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Abstract

Estimating the covariance and correlation between assets using high frequency data is chal-
lenging due to market microstructure effects and Epps effects. In this paper we extend Xiu’s
univariate QML approach to the multivariate case, carrying out inference as if the observations
arise from an asynchronously observed vector scaled Brownian model observed with error. Un-
der stochastic volatility the resulting QML estimator is positive semi-definite, uses all available
data, is consistent and asymptotically mixed normal. The quasi-likelihood is computed using
a Kalman filter and optimised using a relatively simple EM algorithm which scales well with
the number of assets. We derive the theoretical properties of the estimator and prove that it
achieves the efficient rate of convergence. We show how to make it achieve the non-parametric
efficiency bound for this problem. The estimator is also analysed using Monte Carlo methods
and applied on equity data that are distinct in their levels of liquidity.

Keywords: EM algorithm; Kalman filter; market microstructure noise; non-synchronous data;
portfolio optimisation; quadratic variation; quasi-likelihood; semimartingale; volatility.
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1 Introduction

1.1 Core message

The strength and stability of the dependence between asset returns is crucial in many areas of

financial economics. Here we propose an innovative, theoretically sound, efficient and convenient

method for estimating this dependence using high frequency financial data. We explore the prop-

erties of the methods theoretically, in simulation experiments and empirically.
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Our realised quasi maximum likelihood (QML) estimator of the covariance matrix of asset prices

is positive semi-definite and deals with both market microstructure effects such as bid/ask bounce

and non-synchronous recording of data (the so-called Epps (1979) effect). Positive-definiteness is

important for it allows us to define a coherent realised QML estimator of correlations and betas,

objects of central importance in applied financial economics. We derive the theoretical properties

of our estimator and prove that it achieves the efficient rate of convergence. We show how to make

it achieve the non-parametric efficiency bound for this problem. The estimator is also analysed

using Monte Carlo methods and applied on equity data in a string of two dimensional cases and a

high dimensional case.

Our results suggest that our methods deliver particularly strong gains over existing methods in

problems where the data is unbalanced: that is where some assets do not trade a great deal while

others are more frequently available.

1.2 Quasi-likelihood context

Our approach can be thought to be the natural integration of three influential econometric es-

timators, completing a particular line of research and opening up many more areas of potential

development and application.

The first is the realised variance estimator, which is the QML estimator of the quadratic vari-

ation of a univariate semimartingale and was econometrically formalised by Andersen, Bollerslev,

Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002). There the quasi-likelihood

is generated by assuming the log-price is scaled Brownian motion, delivering the obvious QML es-

timator which is the realised variance. Multivariate versions of these estimators, based on rotated

multivariate Brownian motion, were developed and applied in Andersen, Bollerslev, Diebold, and

Labys (2003) and Barndorff-Nielsen and Shephard (2004). These estimators are called realised

covariances and have been widely applied by other researchers.

The second is the Hayashi and Yoshida (2005) estimator, which is the QML estimator for the

corresponding multivariate problem but where there is irregularly spaced non-synchronous data.

Again the underlying log-price is modelled as a rotated vector Brownian motion.

Neither of the above estimators dealt with noise. Xiu (2010) studied the univariate QML

estimator where the scaled Brownian motion is observed with Gaussian noise. He called this

the univariate “realised QML estimator” and showed this was an effective estimator under some

general semimartingale assumptions and under non-Gaussian noise. We also note the related Zhou

(1996), Zhou (1998), Andersen, Bollerslev, Diebold, and Ebens (2001) and Hansen, Large, and

Lunde (2008).

Our paper brings together all of this work to produce a distinctive and empirically important
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result. It proposes and analyses in detail the multivariate realised QML estimator which deals with

irregularly spaced non-synchronous noisy multivariate data. We develop methods to allow it to be

easily implemented and develop the corresponding asymptotic theory under realistic assumptions.

We show this estimator has a number of optimal properties.

1.3 Alternative approaches

As well as this QML theme, a number of authors have approached this sophisticated multivariate

problem using a variety of non-QML techniques. Here we discuss them to place our work in a

better context.

As we said above the first generation of multivariate estimators, realised covariances, were

based upon moderately high frequency data. These are sampled sufficiently sparsely that they

could roughly ignore the effect of noise and non-synchronous trading. Related to those papers is

Hayashi and Yoshida (2005) who tried to overcome non-synchronous trading but did not deal with

any aspects of noise (see also Voev and Lunde (2007)).

More recently there has been an attempt to use the finest grain of data where noise and non-

synchronous trading become important issues. There are five existing methods which have been

proposed. Two deliver positive semi-definite estimators, so allowing correlations and betas to

be coherently computed. They are the multivariate realised kernel of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2011) and the non-biased corrected preaveraging estimator of Christensen,

Kinnebrock, and Podolskij (2010). Both use so-called refresh time sampling, suggested first in this

context by the former paper. Neither converges at the optimal rate.

Two other estimators have been suggested which rely on a polarisation property of quadratic

variation. Each has the disadvantage that they are not guaranteed to be positive semi-definite,

so ruling out their direct use for correlations and betas. The papers are Aı̈t-Sahalia, Fan, and

Xiu (2010) and Zhang (2011). The bias-corrected Christensen, Kinnebrock, and Podolskij (2010)

is also not necessarily positive semi-definite. Further, none of them achieve the non-parametric

efficiency bound. Such nonparametric estimators are heavily influenced by bandwidth or tuning

parameter selection and so can be tricky to use in practice.

Finally, we note that related univariate work includes, for example, Zhou (1996), Zhou (1998),

Hansen and Lunde (2006), Zhang, Mykland, and Aı̈t-Sahalia (2005), Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008), Jacod, Li, Mykland, Podolskij, and Vetter (2009)), Andersen, Boller-

slev, Diebold, and Labys (2000), Bandi and Russell (2008), Kalnina and Linton (2008), Li and

Mykland (2007), Gloter and Jacod (2001a), Gloter and Jacod (2001b), Kunitomo and Sato (2009),

Reiss (2011), Large (2011) and Hansen and Horel (2009).

3



1.4 More details on our paper

In this paper we use a QML estimator in the multivariate case where we model efficient prices

as following correlated Brownian motion observed at very irregularly spaced and asynchronously

recorded datapoints. Each observation is cloaked in noise. We provide some theory which shows

how this approach deals with general continuous semimartingales observed with noise irregularly

sampled in time.

The above approach can be implemented computationally efficiently using Kalman filtering.

The optimisation of the likelihood is most easily carried out using an EM algorithm, which is

implemented using a simple smoothing algorithm. This has the virtue that the resulting estimator

of the integrated covariance is positive-semidefinite. In practice it can be computed rapidly, even

in significant dimensions.

1.5 Three noteworthy papers

There are three papers which are closest to our approach.

Aı̈t-Sahalia, Fan, and Xiu (2010) employed the univariate estimator of Xiu (2010) applied

to the multivariate case using polarisation. That is, for example, if they wish to estimate the

covariance between x1 and x2, then they applied univariate methods to estimate Var(x1 + x2) and

Var(x1−x2) and then looked at a scaled difference of these two estimates. For d-dimensional cases

they repeatedly used the univariate methods on a variety of linear combination of assets and then

combine the results to produce an estimator of the covariance matrix. Unfortunately the result is

not guaranteed to be positive semi-definite.

During our work on this paper we were sent a copy of Corsi, Peluso, and Audrino (2012) in

January 2012 which was carried out independently and concurrently with our work. This paper

is distinct in a number of ways, most notably we have a fully developed econometric theory for

the method under general conditions and our computations are somewhat different. However, the

overarching theme is the same: extending Xiu (2010) to the multivariate case.

In late April 2012 we also learnt of Liu and Tang (2012). They study a realised QML estimator

of a multivariate exactly synchronised dataset. They propose using Refresh Time type devices to

achieve exact synchronicity. Under exact synchronicity their theoretical development is significant

and independently generates the results in one of the theorems in this paper. But their results rely

on exact synchronisation and so cannot be realistically applied to all of the data in our available

samples.
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1.6 Structure of the paper

The structure of our paper is as follows. In Section 2 we define our model which generates the

quasi-likelihood and establish our notation. We also define our multivariate estimator. In Section

3 we derive the asymptotic theory of our estimator under some rather general conditions. In

Section 4 we extend the core results in various important directions. In Section 5 we report on

some Monte Carlo experiments we have conducted to assess the finite sample performance of our

approach. In Section 6 we provide results from empirical studies, where the performance of the

estimator is evaluated with a variety of equity prices. This is followed by a section containing

various additional remarks. In Section 7 we draw our conclusions. The paper finishes with a

lengthy appendix which contains the proofs of various theorems given in the paper.

2 Models

2.1 Notation

We consider a d-dimensional log-price process x = (x1, ..., xd)
′. These prices are observed irregularly

and non-synchronous over the interval [0, T ], where T is fixed and often thought of as a single day.

These observations could be trades or quote updates. Throughout we will refer to them as trades.

We write the union of all times of trades as

ti, 1, 2, ..., n,

where we have ordered the times so that 0 ≤ t1 < ... < ti < ... < tn ≤ T . Notice that the ti times

must, thus, be distinct. Of course price updates can occur exactly simultaneously, a feature dealt

with next.

Associated with each ti is an asset selection matrix

Zi.

Let the number of assets which are see at time ti be di and so 1 ≤ di ≤ d. Then Zi is di × d, full

of zeros and ones where each row sums exactly to one.

2.2 Efficient price

x is assumed to be driven by y, the efficient log-price, abstracting from market microstructure

effects. The efficient price is modelled as a Brownian semimartingale defined on some filtered

probability space (Ω,F , (Ft) , P ),

y(t) =

∫ t

0
a(u)du+

∫ t

0
σ(u)dW (u),
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where a is a vector of elements which are predictable locally bounded drifts, σ is a càdlàg volatility

matrix process andW is a vector of independent Brownian motions. For reviews of the econometrics

of this type of process see, for example, Ghysels, Harvey, and Renault (1996). Then the ex-post

covariation is

[y, y]T =

∫ T

0
Σ(u)du, where Σ = σσ′,

where

[y, y]T = plim
n→∞

n∑

j=1

{y(τ j)− y(τ j−1)} {y(τ j)− y(τ j−1)}′ ,

(e.g. Protter (2004, p. 66–77) and Jacod and Shiryaev (2003, p. 51)) for any sequence of deter-

ministic synchronized partitions 0 = τ0 < τ1 < ... < τn = T with supj{τ j+1 − τ j} → 0 for n → ∞.

This is the quadratic variation of y.

Our interest is in estimating [y, y]T .

Throughout we will assume that y and the random times of trades {ti, Zi} are stochastically

independent. This is a strong assumption and commonly used in the literature (but note the

discussion in, for example, Engle and Russell (1998) and Li, Mykland, Renault, Zhang, and Zheng

(2009)). This assumption will mean we can make our inference conditional on {ti, Zi} and so

regard these times of trades as fixed.

Throughout we assume that we see a blurred version of y. We write our data arrival as

xi = Ziy(ti) + Ziεi, i = 1, 2, ..., n,

where εi is a vector of potential market microstructure effects. Throughout we will assume E(εi) =

0 and write Cov(εi) = Λ. It is conventional to assume Λ is diagonal, but we will not do this as

yet1. General time series discussions of missing data includes Harvey (1989, Ch. 6.4), Durbin and

Koopman (2001, Ch. 2.7), Ljung (1989) and Basu and Reinsel (1996).

2.3 A Gaussian quasi-likelihood

We follow Xiu (2010) in proxying the Brownian semimartingale by Brownian motion, this time a

multivariate version which is non-synchronously observed. The approach is to model

y(t) = σW (t).

1Corsi, Peluso, and Audrino (2012) use a slightly different approach. They update at equally spaced time points
T i/n, like every second, whether there is new data or not. At each time point they use a linear Gaussian state space
model xi = Ziy(T i/n) + εi, where a selection matrix Zi is always d× d, but some rows are entirely made up of zeros
if a price is not available at that particular time. If no new prices are available at all then Zi is a matrix of zeros.
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Then writing

Σ = σσ′ = [y, y]1,

we have that

y(ti)− y(ti−1) ∼ N(0,Σ (ti − ti−1)),

while all the non-overlapping innovations are independent.

Throughout we will write

ui = y(ti)− y(ti−1), ∆n
i = ti − ti−1.

Of course ∆n
i > 0 is a scalar.

At this point we assume that

εi
iid∼ N(0,Λ).

Then we can think of the time series of observations x1:n = (x1, . . . , xn)
′ as a Gaussian state space

model. A discussion of the corresponding literature is available in, for example, Harvey (1989),

West and Harrison (1989), Durbin and Koopman (2001) and Cappe, Moulines, and Ryden (2009).

2.4 ML estimation via EM algorithm

Our goal is to develop positive semidefinite estimators of Σ, noting for us that Λ is a nuisance. We

would like our methods to work in quite high dimensions and so the EM approach to maximising

the log-likelihood function is attractive. EM algorithms are discussed in, for example, Tanner

(1996) and Durbin and Koopman (2001, Ch. 7.3.4).

We note that the complete log-likelihood is, writing and recalling,

ei = xi − Ziy(ti), ui = y(ti)− y(ti−1),

of the form, writing y1:n = (y1, . . . , yn)
′,

log f(x1:n|y1:n; Λ)+ log f(y1:n; Σ)

= c− 1

2

n∑

i=1

log
∣∣ZiΛZ

′
i

∣∣−1

2

n∑

i=1

e′i
(
ZiΛZ

′
i

)−1
ei

−1

2

n∑

i=2

log |Σ| −1

2

n∑

i=2

1

∆n
i

u′iΣ
−1ui.

Then the EM algorithm works with the

E [{log f(x1:n|y1:n; Λ) + log f(y1:n; Σ)} |x1:n; Λ,Σ]
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= c− 1

2

n∑

i=1

log
∣∣ZiΛZ

′
i

∣∣− 1

2

n∑

i=1

E
{
e′i
(
ZiΛZ

′
i

)−1
ei|x1:n; Λ,Σ

}

−1

2

n∑

i=2

log |Σ| − 1

2

n∑

i=2

1

∆n
i

E
{
u′iΣ

−1ui|x1:n; Λ,Σ
}
.

Writing êi|n = E(ei|x1:n) and Di|n = Mse (ei|x1:n), then

E
{
e′i
(
ZiΛZ

′
i

)−1
ei|x1:n

}
= tr

{(
ZiΛZ

′
i

)−1
E
(
eie

′
i|x1:n

)}

= tr
[(
ZiΛZ

′
i

)−1
{
êi|nê

′
i|n +Di|n

}]
,

and, writing ûi|n = E(ui|x1:n) and Ni|n = Mse (ui|x1:n), then

E
{
u′iΣ

−1ui|x1:n
}
= tr

{
Σ−1E

(
uiu

′
i|x1:n

)}
= tr

[
Σ−1

{
ûi|nû

′
i|n +Ni|n

}]
.

Then the EM update is

Σ̂ =
1

n− 1

n∑

i=2

1

∆n
i

{
ûi|nû

′
i|n +Ni|n

}
, Λ̂ =

1

n

n∑

i=1

Z ′
i

{
êi|nê

′
i|n +Di|n

}
Zi.

As these updates are iterated, the sequence of (Σ̂, Λ̂) converges to a maximum in the quasi-likelihood

function.

2.5 Recalling the disturbance smoother

Computing êi|n, ûi|n, Di|n and Ni|n is routine and rapid, if rather tedious to write down. It is

carried out computationally efficiently using the “disturbance smoother”. This starts out with the

Kalman filter (e.g. Durbin and Koopman (2001, p. 67)), which is run forward in time i = 1, 2, ..., n

through the data. In our case it takes on the form

vi = xi − Ziŷi, Fi = Zi (Pi + Λ)Z ′
i, Ki = PiZ

′
iF

−1
i , Li = I −KiZi

then

ŷi+1 = ŷi +Kivi, Pi+1 = PiL
′
i +∆n

i Σ.

Here ŷi = E(yi|xi:i−1) and Fi = Cov(xi|xi:i−1). These recursions need some initial conditions ŷ1

and P1. Throughout we will assume their choice does not depend upon Σ or Λ. A typical selection

for ŷ1 is the opening auction price, an alternative is to use a diffuse prior.

Here vi is di × 1, Fi is di × di, Ki is d× di, ŷi+1|i is d× 1 and Pi+1 and Li are d× d. Note that

for large d, the update for Pi+1 is the most expensive, but it is highly sparse as Li is sparse. Each

iteration of the EM algorithm will lead to a non-negative change in the quasi log-likelihood, which

can be monitored as

log f(x1:n; Λ,Σ) = c− 1

2

n∑

i=1

log |Fi| −
1

2

n∑

i=1

v′iF
−1
i vi.
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The disturbance smoother (e.g. Durbin and Koopman (2001, p. 76)) is run backwards i =

n, n− 1, ..., 1 through the data. It takes the form, writing Hi = ZiΛZ
′
i, a di × di matrix

êi|n = Hi(F
−1
i vi −K ′

iri), ûi|n = ∆n
i Σri|n,

Di|n = Hi −Hi(F
−1
i +K ′

iMiKi)Hi, Ni|n = ∆n
i Σ− (∆n

i )
2 ΣMi−1Σ,

where we recursively compute

ri−1 = Z ′
iF

−1
i vi + L′

iri, Mi−1 = Z ′
iF

−1
i Zi + L′

iMiLi,

starting out with rn = 0, Mn = 0. Here êi|n is di × 1 and Di|n is di × di. While ûi|n and ri are

d× 1, and Ni|n and Mi are d× d. Notice again the updates for Mi are highly sparse.

2.6 Sparse and subsampled realised QML

A virtue of the realised QML is that it is applied to all of the high frequency data, to form a

quasi-likelihood. However, this estimator may have challenges if the noise has more complicated

dynamics than i.i.d. one used here. This opens up the opportunity to define a “sparse realised

QML” estimator, which corresponds nicely to the so-called sparse sampling realised variance. This

uses the same realised QML approach but only employs a subset of the data: every k-th trade,

were k could be for example, 2 or 10. By using every other trade price, for example, the ratio of

the variability of efficient price moves to noise increases and so sensitivity to the i.i.d. assumption

in the noise should reduce. Such sparse sampling raises no new theoretical or computational issues,

we simply subset the data.

Once we have defined a sparse realised QML, it is obvious that we could also simply subsample

this approach, which means constructing k sets of subsampled datasets and for each computing the

corresponding quasi-likelihood. We then average the k quasi-likelihoods and maximise them using

the corresponding EM algorithm. We call this the “subsampled realised QML” estimator. This

is simple to code and has the virtue that is employs all of the data in the sample while being less

sensitive to the i.i.d. assumption.

We have been experimenting with these two approaches but do not have sufficient results on it

yet to present them here. Hopefully they will appear in the next version.

3 Econometric theory

In this section, we develop the asymptotic theory for the bivariate case, as the general multivariate

case can be derived similarly. To get to the heart of the issues our analysis follows four steps.

First we look at the benchmark bivariate ML estimator case where the volatility matrix is fixed

and there are equidistant observations. Secondly we show how those results change when the noise

is non-Gaussian and we have stochastic volatility effects, but still have equidistant observations.
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Thirdly and more realistically we discuss the impact of having unequally spaced data which is

wrongly synchronised (e.g. data is used every 20 seconds) in the quasi-likelihood. We can regard this

the “sparse sampling” case as it does not potentially use all the data in the actual sample. Finally

we discuss the impact of non-synchronised data on a fully non-synchronised quasi-likelihood.

3.1 Benchmark bivariate MLE

3.1.1 The model

We start with the constant covariance matrix case with equidistant observations. This means we

have synchronised trading. We also assume the market microstructure effects are independent and

initially normal. For simplicity of exposition we assume the dimension of the system d = 2.

Then we observe returns

rj,i = xj,i − xj,i−1, i = 1, 2, ..., n, j = 1, 2,

where

xj,i = yj(i/n) + εj,i, i = 0, 1, 2, ..., n, j = 1, 2,

y(i/n) = y((i− 1) /n) +
√

T/nui,

where

(
εi
ui

)
i.i.d.∼ N




(
Λ11 0
0 Λ22

)
0

0

(
Σ11 Σ12

Σ12 Σ22

)


 .

In the discrete time series literature x would be called a bivariate Gaussian “local level model” or

“random walk plus noise model” (e.g. Harvey (1989) and Durbin and Koopman (2001, Ch. 2)).

Here it will be analysed using “infill” asymptotics.

Suppose the observed returns are collected in r:

r = (r1,1, r1,2, . . . , r1,n, r2,1, . . . , r2,n)
′,

then the likelihood can be rewritten as

L = −n log(2π)− 1

2
log(detΩ)− 1

2
r′Ω−1r, (1)

where Ω = ∆Σ⊗ In + Λ⊗ Jn. Here ⊗ denotes the Kronecker product and the 2× 2 matrices

Σ =

(
Σ11 Σ12

Σ12 Σ22

)
, Λ =

(
Λ11 0
0 Λ22

)
,
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and Jn is a n× n matrix

Jn =




2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2




.

This is attractive as we know the eigenvalues and eigenvectors of Jn and so Ω.

3.1.2 The asymptotic theory

Before we give the bivariate case we just recall the univariate one, which allows for non-Gaussianity

in the error,

 n

1

4

(
Σ̂11 − Σ11

)

n
1

2

(
Λ̂11 − Λ11

)

 d−→ N

(
0,

(
8Λ

1/2
11 Σ

3/2
11 T−1/2 0
0 2Λ2

11

))
,

see Stein (1987), Gloter and Jacod (2001a), Gloter and Jacod (2001b), Aı̈t-Sahalia, Mykland, and

Zhang (2005) and Xiu (2010).

We now go onto the Gaussian bivariate case, and deliver basically, the Fisher Information.

Theorem 1 (Bivariate MLE) The maximum likelihood estimators Σ̂ and Λ̂ satisfy the central

limit theorem as n → ∞

n
1

4




Σ̂11 − Σ11

Σ̂12 − Σ12

Σ̂22 − Σ22


 d−→ N(0, V ), n

1

2

(
Λ̂11 − Λ11

Λ̂22 − Λ22

)
d−→ N

(
0,

(
2Λ2

11 0
0 2Λ2

22

))
.

Here for a 3× 1 vector θ = vech(Σ) = (Σ1,1,Σ1,2,Σ2,2)
′
the V matrix is such that V −1 = ∂Ψθ

∂Σθ′
with

∂ΨΣu,v

∂Σi,j
= (1 + 1u 6=v)

1

2

(∫ ∞

0

∂ωi,j(Σ,Λ, x)

∂Σu,v
dx

)
, i, j, u, v = 1, 2,

where, writing Λ∗
ij = Λij/T ,

ω1,1(Σ,Λ, x) =
Σ22 + Λ∗

22π
2x2

(Σ11 + Λ∗
11π

2x2) (Σ22 + Λ∗
22π

2x2)− Σ2
12

ω2,2(Σ,Λ, x) =
Σ11 + Λ∗

11π
2x2

(Σ11 + Λ∗
11π

2x2) (Σ22 + Λ∗
22π

2x2)− Σ2
12

ω1,2(Σ,Λ, x) =
−Σ12

(Σ11 + Λ∗
11π

2x2) (Σ22 + Λ∗
22π

2x2)− Σ2
12

.

Proof. Given in the Appendix.

Each of the integrals in V −1 has an analytic solution (e.g. Mathematica will analytically solve

the integrals), but the result is not particularly informative and so we prefer to leave it in this

relatively compact form.
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When Σ12 = 0, there is no “externality,” i.e. the asymptotic variances for Σ̂11 and Σ̂22 in the

bivariate case reproduce the one-dimensional MLE case. As the correlation increases from 0 to 1,

the multivariate MLE Σ̂11 becomes more efficient than the univariate one, simply because more

information is collected via the correlation with the other series. This is illustrated in Figure 1.
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Figure 1: The figure plots the relative efficiency for bivariate MLE of Σ11 over the univariate
alternative, against the correlation. Σ11 = 0.252. As the number falls below zero the gains from
bivariate MLE become greater. The blue line, the red dashed line, and the black dotted line
correspond to the cases with Σ22 = 0.32, 0.252, and 0.22, respectively.

3.2 Bivariate QMLE with equidistant observations

3.2.1 Assumptions

In order to understand the estimators under stochastic volatility, we need to be clear about our

assumptions on the volatility process and the noise.

Assumption 1. The underlying latent d-dimensional log-price process satisfies

dy(t) = µ(t)dt+ σ(t)dW (t),

where the drift is predictable locally bounded, the d × d volatility process is locally bounded Itô

semimartingales and W is a d-dimensional Brownian motion.

Assumption 2. The noise εi is a vector random variable which is independent and identically

distributed, and independent of ti, W , σ and has fourth moments.
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3.2.2 The asymptotic theory

Before we give the bivariate case we define RT =
(

1
T

∫ T
0 σ4

tdt
)
/
(

1
T

∫ T
0 σ2

tdt
)2

≥ 1, by Jensen’s

inequality. Then recall the univariate result


 n

1

4

(
Σ̂11− 1

T

∫ T
0 σ2

tdt
)

n
1

2

(
Λ̂11 − Λ11

)

 d−→ MN

(
0,

(
(5RT+3)Λ

1/2
11

(
1
T

∫ T
0 σ2

tdt
)3/2

T−1/2 0

0 2Λ2
11+cum4[ε]

))
,

which is a rewrite of the result due to Xiu (2010). This shows that the asymptotic variance of

the estimator increases with RT keeping 1
T

∫ T
0 σ2

tdt fixed. Here cum4 denotes the fourth cumulant,

recalling this is zero under Gaussianity.

We now extend this to the multivariate case. In the presence of stochastic volatility, we apply

the same estimator, misspecifying the model intentionally. The asymptotic theory for the resulting

realised QML estimator Σ̂ is given below.

Theorem 2 (Bivariate QMLE) In the presence of stochastic volatility, we have

n
1

4




Σ̂11 − 1
T

∫ T
0 Σ11,tdt

Σ̂12 − 1
T

∫ T
0 Σ12,tdt

Σ̂22 − 1
T

∫ T
0 Σ22,tdt


 LX−→ MN(0, VQ), (2)

n
1

2

(
Λ̂11 − Λ11

Λ̂22 − Λ22

)
d−→ N

(
0,

(
2Λ2

11 + cum4[ε1] 0
0 2Λ2

22 + cum4[ε2]

))
, (3)

where VQ is

VQ =
1

4

(
∂Ψθ

∂Σθ′

)−1 {
Avar(2) +Avar(3) +Avar(4)

}{( ∂Ψθ

∂Σθ′

)−1
}′

,

Avar(2) = 2

2∑

l,s,u,v=1

∫ ∞

0

∂ωv,u(Σ,Λ, x)

∂Σθ

∂ωl,s(Σ,Λ, x)

∂Σ′
θ

dx

(
1

T

∫ T

0
Σsv,tΣul,tdt

)
,

Avar(3) = 4

2∑

l,s,v=1

Λ∗
ll

∫ ∞

0

∂ωl,s(Σ,Λ, x)

∂Σθ

∂ωl,v(Σ,Λ, x)

∂Σ′
θ

π2x2dx

(
1

T

∫ T

0
Σsv,tdt

)
,

Avar(4) = 2

2∑

l,s=1

Λ∗
llΛ

∗
ss

∫ ∞

0

∂ωl,s(Σ,Λ, x)

∂Σθ

∂ωl,s(Σ,Λ, x)

∂Σ′
θ

π4x4dx.

Here all the derivatives are evaluated at Σ = 1
T

∫ T
0 Σtdt.

Proof. Given in the Appendix.

In independent and concurrent work Liu and Tang (2012) have established a similar result,

although there derivation is different.
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3.3 Bivariate QMLE with synchronised but irregularly space observations

When it comes to irregular spaced observations, the asymptotic variance could change. Mykland

and Zhang (2006) has studied this in the context of realised variance estimation, employing a

concept called the quadratic variation of the sampling times.

Here we study a somewhat different problem. We now use a quasi-likelihood based upon some

synchronised times {t1, t2, . . . , tn}, which we assume accurately reflects the times of the irregularly

spaced but synchronised data. These times imply a collection of irregular time increments {∆n
i =

ti − ti−1, 1 ≤ i ≤ n}. We then make the following assumption.

Assumption 3. We assume that

∆n
i = ∆̄ (1 + ξi) , i = 1, 2, ..., n, ∆̄ =

T

n

where E(ξi) = 0, Var(ξi) < ∞ and {ξi, 1 ≤ i ≤ n} are i.i.d.. Further we assume Y and {ξi} are

independent.

Assumption 3 means that ξi = Op(1). The implication is that there is modelled heterogeneity

in the time gap between observations, but the individual gaps shrink at rate Op(n
−1).

The following Corollary shows that the heterogeneity has no impact on the asymptotic distri-

bution of the realised QML estimator. The reason for this is that the effect is less important than

the presence of noise.

To highlight this point, it is sufficient to consider the case of constant covariance structure. We

follow Aı̈t-Sahalia, Mykland, and Zhang (2005) and Aı̈t-Sahalia and Mykland (2003) in expanding

the Fisher Information with respect to the average length of the sampling intervals.

Corollary 1 Suppose Σ is constant, then under Assumption 3 the asymptotic variance of the MLE

is the same as that in Theorem 1.

Proof. Given in the Appendix.

3.4 Bivariate QMLE with non-synchronous observations

Some researchers have analysed covariances by applying a synchronisation scheme to the non-

synchronous high frequency observations. This delivers an irregularly spaced sequence of synchro-

nised times of trades, although some prices could be somewhat stale. Typically there is a very

large drop in the sample size due to synchronisation. The most well known such scheme is the

Refresh Time method analysed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) and

subsequently employed by, for example, Christensen, Kinnebrock, and Podolskij (2010) and Aı̈t-

Sahalia, Fan, and Xiu (2010). See also the earlier more informal papers by Harris, McMcInish,

Shoesmith, and Wood (1995) and Martens (2003).
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We can apply our ML approach to a synchronised series of datapoints, ignoring the effect of

staleness. Such synchronisation does change the limit theory results. However, the consistency

is not affected using these refreshed pairs, which can be shown following the same argument in

Aı̈t-Sahalia, Fan, and Xiu (2010, Theorem 3). A full discussion of this will be given in a later

version of this paper.

In this paper, synchronisation is not needed for our approach as it is applied directly to the

data we have in our hand. In fact, our approach is a generalization of the Hayashi and Yoshida

(2005) approach to the case where microstructure noise is present.

4 Additional developments

4.1 QML correlation and regression estimator

The theorems above have an immediate corollary for the estimator of the daily “QML correlation

estimator”

ρ̂12 =
Σ̂12√
Σ̂11Σ̂22

∈ [−1, 1],

which estimates

ρ12 =
1
T

∫ T
0 Σ12,tdt√(

1
T

∫ T
0 Σ11,tdt

)(
1
T

∫ T
0 Σ22,tdt

) ∈ [−1, 1].

Also of importance is the corresponding regression or “QML beta”

β̂1|2 =
Σ̂12

Σ̂22

,

which estimates

β1|2 =
1
T

∫ T
0 Σ12,tdt

1
T

∫ T
0 Σ22,tdt

.

The corresponding limit theory follows by the application of the delta method:

Avar(ρ̂12) = νρVQν
′
ρ, and Avar(β̂1|2) = νβVQν

′
β,

where

νρ =
(
− 1

2

Σ12√
Σ3
11Σ22

,
1√

Σ11Σ22
,−1

2

Σ12√
Σ11Σ3

22

)′
, and νβ =

(
0,

1

Σ22
,−Σ12

Σ2
22

)′
.

These are noise and asynchronous trading robust versions of the realised quantities studied by

Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2004).
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4.2 Miniature QML based estimation

So far we have carried out QML estimation using the data all at once over the interval 0 to T . It is

possible to follow a different track which is to break up the time interval [0, T ] into non-stochastic

blocks

0 = b0 < b1 < ... < bB = T.

Then we can compute a QML estimator within each block. We then sum the resulting estimator up

to produce our estimator of the required covariance matrix. Such a blocking strategy was used by,

in a different context, Mykland and Zhang (2009) and Mykland, Shephard, and Sheppard (2012)

for example.

We call the i-th block estimator the “miniature QML” estimator and write it as Σ̂i. For fixed

block sizes the resulting estimator, as the sample goes to infinity, is

n
1/4
i

(
Σ̂11,i −

1

bi − bi−1

∫ bi

bi−1

σ2
tdt

)
LX−→ MN


0,

(5Rii+3)Λ
1/2
11

(bi − bi−1)
1/2

(
1

bi − bi−1

∫ bi

bi−1

σ2
tdt

)3/2

 ,

where ni = n(bi − bi−1)/T ,

Rii =

1
bi−bi−1

∫ bi
bi−1

σ4
tdt

(
1

bi−bi−1

∫ bi
bi−1

σ2
tdt
)2 ≥ 1.

For fixed non-overlapping blocks the joint limit theory for the group of miniature QMLEs is normal

with uncorrelated errors across blocks.

Corollary 2 Define the unblocked QML estimator of Σ11,

Σ̃11 =
1

T

B∑

i=1

(bi − bi−1) Σ̂11,i

then for fixed bi and B we have as n → ∞

n1/4

(
Σ̃11 −

1

T

∫ T

0
σ2
tdt

)
LX−→ MN


0,

1

T 3/2

B∑

i=1

(bi − bi−1) (5Rii+3)Λ
1/2
11

(
1

bi−bi−1

∫ bi

bi−1

σ2
t dt

)3/2

 .

Proof. Immediate extension of Xiu (2010), noting each block is conditionally independent.

At first sight this does not look like much of an advance. The key virtue though is that
∫ t
0 σ

2
tdt

and
∫ t
0 σ

4
tdt are of bounded variation as a function of t and so are both Op(t) as t ↓ 0. This means

that Rii ≃ 1 +Op(bi − bi−1) and (bi − bi−1)
−1 ∫ bi

bi−1
σ2
tdt− σ2

bi−1
= Op(bi − bi−1). Now Rii is crucial

for it drives the inefficiency of this quasi-likelihood approach to inference. Driving it down to one

allows the estimator to be optimal in the limit and this is achieved by allowing bi − bi−1 to get
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small. This is achieved by allowing the gaps maxi (bi − bi−1) = o(1) as a function of n. In practice

we take the gaps to very slowly shrink with n. Of course this shrinkage requires B to increase with

n very slowly.

The result is very simple and achieves the non-parametric efficiency bound

n1/4

(
Σ̃11 −

1

T

∫ T

0
σ2
tdt

)
LX−→ MN

(
0, 8Λ

1/2
11

(
1

T

∫ T

0
σ3
tdt

)
T−1/2

)
.

This approach is also efficient when the variance of the noise is time-varying, for Λ11 is estimated

separately within each block. Reiss (2011) and Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008) discuss other estimators which achieve this bound.

4.3 Multistep estimator

There may be robustness advantages in estimating the integrated variances using univariate QML

methods Σ̂11, Σ̂22. These two estimates can then be combined with the QML correlation estimator

ρ̂12, obtained by simply maximising the quasi-likelihood with repsect to ρ12 keeping Σ11, Σ22 fixed

at the first stage Σ̂11, Σ̂22. We call such an estimator the “multistep covariance estimator”.

A potential advantage of this approach is that model specification for one asset price will not

impact the estimator of the integrated variance for the other asset. Of course volatility estimation

is crucial in terms of risk scaling.

5 Monte Carlo experiments

5.1 Monte Carlo design

Throughout we quite closely follow the design of Aı̈t-Sahalia, Fan, and Xiu (2010), which is a

bivariate model. Throughout each day will be taken as lasting T = 1/252 units of time, so T = 1

would represent a year. Here we recall the structure of their model

dyit = αitdt+ σitdWit

dσ2
it = κi

(
σ2
i − σ2

it

)
dt+ siσitdBit + σit−J

V
it dNit

where E(dWitdBjt) = δijρidt and E(dW1tdW2t|ρ∗) = ρ∗dt. Here κi > 0.

Ignoring the impact of jumps, the variance process σ2
it has a marginal distribution given by

Γ(2κiσ
2
i /s

2
i , s

2
i /2κi). Throughout when jumps happen the log-jumps log JV

it
iid∼ N(θi, µi), while Nit

is a Poisson process with intensity λi. Likewise εit
iid∼ N(0, a2i ).

We now depart slightly from their setup.

For each day we draw independently σ2
i0 ∼ Γ(2κiσ

2
i /s

2
i , s

2
i /2κi) over i = 1, 2, which means each

replication will be independent. Likewise for each separate day we simulate independently

ρ∗ ∼ ρ0Beta(ρ∗1, ρ
∗
2),
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where ρ0 =
√

(1− ρ21)(1 − ρ22), guarantees the positive-definiteness of the covariance matrix of

the four Brownian motions (W1,W2, B1, B2). This means E(ρ∗) = ρ0ρ
∗
1/ (ρ

∗
1 + ρ∗2) and sd(ρ∗) =

ρ0
√

ρ∗1ρ
∗
2/
{
(ρ∗1 + ρ∗2)

√
ρ∗1 + ρ∗2 + 1

}
. The values of ai, αi, ρi, κi, θi, µi, λi, si, σ

2
i , ρ

∗
1 and ρ∗2 are

given in Table 1. To check our limit theory calculations, Figure 2 plots the histograms of the

ai αi ρi κi θi µi λi σ2
i si

i = 1 0.005 0.05 -0.6 3 -5 0.8 12 0.16 0.8 ρ∗1 = 2 ρ0 = 0.529
i = 2 0.001 0.01 -0.75 2 -6 1.2 36 0.09 0.5 ρ∗2 = 1 E(ρ∗) = 0.176

sd(ρ∗) = 0.125

Table 1: Parameter values which index the Monte Carlo design. Simulates from a bivariate model.

standardized estimators (standardising using the infeasible true random asymptotic variance in

each case) with 1, 000 Monte Carlo repetitions sampled regularly in time at frequency of every 10

seconds, that is n = 2, 340. This corresponds to an 6.5 hour trading day, which is the case for the

NYSE and NASDAQ (we note the LSE and Xetra are open for 8.5 hours a day). The histograms

show the limiting result provides a reasonable guide to the finite sample behaviour in these cases.
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Figure 2: The figure plots the histograms of the standardized estimates, which verify the asymptotic
theory developed in Theorem 2. The standardisation is carried out using the infeasible true random
asymptotic variance for each replication.

In our main Monte Carlo we take n ∈ {117, 1170, 11700} and all results are based on 1, 000

stochastically independent replications. Having fixed the overall sample size as n we randomly and

uniform scatter those points over the time interval t ∈ [0, T ], recalling T = 1/252. For asset 1 we

will scatter exactly n̥ points and for asset 2 there will be exactly n(1 − ̥) points. This kind of
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stratified scatter corresponds to a sample from a Poisson bridge process with intensity n̥/T and

n (1−̥) /T , respectively. We call ̥ the mixture rate and take ̥ ∈ {0.1, 0.5, 0.9}.
We will report on the accuracy on the daily estimation of the random Σ11 = 1

T

∫ T
0 Σ11,tdt,

Σ22 =
1
T

∫ T
0 Σ22,tdt, Σ12 =

1
T

∫ T
0 Σ12,tdt, ρ1,2 = Σ12/

√
Σ11Σ22, β1|2 = Σ12/Σ22, β2|1 = Σ12/Σ11.

5.2 Our suite of estimators

We will compute six estimators of Σ11, Σ22, Σ12, β1|2, β2|1 and ρ1,2. The six are: (i) multivari-

ate QML, (ii) multistep QML estimator, (iii) blocked multivariate QML2, (iv) multivariate QML

but using the reduced data synchronised by Refresh Time, (v) the multivariate realised kernel of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) which uses Refresh Time, (vi) Aı̈t-Sahalia,

Fan, and Xiu (2010) which uses polarisation and Refresh time. We will use the notation θQML,

θStep, θBloc, θRT , θKern, θPol, respectively, where θ is some particular parameter. We write this

generically as θL, with L ∈ {QML,Step,Bloc,RT,Kern, Pol}, and the corresponding estimator

as θ̂L.

All the estimators but (vi) deliver positive semi-definite estimators. Only (i) and (ii) use all

the data in the estimation, the others are based Refresh Time. (i)-(iv) and (vi) converge at the

optimal rate. (iii) should be the most efficient, followed by (i), then (ii), then (iii), then (vi) and

finally (v).

5.3 Results

Throughout we report in Table 2 simulation based estimates of the 0.9 quantiles of
∣∣∣n1/4

(
θ̂L − θL

)∣∣∣
for various values of n, L and ̥. The table also shows n1/4, which allows us to see the actual speed

by which the quantiles for
∣∣∣θ̂L − θL

∣∣∣ contract.
The results indicate that all six estimators perform roughly similarly for Σ11 and Σ22 when

̥ = 0.5, with a small degree of underperformance for RT, Kern and Pol. When the data was more

unbalanced, with ̥ = 0.1 or 0.9, then RT, Kern and Pol were considerably worse while QML being

the best by a small margin. In this setup Bloc was a little disappointing and needs more study.

QML outperformed Step when ̥ = 0.1 but not by a great deal. The quantiles for Kern seem to

mildly increase with n, which is what we would expect due to their slower rate of convergence.

For the measure of dependence Σ12 there are signs that the QML type estimators “QML”,

“Step” and “Bloc” perform better than “RT”. All of these estimators seem to perform more

strongly than the existing “Kern” and “Pol” estimators. The differences are less important in the

case where ̥ = 0.5.

2The number of blocks was taken to be
√
n/3. Sometimes this yielded very unequally sized blocks in which case

we selected n/6 but requiring at least two observations for each asset.
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When we move onto ρ1,2 the differences become more significant, although we recall that QML

and Step are identical in this case. When ̥ = 0.9 then Pol estimator struggles with the quantiles

being around twice that of QML and Bloc. A doubling of the quantile is massive, for these

estimators are converging at rate n1/4 so halving a quantile needs the sample size to increase by

24 = 16 fold. The results for Kern sit between Pol and QML, while RT is disappointing. This

latter result shows it is the effect of refresh time sampling which is hitting these estimators. QML

is able to coordinate the data more effectively. Similar results hold for ̥ = 0.1. Overall the new

methods seem to deliver an order of magnitude improvement in the accuracy of the estimator. In

the balanced sampling case of ̥ = 0.5 the differences are more moderate, but the same general

impression holds.

Before we progress to the regression case it is helpful to calibrate how accurately we have

estimated ρ1,2 in the QML case. When ̥ = 0.1 the quantile is 1.98 with n = 117, so the

corresponding quantile for
∣∣∣θ̂QML − θQML

∣∣∣ is 0.602. When n = 1, 170 it is 0.265. When n = 11, 700

it is 0.142. In the balanced case ̥ = 0.5 the corresponding results are 0.459, 0.262 and 0.148. Hence

balanced data helps, but not by very much as long as n is moderately large and the QML method

is used. Balancing is much more important for RT, Kern and Pol. We think this makes the

QML approach distinctly promising. A final point is worth noting. Even though n = 11, 700

the quantiles in the balanced case of 0.148 are not close to zero. Hence although we can non-

parametrically estimate the correlation between assets, the estimation in practice is not without

important error. This is important econometrically when we come to using these objects for

forecasting or decision making.

The regression cases deliver the same type of results to the correlation, with again the QML

performing around an order of magnitude better than RT, Kern and Pol. The results for QML

and Bloc are roughly the same with perhaps QML being very slightly better.

6 Empirical implementation

6.1 Our database

We use data from the cleaned trade database developed by Lunde, Shephard, and Sheppard (2012).

It is taken from the TAQ database accessed through the Wharton Research Data Services (WRDS)

system. They followed the step-by-step cleaning procedure used in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2009). Their cleaning rules include a suggestion that only data from a single

exchange is used. It should also be noted that no quote information is used in the data cleaning

process. The exchanges open at 9.30 and close at 16.00 local time.

An important feature of this TAQ data is that times are recorded to a second, so we take the
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̥ = 0.9 ̥ = 0.5 ̥ = 0.1

n n1/4 QML Step Bloc RT Kern Pol QML Step Bloc RT Kern Pol QML Step Bloc RT Kern Pol

117 3.29 0.46 0.46 0.53 0.90 0.81 0.79 0.50 0.54 0.59 0.59 0.56 0.55 0.62 0.79 0.75 0.95 0.69 0.76

Σ̂11 1,170 5.84 0.39 0.39 0.46 0.75 0.85 0.78 0.44 0.46 0.56 0.50 0.74 0.49 0.65 0.76 1.18 0.73 0.85 0.76
11,700 10.3 0.36 0.36 0.49 0.64 0.96 0.67 0.43 0.44 0.61 0.44 0.95 0.44 0.64 0.70 1.60 0.67 0.97 0.70

117 3.29 0.24 0.22 0.22 0.32 0.38 0.34 0.20 0.17 0.21 0.19 0.22 0.23 0.24 0.22 0.23 0.32 0.36 0.36

Σ̂12 1,170 5.84 0.18 0.18 0.19 0.30 0.35 0.31 0.18 0.17 0.18 0.18 0.22 0.20 0.24 0.23 0.24 0.27 0.35 0.32
11,700 10.3 0.17 0.17 0.19 0.24 0.36 0.27 0.16 0.16 0.17 0.17 0.22 0.18 0.21 0.21 0.26 0.25 0.34 0.27

117 3.29 0.26 0.35 0.33 0.31 0.38 0.33 0.24 0.19 0.23 0.21 0.24 0.20 0.21 0.16 0.19 0.29 0.41 0.34

Σ̂22 1,170 5.84 0.22 0.28 0.27 0.36 0.45 0.29 0.17 0.16 0.16 0.17 0.26 0.16 0.15 0.14 0.15 0.34 0.45 0.28
11,700 10.3 0.21 0.22 0.26 0.22 0.42 0.22 0.14 0.14 0.14 0.14 0.26 0.14 0.11 0.11 0.12 0.24 0.45 0.23

117 3.29 1.98 1.98 1.92 3.43 2.95 4.41 1.51 1.51 1.37 2.26 1.59 2.31 1.98 1.98 1.59 3.47 2.83 4.59
ρ̂
1,2 1,170 5.84 1.55 1.55 1.71 2.90 2.54 3.01 1.53 1.53 1.39 1.75 1.71 1.89 2.14 2.14 1.85 2.91 2.50 2.96

11,700 10.3 1.46 1.46 1.92 2.23 2.61 2.56 1.40 1.40 1.66 1.59 2.10 1.70 1.82 1.82 2.30 2.15 2.57 2.47

117 3.29 4.45 6.50 4.03 6.19 7.71 11.2 2.93 3.08 2.87 3.63 3.41 4.11 4.34 4.40 3.67 6.03 7.63 10.8

β̂
1|2 1,170 5.84 3.16 3.11 3.50 4.21 4.83 4.76 2.58 2.68 2.75 3.08 3.02 3.09 3.38 3.54 3.89 4.41 5.01 5.04

11,700 10.3 2.76 2.71 4.85 4.31 5.58 4.39 2.69 2.60 3.05 2.83 3.43 3.20 3.47 3.56 4.45 4.02 5.09 4.73

117 3.29 2.09 2.16 1.89 7.70 2.77 5.55 1.91 2.14 1.50 4.81 1.70 3.36 2.18 3.08 1.54 8.76 3.26 5.75

β̂
2|1 1,170 5.84 1.78 1.89 2.07 5.05 2.94 3.99 1.93 2.07 1.97 2.56 2.55 2.53 2.58 3.31 2.51 5.18 3.11 4.77

11,700 10.3 1.82 1.63 2.82 3.27 3.21 3.28 1.77 1.71 3.08 1.84 3.61 2.13 2.83 2.30 4.27 2.93 3.40 3.17

Table 2: Monte Carlo results for the volatility, covariance, correlation and beta estimation. Throughout we report the 0.9 quantiles of∣∣∣n1/4
(
θ̂L − θL

)∣∣∣ over the 1,000 independent replications. ̥ denotes the percentage of the data corresponding to trades in asset 1. “QML”is our

multivariate QMLE. “Step”is our multistep QMLE. “Bloc”is our blocked multivariate QMLE. “RT”is our multivariate QML using the Refresh
Time. “Kern”is the existing multivariate realised kernel. “Pol”is the existing polarisation and Refresh Time estimator.
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median of multiple trades which occur in the same second. This blurring will mean for some TAQ

time stamps multiple assets will indeed trade at the same time. Of course this feature would

disappear if lower latency data was used. When there are multiple trades in the same second, we

record the average trade price and can be thought of as a particular type of miniature preaveraging.

As prices are recorded in seconds the maximum sample size is 60× 60× 6.5 = 23, 400.

The data range from 1st January 2006 until 31st December 2009. We have selected 13 stocks

from the S&P 500. The aim of the selection is to have 2 infrequently traded and 11 highly traded

assets. This will allow us to look at a variety of different types of data environments on the

estimators.

The assets we study are the Spyder (SPY), an S&P 500 exchange traded fund, along with some

of the most liquid stocks in the Dow Jones Industrial Average (DJIA) index. These are: Alcoa

(AA), American Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General

Electric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), and

Exxon Mobil (XOM). We supplement these 11 series with two relatively infrequently traded stocks:

Washington Post (WPO) and Berkshire Hathaway Inc. New Com (BRK-B). That makes 13 series

in all. These 13 series are “unbalanced” in terms of individual daily sample sizes, while the

restricted 11 series are reasonably “balanced”.

6.2 Summaries

6.2.1 Sample sizes

Figure 3 shows the sample sizes of each asset on each day through time. What we plot is the

median sample size of the 13 series together with the following quantile ranges: 0 to 25%, 25%

to 75%, 75% to maximum. These ranges are indicated by shading. This is backed up by a line

indicating the median. In addition we show the Refresh Time sample sizes when we use the 11

assets (denoted RefT1) and the corresponding result for all the 13 assets (RefT2). This type of

intensity figure is highly informative and has the property that it scales with the number of assets.

It first appeared in Lunde, Shephard, and Sheppard (2012) (who used it to look at 100s of assets)

and we name it after its creators Asger Lunde and Kevin Sheppard.

The Lunde-Sheppard trading intensity graph shows the median intensity for the 13 assets is

around 5, 000 a day, slightly increasing through time. The maximum daily sample sizes are around

15, 000, a tad below the feasible maximum of 23, 400. The Refresh time for the 11 assets delivers a

sample size of around 1, 000 a day. However, for the 13 asset case the Refresh time dives down to

around 60 a day. This is, of course, driven by the presence of the slow trading WPO and BRK-B.

This Lunde-Sheppard trading intensity graph demonstrates that the Refresh time approach is
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Figure 3: The Lunde-Sheppard trading intensity graph for our 13 assets. The figure plots the
min, max, 25%, 50%, and 75% quantiles of the number of observations for the cleaned dataset.
The number of refresh sampling for the 11 asset (RefT1) and 13 asset (RefT2) databases are also
plotted.

limited, for in large unbalanced systems it will lead to a significant reduction in the amount of

data available to us. This could damage the effectiveness of the realised kernel or preaveraging in

properly estimating the covariances.

6.2.2 Individual volatilities

Effect of infrequent assets Next we will focus on the estimation of the individual 11 daily

volatilities
√
Σii, i = 1, 2, ..., 11 for the frequently traded stocks. We will carry this out three ways:

• using a univariate realised QML;

• from a multivariate realised QML based on 11 assets;

• from a multivariate realised QML based on 13 assets.

We will write these as QML1, QML11 and QML13. We might worry that the infrequently traded

stocks will upset the estimates of the volatility of the frequently stocks, so QML1 and QML11 will

differ a great deal from QML13. Is that worry justified?

Figure 4 gives a time series plot of the cross-sectional of the average daily volatilities for the

three methods, where the cross-sectional averaging is across the 11 stocks. It is difficult to see

much difference, which is encouraging. The corresponding realised kernel results, denoted RK13

show quite a lot of variability as we would expect from such a small sample size.
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Figure 4: The figure plots the average volatility across 11 liquid assets based on three different
estimators, including QML using 11 assets, QML using 13 assets and Multivariate Kernel using
refresh time with all 13 assets.

Table 3 looks closer at this issue. It shows for the temporal average value of the percentage

absolute differences between QML1 and QML11, QML1 and QML13 and QML11 and QML13:

Q1,11 = 100
|QML1 −QML11|

QML1
, Q1,13 = 100

|QML1 −QML13|
QML1

,

Q11,13 = 100
|QML11 −QML13|

QML11

for all of the individual 11 stocks, and Q1,13 for the two infrequently traded stocks. We find that

the proportional differences are larger when moving from 1 asset to 11 assets, since more useful

information is added. However, moving to 13 stocks does not change the accuracy for the 11 stocks

very much, as the newly added assets are highly illiquid and may provide little information for the

variance of other liquid assets.

Frequently traded Infrequent

AA AXP BAC DD KO GE IBM JPM MSFT SPY XOM BRK-B WPO

Q1,11 5.44 7.90 6.10 8.48 5.81 7.51 6.94 5.88 6.35 8.10 7.55
Q1,13 5.44 7.89 6.10 8.46 5.81 7.49 6.93 5.86 6.36 8.09 7.55 3.08 5.46
Q11,13 0.006 0.015 0.002 0.026 0.001 0.018 0.011 0.017 0.001 0.003 0.007

RK1,11 0.92 1.38 2.73 1.38 5.89 2.11 1.42 4.53 6.69 0.55 1.95
RK1,13 13.51 12.50 14.26 15.26 19.20 17.04 13.57 19.48 20.22 8.62 14.14 7.58 1.49
RK11,13 12.71 11.28 11.85 14.08 14.14 15.25 12.32 15.67 14.50 8.11 12.43

Table 3: Volatility estimation: temporal average percentage difference differences between QML1

(univariate realised QML) and QML11 (multivariate realised QML using frequently traded assets),
QML1 and QML13 (multivariate methods using all data) and QML11 and QML13. Large numbers
are bad. The RK results are the corresponding results for realised kernels.
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These results can be compared to those from a multivariate realised kernel, also reported in

Table 3, which replaces all of the above by RK rather than QML. These suggest the volatilities from

the multivariate realised kernel is more affected by the number of data involved in the calculation,

as information from other assets may only affect the estimation through the bandwidth, due to the

linear structure of this estimator. The bandwidth can hardly make any difference in small sample.

Clearly, when one includes some infrequently traded assets, the deterioration in the results are

quite severe.

6.2.3 Individual correlations

Validating the correlations As we are computing a new correlation measure it is important

that it is validated. One way of doing is to assess the correlation by comparing it to the less efficient

but consistent multivariate realised kernel. The result is given in Figure 5. This shows the time

series of the cross-sectional average daily correlations in the QML11 and QML13 cases, as well as

the corresponding realised kernel.
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Figure 5: The figure plots the average correlation across 11 liquid assets based on three different
estimators, including QML using 11 assets, QML using 13 assets and Multivariate Kernel using
refresh time with all 13 assets.

A concern here is that the general level of the QML estimators is a little lower than the corre-

sponding realised kernel, which may be due to unmodelled leads and lags in the returns. A strong

feature here is that the QML11 and QML13 estimators are very similar, so the typical results are

not upset by the presence of some infrequently traded stocks.
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Other material Figure 4 and Figure 5 show a time series of the QML daily estimates of the

volatility and correlations between 11 liquid assets, computed with all the series all at once and 11

liquid series respectively. The results indicates that the inclusion of illiquid assets has little impact

on the estimation of the rest 11 liquid assets, while the kernel estimates using refresh time based

on all assets suffer from a huge information loss, leading to inaccurate estimation.

Figure 6 shows a time series of the QML daily estimates of the correlations ρi,j between the

assets, computed with all the series all at once. Of course such a time series is quite noisy, but it

shows a clumping of the correlations during the financial crisis. The heavy line through the middle

shows the daily cross-sectional median of all the correlations.

min−25% & 75−max% 25−75% 50%

Cross−sectional quantiles of daily realised QML correlations

Jan 06 Oct 06 Aug 07 May 08 Mar 09 Dec 09
−0.5

0

0.5

1

Figure 6: The figure plots the min, max, 25%, 50%, and 75% quantiles of all correlations.

Table 4 shows the unconditional covariance of open to close daily returns and the unconditional

mean of the QML estimator, averaged over the 4 years of data.

These results are very preliminary but they indicate the method is underestimating the uncon-

ditional covariance to an important degree. More work needs to be done to calibrate if this is due

to the i.i.d. assumption or some numerical issues. If it is the i.i.d. assumption then the use of

sparse QML or subsampling QML may improve the situation.

6.3 A string of bivariate examples

Finally, we compare the QML with polarisation QML and realised kernel for 3 pairs of assets.

These correlation estimates seem in agreement very well for the JPM and SPY pair, but less so for

the pair of BAC and SPY.
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AA AXP BAC BRKB DD GE IBM JPM KO MSFT SPY WPO XOM

AA 0.042 0.042 0.004 0.046 0.029 0.025 0.039 0.018 0.024 0.029 0.012 0.031
AXP 0.105 0.065 0.003 0.041 0.032 0.031 0.068 0.022 0.027 0.036 0.013 0.032
BAC 0.132 0.209 0.004 0.036 0.034 0.026 0.078 0.018 0.026 0.033 0.011 0.030
BRKB 0.043 0.049 0.069 0.003 0.003 0.001 0.002 0.001 0.002 0.002 0.003 0.002
DD 0.085 0.088 0.096 0.034 0.025 0.025 0.038 0.019 0.022 0.030 0.012 0.029
GE 0.080 0.096 0.147 0.043 0.058 0.018 0.030 0.015 0.019 0.022 0.009 0.021
IBM 0.050 0.054 0.061 0.019 0.040 0.039 0.029 0.016 0.019 0.023 0.007 0.021
JPM 0.097 0.172 0.260 0.065 0.088 0.114 0.063 0.021 0.026 0.036 0.010 0.032
KO 0.037 0.039 0.038 0.012 0.028 0.027 0.021 0.037 0.013 0.016 0.006 0.017
MSFT 0.059 0.065 0.068 0.022 0.044 0.040 0.035 0.065 0.028 0.020 0.008 0.018
SPY 0.066 0.077 0.093 0.027 0.051 0.052 0.035 0.081 0.027 0.041 0.009 0.026
WPO 0.047 0.060 0.055 0.021 0.045 0.041 0.027 0.055 0.020 0.030 0.033 0.008
XOM 0.069 0.062 0.065 0.019 0.046 0.044 0.032 0.057 0.028 0.041 0.044 0.030

Table 4: This table compares the QML estimate (upper triangle) of average of annualized covari-
ances among 13 assets with the estimate based on daily open-to-close returns (lower triangle).
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Figure 7: The figure plots the time series estimates of the correlation between JPM and SPY
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Figure 8: The figure plots the time series estimates of the correlation between BAC and JPM
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Figure 9: The figure plots the time series estimates of the correlation between BAC and SPY
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7 Conclusion

This paper proposes and systematically studies a new method for estimating the dependence

amongst financial asset price processes. The realised QML estimator is robust to certain types of

market microstructure noise and can deal with non-synchronised time stamps. It is also guaranteed

to be positive semi-definite and converges at the optimal asymptotic rate. This combination of

properties is unique in the literature and so it is worthwhile exploring this estimator in some detail.

In this paper we develop the details of the quasi-likelihood and show how to numerically optimise

it in a simple way even in large dimensions. We also develop some of the theory needed to under-

stand the properties of the estimator and the corresponding results for realised QML estimators

or betas and correlations. Our Monte Carlo experiments are extensive, comparing the estimator

to various alternatives. The realised QML performs well in these comparisons, in particular in

unbalanced cases.

Our initial empirical results are somewhat encouraging, although much work remains for this

to be as polished as the rest of this paper. The volatilities seem to be robust to the presence of

slowly trading stocks in the dataset. The results for measures for dependence are mixed, for some

individual results show rather sensible time series of correlation estimates, but generally the re-

alised QML is currently underestimating long-run dependence in these empirical experiments. This

underestimation does not appear in our Monte Carlo experiments. There are various explanations

for this, but we need to investigate this further and we will report on this in a later revision during

the summer.

8 Acknowledgements

We thank Siem Jan Koopman for some early comments on some aspects of filtering with massive

missing data, and Markus Bibinger for discussions on quadratic variation of time. We are partic-

ularly grateful to Fulvio Corsi, Stefano Pelusoy and Francesco Audrino for sharing with us a copy

of their related work on this topic. The same applies to Cheng Liu and Cheng Yong Tang. We

also thank Kevin Sheppard for allowing us to use the cleaned high frequency data he developed for

Lunde, Shephard, and Sheppard (2012), as well as advice on all things multivariate. Finally, we

would like to thank Siem Jan Koopman for various pieces of advice on state space computations.

References

Aı̈t-Sahalia, Y., J. Fan, and D. Xiu (2010). High frequency covariance estimates with noisy and asyn-
chronous financial data. Journal of the American Statistical Association 105, 1504–1517.

Aı̈t-Sahalia, Y. and P. A. Mykland (2003). The effects of random and discrete sampling when estimating
continuous-time diffusions. Econometrica 71, 483–549.

29



Aı̈t-Sahalia, Y., P. A. Mykland, and L. Zhang (2005). How often to sample a continuous-time process in
the presence of market microstructure noise. Review of Financial Studies 18, 351–416.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens (2001). The distribution of realized stock
return volatility. Journal of Financial Economics 61, 43–76.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2000). Great realizations. Risk 13, 105–108.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of exchange rate
volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2003). Modeling and forecasting realized
volatility. Econometrica 71, 579–625.

Bandi, F. M. and J. R. Russell (2008). Microstructure noise, realized variance, and optimal sampling.
Review of Economic Studies 75, 339–369.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2008). Designing realised kernels to
measure the ex-post variation of equity prices in the presence of noise. Econometrica 76, 1481–1536.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2009). Realised kernels in practice:
trades and quotes. Econometrics Journal 12, C1–C32.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-
synchronous trading. Journal of Econometrics 162, 149–169.

Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric analysis of realised volatility and its use in
estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64, 253–280.

Barndorff-Nielsen, O. E. and N. Shephard (2004). Econometric analysis of realised covariation: high
frequency covariance, regression and correlation in financial economics. Econometrica 72, 885–925.

Basu, S. and G. C. Reinsel (1996). Relationship between missing data likelihoods and complete data
restricted likelihoods for regression time series models: an application to total ozone data. Applied
Statistics 45, 63–72.

Cappe, O., E. Moulines, and T. Ryden (2009). Inference in Hidden Markov Models. Springer.

Christensen, K., S. Kinnebrock, and M. Podolskij (2010). Pre-averaging estimators of the ex-post co-
variance matrix in noisy diffusion models with non-synchronous data. Journal of Econometrics 159,
116–133.

Corsi, F., S. Peluso, and F. Audrino (2012). Missing asynchronicity: a Kalman-EM approach to multi-
variate realized covariance estimation. Unpublished paper: University of St. Gallen.

Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford: Oxford
University Press.

Engle, R. F. and J. R. Russell (1998). Forecasting transaction rates: the autoregressive conditional duration
model. Econometrica 66, 1127–1162.

Epps, T. W. (1979). Comovements in stock prices in the very short run. Journal of the American Statistical

Association 74, 291–296.

Ghysels, E., A. C. Harvey, and E. Renault (1996). Stochastic volatility. In C. R. Rao and G. S. Maddala
(Eds.), Statistical Methods in Finance, pp. 119–191. Amsterdam: North-Holland.

Gloter, A. and J. Jacod (2001a). Diffusions with measurement errors. I — local asymptotic normality.
ESAIM: Probability and Statistics 5, 225–242.

Gloter, A. and J. Jacod (2001b). Diffusions with measurement errors. II — measurement errors. ESAIM:

Probability and Statistics 5, 243–260.

Hansen, P. R. and G. Horel (2009). Quadratic variation by Markov chains. Unpublished paper: Department
of Economics, Stanford University.

Hansen, P. R., J. Large, and A. Lunde (2008). Moving average-based estimators of integrated variance.
Econometric Reviews 27, 79–111.

Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise (with discussion).
Journal of Business and Economic Statistics 24, 127–218.

Harris, F. H. d., T. H. McMcInish, G. Shoesmith, and R. A. Wood (1995). Cointegration, error correction
and price discovery on informationally linked security markets. Journal of Financial and Quantitative

Analysis 30, 563–579.

30



Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge:
Cambridge University Press.

Hayashi, T. and N. Yoshida (2005). On covariance estimation of non-synchronously observed diffusion
processes. Bernoulli 11, 359–379.

Jacod, J. (2012). Statistics and high frequency data. In M. Kessler, A. Lindner, and M. Sorensen (Eds.),
Statistical methods for stochastic differential equations, pp. 191–310. Chapman and Hall.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter (2009). Microstructure noise in the continuous
case: the pre-averaging approach. Stochastic Processes and Their Applications 119, 2249–2276.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (2 ed.). Springer: Berlin.

Kalnina, I. and O. Linton (2008). Estimating quadratic variation consistently in the presence of correlated
measurement error. Journal of Econometrics 147, 47–59.

Kunitomo, N. and S. Sato (2009). Separating information maximum likelihood estimation of realized
volatility and covariance with micro-market noise. Unpublished paper: Graduate School of Economics,
University of Tokyo.

Large, J. (2011). Estimating quadratic variation when quoted prices jump by a constant increment. Journal
of Econometrics 160, 2–11.

Li, Y. and P. Mykland (2007). Are volatility estimators robust to modelling assumptions? Bernoulli 13,
601–622.

Li, Y., P. Mykland, E. Renault, L. Zhang, and X. Zheng (2009). Realized volatility when endogeniety of
time matters. Working Paper, Department of Statistics, University of Chicago.

Liu, C. and C. Y. Tang (2012). A quasi-maximum likelihood approach to covariance matrix with high
frequency data. Unpublished paper: Department of Statistics and Applied Probability, National Uni-
versity of Singapore.

Ljung, G. M. (1989). A note on the estimation of missing values in time series. Communications in

Statistics - Simulation and Computation 18, 459–465.

Lunde, A., N. Shephard, and K. K. Sheppard (2012). Econometric analysis of vast covariance matrices
using composite realized kernels. Unpublished paper: Department of Economics, University of Oxford.

Martens, M. (2003). Estimating unbiased and precise realized covariances. Unpublished paper: Depart-
ment of Finance, Erasmus School of Economics, Rotterdam.

Mykland, P. A., N. Shephard, and K. K. Sheppard (2012). Efficient and feasible inference for the com-
ponents of financial variation using blocked multipower variation. Unpublished paper: Department of
Economics, Oxford University.

Mykland, P. A. and L. Zhang (2006). ANOVA for diffusions and Ito processes. Annals of Statistics 34,
1931–1963.

Mykland, P. A. and L. Zhang (2009). Inference for continuous semimartingales observed at high frequency.
Econometrica 77, 1403–1455.

Protter, P. (2004). Stochastic Integration and Differential Equations. New York: Springer-Verlag.

Reiss, M. (2011). Asymptotic equivalence for inference on the volatility from noisy observations. Annals
of Statistics 39, 772–802.

Stein, M. L. (1987). Minimum norm quadratic estimation of spatial variograms. Journal of the American

Statistical Association 82, 765–772.

Tanner, M. A. (1996). Tools for Statistical Inference: Methods for Exploration of Posterior Distributions

and Likelihood Functions (3 ed.). New York: Springer-Verlag.

Voev, V. and A. Lunde (2007). Integrated covariance estimation using high-frequency data in the presence
of noise. Journal of Financial Econometrics 5, 68–104.

West, M. and J. Harrison (1989). Bayesian Forecasting and Dynamic Models. New York: Springer-Verlag.

Xiu, D. (2010). Quasi-maximum likelihood estimation of volatility with high frequency data. Journal of
Econometrics 159, 235–250.

Zhang, L. (2011). Estimating covariation: Epps effect and microstructure noise. Journal of Economet-

rics 160, 33–47.

31



Zhang, L., P. A. Mykland, and Y. Aı̈t-Sahalia (2005). A tale of two time scales: determining integrated
volatility with noisy high-frequency data. Journal of the American Statistical Association 100, 1394–
1411.

Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business and

Economic Statistics 14, 45–52.

Zhou, B. (1998). Parametric and nonparametric volatility measurement. In C. L. Dunis and B. Zhou
(Eds.), Nonlinear Modelling of High Frequency Financial Time Series, Chapter 6, pp. 109–123. New
York: John Wiley Sons Ltd.

Appendices

A Mathematical Proofs

A.1 Proof of Theorem 1

There exists an orthogonal matrix U = (uij), such that

(
U

U

)(
Ω11 Ω12

Ω12 Ω22

)(
U ′

U ′

)
=

(
diag(µ1j) Ω12

Ω12 diag(µ2j)

)
=: V

where

Ω12 = Σ12∆⊗ I,

Ωii = Σii∆⊗ I + Λii ⊗ J, i = 1, 2,

uij =

√
2

n+ 1
sin
( i · j
n+ 1

π
)
, i, j = 1, . . . , n,

µij = Σii∆+ 2Λii

(
1− cos

( j
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π
))

, i = 1, 2, and j = 1, . . . , n.

Since U ′ = U−1, we have
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)
V −1

(
U

U

)

where
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One important observation is that U does not depend on parameters, hence taking derivatives of

Ω becomes very convenient with the help of the decomposition.

Note that

1√
n

∂L

∂θ
= − 1

2
√
n

(
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Ω−1∂Ω

∂θ

)
− tr
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where for θ = Σ11 and Σ12,
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(
V −1 ∂V

∂Σ11

)
=

n∑

i=1

µ2i∆

µ1iµ2i − Σ2
12∆

2

tr
(
Ω−1 ∂Ω

∂Σ12

)
= tr

(
V −1 ∂V

∂Σ12

)
=

n∑

i=1

−2Σ12∆
2

µ1iµ2i − Σ2
12∆

2

and

tr
(
Ω−1 ∂Ω

∂Σ11
Ω−1zz′

)

=tr

(
 diag

(
µ2

2i∆

(µ1iµ2i−Σ2

12
∆2)2

)
diag

(
−Σ12µ2i∆

2

(µ1iµ2i−Σ2

12
∆2)2

)

diag
(

−Σ12µ2i∆
2

(µ1iµ2i−Σ2

12
∆2)2

)
diag

(
Σ2

12
∆3

(µ1iµ2i−Σ2

12
∆2)2

)


(

U
U

)
zz′
(

U ′

U ′

))

tr
(
Ω−1 ∂Ω

∂Σ12
Ω−1zz′

)

=tr

(
 diag

(
−2µ2iΣ12∆2

(µ1iµ2i−Σ2

12
∆2)2

)
diag

(
Σ2

12
∆3+µ1iµ2i∆

(µ1iµ2i−Σ2

12
∆2)2

)

diag
(

Σ2

12
∆3+µ1iµ2i∆

(µ1iµ2i−Σ2

12
∆2)2

)
diag

(
−2µ1iΣ12∆2

(µ1iµ2i−Σ2

12
∆2)2

)


(

U
U

)
zz′
(

U ′

U ′

))

Therefore, by direct calculations and using symmetry, we have

E
(−∂2L

∂Σ2
11

)
=
1

2

n∑

i=1

µ2
2i∆

2

(µ1iµ2i − Σ2
12∆

2)2
,

∼1

2

∫ ∞

0

(Σ22T + Λ22π
2x2)2T 2

((Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2)2
dx := IΣ11,

E
( −∂2L

∂Σ11∂Σ12

)
=
1

2

n∑

i=1

−2Σ12µ2i∆
3

(µ1iµ2i − Σ2
12∆

2)2
,

∼
∫ ∞

0

−Σ12(Σ22T + Λ22π
2x2)T 3

((Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2)2
dx := IΣ12,

E
( −∂2L

∂Σ11∂Σ22

)
=
1

2

n∑

i=1

Σ2
12∆

4

(µ1iµ2i − Σ2
12∆

2)2
,

∼1

2

∫ ∞

0

Σ2
12T

4

((Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2)2
dx := IΣ13,

E
(−∂2L

∂Σ2
12

)
=
1

2

n∑

i=1

2(Σ2
12∆

4 +∆2µ1iµ2i)

(µ1iµ2i − Σ2
12∆

2)2
,

∼
∫ ∞

0

(Σ11T +Λ11π
2x2)(Σ22T + Λ22π

2x2)T 2 +Σ2
12T

4

((Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2)2
dx := IΣ22.

By symmetry, we can obtain IΣ23, I
Σ
33, and IΣ22 by simply switching the index 1 and 2 in IΣ12 and IΣ11.

The asymptotic variance for (Σ̂11, Σ̂12, Σ̂22) is given by

V =




IΣ11 IΣ12 IΣ13
· IΣ22 IΣ23
· · IΣ33




−1

33



Similarly derivations on 1/n-scaled likelihood can show that the asymptotic variance for (Λ̂11, Λ̂22)

is given by

(
IΛ11

IΛ22

)−1

=

(
2Λ2

11

2Λ2
22

)
.

Notice that the above integrals have explicit forms, which can be obtained easily by Mathematica.

However, the explicit formulae are tedious and hence omitted here.

A.2 Proof of Theorem 2

The proof is made of the following steps: first, we show that the differences of the score vectors,

scaled by appropriate rates, and their target “conditional expectations” converge uniformly to 0, and

satisfy the identification condition. (This step is easily achieved from the following calculations).

Second, we derive the stable CLTs for the differences, and this where the higher order moments

of volatility process come into play. Third, we solve the equations that the target equal to 0, and

find that the difference between the pseudo true parameter values and the parameters of interest

are asymptotically negligible. Last, we use the sandwich theorem and consistency to establish the

CLT for the QMLE.

To clarify our notation, we use subscript 0 to mark quantities that are made of true values. The

true values for the Brownian covariances are obviously written in integral forms. The pseudo true

parameters are marked with a superscript such as Σ̄ and Λ̄, and the QML estimators are marked

as Σ̂ and Λ̂. The other Σ, Λ,etc without any special marks represent any parameter values within

the parameter space, which is assumed to be a compact set.

The drift term can be ignored without loss of generality, as a simple change of measure argument

makes it sufficient to investigate the case without drift.

Recall that in (1), we have

L = −n log(2π)− 1

2
log(detΩ)− 1

2
z′Ω−1z

Now we consider the following function:

L̄ = −n log(2π)− 1

2
log(detΩ)− 1

2
tr(Ω−1Ω0)

where the subscript 0 denotes the true value,

Ω0 =

(
Ω11
0 Ω12

0

Ω21
0 Ω22

0

)

with Ωll
0,ii =

∫ ti
ti−1

Σll,tdt + 2Λ0,ll, Ωll
0,i,i+1 = Ωll

0,i,i−1 = Λ0,ll, and Ω12
0,i,i = Ω21

0,i,i =
∫ ti
ti−1

Σ12,tdt.

Therefore, the difference between L and L̄ is given by:

L− L̄ =
1

2
tr
(
Ω−1(zz′ − Ω0)

)
=

1

2
tr

((
U ′

U ′

)
V −1

(
U

U

)
(zz′ − Ω0)

)
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=
1

2

2∑

l=1

2∑

s=1

n∑

i=1

ωls
ii

(
(∆iyl)(∆iys)−

∫ ti

ti−1

Σls,tdt
)
+

2∑

l=1

2∑

s=1

n∑

i=1

∑

j<i

ωls
ij∆

n
i yl∆

n
j ys

+

2∑

l=1

2∑

s=1

n∑

i=1

n∑

j=1

ωls
ij∆

n
i εl∆

n
j ys +

1

2

2∑

l=1

2∑

s=1

n∑

i=1

n∑

j=1

ωls
ij

(
∆n

i εl∆
n
j εs − E(∆n

i εl∆
n
j εs)

)

where ωls
ij is the (i, j) element of the (l, s) block of the matrix:

Ω−1 =

(
U ′

U ′

)
V −1

(
U

U

)

Consider ω11
i,j first.

ω11
i,j =

2

n+ 1

n∑

k=1

µ2k

µ1kµ2k − Σ2
12∆

2
sin
( ki

n+ 1
π
)
sin
( kj

n+ 1
π
)

=
1

n+ 1

n∑

k=1

µ2k

µ1kµ2k − Σ2
12∆

2

(
cos
(k(i− j)

n+ 1
π
)
− cos

(k(i+ j)

n+ 1
π
))

Therefore, we can separate the two components in the sum and analyze the following generic form:

1

n+ 1

n∑

k=1

µ2k

µ1kµ2k − Σ2
12∆

2
cos
( kl

n+ 1
π
)

=
1

2(n + 1)

n∑

k=1

µ2k

µ1kµ2k − Σ2
12∆

2

sin( (k+1)l
n+1 π)− sin( (k−1)l

n+1 π)

sin( l
n+1π)

=
1

2(n + 1)

n∑

k=0

sin( (k+1)l
n+1 π)

sin( l
n+1π)

( µ2k

µ1kµ2k − Σ2
12∆

2
−

µ2,k+2

µ1,k+2µ2,k+2 − Σ2
12∆

2

)

=
1

2(n + 1)

n∑

k=0

sin( (k+1)l
n+1 π)

sin( l
n+1π)

µ2,k+2µ2,k(µ1,k+2 − µ1,k) + (µ2,k+2 − µ2,k)Σ
2
12∆

2

(µ1kµ2k − Σ2
12∆

2)(µ1,k+2µ2,k+2 − Σ2
12∆

2)

=
2

n+ 1

n∑

k=0

sin( (k+1)l
n+1 π) sin( π

n+1) sin(
k+1
n+1π)

sin( l
n+1π)

(µ2,k+2µ2,kΛ11 + Λ22Σ
2
12∆

2)

(µ1kµ2k − Σ2
12∆

2)(µ1,k+2µ2,k+2 −Σ2
12∆

2)

Clearly, ω11
i,j = ω11

j,i = ω11
n+1−i,n+1−j. For any n

1

2
+δ ≤ l ≤ [n+1

2 ], we have

1

n+ 1

n∑

k=1

∣∣∣∣∣
µ2k

µ1kµ2k − Σ2
12∆

2
cos
( kl

n+ 1
π
)∣∣∣∣∣ ≤ C

1

n

n∑

k=1

1
l
n

1
n
k
n

( 1n + k2

n2 )2
∼ o(

√
n)

hence, for any n
1

2
+δ ≤ i ≤ n− n

1

2
+δ,

ω11
i,i =

(∫ ∞

0

Σ22T + Λ22π
2x2

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2
dx
)
·
√
n(1 + o(1))

Similarly, we can derive

ω22
i,i =

(∫ ∞

0

Σ11T + Λ11π
2x2

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2
dx
)
·
√
n(1 + o(1))

ω12
i,i =

(∫ ∞

0

−Σ12T

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2
dx
)
·
√
n(1 + o(1))
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To simply our notation, let

ω11(Σ,Λ, x) =
Σ22T + Λ22π

2x2

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2

ω22(Σ,Λ, x) =
Σ11T + Λ11π

2x2

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2

ω12(Σ,Λ, x) =
−Σ12T

(Σ11T + Λ11π2x2)(Σ22T + Λ22π2x2)− Σ2
12T

2

We define the score vectors and their targets as

ΨΣ = − 1√
n

∂L

∂Σ
, Ψ̄Σ = − 1√

n

∂L̄

∂Σ
,ΨΛ = − 1

n

∂L

∂Λ
, and Ψ̄Λ = − 1

n

∂L̄

∂Λ
,

where

∂

∂Σ
=




∂
∂Σ11

∂
∂Σ12

∂
∂Σ22


 , and

∂

∂Λ
=

(
∂

∂Λ11

∂
∂Λ22

)
.

Then we have

ΨΣ − Ψ̄Σ =
1

2
√
n

(
M

(Σ)
1 + 2M

(Σ)
2 + 2M

(Σ)
3 +M

(Σ)
4

)

where

M
(Σ)
1 =

2∑

l=1

2∑

s=1

n∑

i=1

∂ωls
ii

∂Σ

(
(∆iyl)(∆iys)−

∫ τ i

τ i−1

Σls,tdt
)

M
(Σ)
2 =

2∑

l=1

2∑

s=1

n∑

i=1

∑

j<i

∂ωls
ij

∂Σ
∆n

i yl∆
n
j ys

M
(Σ)
3 =

2∑

l=1

2∑

s=1

n∑

i=1

n∑

j=1

∂ωls
ij

∂Σ
∆n

i εl∆
n
j ys

M
(Σ)
4 =

2∑

l=1

2∑

s=1

n∑

i=1

n∑

j=1

∂ωls
ij

∂Σ

(
∆n

i εl∆
n
j εs − E(∆n

i εl∆
n
j εs)

)

Following the same argument in Xiu (2010) and Theorem 7.1 in Jacod (2012), we can show

n− 1

4 (M
(Σ)
1 + 2M

(Σ)
2 )

LX−→ MN(0,Avar(2)(Σ))

where

Avar(2)(Σ) = lim
n→∞

4n− 1

2

2∑

l,s,u,v=1

n∑

i=1

∑

j<i

∂ωv,u
i,j

∂Σ

∂ωl,s
i,j

∂Σ′
Σsv,tiΣul,tj∆

2 (A.1)

=2T

2∑

l,s,u,v=1

∫ ∞

0

∂ωvu(Σ,Λ, x)

∂Σ

∂ωls(Σ,Λ, x)

∂Σ′
dx

∫ T

0
Σsv,tΣul,tdt (A.2)

All the elements of the covariance matrix have closed-forms. Also, we have

n− 1

42M
(Σ)
3

LX−→ MN(0,Avar(3)(Σ))
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where

Avar(3)(Σ)

= lim
n→∞

4
n∑

j=1

n− 1

2

2∑

l,s,v=1

n∑

i=1

Λ0,ll

∂ωls
ij

∂Σ

(
2
∂ωlv

ij

∂Σ′
−

∂ωlv
i,j−1

∂Σ′
−

∂ωlv
i,j+1

∂Σ′

)
Σsv,tj∆

=4

2∑

l,s,v=1

Λ0,ll

∫ ∞

0

∂ωls(Σ,Λ, x)

∂Σ

∂ωlv(Σ,Λ, x)

∂Σ′
π2x2dx

∫ T

0
Σsv,tdt (A.3)

Finally, we have

n− 1

4M
(Σ)
4

L−→ N(0,Avar(4)(Σ))

where

Avar(4)(Σ)

= lim
n→∞

n− 1

2

n∑

i,j,k,l=1

(
∂ω11

i,j

∂Σ

∂ω11
k,l

∂Σ′
Kij,kl

11 + 4
∂ω12

i,j

∂Σ

∂ω12
k,l

∂Σ′
Ki,k

11 K
j,l
22 +

∂ω22
i,j

∂Σ

∂ω22
k,l

∂Σ′
Kij,kl

22

)

= lim
n→∞

n− 1

2

(
V1

(∂ω11

∂Σ
,
∂ω11

∂Σ

)
+ V2

(∂ω11

∂Σ
,
∂ω11

∂Σ

)
+ 2V2

(∂ω12

∂Σ
,
∂ω12

∂Σ

)

+ V1

(∂ω22

∂Σ
,
∂ω22

∂Σ

)
+ V2

(∂ω22

∂Σ
,
∂ω22

∂Σ

))
,

and

V1

(∂ωll

∂Σ
,
∂ωll

∂Σ

)
=

(
n−1∑

i=1

(
− 8

∂ωll
i,i+1

∂Σ

∂ωll
i+1,i+1

∂Σ′
+ 2

∂ωll
i,i

∂Σ

∂ωll
i+1,i+1

∂Σ′
+ 4

∂ωll
i,i+1

∂Σ

∂ωll
i,i+1

∂Σ′

)

+ 2

n∑

i=1

(∂ωll
ii

∂Σ

)(∂ωll
ii

∂Σ′

))
cum4[εl]

∼O(1)

V2

(∂ωll

∂Σ
,
∂ωll

∂Σ

)
=2(Λ0,ll)

2
n∑

i,j=1

(
∂ωll

i,j

∂Σ

(∂ωll
j−1,i−1

∂Σ′
+

∂ωll
j−1,i+1

∂Σ′
− 2

∂ωll
j−1,i

∂Σ′
+

∂ωll
j+1,i−1

∂Σ′

+
∂ωll

j+1,i+1

∂Σ′
− 2

∂ωll
j+1,i

∂Σ′
− 2
(∂ωll

j,i−1

∂Σ′
+

∂ωll
j,i+1

∂Σ′
− 2

∂ωll
j,i

∂Σ′

)))

∼2(Λ0,ll)
2
(∫ ∞

0

∂ωll

∂Σ

∂ωll

∂Σ′
π4x4dx

)
n

1

2

V2

(∂ω12

∂Σ
,
∂ω12

∂Σ

)
=2(Λ0,11)(Λ0,22)

n∑

i,j=1

(
∂ω12

i,j

∂Σ

(∂ω12
j−1,i−1

∂Σ′
+

∂ω12
j−1,i+1

∂Σ′
− 2

∂ω12
j−1,i

∂Σ′
+

∂ω12
j+1,i−1

∂Σ′

+
∂ω12

j+1,i+1

∂Σ′
− 2

∂ω12
j+1,i

∂Σ′
− 2
(∂ω12

j,i−1

∂Σ′
+

∂ω12
j,i+1

∂Σ′
− 2

∂ω12
j,i

∂Σ′

)))

∼2(Λ0,11)(Λ0,22)
( ∫ ∞

0

∂ω12

∂Σ

∂ω12

∂Σ′
π4x4dx

)
n

1

2
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Here, Ki,j
11 ,K

i,j
22 ,K

ij,kl
11 and Kij,kl

22 are the corresponding cumulants for ∆n
i ε1 and ∆n

i ε2, and cum4[ε1]

and cum4[ε2] are the fourth cumulants of ε1 and ε2.

Therefore, we have

Avar(4)(Σ)

=2
2∑

l,s=1

Λ0,llΛ0,ss

∫ ∞

0

∂ωls(Σ,Λ, x)

∂Σ

∂ωls(Σ,Λ, x)

∂Σ′
π4x4dx (A.4)

In summary, we have

n− 1

4 (ΨΣ − Ψ̄Σ)
L−→ N

(
0,

1

4

(
Avar(2)(Σ) + Avar(3)(Σ) + Avar(4)(Σ)

))
. (A.5)

Similarly, we can obtain

n− 1

2

(
ΨΛ11

− Ψ̄Λ11

ΨΛ22
− Ψ̄Λ22

)
L−→ N



(

0
0

)
,




2(Λ0,11)2+cum4[ε1]

4Λ4

11

2(Λ0,22)2+cum4[ε2]

4Λ4

22




 (A.6)

Further, we need to solve Ψ̄Σ = 0 and Ψ̄Λ = 0 for the pseudo-true parameters θ∗, and show

that the distance between θ∗ and the values of interest are negligible asymptotically. In fact, for

any Σuv ∈ {Σ11,Σ12,Σ22}, we have

Ψ̄Σuv =
1

2
√
n

{
tr
(
Ω−1 ∂Ω

∂Σuv

)
+

∂tr(Ω−1Ω0)

∂Σuv

}

=
1

2
√
n

{
tr
(
Ω−1 ∂Ω

∂Σuv

)
+

∂tr(Ω−1(Ω + J ⊗ (Λ0 − Λ) + Γ))

∂Σuv

}

=
1

2
√
n

{
tr
(∂Ω−1

∂Σuv
J ⊗ (Λ0 − Λ)

)
+ tr

(∂Ω−1

∂Σuv
Γ
)}

=
1

2
√
n

{ 2∑

l=1

n∑

i=1

(
2
∂ωll

ii

∂Σuv
−

∂ωll
i,i−1

∂Σuv
−

∂ωll
i,i+1

∂Σuv

)
(Λ0,ll − Λll) +

2∑

l,s=1

n∑

i=1

∂ωls
ii

∂Σuv
Γls
ii

}

=
1

2

{ 2∑

l,s=1

( ∫ ∞

0

∂ωls(Σ,Λ, x)

∂Σuv
dx
)( ∫ T

0
Σls,tdt− ΣlsT

)
(1 + o(1))

+
2∑

l=1

(Λ0,ll − Λll)

∫ ∞

0

(∂ωll(Σ,Λ, x)

∂Σuv

)
π2x2dx

}

where Λ0 denotes the true covariance matrix of noise, Γ is block diagonal matrix, with Γls
ii =

∫ τ i
τ i−1

Σls,tdt − Σls∆, and J is an n × n tridiagonal matrix with matrix diagonal elements equal to

2 and off-diagonal elements equal to −1.

Similarly, for Λuu ∈ {Λ11,Λ22}, we have

Ψ̄Λuu =
1

2n

{
tr
(
Ω−1 ∂Ω

∂Λuu

)
+

∂tr(Ω−1Ω0)

∂Λuu

}

=
1

2n

{
tr
(
Ω−1 ∂Ω

∂Λuu

)
+

∂tr(Ω−1(Ω + J ⊗ (Λ0 − Λ) + Γ))

∂Λuu

}
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=
1

2n

{
tr
(∂Ω−1

∂Λuu
J ⊗ (Λ0 − Λ)

)
+ tr

(∂Ω−1

∂Λuu
Γ
)}

=
1

2n

{ 2∑

l=1

n∑

i=1

(
2
∂ωll

ii

∂Λuu
−

∂ωll
i,i−1

∂Λuu
−

∂ωll
i,i+1

∂Λuu

)
(Λ0,ll − Λll) +

2∑

l,s=1

n∑

i=1

∂ωls
ii

∂Λuu
Γls
ii

}

=
1

2

{ 1√
n

2∑

l,s=1

( ∫ ∞

0

∂ωls(Σ,Λ, x)

∂Λuu
dx
)( ∫ T

0
Σls,tdt− ΣlsT

)
(1 + o(1))

+
1√
n

2∑

l=1

(∫ ∞

0

∂ωll(Σ,Λ, x)

∂Λuu
π2x2dx

)(
Λ0,ll − Λll

)
−

2∑

l=1

δlu
Λ2
ll

(
Λ0,ll − Λll

)}

Therefore, solving for Σ̄ and Λ̄, we obtain:

Λ̄ll =Λ0,ll +
Λ̄2
ll√
n

{
2∑

l,s=1

(∫ ∞

0

∂ωls(Σ̄, Λ̄, x)

∂Λuu
dx
)( ∫ T

0
Σls,tdt− Σ̄lsT

)

+
2∑

l=1

( ∫ ∞

0

∂ωll(Σ̄, Λ̄, x)

∂Λuu
π2x2dx

)(
Λ0,ll − Λ̄ll

)}
(1 + op(1)), for l = 1, 2,

Σ̄ls =
1

T

∫ T

0
Σls,tdt+Op(n

− 1

2 ) = Σ0,ls +Op(n
− 1

2 ), for l, s = 1, 2.

Further, applying Theorem 2 in Xiu (2010), we have

Σ̂ls − Σ̄ls = op(1), and Λ̂ll − Λ̄ll = op(1),

hence consistency is established.

To find the central limit theorem, we do the usual “sandwich” calculations. Denote,

∂Ψ̄Σ

∂Σ
=




∂Ψ̄Σ11

∂Σ11

∂Ψ̄Σ11

∂Σ12

∂Ψ̄Σ11

∂Σ22

∂Ψ̄Σ12

∂Σ11

∂Ψ̄Σ12

∂Σ12

∂Ψ̄Σ12

∂Σ22

∂Ψ̄Σ22

∂Σ11

∂Ψ̄Σ22

∂Σ12

∂Ψ̄Σ22

∂Σ22




P−→ ∂ΨΣ0

∂Σ
,

where

∂Ψ̄Σ0,uv

∂Σij
=− T

2

( ∫ ∞

0

∂ωij(Σ0,Λ0, x)

∂Σuv
dx
)
− T

2

(∫ ∞

0

∂ωij(Σ0,Λ0, x)

∂Σuv
dx
)
1{u 6=v}

and Σ0 denotes the true parameter value. So, the central limit theorem is:

n
1

4 (Σ̂ −Σ0) = n
1

4




Σ̂11 − 1
T

∫ T
0 Σ11,tdt

Σ̂12 − 1
T

∫ T
0 Σ12,tdt

Σ̂22 − 1
T

∫ T
0 Σ22,tdt


 LX−→ MN(0, VQ) (A.7)

where

VQ =
1

4

(∂Ψ̄Σ0

∂Σ

)−1(
Avar(2)(Σ0) + Avar(3)(Σ0) + Avar(4)(Σ0)

)((∂Ψ̄Σ0

∂Σ

)−1)′
. (A.8)

Note that

∂ΨΛ0

∂Λ
=

( − 1
2Λ2

0,11

− 1
2Λ2

0,22

)
,

hence the CLT for Λ̂ follows immediately from (A.6). This concludes the proof of Theorem 2.
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A.3 Proof of Corollary 1

Denote ∆i = ∆̄(1 + ξi) and ξi is
i.i.d∼ Op(1). Note that

Ω = Ω̄ + ∆̄Σ⊗ Ξ

where Ξ = diag(ξ1, . . . , ξi, . . . , ξn), and Ω̄ is the covariance matrix in the equidistant case with ∆

replaced by ∆̄. It turns out that

Ω−1 =(Ω̄(I + ∆̄Ω̄−1Σ⊗ Ξ))−1 = (I + ∆̄Ω̄−1Σ⊗ Ξ)−1Ω̄−1

=Ω̄−1 +

∞∑

k=1

(−1)k∆̄k(Ω̄−1Σ⊗ Ξ)kΩ̄−1

For any θ1, θ2 ∈ {Σ11,Σ12,Σ22}, we have

∂Ω

∂θ1
=

∂Ω̄

∂θ1
+ ∆̄

∂Σ

∂θ1
⊗ Ξ

hence,

E
(∂ log(det Ω)

∂θ1

)
= E

(
tr
(
Ω−1 ∂Ω

∂θ1

))

=E
(
tr
(
Ω̄−1 ∂Ω̄

∂θ1

))
+ ∆̄E

(
tr
(
Ω̄−1Σ⊗ ΞΩ̄−1 ∂Ω̄

∂θ1
+ Ω̄−1 ∂Σ

∂θ1
⊗ Ξ

))

+ ∆̄2E
(
tr
(
(Ω̄−1Σ⊗ Ξ)2Ω̄−1 ∂Ω̄

∂θ1
− Ω̄−1Σ⊗ ΞΩ̄−1 ∂Σ

∂θ1
⊗ Ξ

))
+ o(∆̄2)

Because E(Ξ) = 0,

E
(
tr
(
Ω̄−1Σ⊗ ΞΩ̄−1 ∂Ω̄

∂θ1
+ Ω̄−1 ∂Σ

∂θ1
⊗ Ξ

))
= 0.

Also,

E
(
tr
(
(Ω̄−1Σ⊗ Ξ)2Ω̄−1 ∂Ω̄

∂θ1
− Ω̄−1(Σ⊗ Ξ)Ω̄−1(

∂Σ

∂θ1
⊗ Ξ)

))

=tr
(
Ω̄−1(Σ⊗ I)D(Σ⊗ I)Ω̄−1 ∂Ω̄

∂θ1
− Ω̄−1(Σ⊗ I)D(

∂Σ

∂θ1
⊗ I)

)
var(ξ)

where

D =

(
diag(Ω̄−1

11 ) diag(Ω̄−1
12 )

diag(Ω̄−1
12 ) diag(Ω̄−1

22 )

)

and Ω̄−1
ij is the (i, j) block of the Ω̄−1. Therefore,

E
(
− ∂2L

∂θ1θ2

)
= −1

2
E
(∂2 log(det Ω)

∂θ1∂θ2

)
=

1

2
tr
(
Ω̄−1 ∂Ω̄

∂θ2
Ω̄−1 ∂Ω̄

∂θ1

)
+ φθ1,θ2(Σ, Ω̄, ∆̄)var(ξ) + o(∆̄2)

where

φθ1,θ2(Σ, Ω̄, ∆̄) = −1

2

∂

∂θ2
tr
(
Ω̄−1(Σ⊗ I)D(Σ⊗ I)Ω̄−1 ∂Ω̄

∂θ1
− Ω̄−1(Σ ⊗ I)D(

∂Σ

∂θ1
⊗ I)

)
∆̄2
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In fact, we can show that

φθ1,θ2(Σ, Ω̄, ∆̄) = o(∆̄3/2),

Hence, the new fisher information converges to the previous one given in the proof of Theorem 1,

as ∆̄ → 0, which concludes the proof.
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