Unpredictability in Economic Analysis, Econometric Mouhgj
and Forecasting

David F. Hendry
Department of Economics, and Institute for Economic Madg|!
Oxford Martin School, University of Oxford, UK.

Grayham E. Mizon
Faculty of Social and Human Sciences, University of Soutitam
and Institute for Economic Modelling, Oxford Martin Schpghiversity of Oxford, UK.*

Abstract

Unpredictability arises from intrinsic stochastic vaigat unexpected instances of outliers, and
unanticipated extrinsic shifts of distributions. We arzalyheir properties, relationships, and differ-
ent effects on the three arenas in the title, which suggestsidering three associated information
sets. The implications of unanticipated shifts for fordices economic analyses of efficient mar-
kets, conditional expectations, and inter-temporal @gtiins are described. The potential success
of general-to-specific model selection in tackling locat&hifts by impulse-indicator saturation is
contrasted with the major difficulties confronting foretiag.

JEL classificationsC51, C22.
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1 Introduction

Unpredictability has been formalized as intrinsic stotibagariation in a known distribution, where
conditioning on available information does not alter thécome from the unconditional distribution, as
in the well-known prediction decomposition, or sequenfaatorization, of a density (see Doob, 1953).
Such variation can be attributeihier alia) to chance distribution sampling, ‘random errors’, incdetg
information, or in economics, many small changes in theadg®by individual agents. A variable that is
intrinsically unpredictable cannot be modeled or forebatter than its unconditional distribution.
However, the converse does not hold: a variable that is ioh&ically unpredictable may still be
essentially unpredictable because of two additional aspefcunpredictability. The first concerns in-

dependent draws from fat-tailed or heavy-tailed distidng, which leads to a notion we call ‘instance
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unpredictability’. Here the distribution of a variable tha not intrinsically unpredictable is known, as
are all conditional and unconditional probabilities, bugre is a non-negligible probability of a very
discrepant outcome. While that probability is known, it @ known on which draw the discrepant out-
come will occur, nor its magnitude, leading to a ‘Black Swés in Taleb, 2007), with potentially large
costs when that occurs (see Barro, 2009). The third aspeciailvéxtrinsic unpredictability’, which
derives from unanticipated shifts of the distribution lits& unanticipated times, of which location shifts
(changes in the means of distributions) are usually the esticious. Intrinsic and instance unpre-
dictability are close to ‘known unknowns’ in that the probiiles of various outcomes can be correctly
pre-calculated, as in rolling dice, whereas extrinsic edjntability is more like ‘unknown unknowns’ in
that the conditional and unconditional probabilities ofammes cannot be accurately calculated in ad-
vance (as in the first quote of Clements and Hendry, 1998).ré@tent financial crisis and ensuing deep
recession have brought both instance and extrinsic urgiadddlity into more salient focus (see Taleb,
2009, and Soros, 2008, 2010, respectively).

These three aspects of unpredictability suggest thatrdiffénformation sets might explain at least a
part of their otherwise unaccounted variation. This is wstablished both theoretically and empirically
for intrinsic unpredictability, where ‘regular’ explamay variables are sought. Empirically, population
distributions are never known, so even to calculate theghitibes for instance unpredictability, it will
always be necessary to estimate the distributional formn favailable evidence, albeit few ‘tail draws’
will occur from which to do so. New aspects of distributioras/é to be estimated when extrinsic unpre-
dictability occurs. Consequently, each type of unpreditityg has substantively different implications
for economic analyses, econometric modeling, and econéomécasting. Specifically, inter-temporal
economic theory, forecasting, and policy analyses coulavgy facing extrinsic unpredictability, yei
post the outcomes that eventuated are susceptible to beingledodie briefly discuss the possible role
of impulse-indicator saturation for detecting and remguimsample location shifts. The availability of
such tools highlights the contrast between the poss#slitif modeling extrinsic unpredictabiligx post
against the difficulties confronting successéxl anteforecasting, where one must forecast outliers or
shifts, which are demanding tasks. However, transformatas structural models that make them robust
after shifts, mitigating systematic forecast failure, fe@sible.

The structure of the paper is as follows. Section 2 considéiasic unpredictability ir§2.1; instance
unpredictability in§2.2; and extrinsic unpredictability i§2.3. Theoretical implications are drawn in
section 3, with the relationships between intrinsic, instaand extrinsic unpredictability 8.1, and

the impact of reduced information §8.2. The possibility of three distinct information setsasated



respectively with ‘normal causality’, the timing of outige and the occurrence of distributional shifts is
discussed irg3.3. The difficulties both economists and economic ageméaot facing unanticipated
breaks are analyzed §8.4. Section 4 investigates some consequences for em@gpécations. The
fundamental separation between modeling and forecastingifistance and extrinsic unpredictability—
but not intrinsic unpredictability—is discussedsih. 1. Thert4.2 considers the relationships between the
three aspects of unpredictability for model selection ibcpsses with unanticipated breaks, leading to a
reconsideration of the role of congruent modeling for faging in§4.3. These analyses are illustrated

in §4.4 by an empirical application of robust forecasting. ®&ch concludes.

2 Unpredictability

We now consider the three distinct sources of unpredidtabilVere it the case that the data generation
process (DGP) changed unexpectedly at almost every datg ieen reliable inferences would be ren-
dered essentially impossible. Fortunately, the variouscas of unpredictability are less extreme than

this, so inference remains possible subject tocdneatsdiscussed in the following.

2.1 Intrinsic unpredictability

Definition 1 A non-degenerate:-dimensional vector random variable is an intrinsically unpre-
dictable process with respect to an informationBet; , which always includes the sigma-field generated
by the past ok;, denoteds [E;_;], over a time period/ if the conditional distributionDe, (€:|Z:—1)

equals the unconditional distributioDe, (€;):
DEt (Et | Itfl) = Dét (Gt) Vt € T (l)

Intrinsic unpredictability is so-called as it is an intiimproperty ofe; in relation toZ; 1, not de-
pendent on knowledge abolX, (), so is tantamount to independence betweeandZ; ;. When
7,1 = o [Xy—1] (say) is the ‘universal’ information set, (1) clarifies wéyis intrinsically unpredictable.
Intrinsic unpredictability applies equally to explainitige past (i.e., modelinge;,t = 1,...,7}) and
forecasting the future frord (i.e., of{e;,t =T+ 1,...,T + h}): the best that can be achieved in both
settings is the unconditional distribution, abd ; is of no help in reducing either uncertainty.

Expectations formed at timeusing a distributiorf, are denoted, [-], and the variance is denoted

Vs, [-] for each point inT".



Theorem 1 When the relevant moments exist, intrinsic unpredictiybii distribution entails unpre-

dictability in mean and variance:
Ef, [€r | Ze—1] = Ef, [e] and Vg, [e; [ Zy—1] = Vg, [ed] - )

However, neither the former nor the latter alone need imipdydther. As a well known example, ~
IN,, [, ©2¢], denoting an independently distributed Gaussian variafile expected valué&s, [e;] =
and variance/s, [e;] = Q, is an intrinsically unpredictable process.

Intrinsic unpredictability is only invariant under nomgular contemporaneous transformations, as
inter-temporal transforms must affect (1), implying thatumiqgue measure of forecast accuracy exists
(see e.g., Leitch and Tanner, 1991, Clements and Hendr$, 20d Granger and Pesaran, 2000a, 2000b).

Thus, predictability requires combinations with ¢, as in, for example:
yt =¥, (X¢-1) + & where €, ~ 1D, [0, Q] 3)
soy; depends on both the information set and the innovation commo Then:

Dyt (Yt ’ Zt—l) 7é DYt (yt) vteT. (4)

In (3), y; is predictable in mean evenéf is unpredictable as:

Ep,, vt | Zt-1] = ¥ (X4—1) # Ep,, [y]
in general. Since:
Vb, [yt | Zi-1] < Vp,, [y:] when V,; [y, (X;—1)] # 0 (5)

predictability ensures a variance reduction, consistétit s nomenclature, since unpredictability en-
tails equality in (5), and the ‘smaller’ the conditional iarce matrix, the less uncertain is the prediction

of y, fromZ,_;.

2.2 Instance unpredictability

Definition 2 The vector random variable; is aninstanceunpredictable process over a time perigd

if there is a hon-negligible probability of ‘extreme drawd’ unknown magnitudes and timings.



As Taleb (2007, 2009) has stressed, rare large-magnituel@swvor ‘Black Swans’, do unexpectedly
occur. One formulation of that insight is to interpret ‘Bka8wans’ as highly discrepant draws from fat-
tailed distributions, where there is a constant, but srpatibability of such an occurrence each period.
Both the timing and the magnitude of the discrepant evemtsten unpredictable, even when the form
of the distribution is known and constant over time. Whenrgdautcome materializes unexpectedly at
time 7, say, substantial costs or benefits can result, sometintbs lnat for different groups of agents.
Barro (2009) estimates very high costs from ‘consumptiagastiers’, finding 84 events over approxi-
mately the last 150 years with falls of more than 10% per eapitmulating to a total duration of almost
300 ‘bad’ years across his sample of 21 countries, mainlytdugars. However, there is a marked
reduction in their frequency after World War 1.

Recent research on many financial variables has revealedlifegation of ‘jumps’, as measured
by bipower variation (see e.g., Barndorff-Nielsen and $laeg, 2004, 2006). These seem to e
anteinstance unpredictable events, superimposed on the yimiefrnstein—Uhlenbeck processes. To
mitigate possibly large costs from financial outliers, Ta{2009) argues for more robust systems that
avoid dependence on the non-occurrence of very large dfawsxample, systems with more nodes and
less interdependence.

Empirically, the distributions of extreme future eventamat be known: tail properties are especially
difficult to estimate from available data, and distribuianay also shift over time. If ‘Black Swans’ are
indeed genuinely independent large draws from fat-tailettidutions, no information could reveal their
timings or magnitudes, so success in forecasting such diawmst unlikely without a crystal ball.
However, such draws may not be independent of all possifibenration, so may be partially open to
anticipation in some instances. A ‘Black Swan’ is often welas a large deviation in a differenced
variable, as in asset market returns or price changes. lfapidly reversed, such a jump, or collapse,
entails a location shift in the corresponding level. Thastance unpredictability in the differences of

variables entails extrinsic unpredictability in the les/éndvice versg, the topic to which we now turn.

2.3 Extrinsic unpredictability

Definition 3 The vector random variable; is anextrinsically unpredictable process over a time period

T if there are intrinsically unpredictable shifts in its ditution:

Deoy (+) # De, (-) forsomet € T. (6)



The key feature of extrinsic unpredictability is that thetdbutional shift is unanticipated, even for

variables that would be partly predictable in the absenaedbiift, as in:

D)’t+1 (Yt ’ ) 7"é DYt (Yt ’ ) vieT (7)

An important difference between instance unpredictahdlitd extrinsic unpredictability arises under
independent sampling. In the former, a ‘Black Swan’ refativ the usual outcomes is unlikely to also
occur on the next draw, and even less likely in several ssoe®utcomes. For example, there are
potentially extreme draws from a Studentis but those should occur rarely, and would be equally
likely in either tail, although that would not be true forysa log-normal or some other extreme-value
distributions. In general, from Chebyshev’s inequalitihemnE[y] = 1 < oo andE[(y — pu)?] = 0% < oo

with o > 0, for any real numbeg > 0:
1
Pr(ly —pl 2 s0) < 5 (8

Thus, two successivd 0o’ draws have a probability of less than one in 10,000: flock8&fck Swans’
are improbablé.

However, when the mean of a distribution changes, as in sdrie @xamples cited below, as well
as in Barro (2009), successive outcomes are likely to bendréibe new mean, so a cluster appears.
Although the first outcome after a mean shift would initiadlgpear to be a ‘Black Swan’, even with
independent draws it would be followed by many more outcothat were discrepant relative to the
original distribution, but not relative to its mean-shifteeplacement.

Empirically, there have been many major shifts since 1400ndeed any epoch longer than 50
years, in demography (average age of death changing froomer40 to around 80, with the average
number of births per female falling dramatically), real@mes such as incomes per capita (increasing
6-8 fold), and all nominal variables (some 1000 fold sincB@8 Current outcomes in the Western world
are not highly discrepant draws from the distributionsvate in the Middle Ages, but ‘normal’ draws
from distributions with very different means. Such shiféde precipitated by changes in legislation,
advances in science, technology and medicine, financialvation, climatic and geological shifts, or
political and economic regimes, among other sources. Wniige examples are of major shifts over long

periods, the recent financial crisis, and the many similangles in the last quarter of the 20th Century,

1This only applies to draws from a given distribution. As @il Tett, Financial Times MagazineMarch 26/27, p54,
remarks ‘Indeed, black swans have suddenly arrived in sdldtia..’, as can happen when considering many distribstiafn
economic, political, natural and environmental phenomena



demonstrate that sudden large shifts occur (see the casamdnted by Barrell, Dury, Holland, Pain and

te Velde, 1998, and Barrell, 200ihter alia). In asset markets, endogenous changes in agents’ behavior
can alter the underlying ‘reality’, as argued by Soros (2@T8.0) in his concept of reflexivity, inducing
feedbacks that can lead to dramatic changes as agents’ wiewsstogether, changing the system, which
thereby ends in a different state.

Moreover, the distributions of the differences of many exnit variables have also changed radi-
cally, and are also not stationary. For example, real grgethcapita was a fraction of one percent per
annum till the Industrial Revolution (see Apostolides, &tberry, Campbell, Overton and van Leeuwen,
2008, for the evidence, and Allen, 2009, for an insightfidlgsis of the Industrial Revolution), remained
low for the next couple of hundred years, but is now around 2% @ECD countries, and much higher
in emerging economies borrowing modern Western technology

Shifts of distributions remain common, and would be unpgotdtic per seif they could be mod-
eled and predicted. Co-breaking, where location shifteelamvould enable some aspects to be forecast
even when breaks themselves could not (see Hendry and Mass2@07), analogously to cointegra-
tion reducing stochastic trends in somig) variables to stationarity. Differencing plays a simitale,
removing unit roots and converting location shifts to ingmad. Many of the examples of demographic
shifts noted earlier have such a property: annual changasiiage age of death in OECD countries have
been remarkably constant at about a weekend a week sincedat860, other than a major temporary
shift during the First World War and the ensuing flu’ epidenitowever, the distributions of changes
in many economic variables also shift unexpectedly, esfigdiistributions of nominal variables, but
the change in the change may be more constant as few vari@aesnently accelerate (e.g., as with

‘inflation surprises’, wheré\?p,, say, is sometimes treated as intrinsically unpredicjable

3 Theoretical implications

We now consider the theoretical implications of, and linksdeen, the three sources of unpredictability,

and in section 4, discuss their practical consequences.



3.1 Intrinsic, instance and extrinsic unpredictability

When (3) holdsy . 1 is not intrinsically unpredictable, but there are four eswhyy,, 1 may not be

usefully predicted from timé& using an estimated version of:

?TH\T = "/’T+1 (XT) (9)

The first is that in practice, (9) is never available, so iadttbrecasters must use:

§T+1\T = 1~PT+1 (XT) (10)

whereszTJrl (-) is a forecast of whatp;, | () will be. The second is thaX; may not be known &,
or may be incorrectly measured by a flash or nowcast estimate.
The third reason is instance unpredictability, which arigden the draw o&;, ;1 in (3) induces

outcomesyr; that are far from the forecagt;, ;| in the metric of€2, so that:

€T = YT+1 — YTH+1|T

is unexpectedly large (as in Taleb, 2009). That problem canroeven when);_; (-) is known.

The fourth reason is that the distribution shifts in unapéted ways at unexpected time points:

DYT+1 () 7& DYT () (11)

Thus, even ifyr 1 was predictable according to (4) wh&n- was known at timé”, the lack of knowl-
edge ofypr, (+) in (9), or more realistically, of an accurate vah]@ﬂ (1), makesyr extrinsically
unpredictable. That problem will be exacerbated by anyaimyde non-constancy of the distribution
making empirical modeling difficult. To successfully foast from (10) not only entails accurate data on
X, but also requires both a ‘normal’ drasy; (or forecasting the outliers) and thﬁhl () be close

to ¥r,, (-) even though shifts occur, together essentially needingstairball. A process is doubly
unpredictable when it is both intrinsically and extrindigainpredictable, so the pre-existing uncondi-
tional distribution does not match that holding in the neattipd. For exampleg; ~ IN,, [p;, Q] will

be less predictable than expected from probabilities &atled using2. when future changes in, can-
not be determined in advance. Location shifts induce syatierforecast failure, so will be specifically

considered below.



Nevertheless, there may exist additional information, sigaotedC and/Cr, which could respec-
tively help predict the outliers or the shifts in (11), ascdissed in section 3.3. Importantly, once a shift
has happened, it may be explicable (at worst by indicatdabhkas), so there is a potentially major dif-
ference between modeling and forecasting when (11) hotdaspect addressed in section 4.2. First, we
use the preceding analyses to resolve an apparent paradgoxCiements and Hendry (2005), namely
that the costs of using less information are small, wherkasetcan be large costs from not having
information about shifts.

3.2 Prediction from a reduced information set

Theorem 4 Predictions remain unbiased, although less accurate, wisdng a subset of information,

Ji—1 C Ly—1 whereJ,—1 = o [Z—1].

Proof. ~ When the DGP is (3), sincEp,, , [e:/Z:—1] = 0, so{e:} is unpredictable given all the

information, it must be unpredictable from a subset so that:
Ep,, , et | Ji-1] = 0. (12)

From (3):
Ep,, , vt | Ji-1] = Ep,,_, [¥¢ (Ti1) | Te1] = @1 (Zs—1) (13)

say. Lettinge; = y; — ¢,_, (Z;—1) be the unexplained component from (13), then:
Ep,, , [et | Ji-1] = Ep,, | [yt | Jt-1] — 41 (Z1—1) =0 (14)

Soe; remains a mean innovation with respectfa.; whenDy, , is used.®

However, since:

e =€+, (Xt—l) — @1 (Z¢—1) (15)

taking expectations with respect to the complete inforomasietZ; ;:

Epy,,  [e: | Zi1] =%, (Xi—1) —Epy, | [#—1 (Ti-1) | Ti1] = ¢y (Xio1) — by (Ze—1) # O (16)

Thus,e; is not an innovation relative t6;,_; so from (15) and (16):

Vp,, e =Vo,,  [e]+ Vo, . |9 (Xi-1) — ¢r1(Zi-1)] > Vb, | €] 17)



so larger variance predictions will usually result, againgistent with the concept of predictability.
Thus, in the context of intrinsic unpredictability, mordeseant information improves the accuracy
of prediction, but less information by itself does not leactased outcomes relative By, ,. Such a
result conflicts with the intuition that a loss of informati@about what causes shifts can lead to badly
biased forecasts. The resolution of this apparent parader the assumption in equations like (12),

thatD is the relevant distribution for the calculations, whiclsihot when location shifts occur. As

Yi—1

vi = ¢, (X4—1) + €, was generated by, (-), that must embody any distributional shift, and hence:

Epy, [¥: (Zi-1) | Tia] = &4 (Ze1) (18)

so that:

Ep,, [e: | Ji—1] = Ep,, (¢, (Xi-1) | Ti-1] — &1 (Zt—1) = ¢y (Zi-1) — ¢y (Ze—1) # 0. (19)

Consequently, when a distribution shift occusg,is not a mean innovation with respect #_1 when
the relevant distributio®,,, is used. Without a crystal-ball predictor, the absence atiwis precisely
the fundamental forecasting problem, the future distidoutvill be unknown, anex poste,_; (Z;—1)

will be a biased predictor. The crucial information redantis fromDy, to Dy,_,, which would have

t—11

major costs facing non-constancy, as will occur under esitiunpredictability.

3.3 Three information sets

If the universal information seéf; _; does not enable predictability, then the random variabtgugstion
is intrinsically unpredictable. That result applies etju& modeling and forecasting: nothing useful
can be said beyond the unconditional distribution. Few oladde economic variables are intrinsically
unpredictable fronT;_1, although modelers often seek an error that is, an issuessiett in section 4.3.
In practice, the available informatiaf,_1 C Z;_; that investigators use facilitates some predictability
whenJ;_1 = o[Z;_1] denotes known ‘standard economic forces’ (e.g., for momeyahd, these would
be incomes, prices, interest rates and lags thereof agjinHendry and Ericsson, 1991). Whegnis not
intrinsically unpredictable, bud,, (y:|J7;—1) # Dy, (y:) because of instance or extrinsic unpredictabil-
ity, neverthelesg 1 may sometimes be predictabl€/atising two additional information sets, denoted
L+ and/Cr above, that are not subsets of.

The possible information sef; is one that would help predict the timing of a bad draw from a

known fat-tailed distribution. The considerations inedvseem close to those for predicting shifts of

10



distributions discussed below, although instance unptalility is a known unknown as thex ante
probability can be calculated. Empirically, however, &mgte unpredictability is usually an unknown
unknown, because the relevant distribution is not knowndwvaace, although characteristics thereof,
such as having a fat tail, may be.

The third possible source of informatiokiy, is one that might help reduce extrinsic unpredictability.
We assume thaf; ; C K;_; since timing predictability is needed to predict locatidnfts. Then,
let the universal information set determining the DGP{¢f} beZ; | = (J;—1,Ki—1,M—1) Where
Ki—s = o[W;_s] (say) which if known would explain some of the changes frogm_, (-) to Dy, ()
where0 < § < 1, andM,;_ is a relevant source of information that is unknown to ingedbrs. Write
the DGP ofy; as:

ye=TX{_ | +e€ (20)

where? denotes column vectoring. Using onl§_; entails marginalizindZ;_; with respect toM;_;

andX;_1, soJ;—1 no longer characterizes the DGP{gf; }, only its local DGP (LDGP):

yi=WZ] | +e (21)

When the resulting parametdr; is non-constant, buf' is constant, then the information & and M
must ‘explain’ the breaks in (21). Shifts then alter the trieg relationship’ (e.g., in inflation relative
to its usual determinants, as occurs when wars start: sedrne2001). When7;_1,K;_s) are both
known, this leads to a different LDGP, marginalized withpexst toM;_; only. WhenC; s is indeed the
information set that induces a constant LDGP, it must do sadepunting for shifts inP;, so assuming

the simplest linear setting to illustrate:

yvi=P®1Z{ | + PoW] 5+ vy (22)

Here, W} _; is dated almost contemporaneously wiih (and thereforey;) to produce a constant rela-
tionship, so an investigator may still need to forecastsiifW,_; at timet (hence very high frequency
information may help). ThusW,_; may not help in forecasting even'W; would capture the shift

in the relationship between— 1 and¢ due to changes inir{ter alia) legislation, financial innovation,
technology, and policy regimes. Castle, Fawcett and He(g§1) discuss a variety of information sets
that may improve the predictability of shifts, includingténg indicators and survey data, disaggregation

over time and variable§oogle Trend¢see Choi and Varian, 2012) and prediction markets data ik
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lowa electronic market), although none need help in anyrginstance.
WhenM accounts for the distributional shifts, such that knowihgndXC does not lead to a constant
LDGP, the only viable modeling approach seems to be to rempastlocation shifts in-sample, although

that still leaves forecasting hazardous. To induce (2Ihfiloe LDGP in (22) requires a relation like:
Wi =ILZ]  +mn, (23)

where (23) is a projection, so does not entail an ability tedastW, from Z;_, becausdl, is unknown
(and perhaps unknowable)tat 1: see Hendry (1988). To paraphrase Cartwright (1989), ‘Breat (as

in (21)) need breaks in (as in (23))’, so it cannot be logicatipossible to foresee some shifts—though
it may be difficult in practice.

3.4 Extrinsic unpredictability and economic analyses

Due to shifts in the underlying distributions, all expeitas operators must be three-way time dated,
to denote the relevant random variables, the distributim®isg integrated over, and the available infor-
mation at the time the expectations are formed, aBgp [e:+1|Z;-1], Which denotes the conditional

expectation ok, formed at time given the information sef;_;.

Definition 5

Ep,, €11 | Z—1] = /€t+1Det (€1+1]Z¢—1) deria (24)

The formulation in (24) allows for a random variable beingradictable in mean or variance because
its conditional distribution shifts in unanticipated wagsative to the conditioning information, which is

perhaps the most relevant state of nature for economics.

3.4.1 Conditional expectations

Conditional expectations are often proved to be unbiaseatdpyments like the following. Let:
Yer1 = E[yer1 | Te) + vena (25)
Then taking conditional expectations of both sides:

E[Ut+1 ’ It] =0 (26)

12



This result can be misinterpreted as showing that the eapewtin (25) is unbiased foy.1, but the

analysis suffers from essentially the same difficulty asaiygarent paradox discussed above. Formally:

Theorem 6 Whene, ~ IN,, [, Q2] is extrinsically unpredictable, because future changeg,isannot
be established in advance, the conditional expectaﬁgg [€:+1 | Z:—1] need not be unbiased for the

outcome at + 1.

Proof. From (24):

Eo., [et+1 [ Ze—1] = /€t+1Det (€t41/Zi—1) deryr = /€t+1Det (€r41) deryr = py (27)

whereas:

Eo.,,, [€+1 | Ti1] = /€t+1Det+1 (€t41]Zi—1) der1 = /€t+1Det+1 (€r41)deryr =y (28)

so thatEp,, [€:4+1|Z;—1] does not correctly predigi,, ;. W
Thus, the conditional expectati@p,, [e:+1|Z;—1] formed att is not an unbiased predictor of the outcome
ey att + 1, although the ‘crystal-ball’ predictdtp, ,, | [€:+1]Z;—1] remains unbiased.

Returning to (25) at time and subscripting the expectations operator as in (24):

Ye+1 = Ep,, [Yt+1 | Zt] + v (29)
S0 (26) becomes:
EDyt [UtJrl | It] =0 (30)
which does not entail that:
Ep,,. [ve+1 [ ] =0 (31)

whereas (31) is required for an unbiased prediction. Or#y { available to economic agents or fore-
casters, and after a location shift, the resulting bias eaise forecast failure, as in section 4.1.

It seems unlikely that economic agents are any more suctdbsin professional economists in
foreseeing when breaks will occur, or divining their typenfr one or two observations after they have
happened. That link with forecast failure has importantliogtions for economic theories about agents’
expectations formation in a world with extrinsic unprediitity. General equilibrium theories rely heav-
ily on ceteris paribusassumptions, especially that equilibria do not shift ueexedly. The conditional

expectation is the minimum mean-square error predictonimainsically unpredictable process only

13



when the distribution remains constant, and fails undeiresit unpredictability. Thus, it would not be

rational to use the conditional expectation under exiinsipredictability, which may lead agents to use
forecasting devices that are robust after location shiitereover, as we now show the law of iterated
expectations does not apply inter-temporally when theilligions that enter the formulation change

over time.

3.4.2 The law of iterated expectations facing unanticipat shifts

Theorem 7 Whenh(y, z) = f(y|z)g(z) = p(y) ¢ (z|y) is the joint distribution of(y, z) and all the

distributions involved are constant, the law of iterategentations entails:

E-[Ey[y | 2] = Ey[y] (32)

While well known, the following proof reveals the problenhsit will ensue when distributions shift:

Proof.

E. [, y|z:/z</yyf > dz_//yfy| 2) dzdy
= yy</zh )dyz/yyp(y)dyzEy[y]

where [ h(y,z)dz =p(y). W
When the variables correspond to a common set at differ¢as dirawn from the same distribution,

then (32) becomes:

Eyt [Eyt+1 [ytJrl | yt]] = Eyt+1 [ytJrl] .

The formal derivation is close to that in (32), namely:

Proof.

Eyt [Eyt+1 [Yir1 | yt = Yer1f (Yer1lye) dyt+1> p (y¢) dy:

&

Yt+1

/ Yer1f (yer1lye) p (ye) dyedy 1
Yi+

1

Y41 </ h (ytJrlayt)dyt) dyt+1
t+1 Yt

Yer1P (Yes1) Q1 = By, [Ye41] (33)

+1

—— — —

&
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Thus, if the distributions remain constant, the law of itedeexpectations holddl

Theorem 8 The law of iterated expectations need not hold when dididha shift:

Eyt [Eyt+1 [yt-i-l ‘ yt]] 7é Eyt+1 [yt—i—l]

Proof.

Eyt [Eytﬂ [yt+1 | yt]] = yt+1fyt+1 (yt+1|yt) dyt+1> Py: (yt) dy;

A
/ / Yesrfyrer (e [ve) Pye (vt) Oy
Y Yt
=/ Yit1 (/ fyorr (Yer1lye) Py (yt)dyt> dyt 41
Yt+1 Yt
/

Yi+1Pyerr Wit1) Qi1 = Ey,p [ye] (34)

asfy,., (Yer1|ye) Py (Ye) 7 Fyosr (Wes119t) Pyers (e) unlike the situation in (33) where there is no shift
in distribution. W

There are two sources of updating from, sy, [y;+1|y:—1] t0 Ey,., [yi41|y:]: new information is
embodied iny; _; becomingy;; and shifts in the distribution are implied by a change fignto E,, _ , .
Much of the economics literature (see e.g., Campbell antle§h1987) assumes that the former is an
unanticipated change, written &Jy;+1|y:] — E [yt+1|y:—1], being an innovationy,, as the relevant
information becomes known only one period later. Howevet heed not be not true of the latter, when
the new distributional form has to be learned over time—a@ag rave shifted again in the meantime.

Even if the distribution, denotefdl, | (y:+1|y:), became known one period later:

S [Wert | ye] — Ey. [Yev1 | ye-1] = Eyt+1[yt+1’yt] — By [Yer1lye—1]
+ (Eyerr [Yer1lye—1] — By, [yer1lye—1])
=ve+ /yt+1ft+1 (yt+1!yt—1) dyt+1 - /yt+1ft (yt+1!yt—1) dy;
=Vt (Mt+1 - Mt)

In practice, both means need to be estimated, a nearly taliactask for agents—or statisticians and

econometricians—when distributions are shifting.
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The derivation deducing a martingale difference sequelé2S) from ‘no arbitrage’ in, e.g., Jensen
and Nielsen (1996), also explicitly requires no shifts ia tinderlying probability distributions. Once
that is assumed, a MDS allows deducing the intrinsic unptadility of equity price changes and hence
market (informational) efficiency. Unanticipated shiftsamimply unpredictability, but need not entail
efficiency: informational efficiency does not follow from predictability per se when the source is
extrinsic rather than intrinsic. Distributional shiftscor in financial markets, as illustrated by the chang-
ing market-implied probability distributions of the S&R®Bh the Bank of Englandrinancial Stability
Report June 2010.

In other arenas, location shifts can play a positive roldanifying both causality, as demonstrated
in White and Kennedy (2009), and super exogeneity (see kteamdt Santos, 2010). Also White (2006)
considers estimating the effects of natural experimentymof which involve large location shifts.
Thus, while more general theories of the behavior of econ@géents and their methods of expectations
formation are required under extrinsic unpredictabilégd forecasting becomes prone to failure, large

shifts could also help reveal the linkages between varsable

4 Consequences for empirical applications

The main empirical arenas on which instance and extringizadictability impact are forecasting and

modeling, so we consider these in turn.

4.1 Instance and extrinsic unpredictability in forecastirg

Although no information could make the timing and magnitwdeyenuinely independent large draws
predictable, once a shift has occurred, appropriate itmlicaariables can remove the problem from
a model, even when the ‘causes’ are unknown. If the causdaaren, the relevant variable(s) can be
added. Nevertheless, knowing and adding such variablesnudnelp in forecasting, unless one can also
forecast future shifts in them. For example, oil price clengan have an important impact on inflation,
and are often significant in empirical models of price infiatibut remain at least as difficult to forecast
as the inflation change itself. Thus, both instance andresitrunpredictability may be susceptibleeo
postmodeling, yet not improvex anteforecasting when future shifts cannot be accurately fateca
When_(-) in (9) changes withCr, 1, and thereby induces location shifts, we can write that

dependence as:

Eoy,., yri1 | Ir, Kra] = oo (Zr) + by (W) (35)
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where)(+) is constant. The second term is zero, except for shifts,uated for by step functions or
non-linear responses. At+ 1 — ¢, however, an investigator at best kno#g, Wr,; s andDy,,.,,_,

in which case:

Eoy,., , o1 | Ir. Kra—s] = o (Zr) + Epy,., |, [t (Krga) [ Krga—s] (36)

If a location shift is unpredictable, sEbyT+1_6 [zpl (Kr41) \ICTJFH;] = 0, there will be no perceptible
difference from the information set that entaps-, , (Jr). The aim, therefore, must be to ascertain
available informatiorCr1—s such thattp,, [y (Kr1) 1K py1_s] ~ %1 (W), a daunting,
but not impossible task, dependent on the specifics of tHagmg although it is likely that some outliers

and breaks will not be anticipated, so forecasts that anestaifter breaks will often be needed.

4.2 Unpredictability and model selection

All three forms of unpredictability impinge on economeimodeling and model selection. A process that
is intrinsically unpredictable cannot be modeled bettantlis unconditional distribution. For economic
data, the only relevant situation where that might applyoishie error processes in models, and we
consider that aspect i#.3.

The timings and magnitudes of large draws or shifts are iripatedex antewith instance or ex-
trinsic unpredictability, but once they have occurredytban be taken into accouek postand so can
be modeled. Thus, although unanticipated shifts may bdyhidgtrimental to both economic analyses
and forecasting, they need not impugn empirical modelinnodel selection when correctly handled.
Moreover, shifts that are not modeled can be disastroussfomation and inference. However, impulse-
indicator saturation (IIS: see Hendry, Johansen and Sa2@@8, and Johansen and Nielsen, 2009) can
handle multiple location shifts as well as ‘remove’ mosthaf putliers from a fat-tailed distribution. 1S
creates a complete set of indicator variabﬂe§j:t}} = 1 whenj = t and0 otherwise forj = 1,...,T
givenT observations, then adds théBémpulse indicators to the set of candidate variables. Mdth
search algorithms with tight critical values can handle encandidate variablesy, thanT'. As imple-
mented in automatic model selection algorithms Bkgometricgsee Doornik, 2009), IIS enables jointly
locating breaks with selection over variables, functidoains and lags: see Castle, Doornik and Hendry
(2012). Some well-known procedures are variants of lIShascthe Chow (1960) test (sub-sample IIS
overT — k + 1 to T without selection), and recursive estimation, which isiesjent to 1S over future

samples, reducing indicators one at a time.
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Castleet al. (2011) show that IIS can avoid unmodeled outliers contatinigahe selection of non-
linear models for forecasting shifts and during shifts. td@er, care is required in interpreting empirical
models with substantively important indicator variabeben the shifts they represent could recur. Fu-
ture draws are likely to include either outliers or shifts,rseasures of uncertainty need to reflect that

possibility, as emphasized by Hendry (2001) and Pesardierneezo and Timmermann (2006).

4.3 Congruent modeling for forecasting

The result in (17) underpins general-to-specific (Gets)@hsédlection and the related use of congruence
and encompassing as a basis for econometric model sel¢stere.g., Doornik and Hendry, 2009). In
terms of Gets, less is learned froff_; thanZ;_1, and the variance (when it exists) of the unpredictable
component is larger. In terms of encompassing (see Bontantpslizon, 2003, 2008, for recent results),
a later investigator may discover additional informatiarZj_, beyond.7;_; which explains part of a
previously unpredictable error. Nevertheless, a condmmuel need not outperform in forecasting even
when it coincides with the in-sample DGP, clarifying a numbgfindings in the empirical forecasting
literature. For example, Allen and Fildes (2001) among mthiind no relationship between congruence,
as exemplified by rigorous mis-specification testing, angsequent forecasting performance. Since
systematic forecast failure is primarily due to extrinflicanpredictable shifts in future distributions,
such a finding makes sense, but raises the question: whatisléhfor congruent models in forecasting?
There are four potential advantages of using a congruennapassing model for forecasting despite the
omnipresent possibility of unanticipated breaks.

First, such models deliver the smallest variance for thevation error, a key determinant of forecast-
error variances, especially important when breaks do noiroover the forecast horizon. However, in-
sample dominance does not ensure the avoidance of foradast fand Clements and Hendry (1998) es-
tablish the robustness after location shifts of doubléetihced forecasting devices, suchasy | =
Ax7, which can outperform despite their non-congruence aneemmompassing. Clements and Hendry
(2001) use that analysis to explain the outcomes of forempsbmpetitions, where the simplicity of a
model is viewed as essential for success (see e.g., Malgidaki Hibon, 2000), but argue that is due
to confounding parsimony with robustness, as such congratidid not include non-parsimonious but
robust models. Castle, Fawcett and Hendry (2010) highlightforecasting advantages of transform-
ing a non-parsimonious model to be robust after breaks, laow ¢hat it can then even outperform the
highly parsimonious yet robust devicer - = Az after a break at timé@ — 1: how a congruent

encompassing in-sample model is used in the forecast peradidrs when there are location shifts.
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Secondly, modeling mean shifts in-sample removes one afdhices of systematic mis-forecasting,
as illustrated by Hendry and Mizon (2011). All taxonomiesfarfecast errors show that the equilib-
rium mean plays a key role therein (see e.g., Clements andrileh998): shifts, mis-estimation, or
mis-specification of the equilibrium mean all induce nonezmean forecast errors. Shifts can only
be avoided by either forecasting their arrival, or using ranidation that is robust after breaks, as just
discussed; mis-estimation should be small in a constaritspetified model, where the free intercept
represents the mean of the dependent variable; and remiovsagmple location shifts and outliers re-
duces that source of mis-specification.

Thirdly, eliminating from a selected model irrelevant adnlies that might break in the forecast period
avoids a further source of forecast failure. Model selectittight significance levels can achieve that aim
jointly with selecting relevant variables, non-linear étions and lags thereof, and removing in-sample
location shifts and outliers by 1IS. Moreover, bias con@ts$ after selection also reduce the impact of
any adventitiously significant irrelevant variables whinkght shift.

Fourthly, in congruent models, decisions during modelaiee can be based on conventional in-
ference procedures, such agests even fok(1) data: see Sims, Stock and Watson (1990). However,
when unmodeled breaks occur, heteroskedastic-consgtamtard errors (HCSES), and autocorrelation-
consistent (HACSEs ) generalizations thereof (see e.gite\W1980, and Andrews, 1991) appear to be
needed. Because of the unmodeled shifts, residuals wilbixteteroskedasticity and autocorrelation,
even though those features are not present in the errorsevdoWHCSESs and HACSEs will incorrectly
attribute the underlying uncertainty to the problems folichitthey were respectively designed, rather
than the correct source of unmodeled shifts.

A further important issue is the ratio of the largest eigtuwaof the data second-moment matrix
(say A1) to the smallestX,,), albeit that is not just a problem for congruent models.ti€as al. (2010)
show that location shifts reduce the collinearities betwegriables, having the greatest impact on the
smallest eigenvalues, and since mean square forecast WM8FEs) depend most ok, /\,,, changes
in collinearity after a break adversely increase forecaskettainty. This effect cannot be avoided by
deleting the collinear variables, nor is the problem mitgby orthogonalizing the variables, which can
transform an external break (one affecting marginal preessto an internal one (shifting the conditional
model of interest). However, eliminating low-significaneariables by model selection, and rapidly
updating after a shift, especially by a relatively short mgwvindow, can both help alleviate this problem

(see e.g., Phillips, 1995, and Pesaran and Timmermann, g8§jiectively).
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4.4 Empirical application of robust forecasting

We now illustrate that robust transforms are a feasible timahitigate location shifts by pseudx ante
forecasting of Japanese exports using monthly data oveB(2p€011(6), when they fell unexpect-
edly and drastically by more thaf0% year on year. As an autoregressive model is often difficult to
outperform in forecasting, we contrast that with the robwssiant of the same equation obtained by
differencing.

The autoregressive model selected at 1%Abjometricsover 2000(1)-2008(6) was:

Y = 0.68 Yi—1 + 0.26 Yi—3 + 0.12 12000(2) + 0.12 12002(1)
(0.091) (0.090) (0.04) (0.04)

5 =0.039 x*(2) =0.65

Fhet(4795) =1.02 Far(6a 92) = 0.97 Freset(za 96) =21 (37)

wherey; denotes the annual change in the log of constant price Je@axports, and. () are indi-
cators for200z(x). The selected model is in fact already almost ‘robust’ byitga near second unit

root.

77 Yr4hTH
yT+h

Il Il Il Il Il - Q Il Il Il Il Il
2007 2008 2009 2010 2011 0.8 2007 2008 2009 2010 2011

Figure 1: Forecasts of year-on-year changes in Japan’'stex@0608(7)—2011(6)

From (37), the corresponding robust device was just theldietpdifference:

U =yi—1+095Ay,_, & =0.0755 (38)
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Figure 2: Squared forecast-error comparison

Their respective forecasts in Figure 1 show typical pastefirhe forecasts from (37) are systematically
discrepant, being above when exports fall, and below whew tise again. The error bars shav2o
forecast intervals. In contrast, the robust device avoydtesatic forecast failure, but overshoots at
turning points plus a small ‘insurance cost’ when no shittsus (no error bars are shown given the non-
congruence of the device). Overall, their comparaNSFEs are0.124 versus0.098, as highlighted
by Figure 2.

Thus, while separate methods are needed to forecast colocdift (Castlest al,, 2011, offer some
suggestions), once such a break has occurred, robust sle@inenaintain forecasts on track because the
DGP, and hence the data, must then incorporate the breakdditiom to this example of forecasting
Japanese exports demonstrating that a robust model carasbigetter than an autoregression, Hendry
and Mizon (2011) show that the robust version of an econdh@ory based econometric model can
forecast well for extensive periods despite the presencsro€tural change, even when the original

model fails.

5 Conclusion

The three distinctions within unpredictability of intrinsinstance and extrinsic, have different implica-
tions for economic analyses, econometric modeling, anecsting. The first entails that conditioning
information does not alter uncertainty, so that the undamthl distribution is the best basis for all

three activities, which are therefore on an equal footinguafnformativeness’. The second adds the

possibility that even when the distributional form is kngweither unconditionally or conditionally (so
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otherwise there would be some predictability), an outcoae lme highly discrepant at an unexpected
time, and thereby impose substantial costs. Such outli@nsotl persist, but are usually in dfferenced
variables (like rates of return) so can permanently charigesh The third concerns unanticipated shifts
in distributions, which do persist, as with location shifts

After they have happened, the effects from the second and ¢in be modeled (at a minimum
by indicator variables), but if neither can be predicted lo@ &vailable information, forecasts will be
hazardous. Given the nature of innovation and economicvi@mh# seeems highly unlikely that a meta-
distribution of breaks can be formulated once and for aliciuding parametrizing all possible breaks or
relying on intrinsic unpredictability alone: there are tany future unknown unknowns. Nevertheless,
modeling tools such as impulse-indicator saturation atlteewontaminating effects of location shifts and
outliers to be removed.

Important implications of extrinsic unpredictability afeat conditional expectations cease to be re-
liably unbiased and the law of interated expectations failsold intertemporally. Consequently, model
forms that rely on such derivations will be non-structureggisely when unanticipated location shifts
occur. Moreover, economic agents may adopt robust mettodgoid systematic forecast failure fol-
lowing shifts. Although sources of information may exisattttould help with predicting outliers or
shifts, it may prove difficult to benefit from these in praeticConsequently, methods which can help
ascertain the likely persistence of breaks after they haeeroed seem to offer the best prospect for

mitigating systematic forecast failure for both economatd economic agents.
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