 22.
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Condition (ii) of Proposition 4 (i.e., D(p)/D(pM) ≤ S(pM)/S(p) ⇐⇒
D(p)S(p) ≤ D(pM)S(pM)) is precisely the extension to a discrete price
change of condition (ii) of Proposition 2 (i.e.,−pD(p)/D′(p) ≤ pS(p)/S ′(p) ⇐⇒
d(D(p)S(p))/dp ≥ 0). However, Proposition 4 discusses only the total effect
of a price reduction from the market-clearing price—so it is only a partial
generalisation of Proposition 2. The reason is that both the amount spent
on rent-seeking, and the extent to which it increases the allocation efficiency,
can vary substantially as the controlled price changes—indeed they can fall as
the price falls.25 So the rate of change of consumers’ non-supply benefits from
a tighter price control, and therefore the extent to which they can outweigh
supply effects, can also vary substantially as the price control changes.26 So
it is not true that any marginal tightening of an existing price control nec-
essarily makes consumers worse off under the conditions of Proposition 4.27

Also unlike Proposition 2, Proposition 4 has no "converse" that a price
control benefits consumers if demand is concave and more elastic than supply.
For any finite ratio of the elasticity of demand to that of supply, rent-seeking
activities can consume enough of any benefits from rationing that the supply
effect of the price control (which is unaffected by rent-seeking) dominates. In-
deed, we have already noted that if all consumers have identical rent-seeking
costs then consumer surplus must fall unless supply is perfectly inelastic.

Typically, therefore, if supply is elastic, rent-seeking makes a price control
(even) more likely to reduce consumer surplus.

B. Resale
Our analysis can be generalized to account for secondary markets. In this

case, total final-consumers’ surplus is the sum of all their MCSs plus the
surplus that they could have earned by not consuming.

To see this, we can repeat our trick of dividing demand up into a set
of demand curves; now each curve consists of consumers who face the same

25For example, with the distribution of rent-seeking costs described at the end of note 23,
rent-seeking makes the allocation substantially more efficient than random when supply is
3/4 of demand, but both the expenditures on rent-seeking and its effects on the allocation
fall to zero as price falls to where supply is 1/2 of demand.

26This does not affect Proposition 3, since a tighter price control then always reduces
consumer surplus, independent of supply effects.

27For example, with linear demand and supply as elastic as demand, a small tightening
of the price control strictly benefits consumers at the price at which supply is 2/3 of
demand (but would be neutral with random rationing), if the distribution of rent-seeking
costs is as described at the end of note 23.
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rent-seeking costs and same resale-market participation costs. Consider the
demand curve whose consumers can obtain a unit (using rent-seeking and/or
the secondary market) for a total "effective price" pe in equilibrium, and who
can receive a total "effective sale price" se by reselling a unit. If se > pe,
only consumers with v ≥ se are final-consumers. If they had actually paid
se each, their total surplus would have been the sum of their MCSs as
usual, so their actual surplus is se − pe per consumer greater than this.28 In
effect, each of them bought at pe, and each then made a profit of se − pe

reselling to itself, before making an additional consumption surplus of v−se.
Assuming rent-seeking and resale costs are independent of consumers’ values
allows us to re-aggregate the MCSs across demands with different pes and
ses. So the total surplus of final consumers equals the sum of their MCSs
(exactly as computed in equation (4) except that n(v, p) now depends on
the distributions of resale as well as rent-seeking costs) plus the surplus
that these consumers could have earned by acting as middlemen and not
consuming. Additionally there is some middleman (as opposed to consumer)
surplus received by those who do not consume but for whom se >max{v, pe}.

So with inelastic supply, since final consumers’ surplus (weakly) exceeds
the sum of their MCSs, their surplus is always higher in a controlled than
in an uncontrolled market if demand is log-concave, but a price control has
an ambiguous effect on them if demand is log-convex. Indeed with costless
resale, final consumers always weakly benefit from a price control, because
the secondary market price then equals the original market price and some
of them get units more cheaply.

More generally, in addition to raising consumers’ surpluses by their poten-
tial trading gains, permitting resale is equivalent to lowering each consumer’s
cost of rent-seeking effort. However, since it is consumers’ relative costs of
rent-seeking effort that matter in equilibrium, the latter effect can damage
consumer surplus.29 In particular, the entry of sufficiently many low-cost

28This is just as in standard incentive problems, in which the expected surplus of a given
type of agent is the integral of the incentive constraint (this corresponds to the MCS)
plus the surplus of the lowest participant (zero absent resale, but se − pe here) cf. the
mathematical development of our basic result in App. B, Sec. IV.

29It is not hard to show, for example, that if rent-seeking costs are high and identical for
most consumers, but low for a few, and the price control is tight enough that only those
with low costs consume absent resale, costless resale can lower final-consumer surplus.
Costly resale can also lower total non-producer surplus (if middlemen dissipate most of
their earnings in costs), and can reduce the efficiency of allocation (with the same distri-
bution of rent-seeking costs, very dispersed resale-market participation costs, and a much
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middlemen would equalise all consumers’ acquisition costs, so completely
undo the non-supply effects of any price control and, with elastic supply,
result in lower consumer surplus than in an uncontrolled market.

C. Further Extensions
Several other extensions are straightforward.
Consumers with Downward-Sloping Demand–We modelled demand as

comprised of consumers who have different values for a single unit each, as
might be appropriate, for example, for applications such as rental housing,
healthcare, and minimum wages. However, all our previous results apply to
a model in which demand consists of consumers who have downward-sloping
demands that are identical, or proportional to each other: because any given
consumer can make independent decisions about whether or not to purchase
each individual unit, this model is identical to the model of a set of demand
curves where the (multiple) consumers on each demand curve all face the
same effort cost, and we noted above that the latter model is equivalent to
our main model.

If a fraction S(p)/D(p) of consumers has no rent-seeking costs (or al-
ternatively the complementary fraction has infinite costs), then we exactly
replicate Section II’s lottery model. In this case each consumer is either fully
served at the controlled price or not served at all, so the inefficiencies and
consumer surplus losses result from overconsumption by those lucky enough
to be served. Supplies of natural gas are an example (see, Davis and Kilian,
2011).30

More General Rent-Seeking Cost Functions–We can easily relax our as-
sumption that each consumer has a constant cost of rent-seeking effort, drawn
from some distribution. Our results are unaffected if each consumer has a
cost-of-effort function, drawn from some set. The reason is that a single con-
sumer with a given marginal cost-of-effort function for an increasing prob-
ability of winning a single unit is equivalent to (the limit of) a large set of

less tight price control, the allocation may be close to efficient without resale, and less
efficient with resale).

30If consumers have decreasing average costs of rent-seeking, then their surplus losses are
even greater than in our model with constant marginal and average rent-seeking costs. For
example, the rent-seeking cost of queueing for tickets might be independent of the number
bought. On the other hand, consumers with increasing rent-seeking costs will have lower
losses; for example, limiting the number of tickets any consumer can buy creates an infinite
marginal cost at the limit—the allocation of food during wartime might be an example of
rationing that is more-efficient than in our model.
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consumers each of whom has a (different) constant marginal cost of effort
for a small probability of winning a unit.31

Rent-Seeking Costs Correlated with Values–If consumers with higher val-
ues for the good have higher costs of effort, this obviously reduces consumer
surplus.32 If the distributions of effort costs for consumers with higher values
for the good first-order stochastically dominate the distributions for lower-
value consumers, then consumer surplus must be lower than if all consumers’
costs were drawn from a common distribution (independent of value) that
yields the same allocation of the good.33 Of course, if effort costs are pro-
portional to (v − p), then consumer surplus at the rationed price, p, is zero.

Conversely, if higher-value consumers have lower costs of effort this in-
creases consumer surplus. However, only if all consumers whose values exceed
the uncontrolled market-clearing price can acquire units with zero effort costs
will we obtain the traditional textbook outcome with neither misallocation
nor rent-seeking costs.

31The limit of the increasing marginal cost function created by piecing together the per-
unit costs of this large set of consumers (each piece corresponding to the small amount of
probability that is the maximum that the corresponding consumer can win) replicates the
original (single) cost-of-effort function if that function is increasing, and otherwise repli-
cates a version of it that is modified to be weakly increasing. (Specifically, it replicates the
maximum of the original marginal cost-of-effort function and the largest weakly-increasing
function that is never above the original average cost-of-effort.) As before, an alternative
demonstration of the equivalence follows the logic of App. B, Sec. IV–defining cs(v) as
there, dcs/dv = ∂cs/∂v = n(v, p) for the same reasons as there, etc.
To check uniqueness of equilibrium, write E for the anticipated sum of all consumers’

efforts, as before. A consumer with value v, and cost-of-effort function c(e), chooses an
effort, e, that maximises (eS(p)/E)(v − p) − c(e) s.t. eS(p)/E ≤ 1. A larger E yields
an e/E that is lower for all consumers, and strictly lower for some, so there is a unique
E for which the sum of all consumers’ efforts equals E, and hence a unique equilibrium
allocation, n(v, p).

32Welfare might be less affected if those consumers with higher values and effort-costs
are higher-income consumers whose gains have lower welfare weights.

33Let the distribution of type v’s effort cost, F (· ; v), first-order stochastically dominate
F (· ; v

′

), ∀v > v
′

. Assume the type, v̂(c), which purchases if and only if its effort cost ≤ c,
is strictly increasing (otherwise there is in general no common distribution that yields the
same allocation of the good). Then substituting F (· ; v̂(·)) for F (· ; v),∀v, changes neither
the allocation, nor the aggregate effort expended by the set of consumers of any type, but
reduces the aggregate costs of the effort expended by every such set of consumers.
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IV Partially-Controlled Markets

A. Partially-Controlled Markets with Rent-Seeking
The results of our rent-seeking model are unaffected if only a fraction

of goods are sold at a controlled price, while the remainder are sold on the
free market–because allowing consumers to pay a price premium for an
uncontrolled unit is equivalent, from their point of view, to selling all the
units at the controlled price but capping their rent-seeking costs. (The cap
would be such that in equilibrium a consumer’s total rent-seeking costs of
obtaining a unit would be not more than the (equilibrium) difference between
the controlled price and the free-market price.)

Likewise, our results generalize further to cases where, as in cities such
as New York, price controls vary by unit, with some units at the minimum
controlled price, some at higher but still constrained prices, and some at
unconstrained prices. One can think of the units being sold off for varying
packages of money and search effort, with each consumer acquiring whatever
is cheapest for him given his cost of effort (see Section VI of Appendix B).

In all these cases, consumer surplus can still be calculated as in equation
(4) (with the appropriate adjustment if resale is possible).

B. Maximising Consumer Surplus: Partially-Controlled Markets without
Rent-Seeking and without Resale

A special case of the discussion above is a market in which a fraction of
goods is sold at a controlled price without any rent-seeking costs, i.e., using
a costless lottery, but with resale impossible, while the remainder is sold at
an uncontrolled price on the free market.

From consumers’ point of view, this corresponds exactly to a fully-controlled
market in which all units will be sold at the same controlled price, but in
which a randomly selected group of consumers will have no rent-seeking costs,
while all the others will have equal, positive costs. Consumers who succeed
in the lottery in the partially-controlled market correspond to those who will
have no rent-seeking costs in the fully-controlled market. Consumers who fail
in the lottery, but then buy the free-market units in the partially-controlled
market, correspond to consumers who will have positive rent-seeking costs
in the fully-controlled market; these consumers’ total equilibrium costs of
rent-seeking will equal the equilibrium price difference between uncontrolled
and controlled units in the partially-controlled market.

More generally, we show in Section VII of Appendix B that a market in
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which different numbers of units are sold at different controlled prices, using
costless lotteries and without resale, and perhaps also with some uncontrolled
units, is equivalent to a fully-controlled market with a single control price,
but in which different groups of consumers have different rent-seeking costs.34

Using this equivalence, it is not hard to show that if supply is inelastic,
consumer surplus can be maximised by setting at most one controlled price:

PROPOSITION 5. With inelastic supply, and without rent-seeking, con-
sumer surplus is maximised by one of (i) a pure market solution, (ii) a pure
lottery, or (iii) allocating some units by lottery at a fixed price, and selling
the remaining units on the free market.

Proof. See Section VII of Appendix B.

We give the recipe for finding the consumer-optimal price(s) in Section
VII of Appendix B. We have already seen, for example, that with inelastic
supply and log-concave demand (final-)consumer surplus is maximised by a
pure lottery, but with log-convex demand it is maximised by the pure market
solution. With elastic supply, the market allocation is (even) more often the
consumer-optimum, of course, but the details are sensitive to how supply
depends on the vector of control prices.

V Conclusion

Price controls lead to inefficient allocation and rent-seeking, in addition to
reduced supply. Even absent any supply effect, inefficient allocation may cost
consumers all the surplus gains they receive from a lower price and more.
The results apply whether the good is allocated randomly through a lottery
without rent-seeking costs, or whether greater search and other rent-seeking
activities undertaken by higher-value consumers results in a more-efficient-
than-random allocation. The results also apply when only some units are
allocated at below-market prices, while other are sold on the free market.

In short, and especially if supply is fairly elastic, it is unlikely we can be
confident that consumer surplus is enhanced by any price control.

34Note that rent-seeking and partial decontrol may have very different long-run supply
effects. For example, reducing rents on existing housing, but credibly committing to never
interfering with new housing, must help consumers if the supply of new housing is perfectly
elastic, since they can always rent a new unit at the market price.
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Appendix A

Example

We illustrate our results for the standard distributions of demand—including
linear, log-linear, constant-elasticity, etc.—in the class of Generalized Pareto
distributions (GPDs). For GPDs

D(p) = k

(
1 +

ξ(p− µ)

σ

)
−1/ξ

(ξ = −1 gives linear demand, ξ → 0 gives log-linear demand, and ξ =
σ/µ > 0 gives constant elasticity demand with elasticity −1/ξ.35) We write

η (= pD′(p)
D(p)

= −p
σ+ξ(p−µ)

) for the elasticity of demand at p. We do not restrict
the functional form of supply, but write ϕ for its elasticity at p.

Demands in the GPD class have the useful property that MR(p) is affine
in p, since MR(p) = p + D(p)/D′(p) = ξµ − σ + (1 − ξ)p. In particular,
therefore, E {MR(x)} = MR(E {x}), for any distribution of x.

Effect of a Price Control : From equation (4) total consumer surplus is
CS(p) =

∫
∞

v=p
−D′(v)n(v, p) [v −MR(v)] dv. Equivalently, writing v and

MR(v) for the expected value and the expected MR, respectively, of con-
sumers who get units, CS(p) = S(p)

[
v −MR(v)

]
(since, of course, S(p) =∫

∞

v=p
−D′(v)n(v, p)dv, so the probability density that a consumer who gets a

unit has value v is (−D′(v)n(v, p)/S(p))). Therefore, CS(p) = S(p) [v −MR(v)]
(since MR(v) is affine in v for GPDs).

But, writing c for the expected amount per-unit spent on rent-seeking
(priced at the cost to the consumers who expend the effort), we can also write
CS(p) = S(p) [v − (p+ c)]. So we have p+c = MR(v) = ξµ−σ+(1−ξ)v, so
also v = 1

1−ξ
[σ + p+ c− ξµ]. Substituting this expression for v in CS(p) =

S(p) [v − (p+ c)] yields

CS(p) =
S (p)

1− ξ
[σ + ξ(p+ c− µ)] (5)

35Our model requires ξ < 1 so that consumer surplus is finite.
For ξ �= 0, we can rewrite the GPD as p = α− β(D(p))−ξ in which α = µ− (σ/ξ) and

β = −kξ(σ/ξ) (so ξ = −1 gives linear demand, and ξ > 0 gives (inverse) demand that is
constant-elasticity plus a constant). As ξ → 0 the GPD becomes D(p) = ke(µ−p)/σ with
σ > 0 (or p = (µ+ σ log k)− σ(logD(p)), that is, log-linear demand).
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So the effect of a small tightening of a price control on aggregate consumer
surplus is

−CS′(p) =
−S ′(p)

1− ξ
[σ + ξ(p+ c− µ)]−

S(p)

1− ξ
ξ(1 +

dc

dp
)

Noting σ + ξ(p− µ) = −p/η and ϕ = pS ′(p)/S(p), gives

−CS ′(p) =
S(p)

1− ξ

[
ϕ

η
(1−

ηξc

p
)− ξ(1 +

dc

dp
)

]
(6)

Consumer Surplus Effects with No Rent-Seeking: With random allocation
without rent-seeking c = dc

dp
= 0, so consumers gain from a tighter price

control if and only if ξη > ϕ.
Consumer Surplus Effects with Rent-Seeking: With rent-seeking we know

from Proposition 3 that consumers must lose from any tighter control if ξ ≥ 0,
and it is clear from (5) that consumers’ total surplus is always lower with
rent-seeking than without if ξ < 0. So the conditions for consumers to gain
from any price cut from the market price are always tighter with rent-seeking
than without, in this class of demands.

Consumer Surplus Effects of Partial Decontrol : Because MR(v) is affine
in v for GPDs, the mathematics of partial decontrol are the same: in this case,
p is the average cash price paid for units, including both those controlled and
de-controlled. So from (5), when supply is inelastic, the average "effective
total price" to consumers, p+ c(p), is a sufficient statistic for the effect of a
price control on them, that is, the effect of any change in cost to purchasers
is independent of whether it is due to a partial control, or a change in rent-
seeking, or both.36

Appendix B

Omitted Proofs, etc.

I. More-Efficient-than-Random Rationing with No rent-seeking in the
General Case

At the market-clearing price, a $1 price cut increases consumer surplus
by $1 for each of the λS(p) efficiently-allocated units, so (3) becomes

36However, the amount of rent-seeking generally depends on the distribution of con-
trolled prices, not just on the average price, p, and supply may do so too. So S, S′, c′,
and hence CS′(p), generally depend on how this distribution changes.
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−CS ′(p) = (1− λ){−D′(p) S(p)
D(p)

[MCS(p)] + [D′(p) S(p)
D(p)

− S ′(p)][ACS(p)]}

+λ {S(p)} .

Dividing the right hand side by D(p) = S(p) (and reorganising, recalling
MCS(p) = −D(p)/D′(p)), yields

sign [−CS ′(p)] = sign

[
1− (1− λ)

(∣∣∣∣
Elasticity of Supply

Elasticity of Demand

∣∣∣∣+ 1

)
ACS(p)

MCS(p)

]

So if demand is convex, then since (as we noted in the main text) ACS(p)
MCS(p)

>

1
2
we have −CS ′(p) < 0 if

∣∣∣ Elasticity of SupplyElasticity of Demand

∣∣∣ > 1+λ
1−λ

, while for any log-convex

demand ACS(p)
MCS(p)

> 1 so −CS′(p) < 0 if
∣∣∣ Elasticity of SupplyElasticity of Demand

∣∣∣ > λ
1−λ

.

II. Non-random Rationing with No rent-seeking in the GPD Case
Continuing the GPD example of Appendix A, if fraction λ of the sup-

ply is allocated perfectly efficiently among fraction λ of the market, (6) to-
gether with the fact that a $1 price cut increases consumer surplus by $1 per
efficiently-allocated unit at market-clearing, implies

−CS ′(p) = S(p)

[
(1− λ)

(1− ξ)

[
ϕ

η
− ξ

]
+ λ

]
=

S(p)

1− ξ

[
(
ϕ

η
− ξ) + λ(1−

ϕ

η
)

]

So consumers gain from a price reduction iff λ > ϕ−ξη
ϕ−η

. For example, with

constant-elasticity demand this requires λ > ϕ+1
ϕ−η

.
If also fraction θ of supply is allocated as inefficiently as possible above the

controlled price among fraction θ of the total market, then for this fraction, a
$1 price cut from the market-clearing price increases consumer surplus by $1
per customer ($θS(p) in all), but removes θ(S ′(p)−D′(p)) = θ(ϕ− η)S(p)/p
units from the highest-value consumers, costing [(µξ−σ)/ξ]−p = p/ηξ each
if ξ < 0. (If ξ ≥ 0, the highest-value consumer has v =∞, so −CS ′(p)→∞
for any θ > 0.) So

−CS ′(p) = S(p)

[
(1− (λ+ θ))

(1− ξ)

[
ϕ

η
− ξ

]
+ λ+ θ(1 +

1

ξ
(1−

ϕ

η
)

]
if ξ < 0

which simplifies to
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−CS ′(p) =
S(p)

1− ξ

[
(
ϕ

η
− ξ) + (λ+

θ

ξ
)(1−

ϕ

η
)

]
if ξ < 0.

When θ = 1, −CS ′(p) = S(p)
ξ(1−ξ)

[
1 + ξ − ϕ

η

]
> 0 for all ξ < −1 if ϕ = 0.

So, for example, with linear demand consumer surplus is enhanced by a price
control however inefficiently supply is allocated, if there are neither supply
effects nor rent-seeking costs.

III. Dynamic Model of Incumbents and Newcomers
Assume the price falls gradually from the market level, pM , asymptoting

to pM − ∆, so the controlled price at time t is p(t) = (pM − ∆) + ∆e−zt.
Consumers leave at rate δ, and are replaced by new consumers with values
drawn from the distribution corresponding to demand D(·), using random
rationing (without rent-seeking costs) among all potential consumers who
wish to purchase at that time. The continuous interest rate is r. Assume
GPD demand.

The consumer surplus gain per time-0 incumbent equals the present value
(to infinity) of an immediate rent reduction of ∆ less the present value of the
excess above pM−∆ that is paid as prices gradually fall, that is, ∆

r+δ
− ∆

r+δ+z
=

z∆
(r+δ)(r+δ+z)

.

Relative to paying pM , the present value of the price cuts, as of time t, to
a newcomer who buys for the first time at time t, is ∆

r+δ
− ∆e−zt

r+δ+z
. Furthermore,

the present value of the stream of prices that will be paid by (any) time-t
newcomer equals the present value of the marginal time-t newcomer’s stream
of consumption, and so also equals the present value of the average over
all time-t newcomers of their stream of MRs. Also, for the GPD, a $1
increase in the average of consumers’MRs implies a corresponding $1/(1−ξ)
increase in the average of their values, and therefore a corresponding $1/(1−
ξ) − 1 = $ξ/(1 − ξ) increase in their average surplus. It therefore follows
that the average present value of the surplus, as of time t, to newcomers

who buy for the first time at time t, is −ξ
1−ξ

(
∆

r+δ
− ∆e−zt

r+δ+z

)
. So the present

value of surplus gained by all newcomers is

∞∫

0

δ
[
−ξ
1−ξ

(
∆
r+δ

− ∆e−zt

r+δ+z

)]
e−rtdt =

−ξ
1−ξ

(
δz∆

(r+δ)(r+z)

)(
2r+δ+z
r(r+δ+z)

)
.

The ratio of surplus gained by future consumers to that gained by incum-
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bents is therefore −ξ
1−ξ

δ
r

(
2r+δ+z
r+z

)
: 1.

For calibration, the 2007 American Housing Survey (e.g., Table 4-12) esti-
mates that 12.4 million out of 35.0 million renters moved in the previous year,
which would correspond to a continuous hazard rate of δ = −ln(35−12.4

35
) =

.43. So, for example, with demand of constant elasticity, η, r = .02 (real
interest rate of 2%) and z = .2 (so half the ultimate price reduction takes
place in (−ln(1/2)/.2) ≈ 3.5 years), then the ratio of newcomers’ surplus loss
to incumbents’ gain ≈ 65 : −(η + 1).37

IV. Direct Derivation of (4)
In equilibrium, each consumer chooses its effort, and so purchase quantity,

optimally, so the set of consumers with values v+ dv obtains n(v, p)dv more
surplus per consumer than the otherwise-identical set with value v. (The
total surplus of the additional dn(−D′(v+ dv)) consumers with value v+ dv
who would not have purchased units if their value were just v is second order.)
So, letting cs(v) be the expected per-consumer surplus of consumers with
value v, dcs/dv = ∂cs/∂v = n(v, p). Also cs(p) = 0, so cs(v) =

∫ v

p
n(x, p)dx.

Integrating across all consumers, total consumer surplus at price, p, is

CS(p) =

∫
∞

p

−D′(v)cs(v)dv =

∫
∞

p

−D′(v)

∫ v

p

n(x, p)dxdv

so, integrating by parts and observing
[
D(v)

∫ v

p
n(x, p)dx

]
∞

p
=0,38 we have

CS(p) =

∫
∞

p

D(v)n(v, p)dv (cf. equation(1))

37The calculation is purely illustrative! Issues include: using declining hazard rates
with the same average tenure would reduce the ratio. We have also not accounted for any
surplus that current incumbents may expect to receive in future roles as newcomers. And
if it is difficult to re-enter the market to obtain a new apartment, turnover rates will be
lower than in an uncontrolled market. On the other hand, these lower turnover rates are
caused by tenants whose values are at least below the market price, and may be below the
controlled price if they are uncertain about their future values. Furthermore, if expected
turnover rates differ, consumers with longer expected residence will jump in to the market
sooner, reducing the efficiency of rationing among newcomers, and further reducing their
surplus.

38
[
D(v)

∫ v
p
n(x, p)dx

]y
p
=D(y)cs(y) < D(y)y and limy→∞D(y)y = 0 by our earlier as-

sumption that the elasticity of demand is bounded strictly above 1 at all sufficiently high
prices.
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so, noting MR(v) ≡ v + D(v)
D′(v)

, we can write D(v) = −D′(v)(v −MR(v)) to

obtain equation (4).

V. Proof of Proposition 4
Since MCS(v) = −D(v)/D′(v), we have ( −D(v)

MCS(v)
)′ = D′′(v) ≥ 0 if de-

mand is convex, so MCS(p)
MCS(pM )

≥ (≤) D(p)
D(pM )

if p > (<)pM . So the fact that the
price control removes some consumers with higher values than the market-
clearing price, pM , has a more negative impact on consumer surplus than
would removing the same consumers from the linear demand that is tangent
to our demand at pM , and the fact that it adds some consumers with lower
values than pM has a less positive impact. (By "the same consumers", we
mean those whose rank-order in the distribution of values is the same, i.e,
those for whom D(v) is the same.)

Furthermore, rent-seeking costs that are uncorrelated with values lead to
less substitution of high-v by low-v consumers than in a random allocation.
So, in the linear demand case, the specified substitutions would have a less
beneficial impact on consumer surplus, than if the consumers to be added and
removed were selected randomly from those above the controlled price (since
for linear demand MCS(v) is decreasing in v). But it is easy to check that
the random selection/linear demand case hurts consumers if D(p)/D(pM) ≤
S(pM)/S(p). QED

VI. Partially-Controlled Markets
Let qi units be rationed at price pi, with pN < pN−1 < ... < p1. Let

the equilibrium uncontrolled market price be p0, and the equilibrium effort
required to obtain a unit at price pi be ei. (For simplicity, we ignore resale.)
Clearly eN > eN−1 > ... > e1 > e0 = 0, and consumers sort themselves so
that those with costs of effort c ∈ (ci+1, ci) buy a unit at price pi, where
ci = (pi−1 − pi)/(ei − ei−1) (defining cN+1 = 0), iff their value also exceeds
pi + eic; those with costs of effort above c1 buy an uncontrolled unit iff their
value exceeds p0.

To see that there is generally a unique equilibrium for any given
{p1, .., pN , q1, .., qN}, observe that the values of all of the ci and ei can be
determined sequentially from cN , that a lower cN implies that all of the ci
and ei are lower, and so also p0(= p1+ e1c1) is lower, and so (since p0 and c1
are both lower) increases demand for uncontrolled units but must (weakly)
reduce their supply; so there is generally a unique cN for which demand
equals supply and which is therefore consistent with equilibrium.
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VII. Maximising Consumer Surplus: Partial Control withoutRent-Seeking
Assume li units are allocated at price pi, with pi < pi−1, in the ith of N

lotteries that are run in sequence, starting with the Nth, that is the lowest-
price one. (If desired, the final (highest) price, p1, can be set at what would
be the equilibrium uncontrolled price for the l1 units in the final "lottery", so
that all so-far-unsuccessful consumers who have values above p1 then receive
units. We can perform similar analyses for differently-ordered lotteries.)

Call the qi = D(pi) −D(pi−1) consumers whose value is between pi and
pi−1 "group" i (defining p0 =∞), and write Qi =

∑i
j=1 qj = D(pi). Clearly,

each "group" i consumer will enter each lottery in turn until it either wins
the right to buy a unit or loses in the ith lottery, and will obtain a unit
with probability πi = 1 −

∏N
j=i(1 − γj), in which γi is the probability with

which a participant in the ith lottery is a winner. (The values of all the γi

can easily be determined recursively, starting with γN , using the fact that
li = γiQi

∏N
j=i+1(1 − γj).) The situation is equivalent, from consumers’

viewpoint, to our rent-seeking model with a single control price of pN , in
which a (random) fraction li/Qi of consumers have total rent-seeking cost,
in equilibrium, of pi − pN (since li/Qi is the fraction of those with values
exceeding pi who buy at pi).

Proof of Proposition 5: Let MCSi = 1
qi

[∫ Qi

Qi−1

MCS(D−1(x))dx
]
(=

the average MCS of group i’s consumers). So total consumer surplus =∑N
j=1 πjqjMCSj, and since supply, S, is fixed, and

∑N
j=1 πjqj = S, max-

imising total consumer surplus requires MCSi ≥ MCSi+1,∀i. (If not, total
consumer surplus could be increased by reducing πi and increasing πi+1.)
So ∀i, consumer surplus can be weakly increased by reallocating probabil-
ity from groups i+ 1, i + 2, ... to groups i, i − 1, ..., until either πi+1 = 0, or
πi = ... = π1 = 1. So total consumer surplus can always be maximized by one
of (i) the market solution, in which all consumers whose values exceed the
market price buy with probability π1 = 1, or (ii) a pure lottery, in which all
consumers whose values exceed some cutoff-level buy with some probability
π1 < 1, or (iii) a combination, in which some consumers buy with probability
π1 = 1, while some others buy with some probability π2 < 1. QED

Case (iii) can be implemented by first randomly allocating π2(q1 + q2)
units at the "controlled" price p2 = D−1(q1+ q2), and then selling (1− π2)q1
"free-market" units to the highest bidders at the equilibrium price for them,
p1 = D−1(q1).

39

39Case (iii) can alternatively be implemented by selling the "free-market" units first.
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The consumer-surplus-maximising allocation of supply S follows straight-
forwardly. Write TS(q) for total consumer surplus when quantity q is sold

at price D−1(q), and write T̃ S(q) for the minimum weakly-concave func-

tion satisfying T̃ S(q) ≥ TS(q). If TS(S) = T̃ S(S), the market outcome

maximises consumer surplus. If TS(S) < T̃S(S) let Q1 = supq<S{q s.t.

TS(q) = T̃ S(q)}, and Q2 = infq>S{q s.t. TS(q) = T̃ S(q)}, then run a lot-
tery for (S − Q1)(1 + Q1

Q2−Q1

) units at price D−1(Q2), and finally sell the

remaining supply to the highest bidders at D−1(Q1).
40 (The case Q1 = 0

corresponds to the pure lottery.)

To achieve equivalence, the number of free-market units sold at market clearing would be
increased by the number of consumers with values above p1 who would win the lottery at
p2 in the implementation of the text. The market-clearing price would fall by π2(p1 − p2)
so that a consumer with value p1 obtains the same expected surplus from buying for sure
at the market-clearing price as from waiting for the lottery and buying with probability
π2.

40The identical outcome can alternatively be implemented by first selling Q1 units to
the highest bidders, and then running a lottery for S −Q1 units at price D−1(Q2). See
note 39.
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