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Abstract

It is of considerable interest to forecast future mesothelioma mortality. No
measures for exposure are available so it is not straight forward to apply a dose-
response model. It is proposed to model the counts of deaths directly using a
Poisson regression with an age-period-cohort structure, but without offset. Tradi-
tionally the age-period-cohort is viewed to suffer from an identification problem.
It is shown how to re-parameterize the model in terms of freely varying parame-
ters, so as to avoid this problem. It is shown how to conduct inference and how
to construct distribution forecasts.

1 Introduction

Standard mortality studies rest on dose-response analyses where information on both
deaths and exposure is available. When no measure for exposure is available this ap-
proach is complicated. Mesothelioma mortality is one such example. Mesothelioma is
a lung cancer that is almost always associated with exposure to asbestos. The usage of
asbestos has been regulated for decades, yet the annual number of mesothelioma deaths
continues to increase due to the long latency of the disease. It is of considerable interest
to forecast the timing of this peak as well as the overall burden of future mesothelioma
mortality. Notably this is a question relating to the unconditional mortality distribution
as opposed to questions relating to distribution of mortality conditionally on survival
to a certain point. There are two approaches to the problem of not having exposure
data. The first approach is to construct a synthetic measure for exposure in which case
a dose-response model can be used. This has been done for UK data in Peto, Matthews,
Hodgson and Jones (1995), Hodgson, McElvenny, Darnton, Price and Peto (2005) and

1All numerical computations were done with R, see R Development Core Team (2011). M.D.
Mart́ınez-Miranda is supported by the European Commissions’s Marie Curie Intra-European Fellow-
ship FP7-PEOPLE-2011-IEFproject number 302600 and the Ministerio de Ciencia e Innovación Project
MTM2008-03010. B. Nielsen is supported by the Institute for Economic Modelling at the Oxford Martin
School.

1



most recently by Tan, Warran, Darnton and Hodgson (2010). The latter analysis uses
a Markov Chain Monte Carlo method, which allows not only estimating the model pa-
rameters, but also the derivation of Bayesian credibility intervals. The second approach,
which is followed here, is only to model the responses. This is inspired by the chain-
ladder analysis used for forecasting liability reserves in general insurance, see England
and Verrall (2002). The advantage of the second approach is that conceptually it is
very simple as it avoids any need for constructing exposure measures for the sample
array as well as any need for extrapolating the exposure into the future. We show how
estimation, hypothesis testing, point forecasting and model specification testing can be
done by standard frequentist statistical software. In addition, we show how distribution
forecasts can be constructed using asymptotic theory. The first approach may possibly
give more accurate forecasts when expert knowledge is available. Even so, the second
approach may serve as a benchmark, especially in situations where there may be some
doubt about the assumptions to the unobserved exposure.

It is thought that mesothelioma is almost always caused by exposure to asbestos.
It has a long latency period and it mainly affects men. Once discovered it is rapidly
fatal, with most of those affected dying within one year; see Peto, Matthews, Hodgson
and Jones (1995) for further details. These circumstances contribute to the accuracy
of records of mesothelioma mortality and the problems in finding reliable measures on
exposure as well as data on mortality from competing risks.

The methodology of the presented analysis is based on an age-period-cohort model.
The age-period-cohort model has a well-known identification problem making it im-
possible to identify the levels and growth rates of the age, period and cohort effects.
Traditionally this is solved by making ad hoc choices of these levels and growth rates.
This does not have any impact on the fit of the model but it can have detrimental impact
on forecasts, see Holford (1985) and Kuang, Nielsen and Nielsen (2008a,b). Instead it
was suggested in the latter papers to use a parsimonious, freely varying parametrization
of the likelihood which permits the use of standard statistical methodology. The analysis
was aimed primarily at age-cohort arrays. Building on that the methodological contribu-
tion of the present paper is as follows. First, the age-period-cohort model for age-cohort
data arrays are carried over to age-period data arrays. A subtle difference in the results
is demonstrated and discussed. Secondly, it is shown how to conduct inference in age-
period-cohort models without exposure measures. The inference of particular interest
with mesothelioma data is whether the period effect is significant. Thirdly, it is shown
how to make point forecasts, including the use of intercept corrections for robustifying
the forecasts. Fourthly, it is discussed how to make distribution forecasts. It should be
noted that the results concerning identification, estimation and point forecasting will
transfer in a straight forward way to situations where exposure is measured, whereas
the results concerning inference and distribution forecasts depend on the chosen model.

The main empirical contributions consists of forecasts for the future burden of
mesothelioma that complements the analysis by previous authors in various ways. First,
the analysis points towards a peak in 2018 of about 2094 deaths with 95% confidence
interval (1978, 2210). This is less than the peak of 2700 deaths in 2020 predicted by
Peto, Matthews, Hodgson and Jones (1995) using data until 1991; it is later and more
severe than the peak of 1846 in 2013 predicted by Hodgson, McElvenny, Darnton, Price
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and Peto (2005), using data until 2001; but more in line with the peak of 2038 in 2016
predicted from data until 2006 by Tan, Warran, Darnton and Hodgson (2010), see also
Tan and Warren (2009).

A more subtle empirical finding arises from a recursive analysis of the data. Using
data until 1991, 2001 and until 2007 the timing of the peak is robust whereas the size
of the peak is gradually lowered with the arrival of new data. This gives some indica-
tion that preventative legislation from 1969 has moderated the mesothelioma epidemic.
Following on from this observation the forecast is broken down by cohort group. This
shows that the youngest cohorts with very few observed cases contribute substantially
to the future uncertainty. Most of this uncertainty can safely be ignored, since these
youngest cohort groups have largely not been exposed to asbestos.

The paper is organized as follows. In §2 we describe the mesothelioma mortality
problem which motivates the paper. This presents the intuition of the methods suggested
in the paper and also an advance of the main empirical results. In §3 it is discussed
how the mortality can be modelled in this situation where no information on exposure
is available. In §4 we define the statistical model that we consider and discus the role of
exposure. The full data analysis using our methodology is described in §5. A discussion
of the results and some conclusions are provided in §6. An appendix includes technical
details of the proposed methodology.

2 Motivation: forecasting mesothelioma mortality

We suggest a new method for inference and forecasting which does not require known
exposure. This is useful for an application such as mesothelioma mortality where the
number of people exposed to asbestos is unknown. This can serve as a relatively simple
benchmark for models with constructed exposure measures. In this section we present
the data and the problem which motivates the paper and do a formula free version of
our new approach to modelling and forecasting age-period-cohort models. We also offer
an advance of the empirical results derived from the methodology we propose in §4.

2.1 The data

The most recently available data from UK Health Service Executive consists of annual
aggregated counts of deaths in Great Britain by age for the period 1967–2007. We focus
on male mesothelioma deaths in the age range to 25–89 due to sparcity in the more
extreme age groups. Thus, the data is an age-period array with I = 65 age levels and
J = 41 periods. The total number of deaths is 31902, with the annual observed number
of deaths peaking at 1774 in 2007.

Figure 2.1(a, b, c) show summary plots of observed deaths by age, period and cohort.
Panel (d) shows log cumulative deaths by five year age and cohort group. The curves are
nearly parallel, which could be approximately captured by an age-cohort model. Since
the curves are not exactly parallel we will investigate whether an age-period-cohort
model fares better.

The number of deaths are concentrated among those in late working life and early
retirement, with the number of deaths exceeding 1000 for each of the age groups 64-77.
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Figure 2.1: (a, b, c) show observed deaths by age, period and cohort. (d) shows log
cumulative deaths by five year age and cohort group. Viewing the curves from top left
to bottom right they represent the cohorts 1923-1927, 1928-1932, etc.

At the same time the table of deaths is thin at the edges in that 52 and 128 fall in the
youngest age-groups 25-34 and 35-39, respectively and 4 and 15 fall in the oldest cohort-
groups 1878-1882 and 1883-1887, respectively, while 15 fall in the youngest cohort-group
1967-1982. It is therefore clear from the outset that in the context of an age-period-
cohort model the youngest age effects and the youngest and oldest cohort effects will be
poorly estimated.

2.2 The suggested forecast

In this section we present mesothelioma mortality forecasts based on the proposed
method. Later we provide a sensitivity analysis and a deeper discussion of the mod-
elling choices. At this point, we want to illustrate what kind of conclusions the proposed
methodology can provide.

The proposal is first to formulate an age-period-cohort model and then investigate
various sub-models through testing theory. It turns out that when exposure is unavail-
able the testing theory is also not available. It is therefore a contribution of this paper
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to derive a formal testing theory. This allows us to test the relevance of, for instance,
the period effect. For the mesothelioma data a reduction to an age-cohort model is
not rejected. This corresponds to finding in Figure 2.1(d) that the total deaths in each
cohort grow in a near parallel fashion.

Forecasting from an age-period-cohort model involves extrapolation of estimated
parameters. We will later show how this can be done using time series methods. How-
ever, elimination of the period effect turns out to be very convenient when forecasting
mesothelioma mortality. This is for two reasons. First, it is not necessary to extrapo-
late period parameters as they are not included. Secondly, the use of asbestos has been
regulated in the UK since 1969 so the later cohorts in the sample have had very little
exposure to asbestos. It is therefore not of interest to forecast mortality for those cohorts
so that there is no need for extrapolating the estimated cohort parameters either.

Based on the estimated age-cohort model we get the forecasts shown in Figure 2.2.
The analysis points towards a peak in 2018 of about 2094 with 95% confidence interval
(1978, 2210). The timing and size of the peak are broadly in line with the forecasts of
Tan, Warran, Darnton and Hodgson (2010) and Tan and Warren (2009). But in con-
trast to those papers our forecasts have been derived without involving any complicated
method to construct a measure of exposure.
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Mesothelioma mortality forecast

Peak: 2094 deaths in 2018

Figure 2.2: Forecasts of annual number of deaths based on full sample from the suggested
AC model. The shaded region indicates pointwise 95% forecast bands.
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3 The role of exposure

The main statistical issue in studying asbestos related mortality is that the exposure
is unknown. Before discussing the proposed model it is useful to start with a brief
review of the case where measures for exposure are available. Throughout the paper we
consider data organised in an age-period array with age index i = 1, . . . , I and period
index j = 1, . . . , J . The cohort index k = I − i+ j then runs from 1 to K = I + J − 1.

3.1 Dose-response modelling with known exposure

At first we consider the situation where both the number of deaths Yij and the exposure
Zij are known across the age-period index array. It is common to model the rates
Yij/Zij using a log-linear model. This involves the assumption that the responses given
exposures are Poisson distributed with expectation

E(Yij|Zij) = exp(νij)Zij = exp(νij + logZij). (3.1)

When νij has a linear age-period-cohort structure the statistical model can be estimated
through a Poisson regression with offset logZij.

3.2 Modelling mortality with synthetic exposure measures

When the exposure is not recorded a first approach is to construct synthetic exposure
measures. Indeed, Peto, Matthews, Hodgson and Jones (1995) measured exposure in
terms of the number of persons in the population. This allowed the construction of
rates and log-linear modelling. It was found that it was adequate to assume a simple
age-cohort structure for the mortality, for k = I − i+ j,

νij = φi + ψk. (3.2)

In a second analysis Hodgson, McElvenny, Darnton, Price and Peto (2005) replaced
the simple age-cohort structure with a more complicated model based on epidemiological
insight. The log-linear model was replaced by a multinomial model for the responses
Yij. The response probabilities were modelled according to a clearance model involving
the half time of clearing of asbestos fibres from the lungs and a model for exposure
depending on period. The analysis was updated with more recent data in a Bayesian
setup by Tan, Warren, Darnton and Hodgson (2010), see also Tan and Warren (2009).

3.3 Modelling mortality without exposure

In contrast to the above approach our suggested methodology avoids the need for taking
a view on exposure. As a statistical model the responses Yij are independent over the
age-period array and Poisson distributed with expectation

E(Yij) = exp(μij). (3.3)

The predictor is assumed to have age-period-cohort structure

μij = αi + βj + γk + δ. (3.4)

6



The statistical model is estimated by Poisson regression without any need for an offset.
It is therefore slightly simpler than the traditional log-linear model for rates.

It is of considerable interest to compare the model without exposure (3.4) with the
model with exposure (3.1). This can be done under simplistic assumptions to the log
expectation of the rates and to the exposure. Indeed, suppose the log expectation of the
rates has the age-cohort structure (3.2) so νij = φi + ψk, and that the exposure has an
age-period-cohort structure logZij = ai+bj+ck+d. In combination the log expectation
of the rates in (3.1) then becomes

logE(Yij|Zij) = (φi + ai) + bj + (ψk + ck) + d. (3.5)

Comparing (3.4) and (3.5) it is seen that the rate parameters φi and ψk can be identified
when ai and ck are absent. More generally, in so far as a clearance model can be
formulated as a simple functional form for ai and ck then the parameters φi and ψk can
be identified up to that functional form.

We will refrain from building a model for exposure. Essentially the risk set is built
up as follows. It consists of those who have survived to the time of exposure and who
have then been exposed. Typically a long latency period then follows where competing
risks are prevalent. Once the disease is discovered it is rapidly fatal with less scope for
mortality from competing risks. Getting to grips with the details of this development
is important, especially when it comes to prevention of mesothelioma deaths. However,
when the objective is merely to forecast aggregated mortality it suffices to note that
this sketch of exposure indicates that the count mesothelioma mortality can plausibly
be modelled as Poisson with an age-period-cohort structure. In any case, this claim
can be investigated empirically. Moreover, the simplicity of the Poisson model may be
advantageous in forecasting.

4 The statistical model and its analysis

An age-period-cohort model for the mortality counts is now presented and analysed.
At first we discuss the parametrisation and show how the traditional age-period-cohort
identification problem can be adressed. The model and likelihood are presented along
with a proposal for inference based on a multinomial sampling scheme. Finally, we
briefly present the forecast methods. Details are given in the appendix.

4.1 Parametrisation

Here, we describe how to parametrise an age-period-cohort model with a view to address-
ing the identification problem. A log odds interpretation of the suggested parametrisa-
tion follows. Finally, the parametrisation of an age-cohort model is discussed.

4.1.1 Age-period-cohort parametrisation of age-period data arrays

The age-period-cohort predictor μij = αi + βj + γk + δ from (3.4) has a well-known
identification problem. We can rewrite it as

μij = (αi + a + id) + (βj + b− jd) + (γk + c+ kd) + (δ − a− b− c− Id),
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for any real numbers a, b, c, d. This shows that the time effects for age, period, and
cohort are only identified up to an arbitrary linear trend. By saying that the linear
trend is arbitrary we mean that no method can be found to estimate that linear trend
from the data. To be more precise define the time effects

θ = (α1, . . . , αI , β1, . . . , βJ , γ1, . . . , γK , δ)
′ ∈ R

q,

where q = I + J + K + 1 = 2(I + J), and let μ represent the age-period array of
predictors μij. We can then find two different time effects, θ† �= θ‡, that result in the
same predictor, μ† = μ‡. This will show up as a collinearity problem in the context of a
generalized linear model. In the literature there are many different ad hoc solutions for
estimating θ. But, really, the problem is that the model is over-parametrised and the
solution is to find an identified, parsimoneous parametrisation.

Corollary 2 of Kuang, Nielsen and Nielsen (2008a) gives such a parametrisation.
This parametrisation has two parts to it. One part consists of second differences of the
parameters such as Δ2αi = Δαi−Δαi−1, where Δαi = αi−αi−1. The second differences
are identified because the second difference of a linear trend is zero. This was pointed
by Clayton and Schifflers (1987). The other part consists of three points μij chosen to
pin down the shared level and linear trend. Thus, the identified parameter is

ξ = (μI1, μI1 − μI−1,1, μI,2 − μI1,

Δ2α3, . . . ,Δ
2αI ,Δ

2β3, . . . ,Δ
2βJ ,Δ

2γ3, . . . ,Δ
2γK)

′ ∈ R
p, (4.1)

where p = q − 4 = 2(I + J − 2). The parameter ξ is identified in the sense that two
different parameters ξ† �= ξ‡ result in two different predictors μ† �= μ‡. We will use the
notation ξ(2) for the last p− 1 components of ξ.

The next step is to find the design matrix linking the predictor μ with the parameter
ξ. The design matrix depends on the chosen data array. There are three main types of
data arrays, referred to as the three principle sets of dead by Lexis, see Keiding (1990).
These are age-cohort arrays, age-period arrays, and cohort-period arrays. The design
matrices are different for these arrays in a fundamental way. Age-cohort arrays has the
easiest design matrix, which is discussed in Theorem 1 of Kuang, Nielsen and Nielsen
(2008a). The theorem below gives the link for age-period arrays, which is needed for
this study. Cohort-period arrays can be dealt with in a similar way.

Theorem 4.1 Consider an age-period data array, i = 1, . . . , I, j = 1, . . . , J along with
an age-period-cohort predictor of the form (3.4), where the cohort is k = I− i+ j. Then

μij = μI1 + (i− I)(μI1 − μI−1,1) + (j − 1)(μI2 − μI1)

+
I−2∑
t=i

I−2∑
s=t

Δ2αs+2 +

j∑
t=3

t∑
s=3

Δ2βs +
k∑

t=3

t∑
s=3

Δ2γs. (4.2)

The parameter ξ of (4.1) exactly identifies μ in that ξ† �= ξ‡ implies μ† �= μ‡.

The formula in (4.2) has an interesting interpretation. First, it writes the predictor
in terms of one overall level, two linear trends, and three time effects. An ad hoc
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identification would allocate these two linear trends to the three time effects in some
arbitrary way. This will of course not add anything to the statistical analysis, apart
from an arbitrariness which, at best, will not disturb the statistical analysis. Secondly,
an interesting feature of the formula in (4.2) is that period and cohort differences are
cumulated forwards, while the age effect is cumulated backwards. This is because the
principal axes are age and cohort, so that period arises as a difference. It is therefore
not possible to choose a reference point from which all three time scales increase. This
is different for age-cohort arrays where the period increases with age and cohort as
explored in Theorem 1 of Kuang, Nielsen and Nielsen (2008a). Thirdly, as we will now
show, the double differences Δ2αi, Δ

2βj and Δ2γk can be interpreted as log odds ratios.

4.1.2 A log odds ratio interpretation of the parametrisation

We will later introduce a multinomial model for the age-period array in which the log
mean of a cell is the predictor, logE(Yij) = μij. The aggregate mean and the frequencies
for each cell are then given by

τ = E(Y··), πij =
E(Yij)

E(Y··)
, (4.3)

where Y·· =
∑

ij Yij. The formula (4.2) in Theorem 4.1 then implies the following log
odds ratios

log

(
πij
πi−1,j

/
πi−1,j−1

πi−2,j−1

)
= μij − μi−1,j − μi−1,j−1 + μi−2,j−1 = Δ2αi, (4.4)

log

(
πij
πi,j−1

/
πi−1,j−1

πi−1,j−2

)
= μij − μi,j−1 − μi−1,j−1 + μi−1,j−2 = Δ2βj, (4.5)

log

(
πij
πi,j−1

/
πi+1,j

πi+1,j−1

)
= μij − μi,j−1 − μi+1,j + μi+1,j−1 = Δ2γk. (4.6)

This log odds ratios interpretation is similar to the relative risk interpretation offered
by Clayton and Schifflers (1987). The formulas are illustrated in Figure 4.1. Panel (a)
illustrates the interpretations of the formula for Δ2αi as follows. Consider the 1970 and
1971 cohorts. In 2010 these have age 40 and 39, while in 2011 these have age 41 and
40. Thus, Δ2α41 represents the increase in mortality from age 40 to age 41 in 2011
relative to the increase from age 39 to age 40 in 2010. In a similar way panels (b) and
(c) illustrate the formulas for Δ2β2012 and Δ2γ1972.

The slope parameters can be interpreted as log odds of the frequencies for the refer-
ence points (I, 1), (I − 1, 1) and (I, 2) in that

log

(
πI1
πI−1,1

)
= μI1 − μI−1,1, log

(
πI2
πI1

)
= μI2 − μI1. (4.7)

The above calculations of log odds ratios and log odds imply that there is a one-one
mapping between the frequencies πij and ξ

(2). Moreover, the aggregate mean parameter
τ satisfies τ = exp(μI1)

∑
ij exp(μij − μI1). It is therefore a product of a term that

depends on the level parameter μI1 and a term that depends on the remaining part of
the canonical parameter, ξ(2).
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Figure 4.1: Illustration of log odds ratio interpretation of Δ2α41, Δ
2β2012 and Δ2γ1972.

4.1.3 Age-cohort parametrisation of age-period data arrays

In the empirical analysis we will be interested in testing the absence of a period effect.
The change of model changes the identification discussion so it is worth giving the results
also for this submodel. The predictor (3.4) reduces to

μij = αi + γk + δ. (4.8)

The two linear trends in the age-period-cohort representation (4.2) can now be attributed
uniquely to the age and cohort effects, since the period effect is now absent. Theorem
4.1 can therefore be modified as follows.

Theorem 4.2 Consider an age-period data array, i = 1, . . . , I, j = 1, . . . , J , along with
an age-cohort predictor of the form (4.8), where the cohort is k = I − i+ j. Then

μij = μI1 −
I−1∑
t=i

Δαt+1 +

k∑
t=2

Δγt. (4.9)

The parameter
ξAC = (μI1,Δα2, . . . ,ΔαI ,Δγ2, . . . ,ΔγK)

′, (4.10)

exactly identifies μ in that ξ†AC �= ξ‡AC implies μ† �= μ‡.

The interpretation of the age-cohort result is the same as before. Since the data is
arranged in an age-period array it is not possible to find a single point from which both
the age and the cohort array increases. Therefore age is cumulated backwards as before.

4.2 Statistical analysis

Having clearified the parametrisation the statistical model can now be presented. This
is followed by a discussion of the sampling scheme and hypothesis testing.
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4.2.1 Statistical model

The available data are the responses Yij over an age-period array. No measures of
exposure are available. Initially, we will assume that the responses Yij are independent,
Poisson distributed over the age-period array where log mean log E(Yij) = μij satisfies
the age-period-cohort model. Theorem 4.1 shows how to parametrise μij in terms of the
freely varying parameter ξ. The Poisson likelihood is then

log L(ξ; Y ) =
∑
i,j

Yij log{E(Yij)} −
∑
i,j

E(Yij). (4.11)

The formula (4.2) implies that log{E(Yij)} = μij = X ′
ijξ, where

Xij = {1, i− I, j − 1, h(1, i), . . . , h(I − 2, i),

h(j, 3), . . . , h(j, J), h(k, 3), . . . , h(k,K)}′, (4.12)

and h(t, s) = max(t − s + 1, 0). Since ξ is freely varying the Poisson likelihood is a
regular exponential family with ξ as canonical parameter, see Barndorff-Nielsen (1978,
p. 116). The Poisson likelihood is therefore maximised by a Poisson regression of Yij on
Xij with a log link and no offset.

4.2.2 Multinomial sampling

In order to introduce a multinomial sampling scheme we rewrite the canonical parameter
ξ in terms of a mixed parametrisation of a mean value parameter and a part of the
canonical parameter, see Barndorff-Nielsen (1978, p. 121), McCullagh and Nelder (1999,
p. 210). This is done in terms of the aggregate mean τ and the frequencies πij of (4.3).
The Poisson likelihood (4.11) is rewritten by adding and subtracting Y·· log τ to get

log L(ξ; Y ) = (Y·· log τ) +
∑
i,j

Yij log πij . (4.13)

The first term is the Poisson likelihood for τ based on Y··, while the second term is the
multinomial likelihood for the frequencies πij based on the data array Y conditionally on
the sum Y··. Exponential family theory shows that the parameters of the two likelihoods
vary freely, that is τ on the one hand and πij on the other hand vary freely. Maximum
likelihood estimation of τ and πij can be done separately from the two likelihoods.

Inference will be conducted using a multinomial sampling scheme. That is, asymp-
totic theory will be based on a large value of the aggregate mean parameter τ . This
sampling scheme permits inference on the frequencies πij or, equivalently, on ξ

(2), which
are the p − 1 last elements of the canonical parameter ξ. The hypothesis that the
age-period-cohort structure does not depend on period is indeed of this form.

In the application we found it easier to estimate the parameters from the Poisson
likelihood (4.11) rather than (4.13). For the inference we then need to use the δ-method
to move from the asymptotic theory for the frequencies πij to an asymptotic theory for
ξ(2). The details are left to §A.2 in the appendix.
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4.2.3 Testing for absence of period effect

With the mesothelioma data it is of particular interest to test the absence of the period
effect. The age-period-cohort predictor (3.4) then reduces to the age-cohort predictor
(4.8). The canonical parameter is given by (4.10) while the design reduces to

XAC
ij = {1,−hAC(1, i), . . . ,−hAC(I − 1, i), hAC(k, 2), . . . , hAC(k,K)}′, (4.14)

where hAC(t, s) = 1(t≥s).
Explicit expressions for the maximum likelihood estimators can be established for

age-cohort arrays and also for triangular arrays. In the latter case the model is known
as a chain-ladder model, see Kuang, Nielsen and Nielsen (2009). For age-period arrays
it does not seem easy to find analytic expressions for the estimators.

The age-cohort model can be tested against the general age-period-cohort model
using a multinomial sampling scheme. The deviance is then asymptotically χ2 with
J − 2 degrees of freedom.

4.3 Forecasting

In the empirical analysis the data is organised in an age-period array, I say, of dimension
I×J . Genereally, it will be of interest to forecast h periods ahead. In the mesothelioma
context this simplifies since the youngest cohorts have not had much asbestos exposure.
It is then only of interest to extrapolate those cohorts which are included in the sample.
The forecast period can therefore be captured by the triangular array

J = {(i, j) : i = 1, . . . , I; j = J + 1, . . . , J + h; k = 1, . . . , K}, (4.15)

This is a subset of the rectangular set

K = {(i, j) : i = 1, . . . , I; j = J + 1, . . . , J + h; }, (4.16)

Forecasting on the set K are done through a bivariate generalisation of the methods
presented here, which is a complexity we will not need for the present mesothelioma
data. In the following we discuss four different aspects to forecasting: choice of out-of-
sample model, point forecasting, distribution forecasting and robust forecasts.

The first consideration regards the choice of out-of-sample model. The statistical
model has been fitted only to the data I. In this situation there are no signs of major
structural changes out of sample so the general idea is to seek to extrapolate the fitted
model.

The second consideration is how to construct point forecasts. Within the age-period-
cohort model the period parameter would have to be extrapolated to forecast over the set
J . This can be done by interpreting the estimates for the period parameter as data, fit an
autoregression, and use autoregressive time series forecast techniques. The identification
of the age-period-cohort model matters. In general, ad hoc identification will introduce
arbitrary effects in the forecasts. The theory developed in Kuang, Nielsen and Nielsen
(2008b) gives a necessary and sufficient condition for avoiding such arbitrariness. Some
details relevant to mesothelioma data are discussed in §A.3.3. If an age-cohort model
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is chosen there is no need for extrapolation over the set J so that point forecasting
simplifies considerably as discussed in §A.3.1.

The third consideration is distribution forecasting. In a Bayesian model as that of
Tan, Warren, Darnton and Hodgson (2010) this is done by simulation. In the presented
model asymptotic forecast error bands can be computed analytically using the δ-method.
Details are given in §A.3.2.

The fourth consideration is robustification of the forecasts. These are needed when
there appear to be structural shifts in the model at the forecast origin, that is for the
most recent periods in that data. In the time series literature there are two methods of
robustifying extrapolation methods: intercept corrections and working with differenced
data. Intercept corrections are used when the last observation appears to jump relatively
to the other observations, while differencing is used when there are more permanent
breaks in trend lines. Hendry and Nielsen (2007, §21) give a discussion in the context
of time series data. With the mesothelioma data the former, less dramatic, intercept
correction is useful. This will be discussed in §A.3.4.

5 Analysis of the mesothelioma data

Here we provide the full data analysis for the mesothelioma data described in §2.1 and
explain and derive in detail our conclusions advanced in §2.2. The steps in our data
analysis are outlined as follows: The specification of the age-period-cohort model is as-
sessed in §5.1. The parameter estimates for the age-period-cohort model are reported in
§5.2. A reduction of the model to an age-cohort specification is tested in §5.3. Forecasts
of the annual number of deaths are reported in §5.4. In §5.5 we perform a recursive fore-
cast analysis. Thereby the suggested forecasts can be compared with previous analyses
in the literature and we gain an insight into the variations that will arise as more data
become available in the future. Finally, the sensitivity of the forecasts with respect to
variations of the model and the data is analysed in §5.6.

5.1 Specification analysis

We start by fitting a general age-period-cohort model. Our first aim is to check that
the model is correctly specified. Table 5.1 reports the deviance of the age-period-cohort
model against a fully saturated model to be 2384.9 with a p-value of 0.852. Thus, we
cannot reject that the model is well-specified.

Model Deviance df p
APC 2384.9 2457 0.852
AC 2441.7 2496 0.778
AC vs. APC 56.8 39 0.033

Table 5.1: Deviance analysis of the age-period-cohort model.

As a complement to this analysis, Figure 5.1 gives a map of the standardized (Pois-
son) residuals defined by rij = (Yij − Ŷij)/

√
Ŷij. The standardised residuals are asymp-
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totically normal for large values of the expectation. Although this approximation is
not ideal for the oldest cohorts and the youngest age groups, it still serves to illustrate
whether there is any obvious pattern in the data that is not caught by the age-period-
cohort model. The residuals are coded on a grey scale according to their absolute value.
The small and large residuals appear to be scattered randomly without any obvious
pattern that could indicate misspecification.

Poisson residuals (APC−model), whole data

period

ag
e

25
35

45
55

65
75

85

1967 1977 1987 1997 2007

Figure 5.1: Map of standardised residuals rij . Colour codes: white: |rij| < 1, light-grey:
1 ≤ |rij| < 2, grey: 2 ≤ |rij| < 3, black: 3 ≤ |rij|.

5.2 Parameter estimates

Due to identification problem of the age-period-cohort model levels and the growth rates
of the age, period and cohort effects cannot be identified from the model. We refrain
from ad hoc identifications of these level and slope effects, since such identification
will potentially distort inferences and forecasts. Instead we focus on a presentation of
estimates of the canonical parameters.

The canonical parameter can be presented either in terms of double differences as
in (4.1) or in terms of double sums of double differences as in (A.1). Both versions are
presented in Figure 5.2. Panels (a, c, e) show the estimated double differences of age-,
period-, and cohort-effects, respectively. They can be interpreted as log odds ratios as
described in (4.4)–(4.6). We discuss their interpretation below. Panels (b, d, f) show
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the estimated double sums of double differences. We will use these to illustrate the
identification issue.
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Figure 5.2: Estimated effects in the APC model. Panels (a, c, e) show second differences.
Panels (b, d, f) show double sums of second differences.

The double differences shown in panels (a, c, e) are very volatile for this particular
data set. It will therefore be difficult to get intuition from these plots. The volatility
is quite possibly a small sample effect. Indeed, the sparsity of the observations for the
youngest age-groups and the youngest and oldest cohort-groups clearly shows up: The
graph of the age effects, Δ2αi, in panel (a) is very volatile for young ages. The cohort
effects, Δ2γk, in panel (e) suffer from a similar problem for youngest and the oldest
cohorts. In §5.6 it is evaluated to which extent this sparcity influences the results.

It would of course be interesting if some pattern could be found in these series of
log odds ratios. For instance, the age-related log odds ratios would have a particular
simple interpretation if all Δ2αis could be restricted to be equal. This in turn would
imply that the overall age effect would be quadratic. Later, in §5.3, we will test such
patterns on these coefficients. A similar inspection of the period effects in panel (c)
suggests that the double differences Δ2βj for the periods effects are close to white noise
so that the period effect may actually be negligible. This was the working hypothesis in
the dose-response analysis by Peto, Matthews, Hodgson and Jones (1995). Again this
will be discussed further in §5.3.

Double sums of the estimated second differences are shown in panels (b, d, f). First
of all, note that the age effect shown in (b) is not defined for the two oldest age groups,
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whereas in (d, f) the period and the cohort are not defined for the smallest two values of
the index. In panels (d, f) we also illustrate the effect of ad hoc identification. The slope
of the linear trends in the double sums of the age and the cohort effects are essentially
driven by the first few double differences. Ignoring the first few double differences
and starting the double cumulation later therefore gives quite a different appearance,
because different double differences generate the linear trends. This can be interpreted
as showing the effect of ad hoc identification. For instance in panel (d), the bottom curve
shows the effect of ad hoc identification by imposing that the two first age effects are
zero, β1 = β2 = 0. Similarly, the next curves show ad hoc identification by β6 = β7 = 0
and β21 = β22 = 0. Here, all curves are downward sloping. Repeating the exercise for
the cohorts reveals that the sign of the slope can easily change by ad hoc identification,
which illustrates the danger of the traditional ad hoc identification.

5.3 Hypotheses

We test the reduction of the age-period-cohort model to a simpler and more convenient
age-cohort model. This is line with the analysis of Peto, Matthews, Hodgson and Jones
(1995), although they applied an age-cohort model to mortality rates constructed using
a synthetic measure for exposure. The likelihood ratio or deviance test is defined in the
Appendix §A.2.

Table 5.1 shows that the deviance of the age-cohort model relative to the age-period-
cohort model is 56.8 with J − 2 = 39 degrees of freedom giving a p-value of 0.033. The
decision is therefore marginal so that the data are not sufficiently informative to tell
whether a period effect is needed or not. Parsimony is often useful when forecasting so
the restriction of no period effect will therefore be imposed.

The second set of hypotheses concerns the concavity of the age effect and the cohort
effect. If these effects were quadratic there would be scope for constructing a very
parsimoneous model. Indeed, the age effect would be quadratic if Δ2α3 = · · · = Δ2αI ,
which is linear hypothesis on the canonical parameter ξ. The relative deviance compared
with the unrestricted age-period-cohort model is 228 with I−2 = 63 degrees of freedom.
Similar, the hypothesis of quadratic cohort effects has relative deviance of 487 with
K − 2 = 103 degrees of freedom. In both cases the p-value is negligible which suggests
that these effects are more complicated than simple quadratic functions.

Figure 5.3 shows the estimates for the age-cohort model. Panels (a, c) show the
differences of age and cohort effects. Similarly to the log odds ratio interpretation of
the double difference these single differences are interpreted as log odds. The sparcity
for youngest age groups and for the youngest and oldest cohorts results in volatility as
before. Panel (a) shows that for older age groups the log odds are increasing with age.

Panels (b, d) show sums of the differences. In particular, the age effect appears
concave in panel (b). This concavity was also seen in Figure 5.2(b), although there it
was masked by the unidentifiable linear trend.

5.4 Forecasts from the age-cohort model

Here we describe our forecasting results from the preferred AC model. The first issue
is to decide the forecast horizon. The data is an age-period array of dimension I × J ,
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Figure 5.3: The estimated age and cohort effects using two parameterizations namely
the first order differences of the effects and the sums of these differences.

corresponding to ages 25–89 and periods 1967–2007. For the last period in the sample,
that is the year 2007, the cohorts are k = K−I+1, . . . , K, corresponding to the cohorts
1918–1982. The forecasts will be for the next h = 40 periods, until 2047, but only for
those cohorts that are actually in the sample giving a forecast index set J of the form
(4.15).

The considerable cohort effects in the data need to be taken into account. The
sample includes cohorts until 1982. The number of observations are sparse for the most
recent of these cohorts, 1967–1982 say, for two reasons. First, these cohort groups are
too young in the sample to have generated many observations as mesothelioma seems
to have a long latency. A consequence of this is that the estimates of the parameters
for the youngest cohorts will be very uncertain. Secondly, and more importantly, these
cohorts have largely been spared from asbestos exposure. Peto, Hodgson, Matthews
and Jones (1995) explain that the first Asbestos Regulation was introduced in the UK
in 1969. If this regulation has worked as intended the exposure to asbestos will have
been modest for these cohorts. It is therefore of interest to break down the forecasts by
cohort groups. The cut-off of 1966 is chosen because the 1967 cohort is the first cohort
at the end of the mesothelioma epidemic for which no deaths are recorded.

Figure 5.4 shows the first forecast results broken down by cohort groups. The dots
indicate the observed counts of mesothelioma deaths by period. The central lines are
point forecasts with distribution forecasts drawn around it. The top curve represents
forecasts of the total number of deaths among those cohorts that are born in 1966 and
before. The next curve includes cohorts until 1952 and the bottom curve cohorts until
1937. Forecasts of all cohort groups until 1982 are presented in Figure 5.5 and will be
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Figure 5.4: Forecasts of annual number of deaths based on full sample and decomposed
by cohort contribution.

discussed later. The forecasts indicate that the number of deaths has already peaked
for the oldest cohorts up to 1937. In contrast, the number of deaths for cohorts up to
1952 and 1966 will peak in the future.

The forecast confidence bands are 95% bands. Two bands are shown. The inner
bands are the forecast innovation error. The outer bands include a contribution from
the estimation error, that is s2i,J+h,est in (A.12). For the two bottom curves in Figure
5.4 the estimation error only makes a modest contribution to the forecast error and can
essentially be ignored. For the top curve in Figure 5.4 including cohorts until 1966 the
importance of the estimation error is seen to increase with the forecast horizon. At the
longest forecast horizons the youngest cohorts will be dominant, indeed the forecast for
2047 will only include cohorts 1958–1966. If all cohorts until 1982 are included this
effect will become extreme, as shown for the curve marked ‘1967–2007’ in Figure 5.5
below. At the peak in 2019, see Table 5.2, the contribution from the estimation error is
modest, but it increases rapidly for longer horizons.

5.5 Recursive analysis

Figure 5.5 shows the results from a recursive analysis with peak values summarized in
Table 5.2. The purpose of the recursive analysis is to be able to compare the results
with those of previous studies. The graph of the observations indicates that after 1991
the increase in mortality is reduced. This feature can have an large impact on forecast
models as discussed in §A.3.4 and should be taken into account in retrospective analysis.

The graph marked ‘1967–1991’ only uses the sample until 1991 for the estimation.
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Figure 5.5: Recursive forecasts and forecast of annual number of deaths. The forecast
marked with IC has been subject to an intercept correction

This is more or less the data available to Peto, Matthews, Hodgson and Jones (1995).
In line with their finding the peak is high, possible because the 1969 legislation has not
yet had an effect due to the long latency of mesothelioma.

The graph marked ‘1967–2001’ uses the sample until 2001 for the estimation. This is
more or less the data available to Hodgson, McElvenny, Darnton, Price and Peto (2005).
The forecast is much smaller in line with their finding. Thus, the difference in forecast
between those two earlier papers appears to be due mainly to the change in mortality
and not so much because of the changed method.

Likewise the graph marked ‘1967–2006’ uses the sample corresponding to that of Tan
and Warren (2009). It shows a further reduction of the peak in line with the finding of
Tan and Warren (2009), who produced a similar recursive analysis.

The graph marked ‘1967–2007’ is based on the full sample and is reported with
confidence bands. This has been discussed previously. The graph marked ‘1967–2007-
IC’ is similar, but has been subjected to intercept correction of the form (A.20). Thus
the difference between the two curves is a scaling factor of 2125/2220=0.96. It is seen
how the intercept correction joins up the data and the forecast in a smoother fashion.
The intercept correction is, however, relatively modest and stays within the innovation
forecast error bands. The choice between these two graphs will depend on whether the
recent drop in mortality is seen to be permanent or not.

Overall, the present analysis suggests that the peak will be slightly higher and slightly
later than the prediction from previous studies.
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sample end 1991 2001 2006 2007 2007-IC
peak 3313 2539 2275 2220 2125
peak-year 2021 2021 2020 2019 2019

Table 5.2: Peaks from recursive analysis. The forecast marked with IC has been subject
to an intercept correction.

5.6 Sensitivity analysis
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Figure 5.6: Sensitivity analysis: Forecasts of annual number of deaths for cohorts until
1966. Top curve uses an age-period-cohort model, the other curves use age-cohort
models. Three middle curves: are models based on the full sample and on samples
without age 25–34 and without cohorts 1967–1982. The bottom curve uses an intercept
correction.

Figure 5.6 shows how sensitive the results are to variations of the forecasting model.
Forecasts are done for cohorts until 1966 as in Figure 5.4. Five variations are considered.

The three curves in the middle nearly identical. One of these is the age-cohort
forecast from Figure 5.4. The other two are based on age-cohort analyses estimated on
reduced samples leaving out either ages 25–34 or cohorts 1967–1982. This shows that
even though the parameters are very poorly estimated for those age and cohort groups
this does not contaminate the results.

The bottom curve is based on a full sample age-cohort model. Following the discus-
sion in §5.5 the forecast is subjected to an intercept correction. Only cohorts until 1966
are forecasted as for the other graphs in this figure. We take this is as our preferred

20



forecast and this is the forecast reported in Figure 2.2.
The top curve is a full sample age-period-cohort forecast. It has the same shape as

the age-cohort forecasts, but seems less influenced by the drop in mortality in the years
2006–2007. Again, an intercept correction would bring the age-period-cohort forecast
in line with the age-cohort forecasts.

6 Conclusion

The usual approach to mortality analysis is to model the mortality rates. Mesothelioma
mortality is complicated to model in this way because no reliable measure for the ex-
posure exists. It has been argued that in so far as the interest focuses on predicting
overall mortality then the problem can be analyzed using a log-linear model with an
age-period-cohort structure, but no offset.

In order to carry this out some methodological contributions have been made. First,
the identification problem of age-period-cohort models has been analyzed for age-period
arrays. Secondly, it has been shown how to conduct inference using a multinomial
sampling scheme. Thirdly, it has been discussed how to make point forecasts when
the period effect has to be extrapolated. These contributions are relatively easy to
implement using for instance R which has a routine for generalized linear modelling.
The fourth contribution is the discussion of distribution forecasts. This is slightly more
complicated to compute.

In the empirical analysis it was found that mesothelioma mortality is expected to
peak with about 2094 deaths in 2018, which is slightly worse and slightly later than
the predictions of previous studies. Various sensitivity and robustness analyses were
carried out. Based on these considerations we find that the most appropriate forecast is
to apply an age-cohort model and use this to forecast mortality for cohorts earlier than
1967 using an intercept correction. This is what was reported in Figure 2.2.

A Details of the mathematical analysis.

A.1 Identification

Here, we prove Theorem 4.1. Corollary 2 of Kuang, Nielsen and Nielsen (2008a) shows
that the parameter ξ in (4.1) uniquely identifies the predictor μij for an age-period data
array. It is therefore left to show the formula (4.2).

Rewrite βj and γk using telescopic sums of the form βj = β1 +
∑j

t=2Δβt and Δβt =
Δβ2 +

∑t
s=3Δ

2βs, with the convention that empty sums are zero, to get

βj = β1 + (j − 1)Δβ2 +

j∑
t=3

t∑
s=3

Δ2βs,

γk = γ1 + (k − 1)Δγ2 +

k∑
t=3

t∑
s=3

Δ2γs.
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For the age effect use αi = αI −
∑I

t=i+1Δαt while Δαt = ΔαI −
∑I

s=t+1Δ
2αs so that

αi = αI − (I − i)ΔαI +
I−2∑
t=i

I−2∑
s=t

Δ2αs+2.

Substitute these expressions into (3.4) noting that k = I − i + j while μI1 − μI−1,1 =
ΔαI −Δγ2 and μI2 − μI1 = Δβ2 +Δγ2 to get that

μij = μI1 + (i− I)(μI1 − μI−1,1) + (j − 1)(μI2 − μI1)

+
I−2∑
t=i

I−2∑
s=t

Δ2αs+2 +

j∑
t=3

t∑
s=3

Δ2βs +
k∑

t=3

t∑
s=3

Δ2γs,

which is the desired formula (4.2). This concludes the proof of Theorem 4.1.
An alternative parametrisation in terms of double sums of double differences arises

as follows. The formula (4.2) implies that μ = X ′
ijξ, where ξ and Xij are given in (4.1)

and (4.12). Any one-one mapping of ξ will also identify the likelihood. In practice it
may be convenient to work directly with the double sums of the double differences, so
that μij = X̆ ′

i,j ξ̆, where

ξ̆ = (μI1, μI1 − μI−1,1, μI2 − μI1,

I−2∑
t=3

I−2∑
s=t

Δ2αs+2, . . . ,

I−2∑
t=I−2

I−2∑
s=t

Δ2αs+2,

3∑
t=3

t∑
s=3

Δ2βs, . . . ,
J∑

t=3

t∑
s=3

Δ2βs,
3∑

t=3

t∑
s=3

Δ2γs, . . . ,
K∑
t=3

t∑
s=3

Δ2γs)
′, (A.1)

and X̆ is defined by replacing the function h(t, s) with h̆(t, s) = 1(t=s) in (4.12).

A.2 Inference using multinomial sampling

An asymptotic distribution theory for the estimator ξ̂(2) can be established from the
multinomial sampling scheme. Note first that

(
∂

∂ξ(2)
πij)

′ = πijH
(2)
ij with H

(2)
ij = X

(2)
ij −

∑
s,t∈I

πstX
(2)
st . (A.2)

The information for the multinomial likelihood is then

i(ξ(2)) = − ∂2

∂ξ(2)′∂ξ(2)
log L(ξ(2); Y |Y··) = τ̂ i1(ξ

(2)),

where the information about one observation is

i1(ξ
(2)) =

∑
i,j

πijH
(2)
ij X

(2)′
ij =

∑
i,j

πijH
(2)
ij H

(2)′
ij . (A.3)

Using the δ-method the estimated frequencies are seen to satisfy

τ 1/2(π̂ij − πij)
D→ N[0, π2

ijH
(2)′
ij {i1(ξ(2))}−1H

(2)
ij ]. (A.4)
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The goodness-of-fit is assessed by computing the deviance to the saturated model

D(ξ̂; Y ) = 2[
∑
i,j

{Yij log(Yij)− Yij} −
∑
i,j

{YijX ′
ij ξ̂ − exp(X ′

ij ξ̂)}].

It holds for Y·· → ∞ that

D(ξ̂; Y )
D→ χ2

IJ−p. (A.5)

Hypotheses on ξ(2) can likewise be tested using χ2 inference. The hypothesis of absence
of period effect is of particular interest and is discussed in the following.

In §A.1 it was suggested that the canonical parameter could either be chosen as ξ
from (4.1) or as ξ̆ from (A.1), which are equivalent parametrisations. In an empirical
study both can be used depending on which aspect of the parameters it is desirable to
illustrate. The asymptotic analysis discussed here carries over from ξ to ξ̆ in a straight
forward way because the corresponding design matrices share the first coordinate which
is used to define τ .

A.3 Forecasting

A.3.1 Point forecasting from an age-cohort model

Initially we consider point forecasting over the set J , see (4.15), using an age-cohort

model. In this case there is no need to extrapolate the estimate ξ̂. Assume that Yi,J+h

is Poisson{exp(μi,J+h)}-distributed with a log predictor that can be estimated by

μ̃i,J+h = X̃AC′
i,J+hξ̂

AC, (A.6)

where ξ̂AC estimates ξAC defined in (4.10) and the design (4.14) is extended so that

X̃AC
i,J+h = {1,−hAC(1, i), . . . ,−hAC(I − 1, i), hAC(k, 2), . . . , hAC(k,K)}′. (A.7)

The multinomial parameter is extrapolated by

π̃i,J+h = τ̂−1 exp(μ̃i,J+h), (A.8)

which is positive, but not necessarily bounded by one. The point forecast of the number
of deaths is therefore

Ỹ point
i,J+h = exp(μ̃i,J+h) = τ̂ π̃i,J+h. (A.9)

A.3.2 Distribution forecasting for an age-cohort model

To construct a distribution forecast the distribution of the difference between the even-
tual outcome Yij and the point forecast Ỹ point

i,J+h has to be assessed using the multinomial
sampling scheme. Therefore write

Yi,J+h − Ỹ point
i,J+h = (Yi,J+h − τπi,J+h)− τ(π̃i,J+h − πi,J+h).

Normalise by the diverging parameter τ to get that

τ−1/2(Yi,J+h − Ỹ point
i,J+h) = τ−1/2(Yi,J+h − τπi,J+h)− τ 1/2(π̃i,J+h − πi,J+h). (A.10)
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There are three ingredients to the asymptotic analysis.
The first term in (A.10) is the Poisson distributed innovation error. For large τ then

τ−1/2(Yi,J+h − τπi,J+h)
D→ N(0, πi,J+h).

Replace the variance πi,J+h by π̃i,J+h calculated in (A.8), noting that the estimation
uncertainty is of order τ−1/2 and can be ignored for practical purposes.

The second term in (A.10) is the estimation error. The estimation uncertainty for
π̃ij when i, j ∈ I is given in (A.4). Similarly, for i, J + h ∈ J it holds

τ 1/2(π̃i,J+h − πi,J+h)
D→ N[0, π2

i,J+hH
(2)′
i,J+h{i1(ξ(2))}−1H

(2)
i,J+h].

Thirdly, the innovation error relating to the index set J and the estimation error
relating to the index set I are independent due to the independence assumption.

The overall distribution forecast is then

Ỹ distribution
i,J+h = τ̂ π̃i,J+h + N(0, s2i,J+h), (A.11)

s2i,J+h = τ̂ π̃i,J+h(1 + s2i,J+h,est), (A.12)

s2i,J+h,est = π̃i,J+hH
(2)′
i,J+h{i1(ξ̂(2))}−1H

(2)
i,J+h. (A.13)

Here τ̂ = Y·· is the total number of deaths, π̃i,J+h is the point forecast in (A.8), H
(2)
ij is

defined in (A.2), and the information i1(ξ̂
(2)) is computed as in (A.3).

The forecasts can be aggregated over, for instance, age i as follows. The aggregate
point forecasts is Ỹ point

·,J+h =
∑I

i=h+1 Ỹ
point
i,J+h. The innovation errors are independent accross

cells while the estimation errors are dependent accross cells. It follows that

Ỹ point
·,J+h = τ̂

I∑
i=h+1

π̃i,J+h (A.14)

Ỹ distribution
·,J+h = Ỹ point

·,J+h + N(0, s2·,J+h), (A.15)

s2·,J+h = τ̂
I∑

i=h+1

π̃i,J+h + τ̂
I∑

s=h+1

I∑
t=h+1

π̃s,J+hH
(2)′
s,J+hi

−1
1 H

(2)
t,J+hπ̃t,J+h. (A.16)

Distribution forecasting was also considered by Elkum (2005) in the context of an ad
hoc identified age-period model. That analysis does not seem to distinguish errors from
estimation and forecast innovations.

A.3.3 Point forecasting from an age-period-cohort model

When forecasting from the age-period-cohort model it is necessary to extrapolate the
period effect. When extrapolating it is often tempting to ad hoc identify the level and
slope of the period effect. Such an approach has to be done since Kuang, Nielsen and
Nielsen (2008b) show that adverse effects from ad hoc identification are avoided if and
only if the extrapolation is done directly on the canonical parameter.

For the mesothelioma data mortality the period effect evolves in a relatively smooth
way, indeed, it is not significant. Then a simple linear trend extrapolation suffices.
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Form a time series x3, . . . , xJ by xj =
∑j

t=3

∑t
s=3Δ

2βs using the canonical parameter ξ̆
of (A.1). Fit the linear regression

xj = νc + ν�j + εj for j = 3, . . . , J (A.17)

by least squares. This gives the extrapolation

x̃J+h = ν̂c + ν̂�(J + h), (A.18)

which is constructed in terms of j = (J − 2)−1
∑J

j=3 j and x = (J − 2)−1
∑J

j=3 xj and
the estimators

ν̂� =

∑J
j=3 xj(j − j)∑J
j=3(j − j)2

, ν̂c = x− ν̂�j.

To get the overall point forecast of the predictor insert this in (4.2) to get

μ̃i,J+h = μ̂I1 − (I − i)(μ̂I1 − μ̂I−1,1) + (j − 1)(μ̂I2 − μ̂I1)

+
I−2∑
t=i

I−2∑
s=t

Δ2α̂s+2 + x̃J+h +
k∑

t=3

t∑
s=3

Δ2γ̂s. (A.19)

The extrapolation method (A.17) is linear trend preserving. Therefore it could also
be applied to ad hoc identified period effects. The ad hoc identified period effect is of
the form xadhocj = xj + b+ dj for j = 3, . . . , J and xadhocj = b + dj for j = 1, 2, for some
arbitrarily chosen real values b, d. Applying the above method to xadhocj for j = 3, . . . , J
rather than to xj will give exactly the same forecast for the predictor μi,J+h.

A subtle point is that the linear trend forecast could also be applied to xadhocj for
j = 1, . . . , J . This forecast is, however, different. It is linear trend preserving so the
difference is not arising from arbitrariness of the ad hoc identification, but rather arising
from the different time series properties of the two extrapolation methods. Graphing the
time series xadhocj for j = 1, . . . , J will in general reveal that the first two observations
stand out from the rest of the series. The only exception is when the ad hoc identification
is chosen so as to avoid this, but this is rarely the case. From a time series view point
a fit to the entire series j = 1, . . . , J would therefore not seem appropriate.

A.3.4 Robust point forecasting

When forecasting one is often faced with the problem that the model for the data does
not quite extend to the forecast period. Small or large jumps in the data at the forecast
origin can result in forecast failure. The lesson from the time series literature is that the
main cause of forecast failure is jumps in the mean. We discuss two ways of robustifying
the extrapolation: intercept corrections and working with differenced data, see also
Hendry and Nielsen (2007, §21) for a discussion in the context of time series data.

For the mesothelioma data an intercept corrections appears sensible since the last
observations appear to jump relatively to the previous one without an indication of a
permanent shift in the trend. The idea is simply to add the last in-sample residual to
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the standard forecasts outlined above. Since the mean is parametrised on a log scale
this is done as follows. Recall the aggregated point forecast Ỹ point

·,J+h from (A.14) and note

that the in-sample predictor for Y·,J is Ŷ·,J =
∑I

i=1 τ̂ π̂iJ . The intercept correction is
then given by

Ỹ point,IC
·,J+h = Ỹ point

·,J+h

Y·,J
Ŷ·,J

= τ̂
I∑

i=h+1

π̃i,J+h

∑I
i=1 YiJ∑I
i=1 τ̂ π̂iJ

. (A.20)

For the age-period-cohort model another possibility for intercept correction arises in
relation to the extrapolation of the period effect. Working with the linear extrapolation
method of (A.18) the idea is to add the residual ε̂J = xJ − ν̂c − ν̂� to the forecast x̃J+h

giving the intercept corrected extrapolation

x̃ICJ+h = x̃J+h + ε̂J = xJ + ν̂�h. (A.21)

This is then inserted in (A.19) instead of x̃J+h from (A.18).
When there are more abrubt changes in the time series robust forecasts near the

forecast origin it can be important to robustify against this by working with the dif-
ferenced data. Such an abrubt change is seen in the data albeit in the middle of the
sample. Figure 2.1(a) shows the of number of deaths by period. It is seen that there is
a tendency to exponential growth until about 1987, after which the growth slows down.
This could very well be a result of the asbestos legislation introduced from 1969 and
onwards. If only data until about 1991 were available this issue would be critical for
forecasting as illustrated in §5.5. With that restricted set of data the youngest cohorts
would have been exposed to asbestos, but due to the long latency of mesothelioma the
cohort effects would be poorly estimated. Kuang, Nielsen and Nielsen (2011) discuss
robustification of an age-period-cohort applied to an age-cohort array of data, whereas
a general time series discussion is given in Clements and Hendry (1999) or Hendry and
Nielsen (2007, §21). Those methods could have proved helpful if only data until 1991
had been available.
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