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Abstract: In recent years it has become common to use stated preference (SP) discrete choice 

experiments (DCEs) to study and/or predict consumer demand. SP is particularly useful when 

revealed preference (RP) data is unobtainable or uninformative (e.g., to predict demand for a 

new product with an attribute not present in existing products, to value non-traded goods). The 

increasing use of SP data has led to a growing body of research that compares SP vs. RP demand 

predictions (in contexts when both are available). The present paper goes further by comparing 

the structure of consumer taste heterogeneity in SP vs. RP data. Our results suggest the nature of 

taste heterogeneity is very different: In SP data consumers are much more likely to exhibit either 

(i) lexicographic preferences, or (ii) “random” choice behavior. And many consumers appear to 

be fairly insensitive to price. This suggests that caution should be applied before using SP to 

answer questions about the distribution of taste heterogeneity in actual markets.  
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I. Introduction 

In recent years it has become increasingly common to use stated preference (SP) discrete 

choice experiments (DCEs) to study consumer demand; especially in contexts where revealed 

preference (RP) data is unobtainable or uninformative. Leading examples are to predict demand 

for a new product with an attribute that is not present in existing products, to predict the effect of 

changing an attribute that does not vary in the data,
1
 or to value non-traded (public) goods.  

Given this trend, Arrow et al (1993) argue for the importance of validating SP by 

comparing demand predictions from SP vs. RP data (in contexts when both are available). There 

is a growing body of research in this area. For quasi-public goods, Carson et al. (1996) 

conducted a meta-analysis of 83 studies that contain estimates from both stated-preference 

methodologies and RP data. They found that RP and SP results were generally similar. For 

private goods, however, the results are mixed (see Carson et al, 1994). However, Louviere and 

Kocur (1983) and Horowitz and Louviere (1990) found that aggregate market share predictions 

from RP and SP data were similar for public transport options and college choices, respectively. 

In cases where both SP and RP data are available, several authors have advocated pooling 

to estimate “richer” choice models (see, e.g., Swait and Andrews (2003), Morikawa, Ben-Akiva 

and McFadden (2002)). If one cannot reject the hypothesis that parameters are equal across the 

RP and SP data generating processes, pooling increases efficiency. Also, if the SP data contain 

variation along dimensions that are fixed in the RP data, additional parameters can be identified. 

Early papers exploiting these ideas were Ben-Akiva and Morikawa (1990), Hensher and Bradley 

(1993) and Swait and Louviere (1993).
2
 Some more recent work that combines RP and SP data 

includes Brownstone et al (2000), who estimate demand for alternative-fuel vehicles, Swait and 

Andrews (2003), who estimate demand for laundry detergent, Small, Winston and Yan (2005, 

2006), who model commuter demand for express vs. regular traffic lanes, and Earnhart (2002) 

who studies housing choice. As Fiebig et al (2010) note, many studies cannot reject that attribute 

weights in logit models estimated on RP and SP data are equal, up to a common scale parameter. 

This implies that mean preference parameters are often comparable across RP and SP data. 

                                                 
1
 For example, Goett (1998) studies consumer choice of electricity suppliers. SP data allows him to consider pricing 

plans that did not previously exist. Brooks and Lusk (2010) study demand for milk from cloned cows. Other well-

known applications are Hensher (1994, 2001) and Hensher and Greene (2003), who use SP to model travel demand, 

and Revelt and Train (1998), who study demand for energy efficient appliances. A few more recent applications 

include Hall et al (2006) on demand for medical testing, Hjelmgren and Anell (2007) on demand for modes of 

primary health care in Sweden, and Berninger et al. (2010) on demand for a sustainable forest management program.  
2
 See Carson et al (1994) or Keane (1997a) for more detailed discussion of early studies combining SP and RP data. 
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It is notable that prior work comparing results from RP vs. SP choice data has generally 

compared aggregate demand predictions (e.g., predicted market shares), or tested equality (up to 

scale) of mean utility weight vectors (estimated on RP vs. SP data). Yet, in many applications 

one is interested in knowing the whole distribution of consumer preference weights. The reasons 

are obvious: e.g., optimal pricing, new product design and consumer welfare calculations depend 

on the distribution of preferences, not just the mean preference vector. 

To fill this gap, the present paper compares the structure of consumer taste heterogeneity 

in SP vs. RP data. We do this in two steps: First, we compare the performance of several of the 

most popular models of consumer taste heterogeneity on both RP and SP data. We determine 

which of these several models provides the best fit to the structure of taste heterogeneity in each 

type of data. The set of models we consider is described in detail in Section II. Second, using the 

best fitting models, we compare the structure of heterogeneity as inferred from RP vs. SP data. 

To our knowledge, there is no prior work that attempts to do this directly.  

It is important to understand why we estimate many parametric models: Given the high 

dimensional nature of consumer choice data (i.e., many choices/attributes) flexible parametric 

models are the only feasible way to draw inferences about heterogeneity distributions. Thus, if 

we wish to compare heterogeneity distributions in RP vs. SP data, finding and comparing the 

best fitting parametric choice models for each type of data is the only feasible approach.   

To compare patterns of heterogeneity in RP vs. SP data, we need SP and RP datasets that 

are similar in three ways. First, they should involve a similar product or service. Second, the set 

of attributes observed in each dataset should be fairly comparable, and the choice task should be 

of similar complexity.
3
 Third, we need multiple observations on each consumer in both the SP 

and RP data. This lets us form accurate posterior distributions of individual level parameters 

(which we use to determine the shape of preference heterogeneity distributions in each dataset). 

After assessing many available datasets, we feel the best opportunity to compare RP and 

SP data involves data on pizza choices. On the RP side, Information Resources Inc. (IRI), a large 

market research firm, began collecting household level data on supermarket purchases of frozen 

pizza in 2001. We use the data from 2001-3 for estimation of RP choice models. On the SP side, 

Louviere et al (2008) collected SP data on preferences for pizza delivery services. The data was 

                                                 
3
 For example, say the SP task is a simple choice between two products with only a few attributes. It is implausible 

that consumers’ processing of such a task is comparable to that of choosing among the highly differentiated products 

available in a grocery store. Clearly, the choice objects in the SP task should have several attributes as well.  
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collected through PureProfile, a major survey research firm in Australia.  

These data satisfy the three requirements listed above: (i) the products are comparable, 

(ii) the options are described by several attributes in each dataset, so the choice task is of 

comparable complexity, and (iii) in each dataset there are many choice occasions per respondent.  

One may ask if preferences inferred from choices of pizza delivery service vs. choices 

among types of pizza are comparable. We argue they are for two reasons: First, we adopt an 

attributes based view of utility as in Lancaster (1966). That is, goods are bundles of attributes, 

and utility is defined over attributes, rather than goods per se. Fortunately, in the SP data, 

delivery services are described as offering different types and qualities of pizza, at different 

prices. For example, one service might offer vegetarian or thick crust pizza while another might 

not. Thus, subjects can avail themselves of different pizza attributes (at different prices), by 

choosing different delivery services. This enables us to identify subjects’ willingness to pay for 

pizza attributes from delivery service choices, just as we can identify them from pizza choices.  

If goods have attributes in common, we can infer willingness to pay (WTP) for those 

attributes by studying demand for either good. The same logic is used in public or environmental 

economics to identify WTP for school quality or environmental amenities from home location 

choices. In our case the goods are far more similar. That is, in both the RP and SP data, the final 

good that generates utility is pizza. There is no direct demand for pizza delivery, only the derived 

demand for the final product. It is reasonable to assume that the incremental utilities consumers 

receive from pizza attributes are the same regardless of whether it was delivered or bought in a 

store. (Put it simply, why would WTP for sausage depend on whether a pizza is delivered?).        

Second, even absent Lancaster type assumptions, the marginal utility of consumption of 

the outside good should not vary across different inside goods (of similar cost) under standard 

economic assumptions. And the marginal utility of the outside good is given by the negative of 

the price coefficient (up to scale). Thus, the distribution of the price coefficient is comparable 

even for two different inside goods. We discuss this point in more detail in Section II.  

Nevertheless, we agree it would be ideal if our RP and SP data were identical, in terms of 

the choice set, attributes and population under study. This would make the estimates comparable 

under weaker economic assumptions. But it is important to note that RP and SP data will, by 

construction, never be identical. The two types of data are collected for different purposes, and 

are constructed in very different ways. We expand on this point in the data section (Section III).  
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A closely related point is that opportunities to compare RP and SP data are rare. Many 

household RP datasets are public. But SP data is usually collected for proprietary research.
4
 This 

limits the availability of SP data for comparison purposes. Thus, while our RP and SP data are 

not identical, we believe they are as similar as one is likely to find. Hence, they represent a good 

opportunity to compare the structure of heterogeneity in RP vs. SP data.  

Our results suggest that estimates of the distribution of tastes can diverge substantially 

between RP and SP data. In particular, individual consumers are more likely to exhibit “extreme” 

or lexicographic preferences in SP data (i.e., they base choices almost entirely on one or two 

attributes). Conversely, some subjects in SP experiments exhibit behavior that is close to 

“random,” in the sense that product attributes (including prices) have only small effects on their 

choices. These polar behavioral patterns are much less common in RP data. We will show that 

this difference in estimates cannot be explained by scale differences between the RP and SP data.  

Thus, while SP data may be informative about aggregate demand, considerable caution should be 

applied if using it to infer detailed aspects of the preference heterogeneity distribution.  

A finding that the heterogeneity distributions in SP data differ in important ways from 

those found in RP data may raise concern about the whole enterprise of using SP to elicit 

heterogeneity (or willingness to pay) distributions. At minimum, it might suggest that improved 

experimental designs are needed, so SP provides a better representation of the market choice 

task. Of course, advocates of SP would argue the reverse – i.e., that experimental control of 

attributes makes SP results more reliable by avoiding collinearity and endogeneity. But 

regardless of whether a researcher has more faith in RP or SP data, it is important to know which 

of the many available models of heterogeneity provides the best fit to each type of data. 

 The outline of the paper is as follows: Section II describes the models of consumer taste 

heterogeneity that we consider, while Section III describes the RP and SP data sets that we use. 

In Section IV we present our main empirical results, and evaluate which models of heterogeneity 

provide the best fit in RP vs. SP data. Section V assesses how patterns of consumer behavior 

differ in the RP vs. SP data. This enables us to determine why different models fit better in 

different cases (in terms of which behavioral patterns are most prevalent in each dataset, and 

which model(s) can best capture those patterns). Section VI concludes.  

                                                 
4
 We have access to proprietary SP data on medical tests, cell phones, holiday packages, charge cards, etc., along 

with the pizza delivery data we use here. But none of the other products had comparable RP datasets available.  
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II. Alternative Models of Heterogeneity in Consumer Choice Behavior 

We first discuss some general features of discrete choice demand models for frequently 

purchased consumer goods, and then turn to specific models. It is common to treat the good 

under study as an inside good, and to group all other goods into a composite outside commodity. 

The budget constraint is          where C is consumption of the outside good, I is income, 

dj is an indicator for purchase of discrete type/variety j of the inside good, and pj is its price. We 

have j=1,…J, where J is the size of the choice set. Price of the outside good is normalized to one. 

Frequently purchased consumer goods are relatively inexpensive, so it is common (and 

also sensible) to assume the marginal utility of the outside good is roughly constant over the 

range of consumption levels C generated by different levels of spending on the inside good. This 

implies the indirect utility function (conditional on purchase of the inside good) is linear in C 

over that range. Let  ( |    ) be the indirect utility conditional on purchase of inside good j. 

Then we have  ( |    )   ( )  (  )(    ), where uc is the marginal utility of consumption 

of the outside good, which is assumed constant, and D(j) is the direct utility from inside good j.   

It is worth emphasizing that the price coefficient uc is invariant to the option j that is 

chosen. There have indeed been studies that allow uc to differ by j, but this is hard for economic 

theory to rationalize given inexpensive or similarly priced goods. Also, as Keane (1992) noted, 

an exclusion restriction is necessary to identify error correlations in a discrete choice model, and 

the restriction         , where α  is a constant, is usually the most natural way to achieve it. It 

is also worth emphasizing that it is similarity in price, not in the options per se, that implies a 

constant uc. For instance, such an assumption is regularly invoked both in models where agents 

chose among different brands of a consumer product (e.g., pizza), and in applications where they 

choose among very different goods, such as mode of transport (e.g., bus, train, car).
5
    

It is standard to assume the direct utility from the inside good D(j) depends on both 

observed attributes and a stochastic component unobserved by the econometrician. For instance, 

we may have  ( )          , where Aj is a vector of observed attributes of good j, with 

associated vector Γ of utility weights. The stochastic term    captures unobserved attributes, and 

the scalar (1/σ) captures their utility weight. Such a specification is consistent with the attributes 

based approach of Lancaster (1966) and the random utility model (RUM) of McFadden (1974). 

                                                 
5
 A point worth noting is that that price elasticity of demand for a variety j of a good is not determined by the price 

coefficient alone, but also by how similar the good is to other goods in the attribute space. 
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Note that choice is deterministic for consumers in the RUM, but random for an observer.  

Using this form for D(j), we have  ( |    )           (  )(    ). The scale of 

the unobserved attribute    is unobserved, so it is common to assume    is a standard random 

variable, often standard normal or standard extreme value. Thus its scale is subsumed in (1/σ).  

Two key features of discrete choice are: (1) only utility differences determine choice and 

(2) the scale of utility is not identified. Fact (1) implies income I is irrelevant, as it is the same for 

all choices. Fact (2) implies scale normalization is needed. This is usually achieved by setting the 

scale of the errors to one (i.e., setting σ=1), which is equivalent to multiplying  ( |    ) through 

by σ. So define  ( |  )    ( |      ). Then we have the normalized utility function: 

 

  ( |  )  (  )   (   )                               (1)  

 

Note that the attribute weights Γ and the price coefficient (   ) are only identified up to the 

scale factor σ.
6
 So the price coefficient will differ across goods, even with uc constant, due to 

scale differences. Similarly, even under a Lancaster-type assumption that consumers get utility 

from attributes rather than a good itself, common attribute coefficients will differ across goods 

due to differences in scale.
7
 But measures of willingness to pay for attributes, given by ratios of 

attribute coefficients to the price coefficient -Γ/uc, are scale invariant. This makes it possible to 

compare WTP measures for the same attribute obtained by studying demand for different goods.
8
         

With this background, we turn to specific choice models. To keep notation more compact 

we define xj = (Aj , pj) and β =           . We also introduce subscripts for person, n, and for 

time, or choice scenario, t. In RP data we often see multiple purchase occasions per person, while 

in SP we often have multiple experiments per subject. Both are captured by t. Thus, we write: 

 

                                                               (2)  

   

The multinomial logit (MNL) model of McFadden (1974) is obtained by assuming the εnjt are 

standard type I extreme value distributed (i.e., Gumbel), and iid across choices and over time. 

                                                 
6
 As we noted, the scale factor subsumes three things: the variability of the unobserved attributes, the scale of the 

unobserved attributes, and the utility weights on the unobserved attributes. It is positive without loss of generality. 
7
 For example, suppose utility weights on an attribute like sausage topping are the same whether a pizza is bought in 

a store or delivered. But suppose scale differs between the two goods, because delivery adds an extra unobserved 

service attribute. In this case common attribute coefficients will be equal up to scale between the two goods.    
8
 Of course, if D(j) is not linear in attributes then WTP may be harder to calculate, but invariance still holds.  
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MNL was the primary basis for analysis of multinomial choice for many years, largely due to its 

computational simplicity. In particular, MNL gives simple closed form expressions for choice 

probabilities of the form  (     )     (     )  ∑     (  
       ), where Xnt ≡ {xn1t,…,xnJt}.  

Unfortunately, the MNL assumptions of (i) homogeneous tastes for observed attributes, 

and (ii) an iid random component of utility, rule out some phenomena that are clearly present in 

that data, like strong “loyalty” to particular brands, or substitution patterns that imply some 

goods are more similar than others (in terms of unobserved attributes).  

In the past 25 years a number of alternative models that extend MNL to allow for taste 

heterogeneity have been proposed. We examine several of the most important models here. All 

models we consider can be written in the following form: The utility to person n from choosing 

alternative j on purchase occasion (or choice scenario) t is given by: 

 
                                                               (3)  

 
The only difference between (2) and (3) is that βn is a vector of person n specific coefficients.  

The model in (3), where the coefficient vector βn is heterogeneous in the population, is 

known as the mixed logit (MIXL) model. As noted by McFadden and Train (2000), given proper 

choice of the mixing distribution the MIXL family nests (or can approximate) all random utility 

models. For example, if βn is multivariate normal, and if the xnjt vector is specified to include 

alternative specific constants (ASCs), the MIXL model can approximate multinomial probit.
9
   

 It is worth commenting on interpretation of ASCs. If alternatives correspond to brands, 

we can rationalize ASCs in a Lancaster framework if we view “brand” as a product attribute, but 

this seems artificial. Preferably, we may assume brands have different mean levels of unobserved 

attributes. Under this interpretation, the random coefficients on the ASCs capture heterogeneity 

in tastes for the unobserved attributes of each brand. In RP data there are often many more 

varieties than brands. Then it is natural (and practical) to use brand intercepts rather than ASCs.  

In Section IV we will compare the fit of a range of different MIXL models to both RP 

and SP data. Of course, we cannot consider all possible MIXL models, so we limit ourselves to 

five that have been particularly important in the literature. The models are distinguished by 

different specifications of the mixing distribution (βn). We now describe these five models: 

                                                 
9
 Intuitively, if we scale up the normal βn vector, increasing both the means and variances of the normals, the type 1 

extreme value errors become irrelevant to choice, and we approach the probit model. This only works if xnjt includes 

a vector of ASCs, as the elements of the normal βn vector that multiply the ASCs play the role of the probit errors.       
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We begin by considering models consistent with the structure in (1), which we now 

rewrite to include heterogeneity in taste parameters, and data over time (n and t subscripts): 

 
             (    )   (     )                                                      (4)  

 
It is useful to define   

            so that βn =     
 . That is,   

  is an extended vector of 

attribute preference weights that also includes the marginal utility of consumption (i.e., the 

negative of the preference weight on the outside good). Then it is clear that (4) is a special case 

of (3), where βn has a structure implied by the attribute-based approach.  

It is clear from (4) that, in the attribute-based approach, heterogeneity in the βn vector 

may come from three sources. First is heterogeneity in the attribute weights Γ. Second is 

heterogeneity in the marginal utility of consumption, uc.
10

 Third is heterogeneity in the scale 

factor, σ, where, in the attribute-based view, (1/σ) is the utility weight on unobserved attributes. 

We now consider three popular models that can be derived from (4): 

1) First is the logit with normal mixing (N-MIXL), where nβ  is distributed multivariate 

normal N(0,Σ) in the population. This model can be obtained from (4) by assuming n==1 for 

all n, and that   
  is distributed multivariate normal. As we noted earlier, N-MIXL can 

approximate MNP if ASCs are included, and it is very popular in applications. Some papers 

constrain the price coefficient to be log-normal, to enforce the theoretical sign constraint.  

2) Next is the scale heterogeneity logit model (S-MNL) proposed in Fiebig et al (2010). 

This can be derived from (4) by assuming that all heterogeneity is in σ, while Γ and uc are 

homogeneous in the population. Thus, we have that βn =             , where n is a positive 

scalar that shifts the whole β vector up or down. The motivation for the S-MNL specification is 

work by Louviere et al (1999, 2002) and Meyer and Louviere (2007) that finds that much of the 

heterogeneity in SP data takes the form of scale heterogeneity. A key point of the present paper 

is to investigate whether scale heterogeneity is also important in RP data.   

We assume n  has a lognormal distribution, ln(n) ~ N( 2, ). This assures n >0. We 

also normalize E(σn)=1 for identification. That is, we estimate only β and τ and calibrate   so 

that E(n)=1. Thus β is interpretable as the mean vector of the random preference weights βn.   

                                                 
10

 This may arise from differences in income/wealth, or unobserved heterogeneity in preferences. Income and wealth 

information is scarce in both RP and SP demand data, so the unobserved heterogeneity approach is usually adopted. 
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3A) Third is the “generalized multinomial logit” (G-MNL) model which was developed 

by Fiebig et al (2010). This model nests S-MNL and N-MIXL. Specifically, in (4) we assume σn 

is log-normal as in S-MNL, while the {Γn, -ucn} vector is multivariate normal as in N-MIXL. To 

obtain the N-MIXL special case, one sets the scale parameter n==1. To obtain the S-MNL 

special case one sets Trace(V(  
 ))=0, so the variance-covariance matrix of   

  is degenerate. 

It is useful to note how G-MNL restricts the general structure in equation (3). Say we 

define   
            so βn =     

 , and define   
   ̅    . Here,  ̅ is the mean parameter 

vector in the population, and ηn is the person n specific deviation from the mean (a N(0,Σ) 

random vector). In G-MNL, the coefficient vector βn takes the form      [ ̅    ], which is a 

log-normal times a normal random variable; that is, a continuous mixture of scaled normals. Of 

course, one may choose other distributions for n and n, but in any version of G-MNL we have 

that βn is the product of a (positive) scalar random variable and a vector random variable.   

We next consider models that are not consistent with the specialized structure in (4), but 

that are consistent with the more general structure in (3). Recall that (4) was derived from 

particular interpretations of Γ, uc and σ based on Lancaster’s attribute-based approach.
11

 But the 

model in (3) is “reduced-form” in the sense that it is agnostic about the sources of heterogeneity 

in the βn vector. Here we consider three popular models that can be derived from (3): 

3B) Fiebig et al (2010) considered an alternative version of the G-MNL model in which 

   [   ̅    ]. This differs from model #3 above in that the scale of the normal errors does 

not vary with that of the β vector. This model cannot be rationalized by the attribute-based 

approach. That is, if (1/σ) represents tastes for the unobserved attributes ε, then scaling by σ 

should affect the whole of the   
              ̅      vector, not just the mean vector  ̅. 

Nevertheless, this model is perfectly plausible as a stochastic specification in (3). But it is 

important to keep in mind that it is agnostic about the source of scale heterogeneity.    

Feibig et al (2010) also noted that the two versions of G-MNL can be nested in a single 

model if we write    [   ̅      (   )    ]. Here γ
 
 is a parameter that determines how 

scale affects ηn. For instance, if  = 1 then ][ nnn   and the scale of the normal errors does 

not vary with that of the β vector. But if  = 0 then ][ nnnn   and the normal errors are 

scaled proportionately to the scale of the β vector. 

                                                 
11

 In particular, the structure in (4) implies that variation in σn must affect the whole   
            vector. 
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4) Next is the latent class (LC) model. This assumes there are S discrete segments of 

consumers, s=1,…,S. Each segment has its own β vector (βs), but there is no heterogeneity within 

segments. That is, snβ sn   . Segments are latent and S is not known a priori. In our 

empirical work we choose the number of segments to maximize the Bayes information criterion 

(BIC). The LC model may be consistent with the structure in (4) under the assumption that 

n==1 and there are a finite number of   
  vectors in the population. In principle, we could also 

let n take on a finite number of values, so that   ( )  ( )    ( )  ( )
 , where s(σ) indexes the 

discrete σ segments and s(β) indexes the discrete βn vectors. However, as these restrictions on the 

discrete βn vectors are not imposed in estimation, it is unlikely they will hold in practice.   

 5) The fifth and final model we consider is the “mixed-mixed-logit” or MM-MNL model. 

This generalizes N-MIXL by specifying βn in (3) as a discrete mixture-of-multivariate normals. 

The motivation for this model is that a mixture-of-normals provides a very flexible heterogeneity 

distribution. Ferguson (1973) shows the mixture-of-normals can approximate any heterogeneity 

distribution arbitrarily well, and Geweke and Keane (1999, 2001, 2007) show that a small 

number of normals can approximate even highly non-normal distributions quite well in practice. 

Also, MM-MNL has been shown to fit choice behavior better than N-MIXL in some recent 

studies (Rossi, Allenby and McCulloch (2005), Burda, Harding and Hausman (2008)). 

As a mixture-of-normals can approximate any distribution, it can obviously generate the 

special structure in (4), but it may generate more general structures as well. Note that G-MNL 

and MM-MNL are related, as G-MNL assumes βn is a continuous mixture of scaled normals, 

while MM-MNL assumes it is a discrete mixture-of-normals.  

Keane and Wasi (2012a) compare the performance of these five models on data from ten 

SP choice experiments. The data cover a wide range of products such as medical tests, cell 

phones, pizza delivery services, holiday packages and charge cards. They find that MM-MNL 

and/or G-MNL fit better than N-MIXL in 8 of 10 datasets. The reason for the strong performance 

of these models is they capture two common behaviors of subjects in SP data: (i) lexicographic 

or “extreme” behavior and (ii) nearly “random” behavior. By this we mean: (i) some subjects 

base choices on just on one or two attributes, and (ii) some subjects are little influenced by 

product attributes. The more restrictive N-MIXL model has difficulty generating these patterns. 

Of course, there is no a priori reason to think such behaviors are more common in SP or 

RP data. When choosing in a “real” market, we might expect consumers to weigh attributes more 
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carefully, and follow something closer to a compensatory utility rule. On the other hand, real 

market choice contexts tend to be more complex than SP experiments (e.g., many more options 

are available). This may cause people to use of simplifying heuristics (like lexicographic rules), 

or even lead to fairly random choice behavior for inexpensive goods. Our work sheds light on 

these issues by examining the differences in choice behavior between the RP and SP contexts.  

 

III. The SP and RP Data Sets 

As we discussed in Section I, our best opportunity to compare RP and SP choice behavior 

is with data on pizza choices. On the RP side, we use data on household purchases of frozen 

pizza collected by IRI at a large store in Eau Claire, Wisconsin, from Jan. 2001-Dec. 2003. On 

the SP side, we use two pizza delivery service choice experiments previously studied in Louviere 

et al (2008). In both experiments, respondents are asked to choose between two generic Pizza 

delivery services (labeled A and B). The experiments differ in the number of attributes that 

characterize each choice (8 or 16), the number of choice occasions (16 or 32), and the number of 

respondents (178 or 328). We call the two datasets “Pizza A” and “Pizza B.” As we noted earlier, 

delivery services are described as offering different types of pizza (e.g., thick crust, vegetarian) 

at different prices. Thus, choice of service provides a way to choose different pizza attributes.  

In the RP data, transactions are observed at the Universal Product Code (UPC) level. 

There are over 400 UPCs. In part, this is because UPC codes change due to trivial changes in 

attributes. Thus, we group very similar UPCs into "types" of pizza. Types are differentiated by 

more significant attributes such as brand, topping and type of crust. But even then, there are 102 

types of pizza available sometime during the study period. (In any one week the number of types 

varies from 72 to 96). This large choice set size, typical of RP data, creates computational 

problems, which explains why the literature on UPC-level choice modeling is small. Fader and 

Hardie (1996) and Andrews and Manrai (1999) are classic works in this area.     

Two sample screens are applied: First, only panelists who IRI classifies as consistent 

reporters are included. We also require that sample members be regular frozen pizza consumers. 

Specifically, they must make 15 to 60 purchases in the 3 years. There are 129 panelists who meet 

our criteria. And the total number of shopping trips where frozen pizza is bought is 4,123.
12
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 On 50 percent of shopping trips people buy only one type of pizza. For trips where consumers buy K types, we 

treat each as a separate observation, but we take the geometric mean of the likelihood contributions (∏   ) 
   

. In 

the MNL case this is the same as weighting the log-likelihood contributions by 1/K.  Less than 2 percent of trips 

involve purchase of more than 4 types. For these trips, we randomly select 4 types to include in the analysis. 
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Of course, we also observe non-purchase trips, where panelists visit a store but do not 

buy frozen pizza. Pizza trips account for roughly 30% of all shopping trips. We will estimate 

models of demand for types of pizza conditional on frozen pizza purchase. That is, we do not 

model purchase timing decisions. This puts our RP and SP results on the same footing. 

In the RP data, the characteristics we use to predict utility from each type of pizza are 

brand (5 major brands plus “other”), topping (7 types), crust (3 types), if the pizza is micro-

waveable, price and if the pizza is on promotion (i.e., on feature or display).
13

  

Table 1 presents descriptive statistics for the RP data. Note that the five major brands 

cover 83% of total sales. The largest is Tombstone (26%) followed by Roma and Jacks (20% 

each). The small “other” brands make up 17%. Roma is the least expensive brand (average price 

$2.04 per pound) while Tombstone and Red Baron are the most expensive (around $3.00). It is 

interesting that average prices differ across the various types of pizza (e.g., the different 

toppings) in a way that differs by brand. Brands also differ considerably in their overall 

promotion intensity, and in how often they promote different pizza types. 

 In Section I we argued that, while our RP and SP datasets are not identical, they are as 

similar as one is likely to obtain. We argued that RP and SP data will, by construction, never be 

identical, because they are collected for different purposes, and are constructed in very different 

ways. We conclude this section by giving some examples to illustrate this point:    

 One of the best attempts to obtain similar SP and RP data is Swait and Andrews (2003). 

They use IRI scanner data on liquid detergent purchases by Chicago households over 112 weeks 

in 1995-7. Then, in October 2000, they mailed a liquid detergent SP choice task to 2000 Chicago 

households (roughly 400 responded). They use these data to estimate N-MIXL models and test 

whether preference weights for common attributes are equal across the RP and SP data. While 

Swait and Andrews went to great lengths to obtain similar data, several differences are notable: 

First, in the actual market there are 84 choice options, while the SP data contain only 13 

options. This smaller choice set size is almost inevitable – i.e., SP data will almost always have 

relatively small choice sets, in order to make the choice task manageable for respondents.   

Second, as in our data, the attributes are not identical between the SP and RP data. The 

SP data contain additional attributes not observed in the RP data. This is not surprising, as the 

                                                 
13

 The price and promotion variables are constructed as follows: For the pizza a consumer buys, the recorded price 

and promotion information for that UPC is used. For non-chosen pizza types, the price and promotion variables are a 

weighted average over all UPCs within that type. The weights are the market shares for the whole sample period. 
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main raison de’etre for SP data is to assess demand for new attributes (not traded in markets). 

Conversely, the RP data contain display/feature information, which is hard to mimic in SP data.  

Third, both data sets were collected in Chicago, but the households differ. The process of 

self-selection into the data may also differ. Also, the SP data was collected a few years later.  

In summary, we see that, even in the best comparative studies, SP and RP data are rather 

different.
14

 Furthermore, to put any data limitations in context, note that ours is the first study to 

compare heterogeneity in RP vs. SP data, not just mean utility weights or aggregate predictions. 

 
IV. Empirical Results 

 In Sections IV.A and IV.B we compare choice models estimated on SP and RP data. To 

estimate N-MIXL, G-MNL, S-MNL and MM-MNL we use simulated maximum likelihood with 

500 draws. Standard errors are calculated using 5000 draws. We compare fit of the alternative 

models of heterogeneity using the Bayes Information Criterion, BIC = –2LL + k∙ln(N), where LL 

is the log-likelihood and the second term is the penalty for parameters (k).  

IV.A. Stated Preference Choice Experiments 

IV.A.1. The Pizza A Data Set (A Relatively Simple Choice Experiment) 

Table 2 presents estimation results for the Pizza A dataset, for each of the six models 

discussed in Section II: MNL, S-MNL, N-MIXL, G-MNL, LC and MM-MNL. The simple MNL 

model generates reasonable estimates: the price coefficient is negative, while consumers have a 

strong preference for fresh ingredients and hot delivery. Other attributes are less important, 

although (quick) delivery time and size options are significant. (Note: We treat all attributes as 

exogenous, given that they are experimentally controlled).  

In the next column we report the S-MNL model. This differs from MNL only in that it 

adds the τ parameter, which measures the degree of heterogeneity in the scale parameter σn. Note 

that τ is large (1.69) and highly significant. Thus, compared to the mean of β, the 90
th

 (10
th

) 
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 Another attempt to obtain similar SP and RP data is Brownstone et al (2000), who estimated auto demand models. 

The SP choice sets had six hypothetical vehicles (3 cars, 3 trucks). Several months later, respondents were asked 

about actual vehicle purchases. The RP choice set contained 689 vehicle types. Notably, not only was the SP choice 

set much smaller, but it was designed so most (or all) of the 6 options were alternative fuel vehicles (as opposed to 

conventional gasoline vehicles). Thus, the choice objects are quite different in the two datasets. Finally, the RP data 

had only one choice occasion per household, so it would not be useful for our purpose of estimating heterogeneity. 

Another good example is Small, Winston and Yan (2005, 6). The RP data is on choice of free vs. express 

lanes on California SR 91. The SP data gave subjects a choice of regular vs. express lanes on a hypothetical highway 

with stated characteristics. This study is unusual in that choice set size is the same in the RP and SP data (possible 

because there are only 2 choices). But a hypothetical highway is clearly not the same thing as SR 91. Our point is 

that all studies comparing RP and SP data require us to accept some differences in the nature of the choice sets.    
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percentile βn is shifted up (down) by 174% (-95%). The log-likelihood improves from -1657 to   

-1581 when we go from MNL to S-MNL. Thus, there is clear evidence for scale heterogeneity. 

The next column reports results for the N-MIXL model. To conserve on space we report 

only the mean β vector and not the Var(β) matrix. We report an N-MIXL model with 

uncorrelated coefficients (i.e., a diagonal Var(β) matrix), as it achieves a better BIC value than 

the version with correlations. The log-likelihood improves from -1657 to -1403 in going from 

MNL to N-MIXL, which is larger than the improvement achieved by adding scale heterogeneity.   

Next we report the G-MNL model, which nests S-MNL and N-MIXL. (Again, we do not 

report the covariance parameters to conserve on space.) The G-MNL model achieves likelihood 

and BIC improvements over both S-MNL and N-MIXL. For instance, the log-likelihood 

improves from -1403 to -1372 when we go from N-MIXL to G-MNL, with addition of just the 

two parameters τ and γ. Thus, the G-MNL results suggest that both scale heterogeneity and the 

normally distributed random coefficients are important: 

The scale heterogeneity parameter τ is quantitatively large (1.80). This, combined with 

the normal shocks to βn, allows G-MNL to capture situations where: (i) some consumers have 

strong preferences for one or two attributes and care little about others, and (ii) some consumers 

place little weight on all attributes. The latter occurs for a draw of the scale parameter σn near 

zero. Notably, case (ii) is highly unlikely in the N-MIXL model, as the draws for all 8 elements 

of β must be near zero.
15

 As we will see below (see p. 13), the ability to capture both these types 

of behavior simultaneously is why G-MNL fits better than N-MIXL on these data. Finally, the 

parameter γ is essentially 0, suggesting that ][ nnnn   , so the normal errors are scaled 

proportionately to the scale of the β vector. This is consistent with the attributes based model (4). 

Note that the mean β vectors for the S-MNL, N-MIXL and G-MNL models have similar 

patterns to the MNL estimates. The coefficient on price is negative, those on fresh ingredients 

and hot delivery are strongly positive, and those on quick delivery and size options are 

moderately positive. However, the scale of the mean β vector increases as heterogeneity is added 

to the model. This is because, with the variance of the logistic errors held fixed, the variance of 

the composite errors
njnjn x   )( increases as heterogeneity is added. Thus, the β coefficients 

                                                 
15

 N-MIXL with a high positive correlation among elements of βn will not capture this pattern in general. Consider a 

correlation near one. Then, for each person n, each element of βn is shifted by a common factor times the standard 

deviation of that element. The common factor can only move the whole βn vector to near zero if standard deviations 

are proportional to means for each element of βn (which is a very special case).   
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must be larger for observed attributes to have the same effect on choice.
16

    

The next set of columns report estimates of the LC model. It identifies 4 segments. We 

report the βs vectors only for the three largest to save space. Segment #1 (36%) places great 

weight on fresh ingredients, segment #2 (32%) has rather modest utility weights on all attributes, 

and segment #3 (23%) places great weight on hot delivery. 

Finally, the far right columns report estimates of the MM-MNL model. The version 

preferred by BIC has two latent types, with a diagonal variance matrix of the βs vector for each 

type. Type 1, estimated as 57% of the population, cares primarily about price, freshness and hot 

delivery. In fact, the coefficients for type 1 are similar to the MNL estimates. Type 2 (43%) is 

quite interesting. It has very large mean coefficients on price, freshness, hot delivery and quick 

delivery, but also very large variances on these coefficients (not reported). Thus, the model can 

generate sets of consumers who place great weight on some or all of these attributes, as well as 

some consumers who place little weight on all of them. This is a feature that the MM-MNL 

model shares with G-MNL. The overall ranking of the six models by BIC is G-MNL (2886), 

MM-MNL (2919), N-MIXL (2933), LC (3115), S-MNL (3233) and MNL (3378). 

IV.A.2. The Pizza B Data Set (A More Complex Choice Experiment)           

Table 3 presents results for the Pizza B dataset. It is more complex than Pizza A because 

each option is characterized by more attributes (16 vs. 8). The number of choice occasions per 

person is also larger (32 vs. 16), as is the number of subjects (328 vs. 178). Given the large 

number of attributes, it is not surprising that the structure of heterogeneity is more complex in 

Pizza B. The LC model now identifies 6 segments, and the MM-MNL model identifies 3 types. 

In the MNL model, the price coefficient is very close to that in Pizza A (-0.17 vs.  -0.16). 

The new variable for free delivery is positive as expected (0.12). The most important attributes 

are again freshness and hot delivery, but the magnitude of their coefficients drops roughly in half 

from the Pizza A case. This seems to be a consequence of introducing several new attributes. 

People put small but significant weights on several of these, including crust type, size options, 

local store, baking method, vegetarian option, guaranteed delivery time, and variety.      

In the S-MNL and G-MNL models the τ parameters that govern the degree of scale 

heterogeneity are again large and highly significant (1.22 and 1.50, respectively). Again, G-MNL 
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 See Keane (1997b) for an alternative parameterization where the scale of the composite errors are held fixed while 

the fraction of the error variance due to idiosyncratic vs. person specific error components is allowed to vary.  
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achieves substantial likelihood and BIC improvements over both S-MNL and N-MIXL. For 

instance, the log-likelihood improves from -5892 to -5662 (230 points) in going from N-MIXL 

to G-MNL. As before, the parameter γ is essentially 0, suggesting the normal errors are scaled 

proportionately to the scale of the mean β vector. And again, the mean β vectors for the S-MNL, 

N-MIXL and G-MNL models have similar patterns to the MNL estimates, except that the scale 

of the mean β vector increases as heterogeneity is added to the model.  

We now turn to the LC estimates. It is interesting that by far the most common type 

(51%) has very small coefficients on all attributes. Thus, this type exhibits close to “random” 

choice behavior, in the sense that observed attributes have little influence on choices, which are 

driven primarily by the random shocks to utility. The 2
nd

 most common type (14%) places great 

weight on price, while the 3
rd

 largest places great weight on freshness. As for types not reported 

in the table, the 4
th

 (10%) cares greatly about crust type, the 5
th

 (9%) wants hot delivery, and the 

6
th

 (4%) likes vegetarian. So we have 5 small segments that care about different attributes.  

The prevalence of “random” behavior in Pizza B (i.e., the 51% in type 1) may result from 

subjects being confronted with a very complex choice task (16 attributes), causing confusion or a 

lack of desire to take the task seriously. An alternative explanation is that, given 5 segments 

devoted to types who like specific attributes, the best fit is obtained simply by grouping everyone 

else into a portmanteau type that lacks strong preferences. The behavioral implications of these 

explanations are radically different, particular regarding how well SP data can predict behavior 

in real markets (e.g., Does the RP data also have a large “random” segment?). The comparison of 

RP and SP results in Sections IV.B and V will shed light on this issue.  

Turning to the MM-MNL model, the most common type (41%) has small weights on all 

attributes (like the “random” type in the LC model). The 2
nd

 type (31%) places substantial weight 

on price and the 3
rd

 type (28%) places great weight on both freshness and hot delivery. In an 

overall comparison, the ranking of the six models by BIC is MM-MNL (11527), G-MNL 

(11639), N-MIXL (12081), LC (12118), S-MNL (13372) and MNL (13641). Thus, in this dataset 

the MM-MNL model is preferred over G-MNL, while in Pizza A the situation was reversed. 

IV.A.3. Summary: Behavioral Patterns in the SP Data 

To summarize, G-MNL and MM-MNL are preferred to N-MIXL in both datasets, while 

N-MIXL is preferred to the other models. To better understand why the G-MNL and MM-MNL 

models are preferred to N-MIXL, we examine how well each model fits key patterns in the data.  
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First, we determine what each model implies about the distribution of consumer taste 

heterogeneity. To obtain posteriors of the individual level parameters, we adopt what Allenby 

and Rossi (1998) call an “approximate Bayesian” approach: A model’s estimated heterogeneity 

distribution is taken as the prior. We then calculate posterior means of the person-specific 

parameters conditional on each person’s observed choices (see Train (2003) for details). 

Figure 1 plots, for Pizza B, posterior distributions of the person-level price and ingredient 

freshness coefficients for N-MIXL, G-MNL and MM-MNL. These are kernel density estimates 

using a normal kernel. Notice the N-MIXL posteriors have a distinctly normal shape. As Allenby 

and Rossi (1998) point out, N-MIXL’s normal prior has a strong tendency to draw in outliers, so 

it has difficulty capturing “extreme” consumers who place great weight on price or freshness.  

In contrast, the posteriors of G-MNL and MM-MNL depart substantially from normality. 

In the left panel of Figure 1, both models generate a mass of consumers in the left tail who care 

intensely about price. And in the right panel, we see both models generate a mass of consumers 

who care intensely about fresh ingredients. The G-MNL and MM-MNL posteriors also exhibit 

excess kurtosis – i.e., a large mass of consumers with price or quality coefficients near zero. This 

enables them to generate consumers who are largely indifferent to observed attributes. These 

differences in the posteriors give us a clue as to why G-MNL and MM-MNL may fit better than 

N-MIXL. So now we consider if these patterns are consistent with patterns in the data:        

In the Pizza B data, 27 of 328 subjects chose the cheaper pizza on all 32 choice occasions 

regardless of other attribute settings, while 24 always chose the fresh pizza. Thus, 51 subjects 

exhibit lexicographic preferences for price or quality (freshness). For these 51 subjects, G-MNL 

and MM-MNL have BIC advantages over N-MIXL of 135 and 158 points, respectively.  

An additional 62 subjects exhibit lexicographic preference for some other attribute (e.g., 

hot delivery, vegetarian, crust type). Among the total of 113 subjects who exhibit lexicographic 

preferences, G-MNL and MM-MNL have BIC advantages over N-MIXL of 296 and 529 points. 

Recall (Table 3) that the overall BIC advantages of these models over N-MIXL are 442 and 554 

points. Thus, lexicographic subjects account for 67% and 95% of these overall BIC gains.  

Next, consider random behavior: If a subject chooses randomly between options A and B, 

the mean attribute differences between the chosen and non-chosen options will be “close” to zero 

(except for sampling variation). Keane and Wasi (2012a) give a definition of randomness based 

on this idea. Given their definition, 31 subjects exhibit “random” behavior in Pizza B. For these 

subjects, G-MNL and MM-MNL have BIC advantages over N-MIXL of 107 and 58 points.                  
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Combining results for the 113 lexicographic and 31 random subjects, the BIC advantages 

of G-MNL and MM-MNL over N-MIXL are 403 and 587 points. Thus, the lexicographic and 

random consumers together account 91% and 106% of the overall BIC gains of these two models 

over N-MIXL. Yet these consumers account for only 144/328 = 44% of the subjects. 

Given these results, it is clear why G-MNL and MM-MNL are preferred to N-MIXL: 

Both models capture two important features of the SP data that N-MIXL does not: (i) consumers 

with extremely strong preferences for particular attributes and (ii) consumers whose choices are 

little affected by the whole attribute vector. This is because both models use mixture-of-normal 

distributions that are more flexibile than the normal distribution assumed by N-MIXL. 

A more subtle question is why G-MNL is preferred over MM-MNL in Pizza A, while 

MM-MNL is preferred in Pizza B. Note that MM-MNL has a superior log-likelihood to G-MNL 

in both datasets. But it also has many more parameters (i.e., 33 vs. 18 in Pizza A and 98 vs. 34 in 

Pizza B). As we discussed earlier, the structure of heterogeneity is considerably more complex in 

Pizza B than in A. According to BIC, the complexity of Pizza B justifies the extra parameters of 

MM-MNL. Still, G-MNL and MM-MNL make very similar behavioral predictions. 
 
IV.B. The Revealed Preference Data 

Recall from Section III that 102 types of pizza are available sometime during the sample 

period, and within any one week the number of types varies from 72 to 96. The data contain 

4,123 purchase occasions. Variables included in the model are price, an indicator for promotion, 

5 indicators for name brands (“other” is the omitted category), 6 indicators for different toppings 

(“combo” is the omitted category), 2 indicators for crust type (regular is the omitted category) 

and an indicator for microwaveable. As we noted in Section II, with many varieties it is natural 

(and practical) to use brand intercepts rather than ASCs. So, as in Fader and Hardie (1996), the 

attributes based approach implies there are many fewer parameters (15) than options (102).  

We treat price as exogenous (contrary to a common practice in IO), under the assumption 

that brand intercepts capture latent quality of brands and/or brand equity – see Erdem, Imai and 

Keane (2003) for arguments in favor of our approach. The concept of brand equity incorporates 

both perceived quality and consumer familiarity with brands (Erdem and Keane (1996)). 

The large size of the choice set (J ≈ 100), combined with the large sample size, causes 

significant computational burden in estimating models that do not have closed form choice 

probabilities (i.e., the models with heterogeneity). To deal with this problem we use randomly 

chosen subsets of the full choice set in estimation. This procedure deserves further comment:   
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McFadden (1978) showed that one can consistently estimate parameters of MNL using 

random subsets of the full choice set. For example, in a case with 100 alternatives, one might 

construct hypothetical choice sets that include the chosen alternative, plus 19 alternatives chosen 

randomly (without replacement) from the remaining 99, giving a reduced choice set size of 20.     

Unfortunately, as we show in the Web Appendix, McFadden (1978)’s result does not 

hold when MNL is extended to include heterogeneity. But in the Web Appendix we also report 

results of an extensive Monte Carlo study designed to assess the bias induced by using random 

subsets to estimate the N-MIXL, G-MNL and MM-MNL models. In our experiments the full 

choice set has 60 alternatives and the random subsets have 10 or 20 alternatives. We find little (if 

any) evidence that use of random subsets of the full choice set induces bias in estimates of 

multinomial logit models with heterogeneity.
17

 (This finding may be useful in many contexts).  

 Based on our Monte Carlo results we decided to estimate the RP models using 3 different 

choice set sizes, 20, 30 or 40, which correspond to roughly 25%, 37.5% or 50% of the full choice 

set. The results for 40 draws are reported in Table 4 while those for 20 and 30 draws are reported 

in the Web Appendix. A striking finding is that estimates are quite stable across choice set sizes 

for all 6 models (MNL, S-MNL, N-MIXL, G-MNL, LC, and MM-MNL) – see Web Appendix 

for a detailed discussion. This stability of the estimates adds to our confidence (already 

considerable in light of the Monte Carlo results) that any bias induced by using random subsets 

of the full choice set is negligible, even for models that include heterogeneity. Given this, we 

will focus our discussion on the RP results for choice sets of size 40. 

 Consider first the MNL estimates in Table 4. The price coefficient is -0.84 while the 

promotion dummy is 0.81. Thus, putting a type of pizza on promotion (making it more visible in 

the store) is equivalent to roughly a $1.00 price cut. It is easy to show that the price elasticity of 

demand for an alternative with market share s and price p is simply e = (-.84)p(1-s). For a pizza 

of average price ($2.80) and market share (s=1/J) we have a price elasticity of -2.3. This is in the 

ballpark of prior RP estimates for supermarket goods (see Keane (2010)). Note that the elasticity 

formula depends on choice set size through the (1-s) term. But for a typical option (1-s) ≈ (J-1)/J. 

This is close to one and little affected by choice set size (if we use a reasonably large random 

subset, say, J ≥ 20). So the random choice set size will have little impact on elasticity estimates.    

                                                 
17

 The basic intuition of McFadden’s consistency result is that the use of a random subset of the full choice set shifts 

the (expected) log-likelihood up, but does not alter where it is maximized. Even though this result does not hold 

exactly with heterogeneity, it holds to a very good approximation, as we discuss in the Web Appendix. 
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It is interesting to compare the price elasticity in the RP data to what we found in SP: In 

the SP data, price is coded so that -1 corresponds to $13 and 1 corresponds to $17 (this is known 

as “effects coding” in the DCE literature). Thus, the MNL price coefficient of -0.17 in Pizza B 

implies that if price decreases by $4 the deterministic part of utility increases by 0.34. This 

increases demand by roughly 17%. As the price decrease is 24%, the implied price elasticity is 

roughly -0.71. (For a $4 price increase we get -0.55). The Pizza A results are very similar.  

So, the RP data implies a price elasticity of demand (-2.3) more than three times greater 

than in the SP data (-0.7). A monopolistically competitive firm operates in a region where the 

price elasticity of demand is ≤ -1.
18

 And both pizza and pizza delivery are well described by the 

monopolistically competitive model (i.e., differentiated product, many sellers).
19

 Thus, one might 

question using the small elasticity in the SP data to predict behavior in an actual market.  

Several factors may account for the low SP elasticity estimate. It may be due to problems 

with the SP data itself, e.g., if people do not take the budget constraint seriously when making 

hypothetical choices, or if some subjects choose randomly as discussed earlier.
20

  

Alternatively, note that elasticities in SP data depend on preferences and experimental 

prices. But RP elasticities are a function of preferences and equilibrium market prices. Thus, RP 

and SP elasticities may differ because they are evaluated at different points on the demand curve. 

As a concrete illustration of this point, consider symmetric Bertrand competition with 

differentiated products and linear demand curves qj = β0 – βp pj + βc pk for j,k =1,2 where βp > βc, 

and a constant marginal cost of c. Then the equilibrium price is p=(β0 + βpc)/(2βp – βc) and the 

price elasticity of demand is e = –(β0 + βpc)/[β0 – (βp - βc)c]. Note that e depends not just on the 

preference parameters β0 , βp and βc but also on marginal cost c and, more subtly, on the Bertrand 

assumption itself. Note also that e ≤ -1 where e = -1 if c=0.  

Now, suppose an experimenter sets price at a fraction 0<Δ<1 of the lowest possible 

market price, so p= Δβ0/(2βp – βc). The price elasticity at this hypothetical experimentally set 

price is e = –Δβp/ [(1-Δ)(2βp - βc) + Δβp]. This only depends on preference parameters and Δ.  

                                                 
18

 For a constant marginal cost of c we have that the monopolist sets p so that e = c[D’(p)/D(p)] - 1 where D(p) is the 

demand curve and e is the price elasticity. If c=0 then e = -1, while if c>0 then e <-1.     
19

 In the Australian context there are many small pizza shops that deliver different types of pizza.   
20

 A larger scale of the errors (a smaller σ) also leads to a smaller price elasticity. Intuitively, demand is less elastic if 

unobservables are more important determinants of choice. But this cannot explain elasticities > -1. Furthermore, we 

are skeptical that higher scale due to greater importance of unobservables can explain the small elasticities in the SP 

data. The set of controls for product attributes is as least as rich in the SP data as in the RP data. And adding eight 

new controls in going from Pizza A to B hardly changes the elasticity. Alternatively, a larger error scale in the SP 

data could occur because some subjects don’t take the task seriously (as noted in the text).      
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For example, say β0 =10, βp = 2, βc =1 and c=1. Then in market equilibrium price would 

be 4 and e = -1.33. But if the experimenter sets Δ=3/4, then price is 2.5 and e = -0.67. So a 

plausible explanation for small elasticities in SP data is if prices are set below market level. Note, 

however, that this may not invalidate the experiment as a way to uncover taste parameters.    

 Other aspects of the results are that the most “popular” brands, as indicated by the brand 

intercepts, are Tombstone and Jacks, while the least popular is Bernatello. (Recall that the 

intercepts capture latent quality and/or brand equity). The most popular toppings are sausage and 

pepperoni, while vegetarian is very unpopular. Rising crust is the least popular crust type. 

 Next consider the S-MNL model. It includes scale heterogeneity in the observed attribute 

coefficients. But the brand intercepts are treated differently. As Fiebig et al (2010) note, scaling 

the intercepts works quite poorly in practice because of brand loyalty. A consumer loyal to a 

brand will have a positive intercept for that brand, and negative intercepts for other brands. Thus, 

in contrast to attributes like price, it is unrealistic to assume brand intercepts have the same signs 

for all consumers. Instead, we assume the brand intercepts are normally distributed.
21

 

S-MNL achieves a large log-likelihood improvement over MNL (-11,930 vs. -13,602) 

with 11 extra parameters: the scale heterogeneity parameter τ, and the variance matrix of the 5 

random brand intercepts. BIC prefers a model where this matrix has a one-factor structure with 

10 parameters (Elrod and Keane (1995)). Much of the log-likelihood gain is due to the random 

intercepts. The estimate of τ is 0.86, which is highly significant, but smaller than in the SP data. 

The β vector is similar to that for MNL, although the (mean) price coefficient increases to -0.97. 

Next, Table 4 reports the N-MIXL results. The version preferred by BIC imposes a one-

factor structure on the covariance matrix of the βn vector. As the model contains 16 variables (11 

attributes and 5 brand intercepts) a full covariance matrix would have 136 parameters. The one-

factor structure has only 32 parameters, so it is much more parsimonious. N-MIXL generates a 

log-likelihood that is superior to S-MNL by 882 points. The β vector is similar to both the MNL 

and S-MNL models, although the (mean) price coefficient increases to -1.21.    

 The G-MNL results are interesting, as they contrast sharply with those for the SP data. 

First, G-MNL leads to only a modest (31 point) log-likelihood improvement over N-MIXL. In 

percentage terms this is only 0.3%, compared to the gains of 2.1% and 3.4% in Pizza A and B. 
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 We interpret brand intercepts and ε as capturing unobserved attributes of brands and varieties (within brands), 

respectively. Thus, in this version of S-MNL, the observed factors (xnjt) are scaled while unobserved factors are not. 

This means observed factors are more important determinants of choice for some consumers than others. 
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Second, the estimate of the scale heterogeneity parameter τ is only 0.40, which is several times 

smaller than in the SP data. Third, γ is 0.79, which is close to the ][ nnn   case where the 

scale of the normal errors does not vary with that of the β vector. These values of τ and γ imply 

that: (i) scale heterogeneity is less important in the RP data, and (ii) the G-MNL model is much 

closer to its N-MIXL special case than in the SP data. We will see more evidence of this below. 

 Next, Table 4 reports the LC results. BIC prefers a model with 5 latent types. Note there 

is no large “random” type like we found in the SP data. The most notable difference between 

types is in price sensitivity. The largest type (28%) has a price coefficient of -1.85. That for the 

2
nd

 largest (24%) is -1.65, the 3
rd

 largest (23%) is -1.07 and the 4
th

 largest (14%) is -0.89. The 

smallest type (10%) has an insignificant price coefficient.
22

 The log-likelihood for the LC model 

is 1486 better than MNL, but 186 worse than S-MNL, 1068 worse than N-MIXL and 1099 worse 

than G-MNL. The relatively poor fit of LC is consistent with the SP results. Elrod and Keane 

(1995) found that LC models tend to understate heterogeneity in consumer preferences. 

 Finally, the MM-MNL results are in last 4 columns of Table 4. The version preferred by 

BIC has two types, with proportional covariance matrices for the βn vectors. Clearly, MM-MNL 

has the best BIC of all models considered; i.e., 297 better than G-MNL and 344 better than N-

MIXL.
23

 In contrast, in the SP data, MM-MNL and G-MNL had fairly similar BIC values.  

The two types are very different, particularly with regard to price elasticity. Type 1 (65%) 

has a mean price coefficient of -1.75, giving an elasticity of roughly e = (-1.75)p(1-s) = -4.7 for a 

“typical” brand with s=1/J. Type 2 (35%) has a mean price coefficient of -0.48, giving a much 

smaller price elasticity of roughly -1.3. It is interesting to compare these RP elasticities with the 

SP results. In Pizza B we found three types, with elasticities (at the mean) of -.42 (41%), -2.96 

(31%) and -.71 (28%). So, as in the MNL model, elasticities are much smaller in the  SP data.         

 Figure 2 plots posterior distributions of person-level price and vegetarian parameters for 

N-MIXL, G-MNL and MM-MNL. The N-MIXL and G-MNL posteriors for price (left panel) 

look quite similar. Each departs modestly from normality, with a moderate degree of skewness to 
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 There are also differences in how types value other attributes (e.g., type 1 has a stronger preference for Tombstone 

and Roma than other types, types 1, 2 and 5 have strong preferences for sausage/pepperoni while 3 and 4 do not, 

type 3 is not sensitive to promotion while other types are, etc.). 
23

 As we show in the Web Appendix, the use of reduced choice sets biases the BIC toward smaller models. Does this 

affect our results? MM-MNL is favored over G-MNL by 297 points using a random choice set of 40. If we instead 

use choice sets of 30 or 20, the margins are 252 and 230. A similar pattern holds for N-MIXL. So the finding that 

MM-MNL is preferred over G-MNL and N-MIXL is reinforced by using larger choice sets. This is as expected, as 

MM-MNL has the most parameters of the three models (66 vs. 50 vs. 48). 
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the right. The MM-MNL posterior for the price coefficient departs much more sharply from 

normality. It is highly leptokurtic, with a sharp peak near -1.9, and it is strongly skewed to the 

right, with much less mass to the left of -2.6 than for the G-MNL and N-MIXL models.  

These RP results are very different from the SP data. There, the G-MNL and MM-MNL 

posteriors are similar (see Figure 1). Each departs sharply from normality, while the N-MIXL 

posterior has a distinctly normal shape. We discuss implications of this difference in Section V. 

 Next, consider the posterior for vegetarian. As we saw earlier, most consumers dislike 

vegetarian. But in Figure 2 (right panel) the MM-MNL posterior is bi-modal, picking up a subset 

that prefers vegetarian. Both N-MIXL and G-MNL fail to capture this, generating close to 

normal distributions. G-MNL attempts to mimic the bi-modal pattern through greater dispersion. 

   
V. Differences between the SP and RP Data 

We have seen some important differences between the SP and RP data. For instance, 

price elasticities are much smaller in SP, and both lexicographic and random choice behavior are 

much more common. In general, the shapes of the individual-level distributions of parameters 

differ substantially. Due to this difference in the structure of heterogeneity, the preferred model 

of heterogeneity differs as well. In this section we explore these issues in more detail.   

In SP data, we found that G-MNL and MM-MNL fit better than N-MIXL mostly because 

they capture both: (i) “extreme” consumers who exhibit lexicographic behavior with respect to 

certain attributes like price or quality, and (ii) consumers who are insensitive to price and other 

attributes, and thus appear to make choices at random.
24

  

These lexicographic and random behaviors we see in SP data are not prevalent in the RP 

data. For instance the MM-MNL model (which is the best fitting) implies that relatively few 

consumers place great weight on price (i.e., as we see in Figure 2, it puts much less mass on 

price coefficients less than -2.6 than do either N-MIXL or G-MNL). And all our models imply 

that relatively few consumers in the RP data have price coefficients near zero (see Figure 2).  

An important question is whether the very different distributions of the price coefficient 

in SP vs. RP arise from fundamental differences between these types of data, or another factor. A 

potential issue is that the goods in the RP and SP data are similar but not identical. However, as 

we saw in equation (4), the uc component of the price coefficient should be equal across data on 
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 In a true RUM choice is deterministic for consumers, given observed and unobserved (to the analyst) attributes.  

But Feibig et al (2010) find that subjects in SP data often change their choice if a scenario is repeated.    
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different inexpensive goods. Thus, theory says the price coefficient should differ between the SP 

and RP data only because of differences in the scale σn. As we see in (4), a larger scale of the 

errors (smaller σn) leads to a smaller price coefficient. Intuitively, demand is less responsive to 

price if unobservables are more important determinants of choice. 

In order for differences in the distribution of σn to account for the different distributions 

of the price coefficient in the SP data (Figure 1) vs. the RP data (Figure 2) two things are needed: 

In the SP data compared to the RP data, (i) the σn distribution must have much more mass near 

zero, and (ii) the σn distribution must have considerably more mass on large positive values.  

In our view it is highly implausible that the scale parameter would differ between frozen 

and delivered pizza in this way. Why would many consumers put a huge weight on unobserved 

attributes of delivered pizza (substantial mass of σn near zero), but not of frozen pizza? Indeed, 

the controls for product attributes are at least as rich in the SP data as in the RP data.   

Furthermore, we emphasize that σn is a scalar that shifts all attribute coefficients (see 

equation (3)). Thus, if the σn parameter for delivered pizza has the type of distribution we just 

described, it has implications for the distributions of attribute coefficients as well. For instance, 

consider the coefficient on freshness (quality). Consumers with σn near zero should obviously 

have both price and quality coefficients near zero. Similarly, the segment of consumers with very 

large σn should tend to have both large price coefficients and large weights on quality.  

Figure 3 gives a scatter plot of posteriors of the (absolute) price and quality coefficients 

in Pizza B (based on the MM-MNL model). Note that subjects with large price coefficients 

invariably have small quality coefficients. And subjects with large quality coefficients all have 

relatively small price coefficients. These patterns are consistent with the data patterns we 

discussed earlier, whereby many subjects in the SP data exhibit lexicographic preferences for 

price or quality. They are not consistent with the positive correlation between price and quality 

coefficients we would expect if the σn distribution in the SP data had the form describe above.
25

  

Based on this evidence, the most plausible explanation for the very different distribution 

of the price coefficient in the SP data is that the ucn differ from the RP data. It appears that many 

subjects do not take the budget constraint seriously in SP, and act as if ucn is very small, leading 

to price coefficients near zero. And some subjects adopt lexicographic or random choice rules to 
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 There is also no evidence that a negative correlation between the βnk for price and quality in the SP data can 

explain this pattern. In the two models that estimate this correlation (G-MNL and N-MIXL) an uncorrelated 

coefficients model is preferred (see Table 3).    



25 

simplify the experimental task. This leads to much greater heterogeneity in σn in the SP data (i.e., 

higher values of τ). Finally, we stress the patterns we have described are not peculiar to SP data 

on frozen pizza. Feibig et al (2010) find similar patterns in SP data on several other products.   

We now turn to the question of why the ranking of models differs in the RP vs. SP data. 

As we saw in Section IV.A, the main reason G-MNL and MM-MNL fit better than N-MIXL in 

the SP data is their ability to fit lexicographic and random behaviors. But these behaviors are not 

prevalent in the RP data. Hence, the fit of G-MNL is similar to that of N-MIXL in the RP data.  

But why does MM-MNL fit much better than both G-MNL and N-MIXL in the RP data? 

Table 5 sheds light on this issue. First, we group consumers in the SP and RP data into types 

(based on price sensitivity and other characteristics, as revealed by their choices). Then we report 

the mean BIC advantage of the MM-MNL and G-MNL models over N-MIXL for each type.  

In the top panel, we group subjects in the SP data (Pizza B) by levels of price sensitivity. 

For each subject, we calculate the average difference in price between the chosen and rejected 

options (over all 32 choice tasks). The prices in the experiment are $13 or $17, so the largest 

possible average price difference is 4 (always buy the more expensive pizza), while the smallest 

is -4. The more negative is the average price difference, the more price sensitive is the consumer. 

Only 19 levels of the average price difference are observed in the SP data, so we cannot 

group subjects into quantiles. Instead we sort them into 4 unequal sized groups. The most price 

sensitive contains 26 people with a mean price difference of -2.41. The least price sensitive 

contains 178 people with a mean price difference of 0.20. This group is so large because 106 

subjects have a mean price difference of exactly zero – i.e., they seem insensitive to price.  

Note that MM-MNL and G-MNL have large average BIC advantages for consumers in 

both the very price sensitive group and the price insensitive group. For example, G-MNL has 

BIC advantages of 1.24 and 1.79 points (per subject) in these groups, respectively. Given the 

group sizes, this generates a BIC advantage of (1.24)(26)+(1.79)(178) = 351. This accounts for 

most of the overall BIC advantage of G-MNL over N-MIXL, which is 442 points (see Table 3).  

The 2
nd

 panel of Table 5 contains a similar analysis for the quality ingredients variable. 

Again, most of the BIC advantage of both G-MNL and MM-MNL over N-MIXL comes from the 

groups that either care most or are indifferent to fresh ingredients. Thus, the top two panels of 

Table 5 provide evidence that G-MNL and MM-MNL are preferred over N-MIXL in the SP data 

because they can simultaneously generate consumers who care very much and very little about 
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certain attributes. This is because these models are flexible enough to generate heterogeneity 

distributions like those in Figure 1, with both skewness and excess kurtosis. The normality 

assumption makes it difficult for N-MIXL to generate such distributions. 

The bottom panels of Table 5 repeat this type of analysis for the RP data. Here we look at 

the price and vegetarian attributes. In the RP data there are many choice options, so we compare 

the attribute of the chosen option with the average attributes of all non-chosen options. The 

difference is then averaged over all of a person’s purchases. Unlike the SP data, the average 

attribute differences are not bunched at a few points, so we can group people into quintiles.  

In the 3
rd

 panel of Table 5, we see the most price sensitive consumers buy (on average) a 

pizza costing 67 cents less (per lb) than the non-chosen alternatives. The least price sensitive 

consumers spend (on average) 21 cents more than the cost of alternatives. A striking difference 

between the RP and SP results is that the percentage of consumers who are insensitive to price is 

much smaller in the RP data.
26

 Another striking difference is that, in RP, G-MNL does not fit the 

most price sensitive consumers better than N-MIXL.
27

 The reason is clear in Figure 2. In the RP 

data, the left tail of the price coefficient distribution is almost identical for G-MNL and N-MIXL. 

So it is unsurprising that the most price sensitive consumers behave similarly in the two models. 

In contrast, the MM-MNL model still has a BIC advantage over N-MIXL for the most 

price sensitive consumers (1.03 per person). In fact, it has an even larger advantage over G-MNL 

(1.58 per person). In Figure 2, we see MM-MNL puts much less mass in the left tail of the price 

coefficient distribution (i.e., left of about -2.6) than do G-MNL and N-MIXL. Thus, MM-MNL 

implies the most price sensitive consumers are not as price sensitive as the other models suggest.  

As we see in Table 5, MM-MNL not only beats N-MIXL and G-MNL on BIC for the 

most price sensitive consumers; it has a clear advantage in every quintile of price sensitivity. 

Consistent with this, in Figure 2 we see the distributions of person-level price coefficients are 

very similar for N-MIXL and G-MNL, while that of MM-MNL is distinctly different: The mode 

is shifted left (to about -1.9), and kurtosis is much greater (putting more mass near -1.9). So, 

despite the mode shifting left, there is less mass in the left tail. Furthermore, the flexibility of the 

mixture-of-normals enables it to also generate a fat right tail (price coefficients near zero). These 

features enable MM-MNL to give a better fit to consumers in all 5 quintiles of price sensitivity.  
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 In the RP data only 14/129 = 11% of consumers buy (on average) a pizza that costs the same or more than the 

average cost of alternatives. In the SP data the figure is 178/328 = 54% (see Table 5).  
27

 Indeed, the average BIC difference for G-MNL vs. N-MIXL in this group is -0.55, so N-MIXL fits slightly better. 
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In Section IV.A we discussed why N-MIXL has trouble generating posteriors that depart 

substantially from normality (see also Allenby and Rossi (1998)). But why does G-MNL, which 

generated a substantial departure from normality in the SP case, have trouble doing so in the RP 

case? The answer involves the different nature of the departure from normality in the two cases: 

In the SP data we see that G-MNL generates both more large price coefficients and more 

values near zero than a normal (Figure 1). In SP the modal price coefficient is close to zero, so 

increasing kurtosis and increasing mass near zero are equivalent. But in the RP data the mode is 

far left of zero (see Figure 2), so the two are not equivalent. This is the source of the problem.  

In the RP data (Figure 2) MM-MNL generates a departure from normality involving both 

(i) excess kurtosis (more mass near -1.9) and (ii) a fat right tail (more mass near zero). G-MNL 

cannot generate this pattern because it relies on a normal scaled by a log-normal.  If the normal is 

mean zero this distribution generates both kurtosis and fat tails (see Figure 4A). But if the normal 

has a negative mean, this distribution can only generate kurtosis by shifting the mode towards 

zero and creating a fat left tail (see Figure 4B). Assuming the posterior for the price coefficient 

generated by MM-MNL (see Figure 2) gives a fairly accurate picture of the true distribution, the 

prior distribution assumed by G-MNL (see Figure 4B) is a very poor representation. 

The flexibility of MM-MNL is even more apparent for the vegetarian coefficient. In the 

4
th

 panel of Table 5 we see that only consumers in the 1
st
 quintile like vegetarian, while all others 

avoid it to a degree. MM-MNL dominates both N-MIXL and G-MNL for all quintiles but the 3
rd

. 

In Figure 2, MM-MNL generates a plausible bi-modal shape for the taste distribution, with most 

consumers disliking vegetarian while a significant minority is either indifferent or does likes it. 

N-MIXL cannot generate this pattern; it instead generates a close to normal distribution centered 

at -1.85. G-MNL also generates a close to normal distribution but with a higher variance. 

In summary, the structure of heterogeneity is very different in the RP vs. SP data. Both 

exhibit substantial departures from normality, but their nature is different. The most important 

departure in the SP data (i.e., excess mass both near zero and in the tail) is well captured by a 

normal scaled by a lognormal. Thus, G-MNL fits about as well as MM-MNL in the SP data, and 

both are clearly preferred to N-MIXL. But in the RP data the departures from normality are more 

complex, and neither G-MNL nor N-MIXL is well suited to capture them. Hence, MM-MNL is 

clearly preferred to both. The MM-MNL model does well in both contexts because a discrete 

mixture-of-normals can approximate any density (Ferguson (1973)).        
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VI. Conclusion                

In recent years it has become increasingly common to use stated preference (SP) data to 

study consumer demand. And prior work has compared aggregate market share predictions or 

mean parameter vector estimates from models based on SP vs. RP data.
28

 But to our knowledge 

the present study is the first to compare heterogeneity in the distributions of tastes. 

We have found substantial differences in the structure of heterogeneity in demand models 

estimated on RP vs. SP data. This has two important implications: (i) it affects which model of 

heterogeneity is best for each type of data, and (ii) it raises obvious questions about whether SP 

data is really useful for predicting demand (at least if heterogeneity matters).  

In the SP data, heterogeneity in coefficients on price, quality and other key attributes is 

characterized by a simple structure: relative to a normal distribution, there is excess kurtosis near 

zero (i.e., many consumers care little about attributes), as well as a mass of consumers in the tail 

who care greatly about one or two attributes. As Fiebig et al (2010) note, this is consistent with a 

scenario where subjects in the choice task use simple rules like: “always choose the cheaper 

option” or “always choose the high quality option” or “choose randomly.” Descriptive analysis 

of the data reveals groups of subjects whose behavior is consistent with such rules.  

Our results only apply to two pizza datasets, but Fiebig et al (2010) found similar patterns 

in eight SP datasets on very different products. Thus, these behaviors appear to be typical in SP 

data. In contrast, there is little evidence of lexicographic or “random” behavior in the RP data.  

Comparing models, both G-MNL and MM-MNL can capture the typical heterogeneity 

pattern in SP data. This is because both involve mixtures-of-normals that can generate both 

kurtosis near zero (i.e., random behavior) and fat tails (i.e., lexicographic behavior). The popular 

N-MIXL model, which assumes normal heterogeneity, has difficulty fitting these patterns. 

 But in the RP data the departures from normality are more complex, and neither G-MNL 

nor N-MIXL is well suited to capture them. As a result, MM-MNL is clearly preferred. The 

obvious virtue of MM-MNL is its flexibility. It does well in both the RP and SP contexts because 

a discrete mixture-of-normals can approximate any density (Ferguson (1973)). An avenue for 

future research is to improve on G-MNL by using more flexible distributions for the scale factor.  

Notably, if we had relied exclusively on the popular N-MIXL model, and not considered 
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 These studies have generally found that SP data is fairly reliable for such purposes – at least after adjustment of 

the scale of the error terms (see Ben-Akiva and Morikawa (1990), Adamowicz et al (1994), Cameron et al (2002)) 

and other common types of normalization. 
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the more general models (MM-MNL and G-MNL), the difference in heterogeneity structures 

between the SP and RP data would not have been readily apparent. This is because of the strong 

tendency of N-MIXL to draw in all heterogeneity distributions towards its normal prior.    

The very different heterogeneity structures in RP vs. SP data obviously raise questions 

about the usefulness of using SP data to predict demand. This is particularly true if we are not so 

interested in aggregate demand (i.e., market shares) as in questions where the whole distribution 

of consumer taste heterogeneity matters: price discrimination, welfare calculations, etc.. The 

surprisingly small price elasticities of demand in the SP data are also of concern.  

Perhaps the most obvious (and negative) interpretation of the SP results is that they 

reflect a failure of subjects to take the SP task seriously. If a subject is interested in minimizing 

his/her effort in the experiment, adopting a simple rule like “always choose the cheapest option” 

or “choose randomly” provides an easy way to get through the task. In RP data, where choices 

actually “matter” for utility, consumers will presumably weigh the options more carefully. 

An alternative interpretation is that both the RP and SP data reveal valid information 

about preferences, and the different patterns of taste heterogeneity in the two types of data result 

from the different structure of the choice tasks. A key difference is the SP task presents subjects 

with one time choices among hypothetical objects. In the RP task, choices are repeated over time 

and there are many more options. These differences have at least three important implications:  

(i) In the actual market setting consumers have the opportunity to learn about the 

different brands and varieties over time (see Erdem and Keane (1996)). This makes it easier to 

have some knowledge of the attributes of all the alternatives, even if there are many.  

(ii) The market setting prevents consumers from using simple rules like “choose the 

cheapest option.” This is because with many options it is not feasible to check all prices on any 

given shopping trip. Presumably the consumer relies largely on what he/she has learned about 

typical prices of various options in the past. The same logic applies to any other attribute. 

(iii) In the market context choices take place over time, so there may be variety seeking. 

But subjects may interpret the experimental choices as one time choices. In general this may alter 

behavior (e.g., I usually prefer sausage to bacon, but on some shopping trips I may try bacon). 

Points (i)-(iii) highlight that choice model parameters capture not only preferences but 

also (a) market structure and (b) the informational and other constraints under which the choice 

is made. Thus, it is not surprising that RP and SP results differ, as consumers face quite different 
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market structure and constraints in the two contexts. Indeed, in Section IV.B we discussed how 

differences in market structure could explain the lower price elasticity estimates in the SP data. 

This discussion raises an obvious point: A potential criticism of our work is that the SP 

choice tasks were not designed to be similar enough to a market environment. But it is important 

to note that our SP data is representative of the SP data that is currently used in practice. Thus, 

our results suggest that, given the current state of practice, SP choice experiments may not 

enable one to make reliable inferences about consumer taste heterogeneity in actual markets.    

In conclusion, our results suggest caution when using SP data to infer distributions of 

consumer preferences. This is important because use of SP data to model demand has become 

very common (in industry and academia). Future research should focus on improving the design 

of SP experiments so their results are more representative of actual consumer taste distributions. 

This may require making SP experiments more “realistic,” as suggested by Arrow et al (1993).
29

  

Of course, there is a limit to how far one can go in making SP data more realistic, as (i) 

subjects will not tolerate very large choice sets, or tasks that are too difficult in other ways, and 

(ii) the temporal aspect of choice is very hard to replicate in an experiment. One way to enhance 

realism is to give subjects a budget, and have them actually buy at least one of the items they 

choose (see Ding et al. (2005)). But a key point of SP is to estimate demand for prospective 

products and/or attributes that don't yet exist (so obviously they can’t be bought). We are aware 

of proprietary research that tries to model behavior given large choice sets by using replica store 

environments. But again, these stores must be stocked with existing products. In a classic paper 

Roberts and Urban (1988) used experimental data to model consumer learning over time about a 

single new car model. But their approach is not easily applicable to frequently purchased goods 

with many varieties. Clearly, the development of more realistic SP choice experiments remains 

an important area for future research.         
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 Alternatively, Harris and Keane (1999) combine SP and RP data in a different way: They use the SP data to give 

noisy measures of the attribute weights in an RP discrete choice model with heterogeneous preferences. They find 

this extra information about preferences leads to a dramatic improvement in the fit of the RP choice model.    
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Figure 1: Posterior Distribution of Individual-level PRICE and FRESH INGREDIENT Coefficients from Pizza B Dataset  

 
 

 

 

Note: Each kernel density estimate uses a normal kernel with an optimal bandwidth (h). The formula used is h = (4/3N)
1/5

  where  is the 

standard deviation and N is the number of observations. The optimal bandwidths for N-MIXL, G-MNL and MM-MNL for the price coefficients 

are .111, .095 and .086, respectively. For the fresh ingredient coefficients, the optimal bandwidths used are .135, .096 and .063, respectively. 

 

 

-4 -3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Price

 

 

N-MIXL

G-MNL

MM-MNL

-3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Fresh ingredients

 

 

N-MIXL

G-MNL

MM-MNL



36 

Figure 2:  Posterior Distribution of Individual-level PRICE and Vegetarian Topping Coefficients from Scanner Data 

 
 

 

Note: Each kernel density estimate uses a normal kernel with an optimal bandwidth (h). The formula used is h = (4/3N)
1/5

  where  is the 

standard deviation and N is the number of observations. The optimal bandwidths for N-MIXL, G-MNL and MM-MNL for the price coefficients 

are .355, .346 and .303, respectively. For the vegetarian topping coefficients, the optimal bandwidths are .218, .513 and .380, respectively. 
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Figure 3: Price vs. Freshness Coefficients in the Pizza B data (MM-MNL model posteriors) 

 

 

 
Note: The figure reports posterior mean parameter values for the price and freshness coefficients in the Pizza B dataset, as derived 

from the MM-MNL model.  
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Figure 4: Comparison of the Normal Distribution and the Continuous Mixture-of-Scaled-Normals Distribution 
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Table 1: Average Characteristics of Alternatives in the RP Scanner Data  

    All Tombstone Roma Jacks Red baron Bernatello Others 

        
Chosen choices 

 
1085 (26%) 833 (20%) 844 (20%) 437 (11%) 238 (6%) 686 (17%) 

                  

Average characteristics of available choices (2001-2003) 
   

Price 2.80 2.95 2.04 2.66 3.14 2.4 3.17 

Price by topping 
       

 

Cheese only 2.95 3.25 2.21 2.9 3.17 2.53 3.27 

 

Sausage/pepperoni 2.73 2.89 1.98 2.65 3.31 2.48 2.95 

 

Meat/supreme 2.71 2.68 2.2 2.54 2.87 2.85 2.86 

 

Bacon/burger 2.59 2.97 1.79 2.61 2.77 2.19 5.74 

 

Chicken/Mexican 3.02 3.59 n/a 2.51 2.93 2.71 3.07 

 

Vegetables 3.59 2.59 n/a n/a n/a n/a 4.26 

 

Combination/other 2.67 2.83 1.92 2.81 5.06 2.04 2.98 

Price by crust 
       

 

Rising 2.59 2.59 1.87 2.54 2.65 1.72 3.4 

 

Thin/crispy 2.73 2.96 2.31 2.71 2.99 2.46 3.02 

 

Regular/other 2.98 3.06 1.8 2.76 3.39 2.5 3.11 

Price by microwavable 
       

 

No 2.71 2.98 2.01 2.66 2.87 2.27 3.04 

 

Yes 3.41 2.03 2.17 n/a 3.99 3.56 3.65 

         
Promotion 0.019 0.018 0.023 0.029 0.004 0.008 0.027 

Promotion by topping 
       

 

Cheese only 0.015 0.016 0.022 0.024 0.002 0.008 0.019 

 

Sausage/pepperoni 0.017 0.014 0.017 0.031 0.002 0.005 0.032 

 

Meat/supreme 0.013 0.015 0.036 0.029 0.002 0 0.006 

 

Bacon/burger 0.017 0.012 0.007 0.022 0.014 0.019 0.038 

 

Chicken/Mexican 0.023 0.037 n/a 0.045 0.013 0.007 0.014 

 

Vegetables 0.014 0.027 n/a n/a n/a n/a 0.005 

 

Combination/other 0.036 0.015 0.028 0.041 0 0.006 0.07 

Promotion by crust 
       

 

Rising 0.010 0.006 0.008 0.018 0 0 0.014 

 

Thin/crispy 0.016 0.016 0.045 0.03 0 0 0.003 

 

Regular/other 0.026 0.023 0.006 0.038 0.006 0.017 0.046 

Promotion by microwavable 
     

 

No 0.017 0.017 0.022 0.029 0.003 0.009 0.02 

 

Yes 0.029 0.043 0.026 n/a 0.006 0 0.052 

                  

 

Note: Means are taken over all available alternatives (not only the purchased alternative.) Entries with n/a 

indicate the option does not exist. 
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Table 2: Pizza A (Stated Preference Data) 

 

                                                

 MNL  S-MNL  N-MIXL
a
  G-MNL

a
  Latent class

b
  MM-MNL

c
 

            class 1 class 2 class 3  class 1 class 2 

  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 

                                                

Gourmet  0.02 0.02  0.03 0.04  0.03 0.05  0.49 0.30  -0.01 0.09 0.02 0.08 0.08 0.08  0.02 0.08 0.14 0.62 

Price -0.16 0.02  -0.19 0.05  -0.35 0.06  -1.82 0.85  -0.20 0.07 -0.16 0.07 -0.39 0.14  -0.18 0.07 -4.63 2.80 

Ingredient freshness 0.48 0.03  1.45 0.29  0.96 0.10  5.06 2.17  1.57 0.16 0.12 0.06 0.30 0.08  0.59 0.10 13.47 7.47 

Delivery time 0.09 0.03  0.16 0.08  0.16 0.05  0.81 0.43  0.10 0.11 0.10 0.05 0.32 0.15  0.06 0.05 3.95 2.43 

Crust 0.02 0.03  0.01 0.04  0.02 0.07  0.48 0.33  -0.12 0.11 0.01 0.07 -0.30 0.18  -0.06 0.09 1.18 1.11 

Sizes  0.09 0.03  0.12 0.06  0.20 0.05  0.88 0.44  0.15 0.08 0.06 0.06 0.23 0.08  0.23 0.07 0.92 0.92 

Steaming hot 0.38 0.03  1.02 0.24  0.87 0.09  4.86 2.10  0.50 0.12 0.12 0.08 1.60 0.26  0.50 0.09 9.85 5.49 

Late open hours 0.04 0.02  0.08 0.06  0.07 0.05  0.30 0.21  0.09 0.08 0.06 0.05 0.02 0.10  0.12 0.06 -0.97 0.95 

                        

    1.69 0.18     1.80 0.27             

          -0.02 0.02             

                        

Class probability             0.36 0.04 0.32 0.06 0.23 0.05  0.57 0.05 0.43 0.05 

                        

No. of parameters 8     9     16     18     35             33       

LL -1657     -1581     -1403     -1372     -1418             -1328       

BIC 3378   3233   2933   2886   3115       2919    

 
Note:  

a
 estimates from uncorrelated coefficient specification; 

b
 estimates from LC with 4 classes; 

c
 estimates from MM-MNL with 2 independent normals. Bold 

estimates are statistically significant at 5%. S-MNL, N-MIXL, G-MNL and MM-MNL are estimated by simulated maximum likelihood with 500 draws. The 

standard errors are calculated using 5000 draws. All attributes have 2-levels and are coded using the "effects coding" method that is common in DCE studies. For 

example, gourmet = 1 or -1. For details see Fiebig et al. (2010).  
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Table 3: Pizza B (Stated Preference Data) 

                                               

 MNL  S-MNL  N-MIXLa  G-MNLa  Latent classb  MM-MNLc 

            class 1 class 2 class 3  class 1 class 2 class 3 

  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. est. s.e. 

                          

Gourmet  0.01 0.01  0.05 0.01  0.01 0.02  0.02 0.05  0.01 0.03 0.02 0.10 0.09 0.15  -0.03 0.04 -0.12 0.08 0.37 0.09 

Price -0.17 0.01  -0.25 0.02  -0.30 0.04  -0.94 0.14  -0.04 0.03 -1.71 0.32 0.24 0.30  -0.10 0.04 -0.86 0.13 -0.17 0.15 

Ingredient freshness 0.21 0.01  0.36 0.03  0.34 0.04  1.22 0.18  0.10 0.02 0.46 0.18 2.17 0.31  0.12 0.03 0.29 0.08 1.02 0.24 

Delivery time 0.03 0.01  0.04 0.02  0.05 0.02  0.21 0.07  0.02 0.02 0.14 0.06 -0.03 0.16  0.02 0.03 0.19 0.10 0.14 0.09 

Crust 0.08 0.01  0.09 0.01  0.08 0.04  0.64 0.12  -0.04 0.02 -0.05 0.09 0.31 0.56  -0.03 0.03 0.62 0.20 0.15 0.09 

Sizes  0.07 0.01  0.08 0.02  0.11 0.02  0.21 0.05  0.05 0.02 0.19 0.08 0.28 0.10  0.06 0.03 0.31 0.09 0.26 0.11 

Steaming hot 0.20 0.01  0.35 0.03  0.34 0.04  1.42 0.19  0.10 0.03 0.22 0.08 0.67 0.15  0.11 0.03 0.37 0.06 1.43 0.23 

Late open hours 0.04 0.01  0.02 0.02  0.08 0.02  0.10 0.05  0.04 0.02 0.06 0.06 0.07 0.07  0.01 0.03 0.29 0.11 0.19 0.07 

Free delivery charge 0.12 0.01  0.15 0.02  0.20 0.02  0.69 0.11  0.11 0.03 0.56 0.13 0.15 0.11  0.22 0.05 0.26 0.08 0.28 0.07 

Local store 0.08 0.01  0.06 0.02  0.15 0.02  0.60 0.11  0.14 0.03 -0.01 0.06 0.10 0.07  0.09 0.03 0.43 0.13 0.08 0.09 

Baking Method 0.07 0.01  0.07 0.02  0.11 0.02  0.27 0.05  0.06 0.02 0.16 0.06 0.29 0.10  0.01 0.03 0.32 0.07 0.35 0.17 

Manners 0.01 0.01  -0.004 0.02  0.02 0.02  0.02 0.06  0.03 0.02 0.03 0.06 -0.06 0.11  0.03 0.03 -0.06 0.10 0.11 0.14 

Vegetarian availability 0.09 0.01  0.06 0.01  0.13 0.04  0.42 0.12  0.02 0.02 0.15 0.07 0.04 0.32  0.04 0.03 0.35 0.16 0.04 0.07 

Delivery time guaranteed 0.07 0.01  0.07 0.02  0.11 0.02  0.15 0.05  0.08 0.02 0.17 0.09 0.12 0.06  0.14 0.04 0.07 0.08 0.19 0.08 

Distance to the outlet 0.06 0.01  0.04 0.02  0.09 0.02  0.08 0.05  0.09 0.02 0.11 0.05 -0.12 0.10  0.11 0.04 0.09 0.07 0.06 0.08 

Range/variety availability 0.06 0.02  0.04 0.02  0.09 0.02  0.15 0.06  0.07 0.02 0.03 0.05 0.07 0.05  0.10 0.03 0.03 0.09 0.19 0.08 

                          

    1.22 0.08     1.50 0.09               

          -0.05 0.03               

                          

Class probability             0.51 0.04 0.14 0.03 0.12 0.02  0.41 0.03 0.31 0.03 0.28 0.03 

                          

No. of parameters 16   17   32   34   101       98      

LL -6747     -6607     -5892     -5662     -5591             -5310           

BIC 13641   13372   12081   11639   12118       11527      

 

Note: 
a
 estimates from uncorrelated coefficient specification; 

b
 estimates from LC with 6 classes; 

c
 estimates from MM-MNL with 3 independent normals. Bold estimates 

are statistically significant at 1%. S-MNL, N-MIXL, G-MNL and MM-MNL are estimated by simulated maximum likelihood with 500 draws. The standard errors are 

calculated using 5000 draws. All attributes have 2-levels and are coded using the "effects coding" method that is common in DCE studies. For example, gourmet = 1 or -1. 

For details see Fiebig et al. (2010).  
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Table 4: Estimates from Revealed Preference Data 

 
MNL 

 
S-MNLa 

 
N-MIXLb 

 
G-MNLb 

 
Latent classc  

 
MM-MNLd 

    
     

 
class 1 class 2 class 3 

 
class 1 class 2 

 
est s.e. 

 
est s.e. 

 
est s.e. 

 
est s.e. 

 
est. s.e. est. s.e. est. s.e. 

 
est. s.e. est. s.e. 

                        
Brand [omitted others] 

                      
 Tombstone 0.87 0.05 

 
0.68 0.21 

 
0.52 0.10 

 
0.48 0.11 

 
2.04 0.31 0.64 0.31 1.12 0.59 

 
1.71 0.16 -0.45 0.23 

 Roma 0.24 0.05 
 

-0.25 0.17 
 

-0.26 0.11 
 

-0.34 0.10 
 

-0.69 0.30 0.91 0.36 -0.89 1.20 
 

-0.30 0.17 -0.58 0.25 

 Jacks 0.66 0.05 
 

0.25 0.21 
 

0.29 0.10 
 

0.01 0.12 
 

2.30 0.32 0.17 0.36 0.24 0.47 
 

1.52 0.18 -1.98 0.30 

 Red Baron 0.13 0.06 
 

-0.12 0.20 
 

-0.17 0.12 
 

-0.17 0.10 
 

-0.30 0.28 0.37 0.33 1.09 0.28 
 

0.55 0.17 -0.43 0.23 

 Bernatello -1.02 0.06 
 

-0.98 0.15 
 

-0.98 0.08 
 

-1.08 0.10 
 

-0.68 0.30 -1.17 0.27 -1.40 0.50 
 

-0.57 0.10 -1.35 0.13 

Price -0.84 0.04 
 

-0.97 0.06 
 

-1.21 0.06 
 

-1.20 0.06 
 

-1.85 0.14 -1.65 0.24 -1.07 0.15 
 

-1.75 0.07 -0.48 0.09 

Promotion 0.81 0.10 
 

0.77 0.13 
 

0.86 0.17 
 

0.76 0.15 
 

1.11 0.22 1.18 0.21 -0.04 0.79 
 

0.92 0.23 0.65 0.41 

Toppings [omitted combo, others] 
                     

 Cheese only 0.16 0.05 
 

-0.01 0.05 
 

-0.28 0.13 
 

-0.42 0.14 
 

-0.38 0.29 -1.34 0.39 0.52 0.28 
 

-0.24 0.17 -1.01 0.30 

 Sausage/pepperoni 1.02 0.04 
 

0.85 0.07 
 

1.02 0.07 
 

1.04 0.06 
 

1.17 0.18 1.14 0.19 0.42 0.27 
 

0.61 0.10 1.53 0.21 

 Meat/supreme -0.06 0.05 
 

-0.08 0.04 
 

-0.04 0.08 
 

-0.05 0.07 
 

0.27 0.21 -0.05 0.16 -0.43 0.37 
 

-0.38 0.12 -0.26 0.26 

 Bacon/burger -0.36 0.06 
 

-0.44 0.06 
 

-0.64 0.10 
 

-0.83 0.12 
 

-0.21 0.24 -0.31 0.25 -0.89 0.50 
 

-0.62 0.15 -0.22 0.27 

 Chicken/Mexican -0.53 0.08 
 

-0.76 0.09 
 

-0.71 0.10 
 

-0.89 0.14 
 

-1.02 0.23 0.08 0.53 -0.55 0.54 
 

-1.19 0.22 0.18 0.22 

 Vegetarian -1.07 0.15 
 

-1.66 0.17 
 

-1.75 0.23 
 

-2.19 0.34 
 

-3.08 0.92 -1.74 0.63 -0.42 0.76 
 

-3.76 0.45 -0.18 0.37 

Crust [omitted regular, others] 
                      

 Rising -0.85 0.04 
 

-1.00 0.06 
 

-1.16 0.08 
 

-1.11 0.10 
 

-1.45 0.26 -1.08 0.23 -1.10 0.23 
 

-1.62 0.14 -1.04 0.19 

 Thin/crispy 0.03 0.03 
 

0.02 0.02 
 

-0.05 0.07 
 

-0.01 0.05 
 

-0.62 0.12 0.74 0.18 -0.46 0.79 
 

-0.32 0.11 0.24 0.17 

 Microwavable 0.07 0.06 
 

0.16 0.04 
 

0.02 0.08 
 

0.01 0.10 
 

0.64 0.37 0.90 0.26 -1.04 1.51 
 

0.67 0.16 -0.89 0.23 

                        


   
0.86 0.05 

    
0.40 0.04 

            


         
0.79 0.07 

            
class prob. 

            
0.28 0.04 0.24 0.05 0.23 0.15 

 
0.65 0.08 0.35 0.08 

                        

 
16 

  
27 

  
48 

  
50 

  
84 

      
66 

   
LL -13602 

  
-11930 

  
-11048 

  
-11017 

  
-12116 

      
-10802 

   
BIC 27337 

  
24085 

  
22497 

  
22450 

  
24931 

      
22153 

   
  

Note: a estimates from S-MNL with random correlated (one-factor) intercepts; b estimates from correlated coefficients (imposing 1-factor structure on the covariance matrix); c estimates 

from LC with 5 classes; d estimates from MM-MNL with 2 proportional covariance matrices.  Bold estimates are statistically significant at 5%. S-MNL, N-MIXL, G-MNL and MM-MNL 

are estimated by simulated maximum likelihood with 500 draws. The standard errors are calculated using 5000 draws. 
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Table 5: Model Fit for Different Consumer Types (RP vs. SP Data) 

      Difference in Mean Attribute       Average BIC Gain per Subject 

   
Levels between Chosen and 

 
Frequency 

   

   
Non-chosen Alternatives 

 
  

MM-MNL G-MNL 

   
  

  
over N-MIXL  over N-MIXL 

      Range Average 
 

  
 

    

          
Stated Preference Data 

 
        Price Most sensitive 1 [-4, -1.75] -2.41 

 
26 

 
2.39 1.24 

[$13,$17] 
 

2 [-1.5,-.75] -1.03 
 

58 
 

-1.37 0.53 

  

3 [-.5,-.25] -0.32 
 

66 
 

0.76 0.92 

 
Least sensitive 4 [0,2] 0.2 

 
178 

 
2.93 1.79 

          Ingredients Most sensitive 1 [1,2] 1.26 
 

31 
 

3.09 2.31 

 1 = fresh 

 

2 [.5,.875] 0.66 
 

44 
 

-2.1 0.65 

-1 = canned 
 

3 [.125,.375] 0.22 
 

101 
 

0.23 0.36 

 
Least sensitive 4 [-.5,0] -0.08 

 
152 

 
3.47 2.01 

                    

 
 

        
Revealed Preference Data 

  
       Price ($/lb) 

 
        

 

Most sensitive 1 [-0.96,-0.56] -0.67 
 

26 
 

1.03 -0.55 

  

2 [-0.55,-0.43] -0.5 
 

26 
 

1.76 -0.4 

 
 

3 [-0.43,-0.30] -0.37 
 

26 
 

2.18 -0.84 

  

4 [-0.30,-0.12] -0.21 
 

26 
 

3.63 1.1 

 
Least sensitive 5 [-0.11,0.99] 0.21 

 
25 

 
4.79 2.56 

          Vegetarian topping 
 

        1 if vegetarian topping Most sensitive 1 [-0.032,0.1655] 0.02 
 

25 
 

4.9 1.13 

0 otherwise 

 

2 [-0.040,-0.0330] -0.037 
 

26 
 

2.77 0.48 

  

3 [-0.0428,-0.0401] -0.041 
 

26 
 

-1.89 -0.3 

  

4 [-0.0454,-0.0431] -0.044 
 

24 
 

3.52 0.49 

 
Least sensitive 5 [-0.0538,-0.0455] -0.048 

 
28 

 
4.07 0.05 

 
                  

Note: In the RP data, of the 25 consumers in the least price sensitive quintile, 14 have price coefficients that are positive (i.e., the wrong sign).   


