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Abstract

Likelihood based estimation of the parameters of state space models can be carried out via
a particle filter. In this paper we show how to make valid inference on such parameters when
the model is incorrect. In particular we develop a simulation strategy for computing sandwich
covariance matrices which can be used for asymptotic likelihood based inference. These methods
are illustrated on some simulated data.
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1 Introduction

The parameters of non-linear and non-Gaussian state space models are typically estimated using

likelihood based methods, where the likelihood needs to be estimated using simulation. When

a model is correctly specified the corresponding time series of individual scores are martingale

difference sequences which obey a conditional version of the information equality. This allows simple

inference using either Bayesian methods or the large sample asymptotics of maximum likelihood

estimation.

Usually, however, these models are misspecified and so the above approach to inference could be

entirely misleading. In such cases it may be better to make inference using the sandwich matrix.

In this note we demonstrate how to reliably estimate the sandwich matrix using simulation for

non-linear and non-Gaussian state space models.
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Take a step back for a moment. This paper brings together two traditions. The first is the

study of the asymptotic sampling behaviour of quasi-likelihoods. Early contributions include, for

example, Cox (1961), Huber (1967), Eicker (1967), White (1982), Gallant and White (1988) and

White (1994). Recent discussions, focusing from a Bayesian perspective, include Muller (2012)

and Holmes and Walker (2012). This quasi-likelihood theme has been highly influential in modern

statistics and econometrics. It involves the use of a “long-run covariance”, or “heteroskedastic and

autocorrelation consistent” (HAC), estimator of the variance of the score. The second is simulation

based inference on non-linear and non-Gaussian state space models using sequential Monte Carlo

or particle filters. Early contributions to this include, for example, Gordon, Salmond, and Smith

(1993), Liu and Chen (1998), Pitt and Shephard (1999) and Doucet, de Freitas, and Gordon (2001).

Modern surveys include, for example, Doucet and Johansen (2011) and Creal (2012). The paper

which inspires much of this paper is Del Moral, Doucet, and Singh (2009), which we will discuss at

some length.

There are many subjects where particle filters are widely applied. Particle filters are increasingly

significantly used in economics, for example. Their first applications there appeared in Kim,

Shephard, and Chib (1998) and Pitt and Shephard (1999) in the context of financial economics.

Their use in macroeconomics appears in, for example, Fernandez-Villaverde and Rudio-Ramirez

(2005), Fernandez-Villaverde, Rudio-Ramirez, and Santos (2006), Fernandez-Villaverde and Rudio-

Ramirez (2007), An and Schorfheide (2007) and Hansen, Polson, and Sargent (2011). Their use in

the analysis of auctions appears in, for example, Kim (2010). Their use in the study of structural

microeconomic models with serially correlated latent state variables appears in, for example, Blevins

(2011) and Gallant, Hong, and Khwaja (2010) and Gallant, Hong, and Khwaja (2011). Their more

recent use on problems in finance include Johannes, Polson, and Stroud (2009). Creal (2012),

Flury and Shephard (2011) and Durham and Geweke (2012) discuss their application to a variety

of concrete economic problems.

The structure of this note is as follows. In section 2 we develop the background, including

listing the model, recalling basic filtering results and discussing inference methods for unknown

parameters. In Section 3 we detail a functional recursion for the time series of individual scores.

In Section 4 we show how particle filter output can be used to estimate the time series of scores and

derive the properties of such estimators. In Section 5 we derive the properties of the corresponding

HAC estimator. In Section 6 we discuss particle methods for computing the Hessian. In Section

7 we report a Monte Carlo experiment into the performance of our particle estimator of the robust

standard errors. In Section 8 we give some conclusions. Finally, the Appendix contains the proofs

of two theorems given in the main part of the paper and recalls the details of a simple particle
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filter.

2 The background

2.1 A class of models

We will study non-linear and non-Gaussian state space models where there are observations yt

which conditioned on some states αt are independent. The states are Markovian. We will write

this model as

f (yt|αt; θ) , f(αt|αt−1; θ),

where θ is a k × 1 dimensional vector of parameters. The former is labelled the measurement

density, the latter the transition density. Throughout we will assume both are twice continuously

differentiable with respect to θ. Reviews of the literature on “hidden Markov” or “state space”

models include Harvey (1989), West and Harrison (1989) and Durbin and Koopman (2012). This

type of model has been widely studied in modern applied science.

Our focus will be on filtering

f(αt|Ft; θ),

where t ≤ n. Here Ft is the information available at and including time t. Also of interest is the

prediction density

f(yt|Ft−1; θ).

Except in special cases (e.g. the linear Gaussian model and the case where αt only has a small

number of atoms of support) these two densities have to be estimated using simulation. The

leading way of carrying this out is the particle filter or sequential Monte Carlo.

From the perspective of this paper, we do not need to relive the details of how the particle filter

is configured or iterated through time. We will simply assume we have a weighted particle filter

sample of size M from the αt|Ft; θ which we write as

{
W

(i)
t , α

(i)
t

}
.

We will need such a sample for every value of t, although we will see it is not necessary to cumu-

latively store the particles through time. To help readers less familiar with this area we give in

Appendix 9.4 a particular particle filter. It is the one we will use in our examples.

A biproduct of the particle filter is the corresponding estimator

f̂ (yt|Ft−1; θ) ,
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which has the feature that

n∏

t=1

f̂ (yt|Ft−1; θ) is unbiased for

n∏

t=1

f (yt|Ft−1; θ) (a result due to Moral

(2004)) which in turn means it can be used inside a MCMC algorithm as if were the true prediction

decomposition. The latter result is due to Andrieu, Doucet, and Holenstein (2010), see also Flury

and Shephard (2011) for further discussion of it and Pitt, Silva, Giordani, and Kohn (2012) who

prove unbiasedness of the auxiliary particle filter estimator of f (yt|Ft−1; θ). Such Bayesian infer-

ence is complete if the model is correctly specified and the prior reflects the belief of the researcher,

but if the quasi-likelihood has some form of misspecification we need to replace the measures of

uncertainty by robust estimators. But how do we do this?

2.2 Inference from a quasi-likelihood

Our contribution is to consider an aspect of the parameter inference problem for these misspecified

models. Consider the time series y1:n = y1, ..., yn, then we can can write the model’s joint density

using a prediction decomposition

Lθ = f(y1:n|F0; θ) =

n∏

t=1

f(yt|Ft−1; θ) = exp

(
n∑

t=1

lt,θ

)
, where lt,θ = log f(yt|Ft−1; θ).

Then the unbiased particle estimator of this will be

L̂θ =
n∏

t=1

f̂(yt|Ft−1; θ).

Example 1 We suppose yt|αt; θ ∼ N(αt, σ
2), αt|αt−1 ∼ N(0, 0.1), n = 100 and θ = log σ2. We

draw a single path y1:n. Throughout the true value of θ = 0 and plot logLθ and log L̂θ as a function

of θ, using the filter in the Appendix. We vary M = 100, 250, 1, 000 and 2, 500 and show the results

in Figure 1. Obviously log L̂θ is non-continuous in θ but improves as M increases as expected from

well established particle filter theory.

The sample score, if it exists, equals (sometimes, for compactness, we will drop the reference to

θ in Sn,θ and st,θ)

Sn,θ =
∂ logLθ
∂θ

=

n∑

t=1

st,θ, st,θ =
∂lt,θ
∂θ

.

Then a standard input into robust inference is to estimate

In,θ = Var

(
n−1/2

n∑

t=1

st,θ|F0

)
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Figure 1: logLθ and log L̂θ as a function of θ = log σ2. The true value of θ is zero. Graphs show
the results for each value of M . The data y1:n is constant throughout, but each particle filter
estimator of the likelihood is stochastically independent for each value of θ.

using a so-called “long-run covariance” or HAC statistic. The literature on this includes Parzen

(1957), Gallant (1987), Newey and West (1987) and Andrews (1991). This is combined with an

estimate of the Hessian

Jn,θ = −E

(
n−1

n∑

t=1

∂2lt,θ
∂θ∂θ′

|F0

)
,

to deliver an estimator of the sandwich J −1
n,θ In,θJ−1

n,θ .

A typical HAC estimator takes on the form

În,θ(s) = γn,θ(s; 0) +

P∑

j=1

w(j/P )
{
γn,θ(s; j) + γn,θ(s; j)

′
}
,

where

γn,θ(s; j) =
1

n

n∑

t=j+1

(st,θ − sθ) (st−j,θ − sθ)
′ , sθ =

1

n

n∑

t=1

st,θ.

Here w is a weight function, the most well known of which is the Bartlett weight where w(j/P ) =

1−j/(P+1). Throughout w is assumed chosen to satisfy
∫
w(x) exp(ixλ)dx ≥ 0 for all λ ∈ R, which

means that the estimator is always positive semi-definite (e.g. Bochner’s theorem and Andrews
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(1991)). Then under very weak conditions, which involve P increasing very slowly with n discussed

extensively in the above literature1, În,θ(s)− In,θ
p→ 0 as n→ ∞.

Computationally the real challenge is to compute the time series st,θ.

2.3 Estimating the individual scores

One approach to accessing the sample score is via the identity

Sn,θ =
n∑

t=1

Eαt|Fn

{
∂ log f(yt|αt; θ)

∂θ

}
+

n∑

t=2

Eαt,αt−1|Fn

{
∂ log f(αt|αt−1; θ)

∂θ

}

+Eα1|Fn

{
∂ log f(α1|F0; θ)

∂θ

}
.

This appears in the Gaussian case in Koopman and Shephard (1992) but this does not give us the

time series of individual scores for

st,θ =
∂ log f(yt|Ft−1; θ)

∂θ
= St,θ − St−1,θ

6= Eαt|Fn

{
∂l(yt|αt)

∂θ

}
+ Eαt|Fn

{
∂l(αt|αt−1)

∂θ

}
,

where we have written for compactness

l(yt|αt) = log f(yt|αt; θ), l(αt|αt−1) = log f(αt|αt−1; θ).

Harvey (1989, pp. 142-3) report an involved recursion for the time series of individual scores for

linear and Gaussian models, the case where the Kalman filter applies. We need this type of result

for general state spaces in order to compute our HAC.

3 Estimating the time series of scores via simulation

3.1 Del Moral, Doucet, and Singh (2009) recursion for the sample score

Del Moral, Doucet, and Singh (2009) developed a particle filter version of recursive maximum

likelihood estimation. The key ingredient of this is a sequential estimator of St,θ. They derived

properties of this estimator (note also the earlier Poyiadjis, Doucet, and Singh (2011)). Our target

is somewhat different, st,θ and the corresponding sandwich estimator, but we will piggyback on

their work.

Let us ignore the initial condition, then construct

ut(αt, αt−1) =
∂l(yt|αt)

∂θ
+
∂l(αt|αt−1)

∂θ
,

UT (α1:T ) =
n∑

t=1

ut(αt, αt−1),

1Throughout our experiments we will take a conventional choice of using the Bartlett kernel and taking P =⌊
4(n/100)2/9

⌋
.
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St(αt) =

∫
Ut(α1:t)dF (α1:t−1|Ft−1, αt).

Now the sample score is (now dropping reference to θ)

St = Eαt|Ft
{St(αt)} .

The significant insight of Del Moral, Doucet, and Singh (2009) is that

St(αt) = Eαt−1|Ft−1,αt
{St−1(αt−1) + ut(αt, αt−1)} . (1)

Hence they suggested sequentially computing the time series of functionals St(αt) and then off

those St. They implement this approach using particles, but we step back on that for a moment.

3.2 Individual scores

The above argument means that the time series of individual scores (again dropping reference to

θ)

st =
∂ log f(yt|Ft−1; θ)

∂θ
= St − St−1.

Now define the functional

st(αt) = St(αt)− St−1

= Eαt−1|Ft−1,αt
{ut(αt, αt−1) + St−1(αt−1)}

= Eαt−1|αt,Ft−1
[ut(αt, αt−1)]

+Eαt−1|αt,Ft−1
{St−1(αt−1)− St−2}+ (St−2 − St−1)

= Eαt−1|αt,Ft−1
[ut(αt, αt−1) + st−1(αt−1)− st−1] . (2)

Here

st = Eαt|Ft
{st(αt)} .

So again this suggests sequentially computing the time series of functionals st(αt) and then off

those st.

3.3 Variation freeness

Our final detour before we move onto the particle implementations is to look at an important

special case, which we nearly always see in practice, where

ut(αt, αt−1) =

(
∂l(yt|αt)
∂ψ

∂l(αt|αt−1)
∂λ

)
.
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Then st(αt) uncouples as

st(αt) =

(
st,ψ(αt)
st,λ(αt)

)
, st =

(
st,ψ
st,λ

)
, St(αt) =

(
St,ψ(αt)
St,λ(αt)

)
, St =

(
St,ψ
St,λ

)
,

with θ =
(
ψ′, λ′

)′
. We suppose no connection between ψ and λ, that it they are variation free (e.g.

Engle, Hendry, and Richard (1983)). Then the parallel recursions

st,ψ(αt) =
∂l(yt|αt)
∂ψ

+
[
Eαt−1|αt,Ft−1

{st−1,ψ(αt−1)} − st−1,ψ

]
,

st,λ(αt) = Eαt−1|αt,Ft−1

{
∂l(αt|αt−1)

∂λ
+ st−1,λ(αt−1)− st−1,λ

}
.

Likewise

St,ψ(αt) =
∂l(yt|αt)
∂ψ

+ Eαt−1|αt,Ft−1
{St−1,ψ(αt−1)} ,

St,λ(αt) = Eαt−1|αt,Ft−1

{
∂l(αt|αt−1)

∂λ
+ St−1,λ(αt−1)

}
.

4 Particle implementation

4.1 Numerical implementation

We have, recalling (2),

st(αt) = Eαt−1|αt,Ft−1
{st−1(αt−1) + ut(αt, αt−1)} − st−1

=

∫
f(αt|αt−1) {st−1(αt−1) + ut(αt, αt−1)}dF (αt−1|Ft−1)∫

f(αt|αt−1)dF (αt−1|Ft−1)
− st−1.

A particle estimator of this is thus

ŝt(αt) = −ŝt−1 + Êj|αt

{
st−1(α

(j)
t−1) + ut(αt, α

(j)
t−1)

}
, (3)

where generically we write, for any function Hj,t−1(αt),

Êj|αt
Hj,t−1(αt) =

∑M
j=1W

(j)
t−1f(αt|α

(j)
t−1)Hj,t−1(αt)

∑M
i=1W

(j)
t−1f(αt|α

(j)
t−1)

.

Then

ŝt =

M∑

j=1

W
(j)
t ŝt(α

(j)
t ),

where
{
W

(j)
t , α

(j)
t

}
are the particles approximating dF (αt|Ft). Once this is computed the lagged

weighted particles
{
W

(j)
t−1, α

(j)
t−1

}
can be removed from memory if this is desirable, as they will never

be used again.

In practice the above strategy is held back by the O(M2) calculation in (3), so it may make

sense to carry out stratified resampling of the particles
{
W

(j)
t−1, α

(j)
t−1

}
and

{
W

(j)
t , α

(j)
t

}
to reduce
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the size of M for the score recursion by removing the small weighted particles. This reduction can

be carried out without changing any aspect of the particle filter, in effect it is carried out as a post

particle filtering computation.

Example 2 (Continued from Example 1) We plot st,θ against ŝt,θ as a function of t = 1, 2, ..., n

taking θ = 0, the true value and n = 100. We vary M = 100, 250, 1, 000 and 2, 500 and show the

results in Figure 2. The results show a tightening of the estimator as M increases.

0 1 2 3 4
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1
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3

4 (a) M=100

st,θ

ŝt,θ
0 1 2 3 4

0

1

2

3

4 (a) M=250

0 1 2 3

0

1

2

3

4 (a) M=1,000

0 1 2 3

0

1

2

3

4 (a) M=2,500

Figure 2: st,θ against ŝt,θ as a function of θ = log σ2. The true value of θ is zero. Graphs show the
results for each value of M . The data y1:n is constant throughout.

4.2 The asymptotic properties of ŝt,θ

The following gives a uniform bound, over t, θ and y, on the error caused by the particle filter.

Theorem 1 Assume Assumption A, given in the Appendix. For any r > 1, there exists a constant

cr <∞ such that for any θ ∈ Θ , y = {yt}t≥0, t ≥ 0, that as M → ∞

√
M
{
EMt,θ |ŝt − st|r

}1/r
< cr.

Here the expectations are over the particles of size M using the parameter θ, conditioning on y.

Proof. Given in Appendix 9.2.
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Extending the work of Del Moral, Doucet, and Singh (2011) it is worth noting it is possible to

derive a Gaussian central limit theory for
√
M (ŝt − st), asM → ∞. However, the resulting asymp-

totic variance is of not a great deal of practical importance, beyond the fact that the asymptotic

variance is uniformly bounded.

Example 3 (continued from Example 2). The corresponding results for ŝt,θ − st,θ is given in

Figure 3. On the left column we show the 0.9 quantiles of the estimation errors of st,θ − ŝt,θ. As

we move across we go through using M = 100, 250, 1, 000 and 2, 500. The right column shows

the 0.9 quantiles of the scaled estimation errors
√
M (st,θ − ŝt,θ). The key feature is that these are

reasonably stable as M changes.
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(a) M=100
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1

Figure 3: Simulation based estimation of st,θ for each t. Top: 0.9 quantiles of the unscaled simu-
lation errors ŝt,θ − st,θ. Bottom: 0.9 quantiles of the scaled simulation errors

√
M (ŝt,θ − st,θ).

5 HAC based on estimated scores

We now move to our central concern, the estimation of the HAC of st, which we recall we write as

HAC(s). Our estimator of this is HAC(ŝ).

Theorem 2 Assume Assumption A, given in the Appendix. Then for all θ ∈ Θ , y = {yt}t≥0, as
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M → ∞ so

HAC(ŝ)−HAC(s)
u.p.→ 0

so long as P/M → 0.

Proof. Given in the appendix.

This is a very conservative result and so in practice it is unlikely we need M to increase with

P at all. Andrews (1991) showed that we typically need P to increase with n1/5 to get consistency

for the HAC.

Example 4 (continued from Example 2). Figure 4 shows the corresponding results for the HAC

estimator based upon the estimated score. This is based on 500 replications with n = 100. On the

top it cross-plots HACŝ against HACs, showing an increasing correlation as M increases and so

reducing the simulation error. For small M , HACŝ seems a very slightly upward biased estimator

of HACs. The middle row compares
√
HACŝ and

√
Ĥn. This shows that as M increases there is

little change in the difference between these two measures. The reason for this is that the HACs

and Ĥn are not very close across the replications — although of course they converge to one another

as n goes to infinity as the model is correct. The bottom row shows a histogram of HACŝ−HACs,

again indicating that this difference reduces in size as M increases.

6 Estimating the Hessian via particles

6.1 The basics

To estimate robust standard errors we have to estimate

Jn,θ = −E

(
n−1

n∑

t=1

∂2lt,θ
∂θ∂θ′

|F0

)
.

We do this by replacing the expectation with an average. The immediate task is thus to compute

the Hessian

∆2l1:n =
∂2 log pθ(y1:n)

∂θ∂θ′
.

The approach we follow is numerically equivalent to Poyiadjis, Doucet, and Singh (2011) but

removes some unnecessary computations and has a simpler derivation.

First we set

Ut =
∂ log pθ(y1:t, α1:t)

∂θ
= Ut−1 + ut(αt, αt−1), ut(αt, αt−1) =

∂ {l(yt|αt) + l(αt|αt−1)}
∂θ

,
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Figure 4: Simulation based estimation of HAC estimator of the variance of the score when n = 100.
There were 500 replications and were based on M = 100 , 250 , 1 , 000 and 2 , 500 . Left hand
column: cross plot of HAC (ŝ) (on the y-axis) and HAC (s). Middle column: cross plot of robust
standard errors (on y-axis) HAC (ŝ) and non-robust standard errors which solely use the Hessian
matrix Ĥn. Right hand column: histogram of HAC (ŝ)−HAC (s).

Vt =
∂2 log pθ(y1:t, α1:t)

∂θ∂θ′
= Vt−1 + vt(αt, αt−1), (4)

vt(αt, αt−1) =
∂2 {l(yt|αt) + l(αt|αt−1)}

∂θ∂θ′
. (5)

Now note that

∆2l1:t =
∂2 log pθ(y1:t)

∂θ∂θ′
=

∂

∂θ′

(
1

pθ(y1:t)

∂pθ(y1:t)

∂θ

)
= Bt − StS

′
t,

where

Bt =
1

pθ(y1:t)

∂2pθ(y1:t)

∂θ∂θ′
, St =

∂ log pθ(y1:t)

∂θ
,

and using the Louis (1982) formula,

Bt = Ht +Kt, (6)

Ht =

∫ {
Ut(α1:t)U(α1:t)

′
}
dF (α1:t|Ft), (7)

Kt =

∫
V (α1:t)dF (α1:t|Ft), (8)
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and recalling

St =

∫
U(α1:t)dF (α1:t|Ft).

So define the functionals, suppressing dependence on α1:t,

Ht(αt) =

∫ (
UtU

′
t

)
dF (α1:t−1|Ft−1, αt),

St(αt) =

∫
UtdF (α1:t−1|Ft−1, αt),

Kt(αt) =

∫
VtdF (α1:t−1|Ft−1, αt),

delivers the desired2

Ht = Eαt|Ft
{Ht(αt)} , St = Eαt|Ft

{St(αt)} , Kt = Eαt|Ft
{Kt(αt)} .

Obviously UtU
′
t = (Ut−1 + ut) (Ut−1 + ut)

′ and Eα1:t−1|Ft−1,αt
= Eαt−1|Ft−1,αt

Eα1:t−2|Ft−2,αt−1
, so

we run in parallel

Ht(αt) = Eαt−1|Ft−1,αt

{
Ht−1(αt−1) + utu

′
t + St−1(αt−1)u

′
t + utSt−1(αt−1)

′
}
,

St(αt) = Eαt−1|Ft−1,αt
{St−1(αt−1) + ut} ,

Kt(αt) = Eαt−1|Ft−1,αt
{Kt−1(αt−1) + vt} .

6.2 Particle implementation

We will implement this using the existing weighted particles
{
W

(j)
t−1, α

(j)
t−1

}
(as before, in practice,

it computationally makes sense to resample to make the weights equal before carrying this out, but

we ignore that here). Write

Hj,t−1 = Ht−1(α
(j)
t−1), Sj,t−1 = St−1(α

(j)
t−1), Kj,t−1 = Kt−1(α

(j)
t−1),

uj,t(αt) = ut(αt, α
(j)
t−1), vj,t(αt) = vt(αt, α

(j)
t−1), fj,t(αt) = f(αt|α(j)

t−1),

and, again, generically

Êj|αt
(Hj,t−1) =

∑M
j=1W

(j)
t−1f(αt|α

(j)
t−1)Hj,t−1

∑M
j=1W

(j)
t−1f(αt|α

(j)
t−1)

.

Then

Ĥt(αt) = Êj|αt

{
Hj,t−1 + uj,t(αt)u

′
j,t(αt) + Sj,t−1u

′
j,t(αt) + uj,t(αt)S

′
j,t−1

}
, (9)

2Note that Ht(αt) ≥ St(αt)St(αt)
′ (in the sense that the difference is positive semi-definite) for any αt and t and

so

Ht = Eαt|y1:t {Ht(αt)} ≥ Eαt|y1:t

{
St(αt)St(αt)

′
}
≥ Eαt|y1:t {St(αt)}Eαt|y1:t

{
St(αt)

′
}
= StS

′
t.
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Ŝt(αt) = Êj|αt
{Sj,t−1 + uj,t(αt)} , (10)

K̂t(αt) = Êj|αt
{Kj,t−1 + vj,t(αt)} . (11)

This drives

Ĥt =

M∑

j=1

W
(j)
t Ĥt(α

(j)
t ), Ŝt =

M∑

j=1

W
(j)
t Ŝt(α

(j)
t ), K̂t =

M∑

j=1

W
(j)
t K̂t(α

(j)
t ).

The resulting estimator is thus

∆2l̂1:t = Ĥt − ŜtŜ
′
t + K̂t.

In practice it is marginally computationally faster, and exactly equivalent, to combine the

recursions for H and K, that is work with

ĤKt(αt) = Êj|αt

{
HKj,t−1 + uj,t(αt)u

′
j,t(αt) + Sj,t−1u

′
j,t(αt) + uj,t(αt)

′
j,t−1 + vj,t(αt)

}
,

rather than Ĥt + K̂t. This delivers ∆2l̂1:t = ĤKt − ŜtŜ
′
t.

6.3 Variation freeness

In the variation free case, we have

ut(αt, αt−1) =

(
∂l(yt|αt)
∂ψ

∂l(αt|αt−1)
∂λ

)
, vt(αt, αt−1) =

(
∂2l(yt|αt)
∂ψ∂ψ′ 0

0 ∂2l(αt|αt−1)
∂λ∂λ′

)
,

and writing everywhere

St =

(
St,ψ
St,λ

)
, Kt =

(
Kt,ψψ Kt,λψ

Kt,ψλ Kt,λλ

)
, Ht =

(
Ht,ψψ Ht,λψ

Ht,ψλ Ht,λλ

)
,

we note that Kt,ψλ = 0. Then

Ŝt,ψ(αt) = Êj|αt
(Sj,t−1,ψ) +

∂l(yt|αt)
∂ψ

, Ŝt,λ(αt) = Êj|αt
(Sj,t−1,λ) + Êj|αt

(
∂l(αt|α(j)

t−1)

∂λ

)
, (12)

K̂t,ψψ(αt) = Êj|αt
(Kj,t−1,ψψ) +

∂2l(yt|αt)
∂ψ∂ψ′ , K̂t,λλ(αt) = Êj|αt

(Kj,t−1,λλ) + Êj|αt

(
∂2l(αt|α(j)

t−1)

∂λ∂λ′

)
.(13)

Unfortunately H is a little more complicated. The easy piece is

Ĥt,ψψ(αt) = Êj|αt
(Hj,t−1,ψψ)+

∂l(yt|αt)
∂ψ

∂l(yt|αt)
∂ψ′ +Êj|αt

(Sj,t−1,ψ)
∂l(yt|αt)
∂ψ′ +

∂l(yt|αt)
∂ψ

Êj|αt
(Sj,t−1,ψ)

′ .

(14)

The slightly more complicated components are

Ĥt,λλ(αt) = Êj|αt
(Hj,t−1,λλ) + Êj|αt

(
∂l(αt|α(j)

t−1)

∂λ

∂l(αt|α(j)
t−1)

∂λ′

)
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+Êj|αt

(
∂l(αt|α(j)

t−1)

∂λ
S′
j,t−1,λ

)
+ Êj|αt

(
Sj,t−1,λ

∂l(αt|α(j)
t−1)

∂λ′

)
(15)

Ĥt,ψλ(αt) = Êj|αt
(Hj,t−1,ψλ) + Êj|αt

(
∂l(yt|αt)
∂ψ

∂l(αt|α(j)
t−1)

∂λ′

)

+Êj|αt

(
∂l(yt|αt)
∂ψ

S′
j,t−1,λ

)
+ Êj|αt

(
Sj,t−1,ψ

∂l(αt|α(j)
t−1)

∂λ′

)
. (16)

7 Monte Carlo assessment of the estimator of robust standard

errors

We now move onto assessing the performance of this approach in cases where the model is incorrect.

Example 5 Suppose our model is still yt|αt; θ ∼ N(αt, σ
2) and αt|αt−1 ∼ N(αt−1, 1) and θ =

log σ2, but now the data generating process is taken to be

yt = αt + εt, εt
L
=
χ2
p − p√
2p

, p > 0,

where εt is i.i.d. and L denotes “in law”. Hence the measurement error is highly skewed for

small p. As we are fitting a linear model the quasi-likelihood with deliver a consistent estimator

of the pseudo-true value of θ, which is θ∗ = log V ar(εt) = 0. The values of p vary through

{1, 2, 3, 4, 5, 10, 25}, where p = 25 delivers a law for εt which is close to being Gaussian. We

taken M through {100, 250, 1000, 2500} and n = 100 and n = 250.

Here we focus on estimating (i) the I1/2
n,θ and (ii) the sandwich I1/2

n,θ J−1
n,θ . But we need to take a

step back for even if we had the true scores we would only have the estimates (i) the HAC estimator

based Î1/2
n,θ , (ii) Î

1/2
n,θ Ĵ−1

n,θ . Our paper is about estimating these quantities by particle based (i) Ĩ1/2
n,θ ,

(ii) Ĩ1/2
n,θ J̃−1

n,θ .

It is not our intention to evaluate here the underlying quality of Ĩ1/2
n,θ or sandwich estimator

Î1/2
n,θ Ĵ −1

n,θ , but we also report a comparison of J̃−1/2
n,θ to Î1/2

n,θ Ĵ −1
n,θ , to give an impression of how much

difference there is in the non-robust and robust standard errors in this case. Clearly the differences

would be expected to decline as p increases.

So to summarise here we compare

• Ĩ1/2
n,θ to Î1/2

n,θ .

• J̃ −1/2
n,θ to Î1/2

n,θ Ĵ −1
n,θ .

• Ĩ1/2
n,θ J̃ −1

n,θ to Î1/2
n,θ Ĵ−1

n,θ .
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We will make these three comparisons in two different ways.

We look at their average levels, by reporting their medians over the replications in our simula-

tions. For the first two comparisons they do not vary much with n, so we will only report in the

Table of results the case where n = 250.

A significant focus for us is the percentage differences in the square root of the HACs

100

∣∣∣∣∣∣
Ĩ1/2
n,θ

Î1/2
n,θ

− 1

∣∣∣∣∣∣
,

and the estimating robust standard errors

100

∣∣∣∣∣∣
Ĩ1/2
n,θ J̃ −1

n,θ

Î1/2
n,θ Ĵ −1

n,θ

− 1

∣∣∣∣∣∣
.

The Table will record the Monte Carlo estimates of the 0.5 and 0.99 quantiles of the sampling

distribution.

The first column of Table 1 shows the median of the estimated square root of the HAC Ĩ1/2
n,θ ,

based upon the particle filter. This can be compared to the square root of the HAC based upon

the true scores Î1/2
n,θ . The results show an upward bias in the estimated HAC for small M but this

is removed by the time M reaches about 250.

The next block of columns looks at the percentage difference between the estimated square

rooted HAC Ĩ1/2
n,θ and the true square root HAC Î1/2

n,θ . This is computed for every replication and

we record the median and the .99 quantile. The latter is poorly estimated as our Monte Carlo

experiment has a modest number of replications. The results show, broadly, that as n increases

the percentage error tends to fall and that the percentage errors are much higher for the highly

non-Gaussian cases where p is small. As M increases the percentage errors fall a great deal. By

the time M hits 1, 000 the typical error is quite modest.

The next block of columns starts with the median standard error computed using the estimated

scores J̃−1/2
n,θ but wrongly assuming the model is correct. This is, subject to estimation noise,

invariant over p and does not vary much with M . This is compared to the median of the robust

standard errors using the particle filter approach. As p increases the two become very close, but

for the highly non-Gaussian case the differences are marked.

The final block of columns again looks at percentage differences but this time it is the particle

filter robust standard errors Ĩ1/2
n,θ J̃ −1

n,θ compared to those based on the true scores Î1/2
n,θ Ĵ−1

n,θ . The

picture here is quite stable. The percentage differences are largest with small p, n andM . Increasing

any of these three constants reduces the percentage errors. The most interesting feature is the

improvement as n increases. Except in the most non-Gaussian cases, the percentage errors are

quite modest.
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Î
1/2
n,θ Ĩ

1/2
n,θ 100

∣∣∣∣
Î
1/2
n,θ

Ĩ
1/2
n,θ

− 1

∣∣∣∣ J̃
−1/2
n,θ Ĵ−1

n,θ Î
1/2
n,θ 100

∣∣∣∣
Ĵ−1

n,θ
Î
1/2
n,θ

J̃−1

n,θ
Ĩ
1/2
n,θ

− 1

∣∣∣∣
quantile .5 .5 .5 .5 .99 .99 .5 .5 .5 .5 .99 .99

n 250 250 100 250 100 250 250 250 100 250 100 250

M

p = 1 100 1.43 1.31 9.7 9.9 39.7 48.2 0.10 0.20 6.2 3.6 49.6 14.3
250 1.31 1.31 5.1 5.6 27.3 39.2 0.10 0.20 4.6 2.5 36.1 8.2

1,000 1.32 1.31 3.2 2.2 18.0 26.9 0.10 0.20 2.2 1.3 31.1 4.3
2,500 1.32 1.31 1.4 1.8 9.2 27.2 0.10 0.20 1.3 0.9 15.6 4.3

p = 2 100 0.88 0.86 9.1 7.6 32.7 18.7 0.10 0.16 5.4 3.4 47.8 12.0
250 0.86 0.86 5.4 3.9 15.7 16.7 0.10 0.16 3.1 2.0 27.8 5.1

1,000 0.86 0.86 2.9 2.0 13.3 17.1 0.10 0.16 1.7 1.1 12.7 3.2
2,500 0.85 0.86 1.5 1.3 6.5 6.2 0.10 0.16 1.1 0.6 10.2 2.3

p = 3 100 0.77 0.76 8.1 7.2 35.1 35.8 0.10 0.15 5.6 3.3 21.9 8.3
250 0.77 0.76 4.8 3.9 16.9 10.5 0.10 0.14 3.0 2.0 11.9 4.8

1,000 0.75 0.76 2.2 2.0 8.7 8.8 0.10 0.15 1.7 1.1 5.3 2.9
2,500 0.76 0.76 1.4 1.0 6.2 6.3 0.10 0.15 0.9 0.7 3.6 1.8

p = 4 100 0.67 0.64 9.6 6.3 32.7 26.6 0.09 0.13 5.2 3.3 21.0 6.6
250 0.66 0.64 5.0 3.3 23.4 10.1 0.10 0.13 2.8 1.9 14.4 4.1

1,000 0.64 0.64 2.4 1.7 9.5 5.8 0.10 0.13 1.6 1.0 8.3 3.9
2,500 0.64 0.64 1.7 0.9 11.1 3.6 0.10 0.13 0.9 0.7 5.1 1.4

p = 5 100 0.61 0.59 7.2 7.6 29.3 23.6 0.10 0.13 4.5 3.2 14.5 9.7
250 0.59 0.59 4.7 3.8 17.9 12.1 0.10 0.13 3.1 2.0 7.2 5.3

1,000 0.59 0.59 2.0 1.7 6.5 5.7 0.10 0.13 1.6 1.0 3.9 3.9
2,500 0.59 0.59 1.4 1.1 5.0 3.4 0.10 0.13 1.0 0.7 2.5 1.9

p = 10 100 0.48 0.47 8.8 6.9 38.0 34.7 0.10 0.11 5.2 3.3 12.4 6.8
250 0.47 0.47 4.7 3.5 19.6 10.9 0.10 0.11 3.3 2.0 21.0 6.9

1,000 0.47 0.47 2.2 1.9 7.2 8.0 0.10 0.11 1.4 1.0 4.7 2.5
2,500 0.47 0.47 1.4 1.1 4.4 4.7 0.10 0.11 0.9 0.7 5.2 1.9

p = 25 100 0.42 0.41 8.3 7.6 35.7 22.1 0.10 0.10 5.2 3.0 11.3 6.7
250 0.41 0.41 4.7 3.4 20.5 9.4 0.10 0.10 3.2 2.1 7.2 4.5

1,000 0.41 0.41 2.5 1.7 7.8 5.1 0.10 0.10 1.5 1.0 3.3 2.9
2,500 0.41 0.41 1.3 1.0 3.1 3.8 0.10 0.10 1.1 0.6 2.3 2.6

Table 1: Monte Carlo estimates of various quantiles of the distribution of information measures
and standard errors. The results are based on 250 replications. n is either 100 or 250. M ranges

over 100, 250, 1000 and 2,500. Î1/2
n,θ is the particle filter estimator of the true HAC Ĩ1/2

n,θ which in

turn is based on the true scores. The columns 100

∣∣∣∣
Î
1/2
n,θ

Ĩ
1/2
n,θ

− 1

∣∣∣∣ record the percentage error of induced

by the particle filter. J̃−1/2
n,θ provides asymptotic standard error using the true scores under the

assumption the model is correct. Ĵ−1
n,θ Î

1/2
n,θ provides robust standard errors using estimated scores.

100

∣∣∣∣
Ĵ−1

n,θ Î
1/2
n,θ

J̃−1

n,θ Ĩ
1/2
n,θ

− 1

∣∣∣∣ is the percentage error induced by estimating the scores.
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8 Conclusion

For non-linear and non-Gaussian models the time series of individual scores are not directly avail-

able, but have to be estimated by simulation. In this note we derived the properties of these

estimators. The estimated individual scores are used to calculate a HAC estimator of the long-run

variance of the score and in turn inside an estimator of a robust covariance matrix. Here we have

studied the properties of the resulting simulation based estimators using asymptotic theory and

Monte Carlo experiments. The results are encouraging suggesting that these standard errors are

good approximations to the standard errors which we would have seen if the individual scores were

directly computable.

This analysis continues an important line of work. In Andrieu, Doucet, and Holenstein (2010)

they showed how to carry out Bayesian inference using only the output from a particle filter. Here

we extend that journey, allowing robust inference to be joined with the Bayesian estimator. This

provides a complete analysis of inference for these compelling but computationally challenging

models.

A disappointment of our approach is that it requires us to be able to compute both f(yt|αt, θ)
and f(αt|αt−1, θ) (as well as their log derivatives with respect to θ, although these latter terms

could be computed by numerical differentiation). The main reason for the limitation is that there

are a considerable number of models where it is difficult to access the form of f(αt|αt−1, θ) even

though we can simulate from αt|αt−1, θ. At the moment our methods cannot handle such models.

9 Appendix

9.1 Assumptions

Assumption A.

Uniformly over y, x, x′ and θ, we assume ∂f(y|x; θ)/∂θ and ∂f(x′|x; θ)/∂θ exist and there exists

constants 0 < δ, ρ, c <∞ such that

ρ−1 ≤ f(y|x; θ) ≤ ρ,

δ−1 ≤ f(x′|x; θ) ≤ δ,

and

∣∣∣∣
∂f(y|x; θ)

∂θ

∣∣∣∣ ∨
∣∣∣∣
∂f(x′|x; θ)

∂θ

∣∣∣∣ < c.
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9.2 Proof of Theorem 1

First introduce the generic notation

ν[ϕ] =

∫
ϕ(x)dν(x).

Then recall that

st =
1

f(yt|Ft−1; θ)

∂f(yt|Ft−1; θ)

∂θ

=
1

f(yt|Ft−1; θ)

{∫
∂f(yt|αt; θ)

∂θ
f(αt|Ft−1; θ)dαt +

∫
f(yt|αt; θ)

∂f(αt|Ft−1; θ)

∂θ
dαt

}

=
1

f(yt|Ft−1; θ)

{
f(αt|Ft−1; θ)[

∂f(yt|αt; θ)
∂θ

] +
∂f(αt|Ft−1; θ)

∂θ
[f(yt|αt; θ)]

}
.

Our particle filter approach above is the same as using a particle filter to estimate f(αt|Ft−1; θ)

and the functional recursion above to estimate ∂f(αt|Ft−1; θ)/∂θ.

Now let us write

ηMt,θ = f̂(αt|Ft−1; θ), ηt,θ = f(αt|Ft−1; θ), ζMt,θ =
∂f̂(αt|Ft−1; θ)

∂θ
, ζt,θ =

∂f(αt|Ft−1; θ)

∂θ
,

Then

f(yt|Ft−1; θ)
√
M (ŝt − st) =

√
M
(
ηMt,θ − ηt,θ

)
[
∂f(yt|αt; θ)

∂θ
] +

√
M
(
ζMt,θ − ζt,θ

)
[f(yt|αt; θ)].

Now under Assumption A Moral (2004) and Del Moral and Rio (2011) have established that for a

√
M
{
EM

∣∣(ηMt,θ − ηt,θ
)
[ϕ]
∣∣r
}1/r

≤ d1,r

and Del Moral, Doucet, and Singh (2009) have established under Assumption A that

√
M
{
EM

∣∣(ζMt,θ − ζt,θ
)
[ϕ]
∣∣r
}1/r

≤ d2,r.

Minkowski inequality means that

√
M
{
EM |f(yt|Ft−1; θ) (ŝt − st)|r

}1/r ≤
√
M

{
EM

∣∣∣∣
(
ηMt,θ − ηt,θ

)
[
∂f(yt|αt; θ)

∂θ
]

∣∣∣∣
r}1/r

+
√
M
{
EM

∣∣(ζMt,θ − ζt,θ
)
[f(yt|αt; θ)]

∣∣r
}1/r

≤ d1,r + d2,r.

Then

√
M
{
EM

∣∣∣
√
M (ŝt − st)

∣∣∣
r}1/r

≤ d1,r + d2,r
f(yt|Ft−1; θ)

≤ cr,

given the measurement density f(yt|αt) is bounded from below.
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9.3 Proof of Theorem 2

As the HAC is non-negative, a sufficient condition for this to happen is that

HAC(ŝ− s)
u.p.→ 0,

a matrix of zeros. Recall that

EHAC(ŝ− s) = γn,θ(ŝ− s; 0) +

P∑

j=1

w(j/P )
{
γn,θ(ŝ− s; j) + γn,θ(ŝ − s; j)′

}
.

Now for a conformable k vector we have, if the weight function is everywhere positive,

k′HAC(ŝ− s)k = HAC(k′ (ŝ− s))

≤ γn,θ(z; 0)


1 + 2

P∑

j=1

w(j/P )




≤ (2P + 1)

(
1

n

n∑

t=1

z2t

)
, zt = k′ (ŝ− s) .

Now using Theorem 1, we have that

EMθ

(
1

n

n∑

t=1

z2t

)
=

1

n

n∑

t=1

EMt,θ
(
z2t
)
≤ c22
M
.

A similar result can be obtained for higher order moments. Hence we have uniform convergence

so long as P/M → 0.

9.4 A simple particle filter

For simplicity in our examples we have used a basic “bootstrap” particle filter, whose modern use

was developed by Gordon, Salmond, and Smith (1993). Of course it is possible to design more

efficient particle filters using stratification, auxiliary particle filters (e.g. Pitt and Shephard (1999)

and Whiteley and Johansen (2011)), irregularly spaced resampling based upon effective sample

sizes (e.g. Kong, Liu, and Wong (1994)) as well as other important techniques. See the reviews in,

for example, Doucet and Johansen (2011) and Creal (2012). Such improvements can be harnessed

by the developments given here.

The basic bootstrap filter has the following structure

1. Set t = 1 and assume we have a sample α
(1)
t−1, ..., α

(M)
t−1 from αt−1|Ft−1, θ.

2. For each particle α
(j)
t−1 generate R children from drawing from αt|αt−1, θ. Write the children

as α
(j,1)
t , ..., α

(j,R)
t and compute weights

w
(j,k)
t = f(yt|α(j,k)

t , θ).
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Record

p̂(yt|Ft−1, θ) =
1

MR

M∑

j=1

R∑

k=1

f(yt|α(j,k)
t , θ).

3. Resample with replacement α
(j,k)
t with probability proportional to w

(j,k)
t a total of M times.

Write this new population as α
(1)
t , ..., α

(M)
t which are roughly from αt|Ft, θ.

4. Use the two populations of particles α
(1)
t−1, ..., α

(M)
t−1 and α

(1)
t , ..., α

(M)
t to estimate the score and

Hessian at time t. One can then remove α
(1)
t−1, ..., α

(M)
t−1 from memory if this is desired.

5. Increment t by one and go to step 2.

In our experiments we have taken R = 1.
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