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Abstract

The size of adverse selection and moral hazard effects in health insurance markets
has important policy implications. For example, if adverse selection effects are small
while moral hazard effects are large, conventional remedies for inefficiencies created
by adverse selection (e.g., mandatory insurance enrolment) may lead to substantial
increases in health care spending. Unfortunately, there is no consensus on the mag-
nitudes of adverse selection vs. moral hazard. This paper sheds new light on this
important topic by studying the US Medigap (supplemental) health insurance market.
While both adverse selection and moral hazard effects of Medigap have been studied
separately, this is the first paper to estimate both in a unified econometric framework.

Our results suggest there is adverse selection into Medigap, but the effect is small.
A one standard deviation increase in expenditure risk raises the probability of insur-
ance purchase by 0.055. In contrast, our estimate of the moral hazard effect is much
larger. On average, Medigap coverage increases health care expenditure by 24%.
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1 Introduction

This paper studies adverse selection and moral hazard in the US Medigap insurance mar-

ket. Medigap is a type of supplemental insurance sold by private insurers to cover gaps in

Medicare, the primary social program providing health insurance coverage to senior citizens.

While both the adverse selection and moral hazard effects of Medigap have been studied

separately, this is the first paper to estimate both in a unified econometric framework.

Of course, private information is central to the analysis of insurance markets. For in-

stance, ”adverse selection” is the propensity of high-risk individuals to purchase more cover-

age. Rothschild and Stiglitz (1976) show that if people have private information about their

risk type, the competitive equilibrium (if it exists) is not efficient: adverse selection drives

up premiums, and low-risk individuals are underinsured. As a result, there may be scope for

government intervention in insurance markets (e.g. mandatory insurance coverage).

But the functioning of insurance markets can also be distorted by ”moral hazard,” which

is another type of informational asymmetry (Arrow (1963), Pauly (1968)). Moral hazard

arises if ex-post risk of insured individuals is higher than the ex-ante risk. This occurs if

insurance, by lowering the cost of health care, increases the rate of health care utilization

(conditional on health outcomes) and/or decreases the incentive to avoid bad outcomes. In

either case, insurance coverage tends to increase a person’s health care utilization.1

Thus, both adverse selection and moral hazard manifest themselves in a positive rela-

tionship between ex-post realization of risk and insurance coverage (Chiappori and Salanie

(2000)). This makes them challenging to disentangle empirically. But from a policy point

of view the distinction between the two is very important. The same policies that can deal

with adverse selection (e.g. mandatory enrolment) can lead to greatly increased aggregate

health care costs if the moral hazard effect is strong.

1We focus on the first definition of moral hazard (i.e. insurance increasing health care utilization condi-
tional on health outcomes), which is the most often used definition in the recent health economics literature.
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Here, we study the Medigap insurance market, and develop a simultaneous equations

model for the joint determination of (i) demand for health insurance, and (ii) health care

expenditure. Joint modelling is important, because one can’t estimate the moral hazard

effect without quantifying the extent of selection (by risk type) into insurance coverage;

nor can one measure the extent of adverse selection into insurance without quantifying how

insurance coverage affects demand for services (conditional on health).

Our paper builds on the work of Fang, Keane and Silverman (2008), henceforth FKS,

who studied selection into Medigap but did not estimate moral hazard. As FKS point out,

a key advantage of the Medigap market for studying adverse selection is that it is relatively

easy to measure private information about health expenditure risk. By law, insurers can only

price Medigap policies based on age, gender, state of residence and smoking status. Thus,

expenditure risk due to other factors, including health status, can be considered ”private”

information of individuals for the purposes of the analysis. The ability to observe private

information enables us to estimate sources of selection into Medigap.2 In addition, sev-

eral of our private information variables generate plausibly exogenous variation in Medigap

insurance coverage.3 This allows us to identify the moral hazard effect.

Aside from estimating moral hazard jointly with selection, our paper contains at least

five significant advances over FKS. First, we use a much more sophisticated model of health

expenditure. To achieve a good fit to the health expenditure distribution we use the ”smooth

mixture of Tobits model,” which generalizes the Smoothly Mixing Regressions framework

of Geweke and Keane (2007). Second, like FKS, we merge data from two datasets in our

analysis (the Medicare Current Beneficiary Survey (MCBS) and the Health and Retirement

2Aside from health measures, the private information variables we observe are cognitive ability, income,
education, financial risk attitudes, financial planning horizon, longevity expectations, race and marital status.

3That is, while they enter the insurance equation, they can be excluded from the health expenditure
equation, given our rich set of controls for health status. For example, we make the plausible assumption
that, conditional on health status, financial risk attitudes do not enter the expenditure equation directly -
they only affect health expenditure through their effect on insurance status.
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study (HRS)). However, in contrast to the ad hoc imputation method used by FKS, we

use a formal Bayesian approach. We construct a Markov Chain Monte Carlo (MCMC)

algorithm, where variables missing from one dataset but present in the other are imputed

within the algorithm as steps in the Markov chain. Third, we estimate not only an average

moral hazard effect, but the entire distribution of effects across types of people. Fourth, in

addition to the variables used in FKS, we also consider race and marital status as potential

sources of adverse selection. These variables can affect both tastes for insurance and health

care expenditure, but cannot be legally used to price Medigap policies. Finally, our model

allows for correlation in the unobservable determinants of insurance choice and health care

expenditures (which FKS assume to be uncorrelated conditional on observables).

Our main results are as follows: We find that, conditional on Medigap pricing variables

only, there is advantageous selection into Medigap insurance. That is, contrary to classical

theory, higher-risk individuals are less likely to buy insurance. But, conditional on a set of

private information variables (including income, education, risk attitudes, cognitive ability,

financial planning horizon, longevity expectations, race and marital status) there is adverse

selection into Medigap insurance. This adverse selection effect is not very strong: a one

standard deviation increase in expenditure risk in the Medicare only state (12.7 thousand

dollars) increases the probability of buying insurance by only 5.5 percentage points (from the

sample mean Medigap coverage rate of 50% up to 55.5%). We also find that, of the private

information variables, cognitive ability and income are the most important factors explaining

advantageous selection.4 These findings regarding the magnitude and sources of selection are

consistent with the main results of FKS. But we also find that race is an important source

of adverse selection: blacks and Hispanics have both lower demand for Medigap insurance

and lower health care expenditure.

4Both high income and high cognitive ability people tend to be (i) healthier and (ii) to demand more
insurance conditional on health.
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Our results imply that moral hazard effects of insurance are large. We find that, on

average, a person with Medigap insurance spends about $1,615 (24%) more on health care

than his/her counterpart who does not have Medigap. As external validation of our model,

it is notable that this is similar in magnitude to the moral hazard effect in the RAND Health

Insurance Experiment. For example, Manning et al. (1987) find that decreasing the co-

insurance rate from 25% to 0 increased total health care expenditure by 23%. The effect of

adopting one of many typical Medigap insurance plans that cover co-pays is similar to this

drop in the co-insurance rate,5 and we predict it has a similar effect on expenditure.

Our model allows us to estimate the entire distribution of moral hazard effects. We find

the moral hazard effect of Medigap varies in important ways with individual characteristics.

In particular, the demand for health care is much more elastic for healthier people. As a

result, given a universal extension of Medigap coverage, most of the increase in health care

spending would be directed toward the healthiest seniors.

The paper is organized as follows: Section 2 contains the literature review; Section 3

describes the data; Section 4 presents our model of demand for Medigap insurance and

health care expenditure; Section 5 presents the empirical results; Section 6 concludes.

2 Literature Review

Part A: Literature on Health Insurance in General

Many studies examine either adverse selection or moral hazard in health insurance markets.

Cutler and Zeckhauser (2000) review the literature that focuses on selection, and conclude

that most studies find evidence for adverse selection. These studies often use data from em-

5For example, average out of pocket expenses of people with Medigap is about 1.8 thousand dollars (Kaiser
Family Foundation 2005), which corresponds to about 23% of the average total health care expenditure. In
contrast, basic Medicare alone leaves about 55% of costs uncovered. Thus, on average, adopting a Medigap
policy decreases out-of-pocket costs by 32 percentage points (from 55% to 23%), or by 60%.
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ployers who offer different insurance plans to their employees, and examine risks across plans

with different generosity. There is also empirical evidence that points to the importance of

moral hazard. For example, Manning et al. (1987) use data from the RAND Health Insur-

ance Experiment and find that individuals who were randomly given more generous plans

had higher health care expenditure. Chiappori et al. (1998) find that an exogenous increase

in the generosity of health insurance coverage in France had a positive effect on some cate-

gories of health care expenditure. Several studies estimate substantial moral hazard effects

of insurance by employing parametric multiple equation models with exclusion restrictions

(e.g., Munkin and Trivedi (2008, 2010), Deb et al. (2006)).

Only a few papers have estimated selection and moral hazard effects within a single

structural model of health insurance choice and demand for health care. Cardon and Hendel

(2001) were the first to adopt this approach. Using data from National Medical Expenditure

survey, they find evidence of little adverse selection but of substantial moral hazard. But to

estimate their model they rely on the strong assumptions that the insurance choice set faced

by an individual is exogenous, and that health shocks are lognormal.

In contrast, recent papers by Bajari et al. (2011a,b) develop a semiparametric method for

inference in a structural model of health insurance and health expenditure choice. They find

evidence of substantial moral hazard and adverse selection in the HRS and in the insurance

claims data from a large self-insured employer. However, while Bajari et al. (2011a,b) are

flexible with respect to the distribution of expenditure risk, their framework is restrictive in

that it does not allow for heterogeneity in risk preferences, or correlation of risk preferences

with expenditure risk. Such features have been found to be important for explaining data

regularities in several insurance markets (e.g., Fang et al. (2008), Finkelstein and McGarry

(2006)). An extensive review of empirical studies of selection and moral hazard in other

insurance markets is given in Cohen and Siegelman (2010).
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Part B: Literature on Medigap in Particular

As we noted earlier, it is difficult to disentangle selection and moral hazard effects empiri-

cally. So it is not surprising that existing studies of the Medigap market disagree on their

magnitudes. For example, Wolfe and Goddeeris (1991) find evidence of adverse selection

and moral hazard in their 1977-1979 sample of Retirement History Survey respondents. In

particular, they find that a one standard deviation health expenditure shock6 increases the

probability of supplemental insurance by roughly 12 percentage points over a two year pe-

riod. They also find that the moral hazard effect of supplemental insurance is a substantial

37% increase in expenditure on hospital and physician services.

Ettner (1997) also finds both adverse selection and moral hazard using the 1991 MCBS. In

particular, she finds that total Medicare reimbursements of seniors who purchased Medigap

independently were about 500 dollars higher than for those who obtained Medigap cover-

age through an employer. Assuming the former group is less healthy, this implies adverse

selection. She also reported moral hazard effects of 10% and 28% of average total Medicare

reimbursements for plans with lower and higher generosity of coverage, respectively.

On the other hand, Hurd and McGarry (1997), who use the 1993-1994 Asset and Health

Dynamics Survey, find that adverse selection is small, and that higher health care use by

people with Medigap is mostly due to moral hazard. And, using HRS data on inpatient care,

Dardanoni and Donni (2012) find that Medigap insurance increases the annual probability of

hospital admissions by 4 percentage points (12% increase from the sample average of 0.33).

Recently, Fang, Keane and Silverman (2008) actually find evidence of advantageous se-

lection into Medigap insurance. That is, seniors who purchase Medigap are (on average)

in better health than those who have only Medicare. This finding contradicts much of the

empirical work mentioned earlier, as well as the predictions of classic asymmetric informa-

6This is defined as the expenditure residual left after controlling for self-assessed health, disability, wealth
and demographics
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tion models of insurance markets (e.g., Rothschild and Stiglitz, 1976). These models predict

that, given private information about risk, the riskier types should buy more insurance.

But more recent theoretical work (de Meza and Webb (2001)) shows that advantageous

selection can arise if people are heterogeneous on multiple dimensions (not only risk type),

and there exists private information that is positively correlated with both health and de-

mand for insurance. In our context ”private” information includes both true unobservables

and information that cannot legally be used for pricing Medigap policies. FKS used the term

”sources of advantageous selection” or SAS to refer to such quantities. The SAS variables

proposed by FKS include ”behavioral” variables (risk tolerance, cognitive ability, financial

planning horizon), and demographics that are not priced on (income, education).

To test for selection, FKS first estimate an insurance demand equation that includes only

pricing variables (e.g., age, gender, state) and a measure of expenditure risk based on an

extensive set of health measures. This regression yields the puzzling negative coefficient on

expenditure, implying advantageous selection. Of course, the demand for insurance may de-

pend on other factors, like income or education, but, from the point of view of an insurance

company the existence of adverse/advantageous selection depends only on the partial corre-

lation between insurance purchase and expenditure risk conditional on pricing variables. By

law, the price of insurance cannot be based on income or other private information.

Next, to test if their set of private or ”SAS” variables can explain advantageous selection,

FKS include them in the insurance equation and test if the expenditure coefficient turns from

negative to positive. This does indeed occur. Thus, among individuals who are similar in

terms of the SAS variables, it is indeed the less healthy who are more likely to buy Medigap,

just as classical asymmetric information models predict. Cognitive ability and income are

the most important of the SAS variables.7 Interestingly, risk tolerance is not very important,

7FKS argue that people with higher cognitive ability may demand more insurance because (i) they better
understand the rules of Medicare and the benefits of purchasing supplemental insurance and/or (ii) they are
more aware of future health care expenditure risks.
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as it affects demand for insurance but is not correlated with expenditure risk.

The main limitations of the FKS analysis are (i) they did not account for possibly non-

random (conditional on observables) selection into insurance when estimating the prediction

model for expenditure risk, and (ii) they did not attempt to estimate moral hazard. In the

present paper we seek to address these issues.

3 Data: The HRS and MCBS Datasets

The conventional order of exposition in econometric analysis is model followed by data. But,

in the present case, so many of our modelling choices depend on the features of the Medicare

program and the nature of the available data that it is necessary to discuss the data first.

We begin with a brief description of Medicare and Medigap, and then turn to data.

Medicare is the primary health insurance program for most seniors in the US, but on

average it only covers about 45% of health care costs of beneficiaries. To cover the large gaps

in Medicare, private companies offer Medigap insurance plans - private policies which cover

some of the co-pays and deductibles associated with Medicare as well as various services not

covered by Medicare. Importantly for our purposes, the Medigap market is heavily regulated.

Only 10 standardized Medigap plans are offered (denoted A through J),8 and insurers can

only price policies based on age, gender, smoking status and state of residence. This means

we can treat any other observed characteristics of individuals as ”private” information.

To conduct our analysis of demand for Medigap and determinants of medical expenditure,

we would ideally need a dataset that contained all of the following variables: Medigap

8For example, Medigap plan A only covers Medicare co-insurance costs, 365 additional hospital days
during a life-time, and blood products. In contrast, Medigap plan F, the most popular plan (with a 37%
market share), also covers all Medicare deductibles, physician ”balance billing,” skilled nursing facility co-
insurance and foreign travel emergency expenses. However, Plan F does not cover costs of preventative,
home recovery or hospice care not covered by Medicare (Kaiser Family Foundation 2005). During the period
of our study Medicare did not cover prescription drugs, and several Medigap plans offered drug coverage.
After the Medicare drug plan was introduced the design of the Medigap options was revised, and the number
of options increased.
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insurance status, a comprehensive measure of all health care expenditures (not just covered

expenses), a rich set of health measures (to predict expenditure), Medigap pricing variables

and other demographics, and a set of ”private” information or SAS variables. However, as

FKS point out, such a dataset does not exist. Instead, we use the following two datasets:

The Medicare Current Beneficiary Survey (MCBS) contains comprehensive information

about respondents’ health care costs, as well as very detailed measures of health status. It

also contains Medigap insurance status and demographics. But unfortunately it contains

little information on potential SAS variables.

The Health and Retirement Study (HRS), contains detailed measures of health status

similar to those found in the MCBS. It also has information on Medigap insurance status and

demographics. Furthermore, the HRS contains an extensive set of potential SAS variables

(including cognitive ability, education, measures of risk attitudes, etc.). But unfortunately

the HRS has no information on health care expenditure.9

Given these data limitations, the empirical strategy of FKS was to first use the MCBS to

estimate the relationship between expenditure and a rich set of health measures. Then, they

used the estimated relationship to impute expected health care costs for respondents in the

HRS. Finally, they estimated a demand equation for Medigap using this imputed measure

of health expenditure risk. In contrast to this two-step procedure, we use formal Bayesian

data imputation methods to merge the two datasets, as we describe in Section 4.

Our analysis uses data from the MCBS for 2000 and 2001, and from the HRS for 2002.

9Recently Medicare claims data were linked to the HRS. But expenditures not covered by Medicare
cannot be linked. For example, Medicare covers skilled nursing care, but not custodial nursing care, so the
latter is not in the HRS-Medicare linked data. Also, we were advised by HRS staff that prescription drug
expenditures are not yet available, even for years after Medicare incorporated drug coverage. Prescription
drugs constitute a large fraction of the total health care expenditures of Medicare beneficiaries (e.g., 29% on
average in our MCBS data), and several Medigap plans sold before January 1, 2006 provided prescription
drug coverage. More generally, FKS show that Medicare-reimbursed expenditures are very different from
total medical expenditures in the MCBS (see their Table 1). And, of course, the purpose of Medigap is to
cover at least some of the expenses not reimbursed by Medicare. Thus, the HRS-Medicare linked data may
give a distorted view of the health expenditure risk relevant for Medigap insurance.
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We include only people who rely on Basic Medicare as their primary source of coverage.10

Descriptive statistics for selected variables are presented in Table 1. For the sake of compa-

rability we use the same MCBS sample as FKS, and the same HRS sub-sample that FKS

used to obtain column (3) of Table 6 in their paper.11 This is the sub-sample in which all

individuals have non-missing information about all potential SAS variables, including risk

aversion, cognitive ability, financial planning horizon, and longevity expectations.

Risk attitude is a variable of particular interest because it has been suggested as a likely

source of advantageous selection by de Meza and Webb (2001) among others. Our measure

of risk attitude is the risk tolerance parameter estimated by Kimball et al. (2008) for all HRS

respondents using their choices over several hypothetical income gambles. Thus, it measures

financial risk aversion, not aversion to health related risks.

Cognitive ability, which was found to be an important SAS variable by FKS, is measured

by several variables in the HRS: the Telephone Interview for Cognitive Status score, the word

recall ability score, the numeracy score and the subtraction score. To conserve on parameters

we extract a common factor from these variables and use it as a scalar measure of cognitive

ability. The HRS also contains data on two other ”behavioral” SAS variables used in our

analysis: longevity expectations and financial planning horizon.12 The ”demographic” SAS

variables (income, education, race, marital status) are contained in both datasets.

Both the MCBS and HRS contain a rich set of 76 health status measures which are

10That is, we drop people with other sources of coverage such as Veterans administration benefits or
employer provided coverage.

11FKS limited their analysis to the 2000 and 2002 waves of the HRS because at the time of their study
these were the latest years for which a full version of the HRS data for respondents aged 65 or more was
available. FKS used three HRS samples in their analysis: (i) the full sample of 9973 observations, all of
which have information on health, demographics and socioeconomic variables, but can have missing data
on the SAS variables; (ii) a subsample of 3467 observations that have complete information on the risk-
tolerance variable; (iii) a subsample of 1695 observations with information on all potential SAS variables. In
our analysis we use the third HRS subsample. This subsample only contains observations from wave 2002
because several of the cognitive ability measures were not available in the earlier wave.

12From the HRS we estimate the distribution of these SAS variables conditional on exogenous character-
istics common in the HRS and MCBS. We then impute the missing SAS variables in the MCBS sub-sample.
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detailed in the Data Appendix of FKS. These include self-reported health, smoking status,

long-term health conditions (diabetes, arthritis, heart disease, etc.) and difficulties and help

received for Instrumental Activities of Daily Living (IADLs). We use factor analysis to

reduce these 76 variables to ten factors that best explain expenditure.13

Table 1 shows descriptive statistics for our HRS and MCBS samples. Individuals in

our HRS sample tend to be younger, healthier (i.e., they have a lower sample average of

unhealthy factor 2 and a higher sample average of healthy factor 3) and higher income than

those in the MCBS sample.14 Table 1 also shows that individuals with Medigap are on

average healthier than those without Medigap in both the HRS and the MCBS (compare

again the means of factors 2 and 3). This implies advantageous selection into Medigap.

Table 2 presents results of regressions of expenditure on various sets of health status

measures. Strikingly, demographics explain only 1.7% of the variance of expenditure. But

inclusion of the 76 health measures increases this to 21%. Note also that inclusion of the

health measures increases the Medigap coefficient from $979 to $1,951.15 This implies that

people with Medigap tend to be healthier, so failure to control for health understates the

moral hazard effect.16

13We first factor-analyze these 76 variables to extract 38 factors (using data in both the HRS (full sample)
and MCBS samples). We then regress health care expenditure in the MCBS on these 38 factors (along with
demographics). We select 16 factors that are significant predictors of expenditure. Finally, we select the 10
factors from among these 16 that give the highest possible R-squared. The 10 factors that are selected are
# 2, 3, 7, 8, 10, 11, 17, 20, 22 and 23 (not factors 1-10). Thus, the factors that explain the most covariance
of the health indicators are not the same as the ones that explain most of the variance in expenditure.

14The fact that our HRS and MCBS samples have different characteristics does not create a problem for
our analysis, provided the distribution of the SAS variables conditional on the exogenous characteristics used
for imputation (including age and health) is the same in both.

15In Table 2 of FKS the Medigap coefficient changes from negative to positive as health controls are
added to the expenditure equation. The reason for the discrepancy is that FKS use different subsamples
for regressions with and without health controls. In particular, the regression without health controls uses
15,945 observations, while the regression with health controls uses 14,129 observations for which health status
information is available. Table 2 in our paper uses the FKS sample of 14,129 observations to obtain the
results both with and without health controls.

16Some caution is in order in interpreting this result however, as Medigap status may not be exogenous:
It may be correlated with unobserved determinants of health expenditure that we do not control for. On
the other hand, given our extensive controls for health status, this may not be a problem. Our structural
model results will shed light on this issue.
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Table 1: Descriptive Statistics

MCBS HRS

Variable All Medigap No Medigap All Medigap No Medigap

Medigap 0.50 1.00 0 0.43 1.00 0
Female 0.59 0.60 0.58 0.56 0.58 0.55
Age 76.57 77.02 76.11 68.70 68.67 68.72

(7.50) (7.29) (7.69) (3.10) (2.98) (3.20)
Black 0.10 0.04 0.17 0.14 0.06 0.20
Hispanic 0.08 0.03 0.12 0.07 0.02 0.11
Married 0.48 0.54 0.43 0.66 0.71 0.63
Education: Less than high school 0.36 0.27 0.45 0.28 0.22 0.33
Education: High School 0.27 0.31 0.24 0.38 0.41 0.35
Education: Some college 0.21 0.24 0.18 0.18 0.18 0.17
Education: College 0.08 0.10 0.06 0.08 0.08 0.08
Household Income ($ in 1000s) 25.7 31.2 20.0 43.8 54.4 35.7

(46.5) (51.4) (40.1) (68.7) (79.6) (57.7)
Health factor 2 (Unhealthy) 0.04 -0.06 0.13 -0.32 -0.37 -0.28

(1.01) (0.89) (1.10) (0.51) (0.43) (0.56)
Health factor 3 (Healthy) -0.12 -0.09 -0.15 0.17 0.23 0.13

(-0.93) (0.97) (0.86) (0.72) (0.70) (0.74)
Cognition 0.46 0.54 0.40

(0.31) (0.25) (0.33)
Risk tolerance 0.234 0.228 0.236
(estimate from Kimball et al. (2008)) (0.142) (0.138) (0.146)
Financial planning horizon, years 4.46 4.83 4.18
(finpln) (4.05) (4.12) (3.98)
Subjective probability to live to 75 or more 67.32 69.57 65.59
(praliv75) (28.33) (25.91) (29.96)
Total medical expenditure ($) 8,085 8,559 7,605

(14,599) (14,301) (14,881)
Number of observations 14128 7113 7015 1671 726 945

Note: “Total medical expenditure” includes all expenditure, both covered and out-of-pocket.
Standard deviations are in parentheses.
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Table 2: OLS results of total medical expenditure on Medigap coverage, demographic and
health status characteristics in the MCBS
Variable A. Without Health

Controls
B. With Direct
Health Controls

C. With Health
Factor Controls

D. With Health
Controls and Income

Medigap 979.4*** 1951.2*** 1948.2*** 1889.2***
(291.0) (255.6) (257.8) (259.6)***

Female -933.6*** -834.7*** -734.3*** -707.3**
(304.9) (290.7) (282.3) (282.7)

Age-65 501.5*** 408.0*** 437.3*** 438.6***
(125.8) (115.1) (116.5) (116.5)

(Age-65)
2

-23.3** -28.8*** -31.0*** -31.0
(9.8) (9.1) (9.2) ( 9.2)

(Age-65)
3

0.43** 0.50** 0.51*** 0.5***
(0.21) (0.20) (0.20) (0.20)

Black 1212.9* 579.8 770.4 808.5
(639.3) (550.3) (596.2) (596.4)

Hispanic -576.7 -843.8* -622.2 -568.3
(511.7) (431.6) (467.4) (467.4)

Married -779.9*** -325.2 -213.5 -305.7
(299.0) (268.7) (275.3) (276.3)

Health factor 2 4565.0*** 4581.5***
(252.4) (252.3)

Health factor 3 -2544.6*** -2568.4***
(226.4) (226.7)

Health factor 7 2049.0*** 2041.7***
(241.5) (241.4)

Health factor 8 711.7*** 718.6
(213.1) (212.9)

Health factor 10 -2047.0*** -2044.7***
(535.5) (535.8)

Health factor 11 -961.6*** -964.2
(207.8) (207.8)

Health factor 17 1176.3 1180.8
(931.4) (930.9)

Health factor 20 -1339.2*** -1350.4
(363.7) (364.6)

Health factor 22 2144.6*** 2136.6***
(382.4) (382.8)

Health factor 23 1254.7*** 1249.7***
(414.1) (414.2)

Household Income 6.96***
($ in 1000s) (2.25)

Health status dummy No Yes No No
Region dummy Yes Yes Yes Yes
Year dummy Yes Yes Yes Yes
Observations 14128 14128 14128 14128
Adjusted R2 0.017 0.21 0.18 0.19

Note: “Total medical expenditure” is measured in dollars and includes all expenditure, both covered and
out-of-pocket. The regressions are weighted by cross-section sample weights. Robust standard errors clus-
tered at the individual level are in parentheses. Statistical significance is indicated by ∗ (10 percent), ∗∗ (5
percent) and ∗∗∗ (1 percent).
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In column C we see that, when the 76 health status measures are replaced by our ten

health factors, the adjusted R-squared drops from 0.21 to 0.18. This seems a reasonable price

to reduce the number of covariates by 66. Health factors 2 and 3 are the most quantitatively

important for predicting expenditure. Factor 2 loads heavily on deterioration in health as well

as difficulties and help with IADLs, and so is an unhealthy factor. It increases expenditures

by about $4,500 per standard deviation. Factor 3 loads positively on good and improving

self-reported health and negatively on difficulties with IADLs and thus is a healthy factor.

It decreases expenditure by $2,500 per standard deviation.

The last column of Table 2 adds household income to the previous specification. The

inclusion of income has little effect on the health status and demographic variables, and it

only slightly reduces the Medigap coefficient (by $59). The estimated effect of income on

expenditure is quite small: a one standard deviation increase in income ($46,500) increases

average expenditure by only about $324, which is 4% of the mean. Thus income appears to

have little impact on health expenditure (conditional on health status). This is consistent

with a view that health spending is largely driven by institutional factors, like clinical practice

and Medicare/Medigap reimbursement rules, rather than by consumer choice.

4 A Model of Medigap Status and Health Expenditure

This section presents a model for the joint determination of insurance status and health

care expenditure, in which we account for endogeneity of insurance choice by allowing the

unobservable determinants of insurance status and expenditure to be correlated. But before

developing the full model we first need to select a specification for the distribution of medical

expenditure. It is well-known that econometric modelling of health care expenditures is

challenging because of the properties of their empirical distribution. In particular, health

care expenditures are non-negative, highly skewed to the right and have a point mass at
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Figure 1: Histogram of total health care expenditure
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zero. The histogram in Figure 1 shows that the empirical distribution of total health care

expenditure of Medicare beneficiaries in our MCBS sample exhibits all these characteristics.

The sample skewness is about 5.1 and the distribution has a long right tail. The proportion

of observations with zero expenditure is about 0.025.

The literature on modelling health care expenditure has mainly focused on modelling

it’s conditional expectation, given the problems of extreme skewness and mass at zero (e.g.,

Manning (1998); Mullahy (1998); Blough et al. (1999); Manning and Mullahy (2001); Buntin

and Zaslavsky (2004); Gilleskie and Mroz (2004); Manning et al. (2005)). The problem of

modelling the entire distribution of expenditure has been less frequently addressed. The

usual approach is to adopt a two-part model where positive outcomes are log-normal (e.g.

Deb et al. (2006)). But we adopt a new approach that is much more flexible and that

provides a much better fit to the expenditure distribution:
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After trying several models of the distribution of expenditure, we decided to adopt a

discrete mixture of Tobits where the probability of a mixture component depends on a per-

son’s observed characteristics. This is a generalization of the Smoothly Mixing Regressions

(SMR) framework of Geweke and Keane (2007) to the case of a Tobit-type limited depen-

dent variable, so we call it the Smooth Mixture of Tobits or ”SMT.” We find that the SMT

can capture both the extreme skewness and non-negativity of the health care expenditure

distribution. It provides a very good fit to many aspects of the MCBS expenditure data,

including the conditional (on covariates) mean, variance, quantiles and probability of an

extreme outcome. In section 5 we will discuss how the number of mixture components for

SMT was selected, and examine the fit of the model to the distribution of expenditure.

Next, in section 4.1 we present our model of insurance status and expenditure, abstracting

from the fact that not all variables of interest are available in both our datasets. Sub-section

4.1.A discusses our identification assumptions. Then, in section 4.2 we discuss our approach

to dealing with missing data. Section 4.3 presents the posterior simulation algorithm.

4.1 Complete data

We assume there are m types of individuals, indexed by j, j = 1, . . . ,m. A person’s type is

private information, i.e., people know their type, but from the point of view of the researcher

types are latent: given a person’s observed characteristics only her probability of belonging

to type j can be inferred. Our specification of heterogeneity is very general: types differ in

the mapping of health factors and demographics to mean expenditure, the effect of insurance

status on expenditure, and the variance of expenditure.

Let I∗i denote the utility that individual i derives from Medigap insurance and let E∗i

denote her total expected health care expenditure without Medigap. We assume that E∗i

is the expenditure risk relevant when individual i decides whether to purchase Medigap

insurance, so henceforth we will refer to E∗i as “expenditure risk”. While E∗i is the person’s
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expected medical cost if uninsured, it also determines the expected cost of person i to an

insurance company.17 Thus, for a given level of premiums, Medicare supplemental plans

would like to attract the healthiest possible client base; i.e., ”good risks” with low expected

cost. Both I∗i and E∗i are known to the individual but are unobserved by the econometrician,

so they enter the model as latent variables.

Let Ii be an indicator equal to one if individual i has Medigap insurance, and zero

otherwise. Assume that Ii = 0 if I∗i < 0 and Ii = 1 if I∗i >= 0. Let Yi denote household

income (in deviation form from the sample mean). Also, let Êi denote notional health care

expenditure of individual i (as in “notional demand”, which can be negative). We assume

that healthcare expenditure Êi is a function of latent health expenditure risk E∗i , income Yi,

insurance status Ii and a surprise health care cost shock ηi. Specifically, we have:

Êi|j = E∗i |j + γ1jYi + γ2jIi + ηi|j (1)

where j denotes type, γ1j denotes the type-specific effect of income on notional health care

expenditure and γ2j denotes the type-specific effect of health insurance (i.e. moral hazard).

We let γj denote the vector of parameters [γ1j, γ2j]
′, and let yii denote the vector of covariates

[Yi, Ii]
′. Finally, we assume that, given the individual’s type j, the health care cost shock

ηi|j is normally distributed with zero mean and variance σ2
j :

ηi|j ∼ N(0, σ2
j )

Note that ηi|j can also be interpreted as the health expenditure forecast error of person i.

The term σ2
j denotes the variance of notional expenditure around expected expenditure for

a person of risk level E∗i , conditional on their income and insurance status. Thus σ2
j can be

17Note that, due to deductibles and uncovered services, an insurer will not typically cover all costs. As we
noted in footnote 5, the typical Medigap plan covers about 60% of costs not covered by basic Medicare.
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interpreted as the variance of the health care expenditure forecast error.

Equation (1) captures the notion that total health care expenditure may not be driven

entirely by health status E∗i , but also by insurance and income. People with insurance and/or

higher income may demand more health care, conditional on health status, for two reasons:

First, those who are insured face a lower price of care (because they don’t bear the full price

of treatment). As a result they may utilize more care (”moral hazard”). Second, those with

higher income may demand better quality care (e.g., private rooms) or elective treatment

(e.g., cosmetic surgery) that may not be covered by insurance.

Thus, E∗i captures the intrinsic health status of a person, once we have purged their

observed expenditure of any affects of insurance or income. From the point of view of an

insurance company, E∗i captures the expected cost or ”riskiness” of a client.18

It is tempting to interpret equation (1) as a conventional demand function. Indeed, it

includes the quantities we would expect in a demand function for health expenditure: (i) a

measure of health status (E∗i ), (ii) a price shifter (i.e., insurance) and (iii) income. But (1) is

not a standard demand function, because it does not depend only on consumers’ preferences

and budget constraints. It also depends on the incentives and constraints created by the

U.S. health care delivery system. This includes physician treatment protocols, the Medicare

and Medigap reimbursement rules, legal constraints on service provision, etc.

For instance, the moral hazard or (inverse) price effect of insurance on demand for ser-

vices, γ2j, is not necessarily positive. Indeed, a key rationale for the existence of private

Medigap plans is the idea that private insurers have an incentive to manage care so as to

keep costs down. For example, a Medigap plan may try to reduce costs by encouraging pre-

18In other words, we seek a risk measure E∗i that excludes costs of elective procedures that insurance will
not cover, or any extra spending induced by insurance coverage itself. It would be a problem for our approach
if income mattered for covered health care expenditure, so that E∗i depended on income. For example, say a
Medigap plan had co-pays. Then, if higher income people are less price sensitive, they would demand more
services, making E∗i an increasing function of income. However, co-pays are not a problem here, because
the typical Medigap plan has a small deductible beyond which everything is reimbursed. For instance, as we
noted earlier, even the most basic Medigap plan A covers basic Medicare co-insurance costs.
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ventive care, thus reducing the incidence of costly but avoidable conditions and/or preventing

unnecessary emergency room visits (O’Grady et al. (1985)). These arguments highlight the

fact that even the sign of γ2j is of policy interest, not only its magnitude.

Similarly, even if health care is a normal good, higher income will not necessarily lead

to higher health care spending, ceteris paribus. Treatment protocols and Medicare/Medigap

reimbursement rules play a key role in determining the treatment of patients in the US

health care system. As a result, it is plausible that treatment is fairly standardized (at least

within geographic areas), conditional on health and insurance status.19 Then, any impact

of income on expenditure (conditional on health) may arise only because higher income

individuals tend to purchase more comprehensive insurance. Indeed, this is consistent with

the very small effect of income on expenditure that we found in Table 2.20

Returning to the exposition of the model, realized expenditure Ei|j is given by:

Ei|j = max{0, Êi|j}. (2)

where Êi is notional expenditure from (1). Hence, conditional on type j, the model for real-

ized expenditure Ei is a Tobit. This ensures that predicted expenditure is always positive.21

19There is a large literature finding that treatment protocols vary substantially by region, in ways not
explained by differences in health status, income or demographics; see Zuckerman et al. (2010), Fisher et
al. (2003), Welch et al. (1993). This is one reason we include region dummies in the expenditure equation.
National treatment protocols (i.e., best practice protocols) can be found at www.guideline.gov.

20It is worth noting how our equation (1) differs from FKS. They specify the health expenditure equation

as Ei = Hiβ+γIi+ε1i and use this to predict expenditure risk for HRS respondents as Êi = Hiβ̂, where Hi

is a vector of health measures and demographic characteristics. Our E∗ is a counterpart of FKS’s Êi. There
are two key differences between (1) and the prediction equation of FKS. The first is that they use a simple
linear model while we adopt the better fitting SMT specification. The second is that FKS did not include
income. That is, FKS assume expenditure is uncorrelated with income, conditional on the health status H.
We decided to include income in (1) as we were concerned that omitting it might lead us to exaggerate moral
hazard. This would occur if income has a positive effect on both demand for health services and demand for
insurance. But as we shall see, the effect of income in (1) is quite small, so this is not a major issue.

21In our data 2.5% of observations have zero expenditure, so notional expenditure Ê is equal to the realized
expenditure E in most cases.
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The model for the latent vector [I∗i , E
∗
i ]
′, conditional on type j, is specified as follows:

I∗i |j = α0E
∗
i |j + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci + ε1i (3)

E∗i |j = β′jxei + ε2i, (4)

In the insurance demand equation (3) the vector xii includes insurance pricing variables (age,

gender, location of residence), as well as SAS variables present in both datasets (income,

education, ethnicity and marital status). The vector ci includes SAS variables present in the

HRS only (risk tolerance, financial planning horizon, cognition and longevity expectation).

The first element of ci, denoted c1i, is risk aversion. It enters both linearly and interacted

with the variance of health expenditure shocks σ2
j .

In the expenditure risk equation (4) the vector xei includes the ten health factors dis-

cussed in section 3, along with certain demographic characteristics that we assume may also

affect health (i.e., age, gender, location of residence, marital status, race and ethnicity). The

variables in xei are present in both datasets.

Thus, demand for insurance depends on: (i) expected costs in the uninsured state, E∗i , (ii)

the price of insurance, which is governed by the vector of legal pricing variables contained

in xii, (iii) income and other ”demographic” SAS variables also included in xii, (iv) the

”behavioral” SAS variables in ci, such as risk aversion, cognitive ability, etc.,22 and (v) the

variance of the health expenditure forecast error σ2
j and its interaction with risk tolerance.

Note that the expenditure risk E∗i consists of a part that depends on observed health

status and demographics (β′jxei) and a part that depends on unobserved characteristics (ε2i).

The coefficients (βj) capture how each health status and demographic measure influences

22Recall that, in the terminology of FKS, SAS variables are variables that (i) affect demand for insurance
but that can’t be used by insurance companies to price policies, and (ii) that are correlated with health
status (and hence with health expenditure risk). We use the terminology ”potential” SAS variables to
indicate variables that may plausibly be expected to satisfy these conditions. Of course, whether a variable
is an actual SAS variable will not be known until we see the empirical results. But for simplicity we ignore
this distinction in expositing the model.
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expected costs. In our SMT framework there is heterogeneity in these effects, as the βj differ

across different types of individuals. Thus, the SMT model generates different marginal

effects of covariates on expenditure for individuals of different types.

The degree of selection on observed health is captured by the sensitivity of insurance

demand to expenditure risk E∗i , conditional on other variables. That is, it is captured by α0

in the Medigap demand equation (3).23 A negative α0 indicates advantageous selection (on

observed health), while a positive value indicates adverse selection.

The disturbances ε1i and ε2i capture unobserved heterogeneity in tastes for insurance and

in health status, respectively, that are known to an individual, but not to the econometrician.

We assume the vector of unobserved heterogeneity in tastes and health ε12i = [ε1i, ε2i]
′ is

independent of transitory health shocks ηi and follows a bivariate normal distribution:

ε12i|j ∼ BV N

0,

 σ11 σ12

σ12 σ22


 for all types j = 1, . . . ,m.

Unlike FKS, we allow for ε1i and ε2i to be correlated with covariance given by σ12. A negative

σ12 indicates advantageous selection on unobserved health, while a positive value indicates

adverse selection.24 If ε1i and ε2i are correlated and the model does not take that into

account, then γ̂2j is a biased estimate of the moral hazard effect, and α0 is a biased estimate

of the selection effect (on observables).25

The probability a person is latent type j depends on his/her exogenous characteristics

23Equation (3) is our counterpart to the FKS’s Medigap equation Ii = α0Êi+Piα2+SASiα3+ε2i, where
Pi is a vector of variables that affect the price of Medigap insurance, and α0 measures selection. FKS show
that α0 turns from negative (advantageous selection) to positive (adverse selection) as more SAS variables
are added to the Medigap equation. In our equation (3) the pricing variables are included in xii, while all
other variables are part of the SAS vector.

24Note that in Medigap there may exist both selection on unobservables and selection on observables,
because there are observables that insurance companies cannot legally price on (health status, race, etc.).

25FKS controlled for selection on observables but not on unobservables.
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by way of a multinomial probit model, as in Geweke and Keane (2007):

W̃ij = δ′jxwi + ζij j = 1, . . . ,m− 1

W̃im = ζim. (5)

The W̃ij are latent indices, and xwi is a vector of individual characteristics including demo-

graphics and health status.26 The ζij are independent standard normal random variables.

An individual i is type j iff W̃ij ≥ W̃il ∀ l = 1, ...,m. Type probabilities are given by:

P (typei = j|xwi, δ1, ..., δm) =
∫ ∞
−∞

φ(y − δ′jxwi)
m∏
l 6=j

Φ(y − δ′lxwi)dy, (6)

where Φ(.) and φ(.) denote the standard normal cdf and pdf, respectively. Finally, we adopt

the location normalization δm = 0, fixing m as the ”base” alternative. This resolves the

well-known identification issue in multinomial choice models that arises because only utility

differences determine choices.27

4.1.A Identification

The model in equations (1)-(4) is a simultaneous equations model where the parameters of

interest (i.e., the selection and moral hazard effects) are identified via cross-equation exclu-

sion restrictions.28 In order to identify the selection effect α0, we use the exclusion restriction

26In our empirical specification xwi is almost identical to xei, with the exception that the second and
third powers of age and interactions of age with gender and of marital status with gender are included in
xei but not in xwi, in order to reduce the number of parameters to be estimated. See Table A-2.

27Without restrictions on δj , the probability of being type j would not change if all δj were replaced by
δj + ∆, where ∆ is a constant.

28Our approach to modelling health expenditure and Medigap insurance status is related to that of Munkin
and Trivedi (2010), henceforth MT, who also estimate a simultaneous equations model. They study the mar-
ket for supplemental drug insurance. The most obvious difference between our papers is that we study a
different market (i.e., Medigap insurance). But from a modelling perspective the main difference is in
how we model selection: MT only estimate selection on unobservables. But, in insurance markets, ad-
verse/advantageous selection also involves selection on observables that cannot (legally) be used for pricing
insurance. Thus, in contrast to MT, we estimate selection on both unobservables and observables. We find
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that the individual health status variables affect demand for insurance only through their

effect on the overall (scalar) expenditure risk E∗i , not directly. If the health status variables

were included individually in the insurance equation (3), we would not be able to isolate the

effect of the expenditure risk α0 from the independent effects of the health status variables.

This assumption appears plausible, as it is not clear why insurance demand would depend

on health status measures per se, once one has conditioned on total expenditure risk.

The moral hazard effect is identified by the exclusion restriction that selected behavioral

and demographic variables (risk aversion, cognitive ability, planning horizon, longevity ex-

pectations, education) enter the insurance demand equation, but do not affect expenditure

risk directly (conditional on detailed health measures). Thus, these SAS variables induce

exogenous variation in insurance choices conditional on expenditure risk E∗i and income.

This identifies the moral hazard effect γ2j and the correlation between ε1i and ε2i.

In our view it is plausible that these SAS variables can be excluded from equation (4),

given the extensive set of health status controls we include in xei. But this important

assumption warrants further discussion. There is limited empirical evidence about the re-

lationship between health care expenditure and the behavioral SAS variables, but what

evidence there is does seem consistent with our assumptions: For instance, FKS found no

significant relationship between financial risk aversion and health expenditure (conditional

on health status). As we noted earlier, this is unsurprising given that financial risk aversion

is a fundamentally different concept from health-related risk aversion. We would make a

similar argument to exclude the financial planning horizon from (4). Our argument for ex-

that selection on ”observable private information” is much more important. Our paper also differs from MT
in other important ways: (i) we use a richer set of instruments for insurance status (not just price shifters
but also the SAS variables); (ii) we use a much richer set of controls for health status in the expenditure
equation (this is made feasible by our factor analysis procedure), (iii) MT only use the MCBS, while we
merge the MCBS with the HRS in order to study effects of SAS variables, thus extending the application of
MCMC methods to a rather novel selection/data fusion exercise; and (iv) as MT note (see their conclusion),
the expenditure distribution that they assume could be improved upon, and we do this by using the SMT
specification, which provides a very substantial improvement in fit (see Keane and Stavrunova (2011)).
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cluding longevity expectations from (4) is that differences in life expectancy, holding actual

health fixed, will shift a person’s planning horizon, and hence their demand for insurance,

but not affect the person’s current health care spending needs directly.29

As for cognitive ability, a recent paper by Fang et al. (2010) shows that the cross-

sectional correlation between cognitive ability and medical expenditure largely vanishes when

one controls for health status in the HRS.30 Finally, turning to education, our own analysis

of the MCBS subsample suggests that education has no significant explanatory power for

expenditure, conditional on other demographic and health controls.31

A general point is that we control for both objective and subjective health measures in

(4). In fact, subjective health is a very good predictor of expenditure. Because we control

for subjective health, it seems much less likely that our SAS variables should enter (4) just

because they are correlated with private information about health.

In summary we believe our set of exclusion (or exogeneity) restrictions is plausible. Of

course, as Koopmans et al (1950) note, “...the distinction between exogenous and endogenous

variables is a theoretical, a prior distinction...” Thus, we cannot prove our exogeneity

29We argue that differences in life expectancy, conditional on actual health, measure differences in subjec-
tive beliefs or attitudes. This is why we call life expectancy a ”behavioral” variable. Clearly, life expectancy
may affect demand for insurance: The longer one expects to live, the more valuable is a Medigap plan to
insure against possible future costs of nursing home care (and other late-in-life expenses) that Medicare
generally fails to cover. But we argue that subjective life expectancy should not affect current health care
costs, once we condition on actual health - justifying its exclusion from (4). The effect of life expectancy
is similar to that of financial planning horizon: a person with a longer financial horizon will also be more
likely to insure against future (late-in-life) financial risks. But the two concepts are different, e.g., one could
expect to live a long life yet also be the type of person who does not like to plan ahead.

30It is tempting to argue people with higher cognitive ability, who know more about medical conditions,
should be more likely to seek treatment. But this is not at all clear. For example, if one understands that
most viruses are not treatable, but that they are self-regulating, one ought to be less likely to make an
unnecessary doctor visit for virus-like symptoms.

31Also, as our model is cross-sectional, we implicitly assume the health status measures (H) are not
affected by insurance status over time. That is, we assume away any ”dynamic moral hazard” effect,
whereby insurance coverage leads to more risky behavior, which, in turn, causes health status to deteriorate
over time. If such dynamics do exist, we will underestimate the moral hazard effect (at least in the long
run). However, Khwaja (2001) shows that in a dynamic model health insurance has two opposite effects.
There is the moral hazard effect, but there is also the ”Mickey Mantle” effect: because insurance increases
life expectancy, an individual has a greater incentive to invest in health. Khwaja finds that the two effects
roughly cancel, so insurance has little effect on how health status evolves over time.
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assumptions are correct: the extent to which they are credible is up to individual readers to

decide.

4.2 Combining data from the MCBS and the HRS

To estimate the model in section 4.1, we would ideally like a dataset with information on

Ii, Ei and ci, along with health status, demographics and income. We denote the latter

variables by xzi : xzi ⊇ {xii,xei,xwi, Yi}. Unfortunately, such a dataset is not available.

Instead we have the MCBS, which has information on Ii, Ei and xzi but not on ci, and the

HRS, which has information on Ii, ci and xzi but not on Ei.

Our estimation strategy is to combine information from the MCBS and HRS by way of

multiple data imputation. To this end, we specify an auxiliary prediction model for the SAS

variables (ci) that are missing from the MCBS, conditional on exogenous variables common

in the two datasets:32

cki|j = xc′iλk + ε3ki, (7)

where k = 1, . . . , 4. Here xci denotes the vector of exogenous variables common in the two

datasets, such as demographics, income, health status and education.33 The disturbances

[ε31i, . . . , ε34i]
′ ≡ ε3i follow a multivariate normal distribution for all types j = 1, . . . ,m:

ε3i|j ∼ N(0, Vc).

The disturbances ε3i are independent of ε12i and ηi|j. Hence,

ci|j = XCiΛ + ε3i, (8)

32We treat SAS variables as exogenous, so the model for insurance demand and expenditure is conditional
on these variables. The auxiliary model for SAS variables is needed only for imputation of missing data.

33The vector xci includes most of the variables in xii and xei. The exception is that the second and third
powers of age and interactions of age with gender and of marital status with gender as well as time trend
are included in xei but not in xci to reduce the number of parameters to be estimated. See Table A-2.
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where

XCi =



xc′i 0 0 0

0′ xc′i 0 0

0′ 0′ xc′i 0

0′ 0′ 0′ xc′i


,

and Λ = [λ′1, ...,λ
′
4]′. Thus, the disturbances of the structural system of equations (1)-

(8), conditional on type j, follow a multivariate normal distribution with zero mean and

variance-covariance matrix given by:



σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ2
j 0

0′ 0′ 0′ Vc


.

We have now defined all the model parameters. We denote the parameter vector by:

θ = [α0, α1, α2,α
′
3,α

′
4,β

′
1, ...,β

′
m, σ

2
1, ...σ

2
m,γ

′
m, δ

′
1, ..., δ

′
m, σ12, σ22, Vc,Λ

′],

Next, to deal with health expenditure data missing from the HRS, we use the expenditure

distribution implicit in the joint model for insurance and expenditure.34 Let xi denote the

vector of unique variables contained in xzi and xci. We assume: (i) that the joint distribution

of I∗i , E
∗
i , Êi, Ei, Ii, ci conditional on xi and θ, is the same in both datasets, and is as specified

in section 4.1 and equation (8), and (ii) that ci and Ei are missing from the MCBS and the

HRS, respectively, completely at random (using the definition of Gelman et al. (1995)).

Our approach to merging the two datasets can be described as “data fusion” - the com-

34We will show below that the missing expenditure data can be integrated out analytically without com-
plicating our MCMC algorithm for simulation from the posterior of the model parameters. Therefore, we
only have to perform multiple imputations of the SAS variables missing from the MCBS.
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bination of data from distinct datasets, which can have some variables in common and some

variables present in only one dataset. Rubin (1986) emphasized that the problem of data

fusion can be cast as the problem of missing data, which, in turn, can be dealt with using

Bayesian methods for multiple imputations from the posterior distribution of missing vari-

ables, conditional on common variables, as discussed in Gelman et al. (1995). This is the

approach we adopt. Data fusion methods are often used in marketing to combine data from

different surveys, such as product purchase and media exposure (e.g. Gilula et al. (2006)).

Currently, there are few if any examples of data fusion in applied work in economics.

To proceed, let Co denote the collection of ci’s that are observed, and Cm denote the

collection of ci’s that are missing. Similarly, let Eo denote the collection of Ei’s that are

observed, and Em denote the collection of Ei’s that are missing. Thus, ci ∈ Cm iff i ∈

MCBS, and ci ∈ Co iff i ∈ HRS. Similarly, Ei ∈ Em iff i ∈ HRS, and Ei ∈ Eo iff

i ∈ MCBS. The assumption that data are missing completely at random implies the missing

data mechanism is independent of Ii, Ei, ci,xi. Hence, there is no need to specify an auxiliary

missing data process that is separate from the structural model in (1)-(6). Assuming the

HRS and MCBS are non-overlapping random samples from the same population, inference

can be conducted out by stacking observations from the two datasets and imputing missing

values using the data generating process in (1)-(6).

Let Si denote a survey indicator so that Si = 1 if i ∈ MCBS and Si = 0 if i ∈ HRS, and

let NM and NH denote number of observations in the MCBS and HRS respectively. Let N =

NM + NH denote the number of observations in the combined dataset. Let I = [I1, ..., IN ]′

be a vector of Medigap indicators in the combined dataset. The probability density function

of the observables I, Eo and Co conditional on exogenous variables X ≡ [x1, ...,xN ]′, survey

indicators S ≡ [S1, ..., SN ] and parameters θ consists of two parts, corresponding to the

MCBS and HRS subsets. To obtain the expression for probability density we: (i) substitute

equations (4) and (8) into equation (3); and (ii) substitute (4) into (1). This gives us,
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conditional on type j, a system of equations for I∗i , E∗i , Êi, ci, in which the vector of

disturbances has a multivariate normal distribution. At this point we can integrate out the

latent variable E∗i , which leaves us with the multivariate normal distribution of I∗i , Êi and

ci. We also have to integrate out ci from the MCBS subsample as these SAS variables

are missing from the MCBS. So, in the MCBS subsample we are left with the following

reduced-form model, conditional on type j:

I∗i |j = α0β
′
jxei + α1σ

2
j + α2σ

2
jxc′iλ1 +α′3xii +α′4XCiΛ + ξ1i (9)

Êi|j = β′jxei + γ ′jyii + ξ2i (10)

Ii|j = ι(I∗i > 0|j) (11)

Ei|j = max{0, Êi|j}, (12)

where ι(.) is an indicator function, and the errors ξ1i and ξ2i are given by:

ξ1i = ε1i + α0ε2i + α2σ
2
j ε31i +α′4ε3i

ξ2i = ε2i + ηi.

The reduced-form errors ξ1i and ξ2i have a bivariate normal distribution:

ξ1i

ξ2i

|j ∼ N

 0

0
,

 σ11 + 2α0σ12 + α2
0σ22 +α′4Vcα4 + α2

2σ
4
j · v11

c + 2α2σ
2
j

∑4
l=1 ·α4l · v1l

c σ12 + α0σ22

σ12 + α0σ22 σ22 + σ2
j


 ,

where vlkc denotes the lkth element of Vc.

Let µ1i ≡ α0β
′
jxei+α1σ

2
j +α2σ

2
jxc′iλ1 +α′3xii+α

′
4XCiΛ and let sξ denote the standard

deviation of ξ1i. The joint probability density of Ei and Ii, conditional on type j, in the

MCBS subsample is that of a Tobit model (for Ei) with an endogenous binary explanatory
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variable (Ii). Its derivation is given in Wooldridge (ex.16.6):

p(Ei, Ii|xi, j,θ, Si = 1) =

Ii ·
∫ ∞
−µ1i

g(Ei|β′jxei + γ1jYi + γ2j +
σ12 + α0σ22

s2
ξ

ξ1i, σ22 + σ2
j −

(σ12 + α0σ22)2

s2
ξ

) · 1

sξ
φ(
ξ1i

sξ
)dξ1i

+ (1− Ii) ·
∫ −µ1i
−∞

g(Ei|β′jxei + γ1jYi +
σ12 + α0σ22

s2
ξ

ξ1i, σ22 + σ2
j −

(σ12 + α0σ22)2

s2
ξ

) · 1

sξ
φ(
ξ1i

sξ
)dξ1i,

where

g(E|µ, σ2) =

(
1

σ
φ

(
(E − µ)

σ

))ι(E>0) (
1− Φ

(
µ

σ

))ι(E=0)

. (13)

In the HRS the SAS variables ci are available, but Ei is not. Hence, we have to integrate

out Êi and Ei. After the integration we are left with the following reduced-form model for

the HRS subsample, conditional on type j:

I∗i |j = α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci + νi (14)

ci|j = XCiΛ + ε3i (15)

Ii|j = ι(I∗i > 0|j) (16)

where νi = α0ε2i + ε1i is normal with mean 0 and variance sν ≡ σ11 + 2α0σ12 + α2
0σ22. It is

independent of ε3i.

The joint probability density of Ii and ci in the HRS subsample, conditional on type j,

is given by the product of the likelihood of a probit model for Ii and a multivariate normal

probability density function for ci:

p(Ii, ci|xi, j,θ, Si = 0) = Φ

α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci√

σ11 + 2α0σ12 + α2
0σ22

Ii
1− Φ

α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci√

σ11 + 2α0σ12 + α2
0σ22

1−Ii
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· (2π)−
Kc
2 |Vc|−

1
2 exp(−(ci −XCiΛ)′V −1

c (ci −XCiΛ)/2).

To obtain the probability density of the observables unconditional on type j we have to

marginalize over the types by multiplying type-specific densities of observables by the type

probabilities in (6) and summing the resulting products over the types. The probability den-

sity function of observables Eo,I, Co conditional on exogenous variables X, survey indicators

S ≡ [S1, ..., SN ] and parameters θ is given by:

p(Eo, I,Co|S,X,θ) =
N∏
i=1

(
m∑
j=1

(
∫ ∞
−∞

φ(y − δ′jxwi)
m∏
l 6=j

Φ(y − δ′lxwi)dy

· p(Ei, Ii|xi, j,θ, Si = 1)Si=1 · p(Ii, ci|xi, j,θ, Si = 0)Si=0)), (17)

where δm = 0. It is easy to see that σ11 is not identified separately from α0, α1, α2, α3, α4

and σ12 in the sense that if we multiply σ
1/2
11 and all these parameters by a constant, the joint

density will not change. Identification in such cases is usually achieved by the normalization

σ11 = 1. But for the purposes of posterior simulation it is more convenient to normalize the

variance of ε1i|ε2i, i.e. to set σ11 − σ2
12

σ22
= 1, which implies the restriction σ11 = 1 +

σ2
12

σ22
.

4.3 Posterior Simulation Algorithm

Bayesian inference in this model can be simplified by data augmentation. In particular, both

the MCBS and HRS subsamples are augmented by the latent vectors I∗ = [I∗1 , ..., I
∗
N ]′; the

MCBS data are also augmented by the missing values cmi , i = 1, ..., NM and by notional

expenditure Ê = [Ê1, ..., ÊNM ]′. The notional expenditure Êi differs from actual expenditure

Ei only for observations with Ei = 0. Data augmentation which introduces artificial values

of the dependent variable for observations with truncated outcomes is a standard approach

to Bayesian inference in the Tobit model by way of the Gibbs sampler (due to Chib (1992)).

The fact that the ci is missing from the MCBS subsample complicates simulation from
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the posterior distribution of parameters. In particular, if cmi is integrated out of the MCBS

subsample, the usual normal and Wishart prior distributions for α4 and Vc, respectively,

are no longer conjugate to the probability density function of observables in the MCBS

(as is clear from the expression for the variance of the reduced-form error ξ1i in equation

(9)). There are no other known distributions which would serve as conjugate priors for α4

and Vc. Hence, the conditional (on other parameters) posterior distributions of the Gibbs

sampler blocks involving α4 and Vc would be of unknown form and would need to be sampled

using a Metropolis-Hastings step. This involves a challenging task of choosing the proposal

distribution for multidimensional vectors of parameters. For this reason in our algorithm we

perform multiple imputations of cmi rather than integrating it our analytically.

Similarly, integrating out E∗i , rather than augmenting the data with the latent E∗i , would

destroy conjugacy of the data density to the normal and gamma priors for σ12, σ2 and σ2
j .

However, these parameters are scalars, so proposal densities for Metropolis-Hastings steps

are reasonably easy to choose. Hence, we analytically integrate out Em
i and Êi in the HRS

subsample, as well as E∗i in both the HRS and MCBS samples.

Both the HRS and MCBS are also augmented by latent type indicators s = [s1, ..., sN ]′,

where si = j if i’s type is j, and by latent type propensities W = [W̃
′
1, ...,W̃

′
N ], where

W̃i = [W̃i1, ..., W̃im]′. Then the augmented data density conditional on X,S and θ can be

written as follows:

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ)

=
N∏
i

[
p(I∗i |cmi ,xi, si = j,θ) · p(Ii|I∗i , cmi ,xi, si = j,θ) · p(Êi|I∗i , Ii, cmi ,xi, si = j,θ)

· p(Eo
i |Êi, I∗i , Ii, cmi ,xi, si = j,θ) · p(cmi |xi, si = j,θ)

]Si
· [p(I∗i |coi ,xi, si = j,θ) · p(Ii|I∗i , coi ,xi, si = j,θ) · p(coi |xi, si = j,θ)]1−Si

· p(si = j|W̃i,θ) · p(W̃i|xi,θ), (18)
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where superscript o indicates values of Ei and ci that are observed and hence do not have

to be imputed. The first two lines of (18) are for the MCBS observations, the third line is

for the HRS observations, and the last line which involves type probabilities, is relevant for

all observations.

After substituting in the expressions for the probability densities implied by the model

in (1)-(6) the expression in (18) becomes:

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ) =
∏
i

[
1√

2π(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22 − (σ12+α0σ22)2

σ22+σ2
si

)

· exp(−
(I∗i − α0β

′
si

xei − α1σ
2
si
− α2σ

2
si
cm1i −α′3xii −α′4cmi − σ12+α0σ22

σ22+σ2
si

(Êi − β′sixei − γ ′siyii))
2

2(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22 − (σ12+α0σ22)2

σ22+σ2
si

)
)

· (2π)−4/2|Vc|−1/2 exp(−(cmi −XCiΛ)′V −1
c (cmi −XCiΛ)/2)

· 1√
2π(σ22 + σ2

si
)

exp(−
(Êi − β′sixei − γ ′siyii)

2

2(σ22 + σ2
si

)
) · (ι(Eo

i = Êi) · ι(Êi ≥ 0) + ι(Eo
i = 0) · ι(Êi < 0))]Si

· [
1√

2π(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22)

exp(−
(I∗i − α0β

′
si

xei − α1σ
2
si
− α2σ

2
si
co1i −α′3xii −α′4coi )2

2(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22)
) (19)

· (2π)−4/2|Vc|−1/2 exp(−(coi −XCiΛ)′V −1
c (coi −XCiΛ)/2)]1−Si

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)) ·

 m∑
j=1

m∏
k=1

ι(W̃ik ∈ (−∞, W̃ij])


· (

1√
2π

)m · exp(−
N∑
i=1

(W̃ 2
im/2)) · exp(−

m−1∑
j=1

(w̃j −XWδj)
′(w̃j −XWδj)/2),

where XW = [xw1, ...,xwN ]′ and w̃j = [W̃1j, ..., W̃Nj]
′ for j = 1, ...,m.

For the purposes of Bayesian inference via MCMC it is convenient to split the parameter

vector θ into the following blocks:

1. α0

2. α ≡ [α1, α2,α
′
3,α

′
4]′

3. βj for j = 1, ...,m
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4. γj for j = 1, ...,m

5. hj ≡ 1
σ2
j
, j = 1, ...,m.

6 Λ ≡ [λ
′

1, ...,λ
′

4]′,

7. Hc ≡ V −1
c ;

8. h22 ≡ σ−1
22 ;

9. σ12

10. δj, j = 1, ...,m− 1;

Where possible, we specify natural conjugate prior distributions for these parameters blocks,

and specify that in the prior these blocks are independent, i.e

p(θ) = p(α0)p(α)
m∏
j=1

p(βj)
m∏
j=1

p(γj)
m∏
j=1

p(hj)
4∏

k=1

p(λk)p(σ12)p(h22)p(Hc)
m−1∏
j=1

p(δj). (20)

We specify the hyperparameters of these prior distributions so as to allow substantial prior

uncertainty about the parameter values. The priors are discussed in detail in Appendix A-1.

Let data denote the collection 〈I,Eo,Co,X,S〉. Then the joint posterior distribution of

the parameters and the latent and missing data p(θ, I∗, Ê,Cm,W, s|data) is proportional

to the product of (19) and (20). To simulate from this posterior distribution we construct

a Gibbs sampling algorithm with Metropolis within Gibbs steps which cycles between the

conditional posterior distributions of blocks of parameters and vectors of latent and missing

variables I∗, Ê,Cm,W, s. The details of the algorithm are given in Appendix A-2.
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5 Results

The exact specification of the equations of the model in terms of the demographic and health

status characteristics included in each equation is given in Appendix A-3. In particular,

in Table A-2 we show our exclusion restrictions in tabular form. As for the expenditure

distribution, we have specified m = 5. In a companion paper (Keane and Stavrunova (2011))

we discuss the SMTobit model in detail and show that a 6 component mixture provides the

best fit to the expenditure distribution in the MCBS sample used in this paper, while a model

with 5 components fares only slightly worse.35 The number of components in this study is a

compromise between model fit and the mixing properties of the posterior simulator. We use

m=5 because the posterior simulator exhibited slow convergence with m = 6.

In order to investigate sources of advantageous selection we estimate a sequence of five

models that progressively add more potential SAS variables to the insurance equation. This

procedure is similar to FKS. In the first model the insurance equation contains only expen-

diture risk and insurance pricing variables. The second model adds income and education.

The third adds cognitive ability, financial planning horizon and longevity expectations. The

fourth adds risk tolerance, the variance of the expenditure forecast error and an interaction

between risk tolerance and variance. Finally, the fifth model adds ethnicity, marital status

and an interaction of gender with age. To assess the bias in the selection and moral hazard

effects that arises from failure to account for correlation between unobserved determinants

of Medigap status and expenditure, we also estimate the fifth model with σ12 set to zero.

Due to the presence of latent variables and mixture components, the output of the pos-

terior simulator exhibits a high degree of autocorrelation. To allow the simulator to explore

the parameter space adequately, the algorithm was allowed to run for an extended period

35To compare models with different numbers of components we use the modified cross-validated log-scoring
rule developed in Geweke and Keane (2007), which is less computationally demanding than the comparison
based on marginal likelihoods, which is a standard approach to model selection in Bayesian statistics.
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of time. We obtained 1,200,000 draws from the posterior distribution, discarded the first

200,000 draws as a burn-in and using every 1000th of the remaining 1,000,000 draws for

analysis. In the fifth model the autocorrelation in these 1,000 draws ranges from 0 (for

parameters of the cm distribution and the coefficients of the exogenous covariates in the

insurance equation) to 0.12, 0.29 and 0.68 (for α0, σ2, σ12) and to 0.70 (for parameters of

the expenditure distribution for the type with the lowest probability). The serial correlation

coefficients for the parameters σ2
j are between 0.33 and 0.02, while those for γ2j are between

0.28 and 0.05. Thus, the serial correlation is low for the parameters that are most important

for our analysis (i.e. the insurance equation parameters and γ2j). The relative numerical

efficiency ranges from 0.08 (for the parameters with the highest autocorrelation) to 1.6. All

parameters pass the formal test of convergence suggested in Geweke (1992).

5.1 Model Fit

In order to examine the fit of the model, we simulate artificial samples of Ei and Ii, condi-

tional on xi, for 1000 draws from the posterior distribution of parameters. In particular, for

each θk drawn from the posterior distribution we simulate artificial data for each i = 1, ..., N

as follows:

1. Latent types ski ∼ p(si|xwi, δ
k
1, ..., δ

k
m) using (5);

2. Missing SAS variables in the MCBS subsample cmki ∼ p(cmi |XCi,Λk, V k
c ) using (8);

3. Latent data [I∗ki , E
∗k
i ]′ ∼ p(I∗i , E

∗
i |xii, Si · cmki + (1 − Si) · coi ,xei, s

k
i ,β

k
ski
, σk12, σ

k
22, σ

2k
ski

)

using (3) and (4). To obtain insurance status set Iki = ι(I∗ki > 0).

4. Notional expenditure Êk
i ∼ p(Êk

i |Yi, E∗ki , Iki , ski ,γkski , σ
2k
ski

) using (1). To obtain expendi-

ture set Ek
i = Êk

i · ι(Êk
i > 0).
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We compare these simulated data to the actual data, focussing on the fit of the full model,

which includes all potential SAS variables.

In Figure 2 panel (a) we compare model predictions vs. actual values of health expendi-

ture. To construct panel (a), we partition the actual data by deciles of predicted expenditure,

and calculate means of actual and predicted expenditure within each decile. Figure 2a plots

the predicted vs actual means (along with the 5th and 95th percentiles of the posterior of

predicted expenditure).36 Figure 2 panel (b) shows the fit of the model to the probability of

Medigap coverage, using an analogous procedure.

As we see in Figures 2a and 2b, the model provides a good fit to both health expenditure

and insurance coverage. When we plot predicted vs. actual values for mean expenditure and

probability of insurance coverage, the points (for each decile) are very close to the 45 degree

line. And the actual values are almost always contained within the 5th and 95th percentiles

of the predictions.

Next, in Figure 2c, we examine how well the model fits the relationship between health

expenditure and insurance coverage. We split the MCBS data into 10 expenditure groups (as

in panel (a)). For each group, we plot the probability of Medigap coverage against average

expenditure (solid red line). It is interesting that, in the MCBS data, the probability of

Medigap coverage is rising with expenditure at low levels of expenditure (adverse selection),

but falling with expenditure at higher levels of expenditure (advantageous selection).

Figure 2c also shows model predictions for average expenditure AEk
g and insurance cov-

erage AIkg within each expenditure decile. We plot predictions based on 20 random draws

θk from the posterior. The predictions are the blue and black dots in Figure 2c. As we see,

36More precisely, we first find the mean of predicted expenditure over draws k for each person i, that is

Ei ≡ 10−3
∑103

k=1(Eki ). We then we split the MCBS sample into ten deciles based on the sample distribution
of Ei. Finally, within each decile g, g = 1, ..., 10, and for each draw k, we compute mean expenditure
AEkg ≡ N−1g

∑
i∈g(E

k
i ), where Ng is the number of observations in subsample g. In panel (a) we plot the

average of AEkg over k against the mean of actual expenditure for individuals falling into decile g (red dots).

For each g, we also plot the 5th and 95th percentiles of the series AEkg to show the uncertainty about the
predictions due to the posterior distribution of parameters (blue dots).
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the predicted relationship between insurance and expenditure is very similar to the actual

relationship. The model captures the inverted-U shape we see in the MCBS data quite well.

Finally, in panel (d) we show the fit of the model to the variance of expenditure. To

construct panel (d) we use the same expenditure deciles as for panel (a), and plot the

variance of the actual vs. predicted expenditure within each decile. Panel (d) shows that

the fit of the model to the variance of expenditure is also quite good. Note that the variance

increases as we move to higher expenditure deciles.

Figure 3 presents kernel density estimates for actual expenditure in the MCBS (red line),

as well as the density of predicted expenditure (Ek
i ) generated by our model (black line).

Panel (a) shows the density plot for the entire support of the expenditure distribution.

Notice that the distribution has an extremely long right tail, and the smooth mixture of

Tobits does a good job in capturing this complex shape - i.e. in panel (a) the predicted

and actual data densities are almost indistinguishable. Panels (b) and (c) present density

plots for the [$0, $20,000] and [$20,000, $100,000] intervals of the support of the expenditure

distribution (these intervals together contain more than 99% of the sample distribution of

expenditure). The fit is very good even for these more narrowly defined intervals.

In order to examine the differences between latent types, we order the mixture compo-

nents by the level of the health expenditure forecast error variance. Type 1 has the lowest

variance, while type 5 has the highest.37 We order by variance because it differs substantially

37The parameters of mixture components are not identified with respect to permutations of component
labels. For example, the value of the likelihood function of a mixture of two types will not change if type
1 is relabelled as type 2, and vice versa. As a result, the likelihood function and the posterior distribution
of parameters is multimodal with m! modes corresponding to m! permutations of the m component labels.
This can create problems for posterior simulation via the Gibbs sampler, because the simulator can get
stuck in one of the posterior modes and not fully explore the entire posterior distribution (Celeux et al.
(2000)). One solution to this problem, proposed by Fruhwirth-Schnatter (2001), is random permutation of
component labels after each iteration of the Gibbs sampler. Another solution, proposed by Geweke (2006),
is to use a permutation-augmented simulator. For permutation-sensitive functions of interest this amounts
to reordering of the output from the usual Gibbs sampler (i.e., without the random permutation step)
according to inequality constraints which identify the component labels, and using the reordered output for
inference. In this paper we use the approach of Geweke (2006). We run the Gibbs sampling algorithm with
the Metropolis-Hastings steps as described in Appendix A-2. We then use the resulting output directly for
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across types and separates the components of the mixture quite well. Munkin and Trivedi

(2010) also found that mixture components were most easily separated by variance in their

application of a discrete mixture model to drug expenditure of Medicare beneficiaries. Or-

dering by variance also has the advantage that it renders our types easily interpretable,

because the conditional (on covariates) means and variances of health expenditures tend to

be strongly positively related (Deb et al., 2010).

Table 3 reports some key type-specific parameters and functions of interest.38 As ex-

pected, the ranking of types by expenditure risk corresponds closely to that by variance. In

fact, there is a perfect rank correlation (see the 1st and 2nd rows of Table 3). Types 1 and

2 have the lowest expenditure risks E(E∗i |typei = j,data), so they are the healthiest types.

Together they make up about 71% of the sample. Type 5, which makes up only 3% of the

sample, is the unhealthiest type. Their expected expenditure is $63,000 per year.

The posterior distributions of the type-specific income effects γ1j are presented in row 3 of

Table 3. The income effect is generally small, and is increasing as health status deteriorates,

with the exception of the unhealthiest type. For example, for the healthiest type a one

standard deviation increase in income (i.e. roughly $50, 000 in the combined HRS/MCBS

sample) would lead to only a 0.007·5 = 0.035 thousand dollars (or $35) increase in health care

expenditure. For the type with the largest income effect (type 4) a one standard deviation

increase in income raises expenditure by $1,165. Averaging across all types, the mean effect

of a $50,000 increase in income on expenditure is only $327. This is very close to the OLS

inference about permutation-invariant functions of interest, such as the population mean of the moral hazard
effect. But for inference about permutation-sensitive functions of interest, such as moral hazard effects for
different types j, we use the output reordered according to the inequality restrictions on σ2

j .
38The posterior mean of the type probabilities, p(typei = j|data), was computed as the average of ι(ski = j)

over i and k, while the 5th and 95th percentiles are those of the series 1
N

∑N
i=1 ι(s

k
i = j) for k = 1, ...103.

These computations approximate the posterior mean and percentiles (over the posterior of parameters) of
1
N

∑N
i=1 P (typei = j|xwi, δ1, ..., δm). Similarly, the posterior mean of the expenditure risk E(E∗i |typei =

j,data) was computed as the average of E∗ki over i and k such that ι(ski = j). The 5th and 95th percentiles
are those of the series of E∗ki averaged over i such that ι(ski = j) for k = 1, ...103. These computations

approximate the posterior mean and percentiles of 1
N

∑N
i=1 xeiβj · P (typei = j|xwi, δ1, ..., δm).

40



Table 3: Type-specific characteristics: posterior means and 5th and 95th percentiles

Variable Type 1 Type 2 Type 3 Type 4 Type 5

Std. deviation of ηi,
√
σ2
j , 0.72 1.9 4.5 11.5 33.1

thousand dollars (0.68, 0.75) (1.8, 2.0) (4.2, 4.9) (10.1, 12.5) (31.0, 35.5)

E(E∗|typei = j,data), 0.60 2.92 9.46 24.5 63.3
thousand dollars (0.54, 0.66) (2.72, 3.13) (8.7, 10.3) (22.3, 29.9) (56.7, 70.5)

Income effect γ1j , 0.007 0.055 0.126 0.233 0.074
thousand dollars (0.003,0.013) (0.042, 0.068) (0.029, 0.225) (-0.017, 0.728) (-1.72, 2.05)

Moral hazard effect γ2j , 1.21 1.88 1.74 2.145 1.64
thousand dollars (1.1, 1.3) (1.7, 2.1) (1.1, 2.5) (-0.2, 4.3) (-7.8, 10.8)

P (typei = j|data) 0.394 0.315 0.166 0.094 .031
(0.38, 0.41) (0.30, 0.33) (0.15, 0.18) (0.08, 0.10) (0.027, 0.036)

∗ Note: We measure expenditure in thousands of dollars. In row 3 the income effect on expenditure γ1j is for income
measured in tens of thousands of dollars. So, e.g., the type-specific effect of a one standard deviation increase in
income ($50,000) would be computed as γ1j · 5 thousand dollars (i.e., $35 for Type 1).

estimate reported in Table 2.

In the next two sub-sections we discuss, in turn, the selection and moral hazard effects

implied by the model.

5.2 The Adverse (or Advantageous) Selection Effect

One key focus of this paper is the selection effect; i.e., the relation between expenditure risk

and Medigap insurance status, conditional on pricing variables and potential SAS variables.

Figure 4 shows how this relationship changes as we progressively add potential SAS variables

to the insurance equation. This figure plots the distribution of the marginal effects of a one

standard deviation increase in expected expenditure E∗i (12.7 thousand dollars)39 on the

probability of having Medigap insurance.40

39This is the standard deviation of N · 103 simulated values E∗ki .
40We evaluate the marginal effects for all individuals i = 1, ..., N and for 1000 draws from the posterior

distribution of parameters, replacing E∗i and the unobserved components of SASi (σ2
si and cmi ) with E∗ki ,

σ2k
sk
i

and cmki simulated as discussed in the previous section. Figure 4 plots the histograms of the resulting

N · 103 marginal effects, and shows sample averages and standard deviations of these effects.
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The results in Figure 4 Panel (a) correspond to the benchmark model, where the insurance

equation (3) contains only expenditure risk and pricing variables (no SAS variables). Here

the relationship between expenditure risk and Medigap is negative; an increase in expenditure

risk by 12.7 thousand dollars decreases the probability of Medigap coverage on average by

0.027. This implies advantageous selection, which is consistent with the findings of FKS.

Next we follow FKS and include potential SAS variables that insurance companies cannot

legally use in pricing. Adding income and education (panel (b)) weakens the relationship

between risk and insurance to almost zero. Adding cognitive ability, financial planning hori-

zon and longevity expectations (panel (c)) changes the sign of the relationship - it becomes

positive, but the effect is small: a one standard deviation increase in E∗i increases the prob-

ability of Medigap coverage on average by 0.026. In panel (d) we add risk tolerance and the

variance of the forecast error, as well as their interaction. This further increases the marginal

effect to 0.066. Thus, our SAS variables explain advantageous selection in the sense that,

once we condition on these additional dimensions of private information, we find adverse

selection on health as predicted by theory.

Next, in addition to the variables used in FKS, we also consider race and marital status as

potential sources of adverse/advantageous selection. These variables can affect both tastes

for insurance and health care expenditure, but cannot be legally used to price Medigap

policies. Thus, race and marital status are also potential SAS variables. In Figure 4 panel

(e) we add these variables to the insurance equation. Doing so reduces the average marginal

effect of E∗i from 0.066 to 0.055. Thus, these variables are a source of adverse selection. In

particular, blacks and Hispanics have a relatively low probability of purchasing Medigap,

and they have relatively low expected expenditure (see Table 5).

Overall, these results support the results of FKS: conditional on SAS variables we also

find adverse selection into Medigap. But we find that additional demographics like race

are an important source of selection, and our estimate of the adverse selection effect is 1/3
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smaller than theirs (5.5% vs. 9%).

We next examine in more detail how particular variables affect the demand for Medigap

insurance. Table 4 presents marginal effects of covariates on the probability of Medigap

coverage. The effects are evaluated for a ”median” individual for whom: (i) exogenous

characteristics are set to their sample medians, (ii) the E∗i and σ2
si

are set to their medians

over E∗ki and σ2k
ski

, and (iii) ci is set to its median in the HRS subsample. We present the

mean and the 5th and 95th percentile of the series of effects evaluated at 1000 draws from the

posterior distribution. For continuous variables we report the change in Medigap probability

brought about by a one standard deviation increase in the variable of interest from these

median levels. For E∗i and σ2
si

the marginal effects correspond to a one standard deviation

increase in E∗ki and σ2
ski

, while for ci they correspond to a one standard deviation increase in

the HRS subsample.41 Table 4 also summarizes the posterior distributions of the correlation

coefficient between ε1 and ε2 (ρ) and the variance of ε2, (σ22).

The first column of Table 4 is for the basic model containing only expected expenditure

(E∗i ) and pricing variables (gender, age, region) in the insurance equation. The subsequent

columns progressively add demographic and behavioral variables that are potential sources

of selection (SAS variables). Consistent with Figure 4, the effect of E∗i goes from -0.03 in

the basic model (advantageous selection) to +0.06 in the full model (adverse selection).

The results in Table 4 column (2) suggest that, conditional on expenditure risk, the

probability of Medigap coverage is higher for females, increases with age, education and

income, and varies substantially by region. But in column (3) the inclusion of the behavioral

SAS variables eliminates the effect of education and greatly reduces the positive effect of

income. Among the behavioral variables, we see that cognitive ability has by far the largest

effect on the probability of Medigap coverage.

41Note that the marginal effects of E∗i in Table 4 do not correspond to those in Figure 4, as the former
are for a median individual, while the latter correspond to the whole sample distribution.
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In the 4th column we add the risk tolerance and variance measures. This has little effect

on the impacts of other variables, but raises the effect of a one standard deviation increase

in E∗i to 0.08, which clearly implies adverse selection. To assess the magnitude of this effect,

note that the probability of Medigap coverage in the combined HRS/MCBS sample is 50%.

Thus, 0.08 corresponds to roughly a 16% increase in Medigap coverage when expenditure

risk increases by one standard deviation, ceteris paribus.

Finally, the inclusion of race and marital status variables in column (5) causes the effects

of cognition to drop from 0.17 to 0.08, and the effect of E∗i to fall from 0.08 to 0.06. The

indicators for black and Hispanic are among the most important determinants of Medigap

status - they both decrease the probability of Medigap by 0.24, which is roughly a 50% drop.

As we noted, cognition has a much bigger effect on Medigap coverage than other behav-

ioral variables (e.g. risk tolerance, longevity expectation, etc.). In the most general model

(i.e., column (5)), an increase in the cognitive ability factor to one standard deviation above

the median increases probability of Medigap coverage by 0.08 on average. This effect is

estimated rather precisely - 90% of the mass of the posterior is between 0.06 and 0.10.

The variance of the expenditure forecast error, σ2
j , also has a large effect on demand

for insurance. As we see in rows 2 and 3 of Table 4, a one standard deviation increase

in σ2
j (holding E∗i constant) decreases the probability of Medigap by 0.05 for people at the

median of the risk tolerance distribution, and by 0.06 for people at the 90th percentile of risk

tolerance distribution. Thus, variance is an important source of advantageous selection. FKS

give several potential explanations for the surprising negative effect of variance, including

crowding out of Medigap by Medicaid in the case of catastrophic health care expenses and

the underweighting of small probabilities of a large loss.

The probability of Medigap coverage also differs substantially by region. According to the

full model in column (5), residents of New England, the West South Central and Mountain

census divisions are 7 to 21 percentage points less likely to have Medigap than people in the
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reference category (i.e., non-response). People in the East North Central, South Atlantic

and Pacific regions are 15 to 16 percentage points more likely to have Medigap. For most

regions the relative probability of Medigap is not greatly affected by controls for the SAS

variables. But the results for the Pacific region are greatly affected. In the baseline model

of column (1), the Pacific region is 24 percentage points below the reference group, while in

the full model it is 16 points higher. This implies that residents of the Pacific region have

SAS characteristics that make them unlikely to buy Medigap.

Finally, we examine the issue of selection on unobservable determinants of insurance

coverage and expenditure risk, an issue that was not considered by FKS. Interestingly, in all

models the correlation between the unobservables ε1 and ε2 is strongly negative. This means

that selection with respect to unobserved expenditure risk is advantageous, even when all

the SAS variables are included.42 Prima facie, this result appears to contradict the finding

of FKS that observed SAS variables can explain advantageous selection. This, in turn, raises

a puzzle of why we obtained similar results to FKS in Figure 4.

The most plausible explanation for the similarity between our results and those of FKS

is that the health status variables included in the prediction model of FKS capture most

of the information relevant when individuals form an expectation about future health care

costs and make a decision about Medigap insurance status. Indeed, our results indicate

that the standard deviation of the unobservable component of expenditure risk, ε2i, is very

small compared to the standard deviation of expenditure risk E∗i itself (i.e., 0.5543 vs. 12.7

thousand dollars). This suggests that any systematic difference in expenditure risk between

individuals with and without Medigap that is left unexplained by the observable health status

characteristics is also small. Hence, results about the extent of adverse selection obtained

from a model that does not account for the correlation between ε1i and ε2i should not be

42Note that σ12 < 0 means that, ceteris paribus, people with higher expected expenditure E∗i tend to have
lower demand for insurance.

43The posterior mean of σ22 is equal to 0.31, while the posterior mean of
√
σ22 is equal to 0.55.
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very different from the results reported in this paper.

In fact, we have also re-estimated our most general model with the covariance parameter

σ12 set to zero. The fit of this restricted model to the data was very similar to that of

the unrestricted model, and the posterior distribution of the marginal effect of E∗i on the

Medigap coverage probability was similar as well. This can be seen by comparing panels (e)

and (f) of Figure 4. Note that the mean effect increases slightly from 0.055 to 0.077.

5.3 The Moral Hazard Effect

In this section we discuss our inferences about moral hazard. In Table 3 row 4 we present

posterior means of the type-specific moral hazard effects of Medigap insurance on health care

expenditure (γ2j). The posterior mean of γ2j is positive for all types. Type 1, the healthiest

type, has the smallest insurance effect of $1,200, and type 4, an unhealthy type, has the

largest effect of $2,145.44 The posterior mean of the moral hazard effect for type 5, the least

healthy type, is $1,640, but the posterior is quite diffuse.

Thus, in absolute terms the, moral hazard effect tends to be smaller for more healthy

types. Interestingly, however, the moral hazard effect is much larger as a proportion of health

care expenditure for more healthy types. For example, the individuals of type 1 who have

Medigap insurance spend about 215% more than their counterparts with no Medigap, while

individuals of type 5 who have Medigap spend only about 2.5% more.

The moral hazard effect of 215% for type 1 might seem very large, but note that this

does not correspond to a large absolute expenditure increase (i.e., type 1 has average spend-

ing of $600 when uninsured and $1,810 when insured). Also note that for most individuals

there is considerable posterior uncertainty about their type. In the data, low expenditure

44Analogously, Munkin and Trivedi (2010) find that the size of the moral hazard effect is higher for
the high-expenditure latent type than for the low-expenditure type in their study of supplemental drug
insurance. Of course, since Medigap plans may cover other aspects of costs besides drugs (e.g., co-pays), it
is not necessarily the case that these patterns would be the same in both markets.

48



individuals have high posterior probabilities of being types 1-2 and low posterior probabil-

ities of being types 3-5, while the opposite is true for high expenditure individuals. When

uncertainty about type is taken into account, estimates of the individual-level moral hazard

effect are averages over type specific effects. For example, for individuals whose posterior

type probability is highest for type 1, the average moral hazard effect is $1,514, which is a

44% increase over their average expected expenditure in the Medicare only state ($3,450).

For people whose posterior modal type is 5, the moral hazard effect is equal to $1,827, which

is 5.7% of their average expected expenditure in the Medicare only state ($32,000).

Our results suggest that the price elasticity of health care demand decreases as health

status deteriorates. This seems intuitive. For instance, much of the health expenditure for

healthy low expenditure individuals may go towards treatment of minor ailments - treat-

ment that one may fairly easily forgo due to cost. In contrast, expenditures for unhealthy

individuals are presumably more often for essential treatment of serious illness.

Next, we consider the mean of the moral hazard effect in the whole population. The moral

hazard effect of Medigap for a person with observable characteristics xi can be computed

as: E(MHi|xi,θ) =
∑m
j=1 γ2j · P (typei = j|xwi, δ1, ..., δm).45 The posterior mean (over the

posterior of parameters) of E(MHi|xi,θ) can be approximated as 10−3∑10−3

k=1 γ
k
2ski

, where ski

are simulated as discussed in section 5.1. This posterior mean varies between $1,267 and

45Alternatively, we could define the moral hazard effect as the difference between the expected actual
expenditure Ei of an individual with and without Medigap, i.e

E(MHi|xi,θ) =

m∑
j=1

(E1(Ei|typei = j,xei,θ)− E0(Ei|typei = j,xei,θ)) · P (typei = j|xwi, δ1, ..., δm)),

where

EI(Ei|typei = j,xei,θ) = Φ(
xe′iβj + γ1jYi + γ2j · I

(σ2
j + σ22)0.5

)[xe′iβj+γ1jYi+γ2j ·I+(σ2
j+σ22)0.5·

φ(
xe′

iβj+γ1jYi+γ2j ·I
(σ2

j
+σ22)0.5

)

Φ(
xe′

i
βj+γ1jYi+γ2j ·I
(σ2

j
+σ22)0.5

)
]

for I = 0, 1. This last expression is due to the Tobit specification for the distribution of actual expenditure.
The two definitions of the moral hazard effect produce similar results.
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$2,151 in our sample. The sample average of the moral hazard effect is $1,615. This is a 24%

increase from the average expenditure risk in the Medicare only state ($6,789). This result

is reasonably comparable to the effect of insurance found in the RAND Health Insurance

Experiment. For example, Manning et al. (1987) report that a decrease in the co-insurance

rate from 25% to 0 increased total health care expenditure by 23%. Such a drop in co-pays

is similar to the consequences of adopting many typical Medigap plans that cover co-pays.

In contrast to the selection effect, restricting the covariance between unobservables ε1

and ε2, σ12, to zero has a large impact on inferences about the moral hazard effect. In such

a specification the posterior mean of the moral hazard effect E(MHi|xi,θ) is only $687,

compared to $1,615 in the full model. This drop in magnitude is not surprising given the

large negative correlation between the unobervables shown in Table 4 (i.e., advantageous

selection into Medigap). Once we control for this advantageous selection on unobservables,

the moral hazard effect of insurance is revealed to be larger.

It is interesting to evaluate the potential effects on aggregate health expenditure of a

policy which expands Medigap coverage by making it more affordable. Thus, we simulate a

situation where the price of Medigap drops sufficiently so that Medigap coverage increases

by 10% (or 5 percentage points). According to the estimated price elasticity of demand

for health insurance in Buchmueller (2006), this would require approximately a $25 drop

in Medigap premiums.46 The simulations suggest that the individuals who are attracted

to Medigap insurance by this policy would on average spend $8,300 when Medigap-insured.

This compares to average expenditure of $8,100 for those who were already covered before

the policy was implemented. The newly insured spend (slightly) more because they have

46Buchmueller (2006) estimates that a $5 increase in an insurance premium would decrease a plan’s
enrolment by 2% in his sample of retirees over the age of 65. His study relies on changes in demand for
different plans caused by an exogenous change in the retiree health insurance contributions policy of a single
employer. Another study that uses a natural experiment to estimate the elasticity of health insurance demand
is Gruber and Washington (2005). We use the estimate of Buchmueller (2006) because the demographic
characteristics of individuals in his sample are similar to those in our data.
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higher expenditure risk - their average expenditure risk in the Medicare only state (E∗i ) is

$6,700, compared to $6,400 for individuals who had Medigap coverage before the policy was

implemented.47 Thus, expanding Medigap coverage results in a somewhat higher cost per

insured person mainly due to advantageous selection. But the increase in the average health

expenditure of all insured individuals is very small (from $8,060 to $8,090). The policy

increases per capita expenditure from $7,650 to $7,730.48

In contrast, expanding Medigap coverage universally would have a large effect on expen-

diture, increasing per capita expenditure from $7,650 to $8,390. This increase is primarily

due to the moral hazard effect: the newly insured (who make up about 50% of the sample)

increase their spending by $1,500 dollars on average, which increases average expenditure by

about $740. Of course, the welfare consequences of expanding Medigap coverage cannot be

evaluated using our model, but this is an important issue for future research.

Finally, it is interesting to see how much different health types contribute to the aggregate

increase in spending resulting from universal Medigap coverage. Returning to Table 3, we see

that the healthiest individuals (type 1) account for about 29% of the increase in spending.

This is computed as the ratio of the type-specific moral hazard effect to the average moral

hazard effect, weighted by the type probability: 1210·0.39
1615

= 0.29. Similarly, the contributions

of individuals of types 2-5 to the aggregate increase in spending are 37%, 18%, 12% and 3%,

respectively. Thus, the two healthiest types, who make up 71% of the population, but who

account for only 18% of total spending under the status quo, account for 66% of the total

spending increase induced by universal coverage.

47The newly insured have a slightly lower moral hazard effect than those previously insured ($1,600 vs
$1,614), and their household incomes are on average lower, but these effects are minor.

48These calculations are based on artificial data samples of Eki , Iki and E∗ki simulated as discussed in
section 5.1 for two situations: (i) before the policy (the original posterior distribution of the parameters is
used); (ii) after the policy (the intercept term in the insurance equation is increased by a constant to achieve
the average Medigap coverage of 0.55, all random terms (e.g. εi1, εi2, si, ηi) are the same as in (i)). The
average expenditure risk and moral hazard effects of the two groups, (i) with Medigap before the policy and
(ii) with no Medigap before the policy but with Medigap after the policy, are computed as discussed above.

51



5.4 Marginal Effects of Covariates on Aspects of Expenditure

Table 5 presents posterior means and the 5th and 95th percentiles of the posterior distributions

of marginal effects of covariates on the following covariate-dependent functions of interest:

1. The expected expenditure risk (columns 1-3):49

E(E∗i |xei,β1, ...,βm, δ1, ..., δm) =
m∑
j=1

E(E∗i |xei, typei = j,βj)·P (typei = j|xwi, δ1, ..., δm),

(21)

where E(E∗i |xei, typei = j,βj) = xe′iβj and P (typei = j|xwi, δ1, ..., δm) is given in

equation (6);

2. The moral hazard effect of Medigap insurance on expenditure (columns 4-6):

E(MHi|xwi, γ21, ..., γ2m, δ1, ..., δm) =
m∑
j=1

γ2j · P (typei = j|xwi, δ1, ..., δm); (22)

3. The unconditional standard deviation of the forecast error (columns 7-9):

SD(ηi|xwi, σ
2
1, ..., σ

2
m, δ1, ..., δm) =

 m∑
j=1

σ2
j · P (typei = j|xwi, δ1, ..., δm)

 1
2

. (23)

The marginal effects in Table 5 are computed for a median individual (i.e. an individual

whose covariates xei are set to the sample median level), and are measured in thousands of

dollars. For continuous covariates the effects are for a one standard deviation increase in the

covariate from its sample median level. For categorical covariates the effect is from moving

to the next category. The 5th and 95th percentiles reflect the uncertainty with respect to

the posterior distribution of parameters, i.e. the effects of the covariates on the expressions

49Because in our analysis xwi is a subset of xei, as discussed in section (4.1), conditioning on xei is
equivalent to conditioning on both xwi and xei
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(21)-(23) were evaluated for 1000 draws from the posterior distribution of parameters, and

the mean and 5th and 95th percentiles of these 1000 values are reported in Table 5.

The expenditure risk in the Medicare only state E(E∗i |xei,β1, ...,βm, δ1, ..., δm) is lower

for females, blacks and Hispanics. On average females are expected to spend $370 less

than males, while blacks and Hispanics spend $740 and $830 less than other ethnic groups,

respectively.50 Expenditure risk is insensitive to age, conditional on detailed measures of

health status, and is lower for married individuals. Unhealthy individuals are expected to

spend more than their more healthy counterparts - a one standard deviation increase in the

unhealthy factor 2 raises expenditure risk by $3,820, while a one standard deviation increase

in the healthy factor 3 decreases risk by $1,860.

Expenditure risk also varies by census division. In particular, residents of the New

England region have the highest expenditure risk, while residents of the Pacific region have

the lowest expenditure risk (conditional on other variables). This finding of large unexplained

regional differences is consistent with the extensive literature on regional variation in health

care costs and practices (see Zuckerman et al (2010), Fisher et al (2003), Welch et al (1993)).

In fact, we contribute to this literature by showing that regional differences persist even given

our more extensive controls for health status, and our SMT model of expenditure, which fits

the shape of the health care cost distribution far better than models used in prior work.

The moral hazard effect of Medigap is lower for individuals in better health, and for

blacks and Hispanics. Individuals living in the Pacific census division have the smallest

moral hazard effect, while individuals living in New England have the largest. The standard

deviation of the forecast error SD(ηi|xwi, σ
2
1, ..., σ

2
m, δ1, ..., δm) is lower for females and higher

for less healthy individuals. The variance of the forecast error is highest for those living in

50It is notable that race and marital status were not significant predictors of health expenditure in the
OLS regression in Table 2, but they are significant in the full model. This may be due to the more flexible
functional form for the conditional expectation of expenditure in the full model, compared to OLS. It may
also be due to bias in the OLS Medigap coefficient due to endogeneity of insurance.
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New England and lowest for those living in the Pacific and West South Central census

divisions. Thus, there are unexplained regional differences in the variance of expenditure,

not just the level.

6 Conclusion

This paper studies selection and moral hazard in the US Medigap health insurance market.

We develop a unified econometric model of insurance demand and health care expenditure,

using data from the HRS and MCBS. We extend earlier work by Fang, Keane and Silverman

(2008) in several ways. Most importantly: (1) we account for endogeneity of insurance

coverage when we estimate the extent of selection, and (2) we estimate the extent of moral

hazard. As instruments for insurance coverage we use a set of behavioral variables (e.g.,

cognitive ability) that FKS found were important determinants of demand for insurance but

that can be plausibly excluded from the expenditure equation (conditional on health status).

Notably, this paper is the first to estimate selection and moral hazard effects jointly in the

Medigap market while accounting for endogeneity of insurance choice.

We also incorporate two technical innovations. First, to capture the complex shape of

the health care expenditure distribution, we employ a smooth mixture of Tobits model that

generalizes the smoothly mixing regressions (SMR) framework of Geweke and Keane (2007).

Second, because neither the HRS nor the MCBS contains all the data necessary for our

analysis, we develop a novel MCMC data augmentation algorithm to combine information

from the two sources and obtain the posterior distribution of our model parameters.

Our results imply that the moral hazard (or price) effect is substantial. We find that

individuals with Medigap insurance spend about $1,615 more on health care (on average)

than similar individuals without Medigap ($6,789 vs $8,404). This is a 24% increase. As a

result of the moral hazard effect, we find that a policy of expanding Medigap coverage to all
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senior citizens would increase per capita health care expenditure by about $740.

An important contribution of this paper is the rich structure of heterogeneity that we

build into the health care expenditure function by using the SMR technique. This lets the

moral hazard effect of Medigap vary in a very flexible way across types of people. Thus,

we can go beyond the mean effect and estimate the whole distribution of moral hazard

effects across different types. In particular, we find that the price elasticity of demand for

health care is much greater for people in better health.51 The healthiest 70% of the senior

population account for only 18% of costs in the current context, but they would account for

2/3 of the increase in health care spending that would accompany a universal extension of

Medigap coverage.

We also find evidence of advantageous selection in the Medigap market. Conditional on

characteristics that insurance companies can legally use for pricing, healthier individuals are

more likely to buy Medigap. Specifically, a one standard deviation increase in expenditure

risk decreases the probability of Medigap coverage by 2.7 percentage points. This contra-

dicts the prediction of classic models of adverse selection with a single dimension of private

information (risk type).

However, when we condition on additional types of private information that cannot be

used in pricing (cognitive ability, risk attitudes, financial planning horizon, longevity expec-

tations, education, race and marital status) we do find adverse selection on health status.

But this effect is modest: a one standard deviation increase in expenditure risk increases the

probability of insurance coverage by 5.5 percentage points, ceteris paribus.

These findings are qualitatively and quantitatively similar to the results of Fang, Keane

and Silverman (2008). We do find that insurance status is correlated with unobserved aspects

51Intuitively, this is because healthy people tend to have relatively minor ailments where treatment can
be easily forgone due to the price of health care, while people in poor health are more likely to have serious
ailments where treatment cannot be forgone without severe consequences. Of course, we expect from basic
demand theory that lowering the cost of services would induce a disproportionate increase in demand for
treatment in “marginal” cases where treatment is less critical.
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of health, a possibility that FKS ignore. Nevertheless, we find that the FKS results are robust

to endogenizing insurance. Our explanation is that the observed controls for health (here

and in FKS) are so extensive that the unexplained part of risk type is not quantitatively

important for determining the nature of selection. On the other hand, we find that failure

to account for endogeneity of insurance status leads to a substantial underestimate of the

moral hazard effect (i.e., $687 in the exogenous insurance model vs. $1,615 when we allow

for correlated unobservables between the insurance and expenditure equations).

The estimated effects of covariates on demand for insurance and expenditure risk are

in some cases of considerable interest. We find that our measure of cognitive ability has

a substantial impact on demand: a one standard deviation increase in measured cognitive

ability increases the probability of having Medigap by 0.08 for a median individual. Some-

what surprisingly, the effect of financial risk tolerance on demand for insurance, while in the

expected direction, is rather modest. As a result, heterogeneity in private information about

risk aversion does little to help explain advantageous selection.

We also find that, ceteris paribus, blacks and Hispanics are much less likely to purchase

Medigap insurance than whites, and have lower health care expenditure (conditional on

health). As a result, race is an important source of adverse selection. An important avenue

for future research is to determine why blacks and Hispanics have roughly half the rate of

Medigap coverage of whites, even conditional on extensive controls for health, demographics

and psychometric measures.

Finally, an important limitation of our analysis is that the welfare consequences of ex-

panding Medigap coverage cannot be evaluated using our model. This is obviously an im-

portant issue for future research.
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Appendix

A-1. Prior Distributions

We specify the following prior distributions:

1. α0 ∼ N(α0, h
−1
α0

), where α0 = 0 and the prior variance h−1
α0

= 0.4. This specification
implies that for an individual whose probability of Medigap coverage is equal to 0.5,
the effect of a one sample standard deviation increase in expected expenditure (in
Medicare only state) on this probability is centered at zero, while the 1st, 25th, 75th
and 99th percentiles of this effect are -0.31, -0.10, 0.10, 0.31, respectively.52 That is,
this prior reflects the belief that the effect of E∗i is not very large, but still places a
non-negligible probability on the event that a one standard deviation increase in E∗i
can change the Medigap coverage substantially (e.g., from 0.5 to 0.80 or 0.20).

2. α ∼ N
(
α,H−1

α

)
, where α = 0 and the variance-covariance H−1

α is a diagonal matrix
which allows for reasonable prior uncertainty about the effects of the variables on the
probability of Medigap coverage. In Table A-1 we present the diagonal elements of H−1

α1

for the continuous variables, as well as the implied effects of a one sample standard
deviation increase in these variables on the probability of Medigap coverage at the
Medigap probability of 0.5.53 The diagonal elements of H−1

α1
for the intercept and for

the indicator variables (i.e., census division, gender, education and income categories)
are set to 1, so the prior distribution of the effect of increasing the indicator variables
from 0 to 1 (evaluated at a Medigap probability of 0.5) are -0.49, -0.23, 0.23, 0.49 at
1st, 25th and 75th and 99th percentiles respectively.

3. βj ∼ N
(
β,H−1

β

)
for j = 1, . . . ,m. We specify that β = [E,0KE−1]′, where E is

the sample average of expenditure in the MCBS subsample and KE is the size of xei.
The precision matrix Hβ = 0.1 ·∑i∈MCBS xei · xe

′
i/(N

M · V ar(E)), where V ar(E) is
the sample variance of expenditure in the MCBS subsample. This prior specification is
based on the prior for the normal linear regression model proposed in Geweke (2005),
Chapter 5. It specifies considerable prior uncertainty about the effects of a one standard

52Because the expected expenditure in the Medicare only state E∗i is a latent variable, its distribution across
individuals is unknown until the estimation is completed. To set the prior variance of α0 we approximate E∗i
by the health expenditure risk computed using the FKS imputation methodology. In particular, we compute
the expenditure risk as xeib, where b is a vector of least squares coefficients on health status characteristics
xei from the regression of health care expenditure on xei and the Medigap insurance status in the MCBS
subsample. The sample standard deviation of the imputed expenditure is equal to 0.59 for the expenditure
measured in tens thousands of dollars.

53Similarly, the distribution of σ2
si across the individuals in the sample is not known until the estimation is

completed. To set the prior variance of α1 we approximate σ2
si by the imputed health expenditure variance

computed using the FKS imputation methodology. In particular, we impute the expenditure variance as
xeiv, where v is a vector of least squares coefficients on heath status characteristics xei from the regression
of (Ei − xeib − Ii · bI)2 on xei and the Medigap insurance status in the MCBS subsample. The sample
standard deviation of the imputed variance of expenditure is equal to 2.3 for the expenditure measures in
tens thousands of dollars.

1



Table A-1: Prior distribution of α1

Variable Prior
Variance

1st, 25th, 75th, 99th
percentiles of marginal
effect

σ2
si 0.03 -0.32, -0.10, 0.10, 0.32
σ2
si · risktol∗ 0.015 -0.096, -0.03, 0.03, 0.096

Age] 1.5 -0.36, -0.13, 0.13, 0.36
Age2 3
Age3 3
risktol 10 -0.35, -0.12, 0.12, 0.35
cogn 3 -0.39, -0.14, 0.14, 0.39
finpln 0.15 -0.39, -0.14, 0.14, 0.39
praliv75 0.35 -0.39, -0.14, 0.14, 0.39
∗ This marginal effect corresponds to the change in
the effect of σ2

si brought about by one HRS sample
standard deviation change in risk tolerance.
] The marginal effect corresponds to the total effect
when age changes by one sample standard devia-
tion. Age, Age2 and Age3 interacted with gender
indicator have the same prior variances.

deviation change in a covariate on the expenditure. In particular, the implied 1st and
99th percentiles of the effect on expenditure of a one standard deviation increase in
any of the covariates is at least ± 18.5 thousand dollars, which is enough to take
expenditure from the 50th to the 90th percentile of it’s sample distribution.

4. γj ∼ N(γ, h−1
γ ), where γ = 0 and hγ is a diagonal matrix with the diagonal elements

equal to 1.4 and 0.01 for j = 1, ...,m. This prior allows for substantial prior uncertainty
about the effects of income and Medigap on health expenditure. The 1st and 99th
percentiles of the prior effect of increasing income by one standard deviation is ±98
thousand dollars. The prior effect of Medigap insurance is ±232 thousand dollars.

5. Shj ∼ χ2 (V ), where V = 1 and S = 0.59 for j = 1, ...,m. This prior allows for
substantial prior uncertainty about the type-specific variance of Êi. The interval con-
structed of the 1th and 99th percentiles of the prior distribution of 1/hj is [0.09, 3684.9],
and it contains the variance of the observed expenditure (equal to 2.13 for expenditure
measured in tens of thousands of dollars).

6. λk ∼ N
(
λk,H

−1
λk

)
for k = 1, ..., 4, where λk = [ck,0Kc−1]′, ck denotes sample average

of cki in the HRS subsample, and Kc is the number of covariates in the vector xci. The
prior precision Hλk =

∑
i∈HRS xci ·xc

′
i/(N

H ·V ar(ck)) for k = 1, ..., Kc, where V ar(ck)
is the sample variance of ck in the HRS subsample. The prior distributions of λk are
independent.
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7. V −1
c ≡ Hc ∼ Wishart

(
V c, S

−1
c

)
, so that the expectation of Hc is equal to V c · S−1

c .
We set V c = 4 and specify that Sc is a diagonal matrix with diagonal elements equal
to V c · 0.7 ·V ar(ck). This prior is based on that for the normal linear regression model
proposed in Geweke (2005), Chapter 5, and specifies that for each ck the population
multiple correlation coefficient 1 − 1

V ar(ck)Hc,kk
is equal to 0.3 at the prior expectation

of Hc. The prior probability that this coefficient is greater than 50% is 23%.

8. s22h22 ∼ χ2 (V σ), where V σ = 1 and s22 = 0.039. This prior sets the population
multiple correlation coefficient 1 − 1

V ar(E∗i )h22
to 0.90 at the prior expectation of h22.

This reflects a prior belief that the fraction of the variance in expected expenditure
E∗i due to unobserved determinants is much lower than that due to the wide array of
observed health status characteristics that we use.54 It seems plausible that expected
expenditure is mostly due to observable health factors. However, our prior also allows
for substantial prior variability in this coefficient. For example, the prior probability
that it is less than 0.30 is 0.31. At the same time, the prior of h22 is flexible enough
that unobserved factors can account for all variability in health care expenditure: the
prior probability that 1/h22 is greater than the sample variance of Ei (equal to 2.13
for expenditure measured in tens thousands of dollars) is 0.11.

9. σ12 ∼ N
(
σ12, h

−1
12

)
, where σ12 = 0 and h−1

12 = 50. Together, the prior specifications
of h22 and σ12 imply a significant uncertainty about the strength of the relationship
between the unobservables, i.e. it specifies that the 1st, 25th, 75th and 99th percentiles
of the prior distribution of the correlation coefficient between ε1 and ε2, σ12√

(1+h22·σ2
12)h−1

22

,

are -0.91, -0.25, 0.25, 0.91, respectively.

10. δj ∼ N
(
δ,H−1

δ

)
for j = 1, . . . ,m− 1, where we specify δ = 0 and Hδ = 0.1 ·∑i xwi ·

xw
′
i/N .

A-2. Posterior Simulation Algorithm

To obtain the posterior distribution of parameters of the model we construct a Gibbs sam-
pling algorithm. We split the parameters vector into several blocks introduced in section 4.3
so that it is relatively easy to sample from the conditional posterior distributions of each
block. Let θ−θk denote the vector of parameters θ with the block of parameters θk removed.

Define V11 = 1+
σ2
12

σ22
+2α0σ12 +α2

0σ22, V12 = σ12 +α0σ22, and Cki = cmki ·Si+coki · (1−Si). The
Gibbs sampler iteratively draws from the conditional posterior distributions of the following
blocks of parameters and latent data:

1. The posterior conditional distribution of α0, p(α0|θ−α0 , Ê, I∗,Cm, s,W,data), is pro-
portional to the product of it’s prior density p(α0) given in Section A-1 and the density

54To set this prior distribution we approximate the sample distribution of E∗i by the imputed health care
expenditure in Medicare only state, as described in the footnote to the discussion of the prior of α0 (bullet
point 1). Hence, we set V ar(E∗) to 0.592 for E∗ measured in tens thousands of dollars.
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of observable and latent data p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, α0,θ−α0) given in equa-
tion (19). This distribution is not of any known form and is sampled using the random
walk Metropolis-Hastings algorithm. In particular, on iteration n the algorithm draws
a proposal value α̃0 from N(αn−1

0 , vα0), where the subscript n − 1 indicates the value
of α0 from a previous iteration of the Gibbs sampler. The proposal α̃0 is accepted as
the new draw αn0 with probability

ρα0 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, α̃0,θ−α0)p(α̃0)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, αn−1
0 ,θ−α0)p(α

n−1
0 )
}.

The variance of the proposal distribution vα0 was set so that 45% of the new draws
were accepted.

2. The posterior conditional distribution of α, p(α|θ−α, Ê, I∗,Cm, s,W,data), is propor-
tional to the product of it’s prior density p(α) given in Section A-1 and the density of
observable and latent data p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ) given in equation (19).
To derive the posterior conditional distribution of α we first need to establish some
notation.

Without loss of generality assume that the observations are arranged so that the first
NM observations belong to MCBS subset, and the last NH belong to the HRS subset.

Let Ĩ∗i = I∗i −α0β
′
si

xei, and
˜̃
I
∗

i = Ĩ∗i − V12
σ2
si

+σ22
(Êi−β′sixei− γ ′siyii). Let Ĩ

∗
S denote the

vector of elements Ĩ∗i for i = 1, ..., NM (MCBS observations), while Ĩ
∗
1−S be the vector

of elements Ĩ∗i for i = NM + 1, ..., N (HRS observations). Let
˜̃
I
∗

S be defined similarly

for the elements
˜̃
I
∗

i , i = 1, ..., NM (MCBS observations). Also, let ZS be the matrix
with the rows [σ2

si
, σ2

si
· C1i,xi′i, C1i, ..., C4i] for i = 1, ..., NM , while Z1−S be the matrix

with these rows for i = NM + 1, ..., N .

Then, it can be shown that the posterior conditional distribution of α is given by:

p(α|θ−α, Ê, I∗,Cm, s,W,data) ∼ N(α,H
−1

α ),

where

Hα = Hα +
1

V11

Z
′

1−SZ1−S + Z
′

SQαZS

and

α = H
−1

α [Hαα+
1

V11

Z
′

1−S Ĩ
∗
1−S + Z

′

SQα
˜̃
I
∗

S],

and where Qα is the NM × NM diagonal matrix with the iith element given by
1

V11−
V 2
12

σ2si
+σ22

.

3. The posterior conditional distribution of βj, p(βj|θ−βj , Ê, I∗,Cm, s,W,data), is pro-
portional to the product of it’s prior density p(βj) given in Section A-1 and the density
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of observable and latent data given in equation (19). To derive this distribution for
j = 1, ...,m we need to establish the following notation:

Let Î∗i = I∗i − [σ2
si
, σ2

si
· C1i,xi′i, C1i, ..., C4i]α, Ẽi = Êi − γ ′siyii, x̃ei = α0 · xei. Define

XEj
S and X̃E

j

S as the matrices with the rows xe
′
i and x̃e′ i respectively for observations

i such that si = j and i ∈ MCBS. Let XEj
1−S and X̃E

j

1−S be similarly constructed

matrices for observations i ∈ HRS. Similarly, let Î
∗j
S and Î

∗j
1−S denote the vectors of Î∗i

for i with si = j and i ∈MCBS, or si = j and i ∈ HRS, respectively. Let Ẽ
j

S denote
the vector of Ẽi for i such that si = j and i ∈ MCBS. Also, let the matrix F j with
the elements f jkl be defined as

F j =

[
V11 V12

V12 σ22 + σ2
j

]−1

.

Then for j = 1, ...,m the posterior conditional distribution of βj is independent of βl
for l 6= j and is given by:

βj|(θ−βj , Ê,Eo, I∗,Co,Cm, s,W,data) ∼ N(βj,H
−1

βj
),

where

Hβj = Hβ + f j11X̃E
j′

S X̃E
j

S + 2f j12X̃E
j′

SXEj
S + f j22XEj′

SXEj
S +

1

V11

X̃E
j′

1−SX̃E
j

1−S

and

βj = H
−1

βj
[Hββ+f j11X̃E

j′

S Î
∗j
S +f j12X̃E

j′

S Ẽ
j

S+f j12XEj′

S Î
∗j
S +f j22XEj′

S Ẽ
j

S+
1

V11

X̃E
j′

1−S Î
∗j
1−S].

4. The posterior conditional distribution of γj, p(γj|θ−γj , Ê, I
∗,Cm, s,W,data), is pro-

portional to the product of it’s prior density p(γj) given in Section A-1 and the
density of observable and latent data given in equation (19). To derive the poste-
rior conditional distribution of γj we need to establish the following notation. Let

Ĭ∗i = I∗i − α0xeiβsi − [σ2
si
, σ2

si
· C1i,xi′i, C1i, ..., C4i]α, and Ĭ

∗j
S denote a vector of Ĭ∗i for

i with si = j and i ∈ MCBS. Also, let Ĕi = Êi − xeiβsi , and Ĕ
j

S denote a vector of

Ĕi for i with si = j and i ∈ MCBS. Let IjS denote the matrix with raws [Yi, Ii] for i
with si = j and i ∈MCBS.

Then, the posterior conditional distribution of γj for j = 1, ...m is independent of l 6= j
and is given by:

γj|(θγj , Ê, I
∗,Cm, s,W,data) ∼ N(γj, h

−1

γj),
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where
hγj = hγ + f j22I

j′

S Ij
′

S

and
γj = h

−1

γj
(hγγ + Ij

′

S (f j22Ĕ
j

S + f j12Ĭ
∗j
S )).

5. The posterior conditional distributions of hj for j = 1, ...m are proportional to the
product of prior density of hj, p(hj) given in Section A-1 and the density of observable
and latent data as defined in (19). It is easy to see that the posterior conditional
distributions of hj for j = 1, ...m are independent of those of hl for l 6= j. For all j
the posterior conditional distribution of hj is not of any known form and is sampled
using the Metropolis-Hastings algorithm. In particular, on iteration n we draw the

proposal value h̃j from gamma distribution with the parameters (vj
2
,

2h
(n−1)
j

vj
). Note,

that the expected value of this distribution is equal to h
(n−1)
j . We set the parameters vj

for j = 1, ...,m so that the new draws are accepted with a probability of 0.45. Denote
the probability density of this proposal gamma distribution as g(h̃j|h(n−1)

j ). We accept

h̃j as the new draw hnj with probability

ρhj = min{1,
p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h̃j,θ−hj)p(h̃j)g(h

(n−1)
j |h̃j)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h(n−1)
j ,θ−hj)p(h

(n−1)
j )g(h̃j|h(n−1)

j )
}

6. The posterior conditional distribution of Λ, p(Λ|θ−Λ, Ê, I
∗,Cm, s,W,data), is propor-

tional to the product of it’s prior density p(Λ) given in Section A-1 and the density of
observable and latent data given in equation (19). To obtain the conditional posterior
distribution of Λ we need to establish the following notation. Let XC denote the
matrix of covariates xci for observations i = 1, ..., N , i.e. XC = [xc1, ...,xcN ]′. Let
DK denote the identity matrix of size K and let ZΛ = D4⊗XC, where ⊗ denotes the
Kroneker product.

Then, the posterior conditional distribution of Λ is given by:

Λ|(θ−Λ, Ê, I
∗,Cm, s,W,data) ∼ N(Λ,H

−1

Λ ),

where
HΛ = HΛ + Z

′

Λ(Vc ⊗DN)−1ZΛ

and
Λ = H

−1

Λ [HΛΛ + Z
′

Λ(Vc ⊗DN)−1C].

In the above expressions HΛ is a block-diagonal matrix with the diagonal blocks Hλk ,

k = 1, ..., 4, Λ = [λ′1,λ
′
2,λ

′
3,λ

′
4]′, C = [C

′

1, ...,C
′

4]′, and for k = 1, ..., 4 the N × 1
vectors Ck consist of the elements Cki.

7. The posterior conditional distribution of the inverse of the variance-covariance matrix
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of the SAS variables missing from the MCBS data, Hc ≡ V −1
c , p(Hc|θ−Hc , Ê, I∗,Cm,W, s,data),

is proportional to the product of its prior probability given in Section A-1 and the den-
sity of observable and latent data as defined in (19), and is given by:

Hc|(θ−Hc , Ê,Eo, I∗,Cm,Co,W, s,data) ∼ W ((Sc + Sc)
−1, V c +N),

where

Sc =


(C1 −XCλ1)′(C1 −XCλ1) · · · (C1 −XCλ1)′(C4 −XCλ4)

...
. . .

...
(C4 −XCλ4x)

′(C1 −XCλ1) · · · (C4 −XCλ4)′(C4 −XCλ4)

 .

8. The posterior conditional distribution of h22 is proportional to the product of it’s prior
density p(h22) given in Section A-1 and the density of observable and latent data given
in equation 19. This distribution is not of any known form and is sampled using the
Metropolis-Hastings algorithm.

In particular, on iteration n we draw the proposal value h̃22 from gamma distribution

with the parameters (
vs2
2
,

2hn−1
22

vs2
). Note, that the expected value of this distribution is

equal to hn−1
22 . We set the parameter vs2 so that the acceptance rate is about 45%.

Denote the probability density of this proposal gamma distribution as g(h̃22|hn−1
22 ). We

accept h̃22 as the new draw hn22 with probability

ρσ22 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h̃22,θ−h22)p(h̃22)g(hn−1
22 |h̃22)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, hn−1
22 ,θ−h22)p(h

n−1
22 )g(h̃22|hn−1

22 )
}

9. The posterior conditional distribution of σ12 is proportional to the product of it’s prior
density p(σ12) given in Section A-1 and the density of observable and latent data given
in equation (19). This distribution is not of any known form and is sampled using the
random walk Metropolis-Hastings algorithm.

In particular, on iteration n draw the proposal value σ̃12 from N(σn−1
12 , vσ12). Accept

σ̃12 as the new draw σn12 with probability

ρσ12 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, σ̃12,θ−σ12)p(σ̃12)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, σn−1
12 ,θ−σ12)p(σ

n−1
12 )
}.

The variance of the proposal distribution vσ12 was set so that 20% of the new draws
are accepted.

10. The posterior conditional distribution of the vector of coefficients δj which determine

the latent type propensities W̃ij is proportional to the product of the prior density
of δj given in Section A-1 and (19). It is easy to see that the posterior conditional
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distributions of δj are independent across j and are given by:

δj|(θ−δj , Ê, I∗,Cm,W, s,data) ∼ N(δj,H
−1

δ )

where

Hδ = Hδ + XW′XW,

δj = H
−1

δ [Hδδ + XW′w̃j] for j = 1, ...,m− 1.

11. Latent utility of health insurance I∗i ∼ p(I∗i |θ, Ê, I∗−i,Cm, s,data). From (19) the
kernel of this posterior distribution for i ∈MCBS is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
cm1i −α′3xii − cm

′

i α4

− V12

σ2
si

+ σ22

(Êi − β′sixei − γ ′siyii))
2/(2(V11 −

V 2
12

σ2
si

+ σ22

)))

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)),

while for i ∈ HRS it is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
co1i −α′3xii − co

′

i α4)2/(2V11))

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)).

These can be recognized as kernels of truncated normal distributions. Thus,

I∗i |(θ, Ê, I∗−i,Cm,W, s,data) ∼ TNR(Ii)(I
∗
i , VI∗),

where TNR(I)(a, b) denotes normal distribution with mean a and variance b truncated
to interval R(I), R(0) = (−∞, 0], R(1) = (0,∞). For i ∈MCBS we have

I
∗
i = α0xeiβsi +α1 · σ2

si
+α2 · σ2

si
cm1i +α′3xii +α′4c

m
i +

V12

σ2
si

+ σ22

(E∗i −β′sixei− γ ′siyii),

VI∗ = V11 −
V 2

12

σ2
si

+ σ22

,

while for i ∈ HRS we have

I
∗
i = α0xeiβsi + α1 · σ2

si
+ α2 · σ2

si
co1i +α′3xii +α′4c

o
i

and
VI∗ = V11.

12. Notional expenditure Êi ∼ p(Êi|θ, Ê−i, I∗,Cm,W, s,data, Si = 1). The kernel of this
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posterior distribution is given by

exp(−
(Êi − xeiβsi − yiiγsi −

V12
V11

(I∗i − α0xeiβsi − α1 · σ2
si
− α2 · σ2

si
cm1i −α′3xii −α′4cmi ))2

2(σ2
si

+ σ22 − V 2
12

V11
)

)

· (ι(Eo
i = Êi) · ι(Êi ≥ 0) + ι(Eo

i = 0) · ι(Êi < 0)). (24)

Thus, if Ei = 0 we draw notional expenditure from:

Êi|(θ, Ê−i, I∗,Cm,W, s,data, Si = 1) ∼ TN(−∞,0](Ei, σ
2
si

+ σ22 −
V 2

12

V11

)

where Ei = xeiβsi + yiiγsi + V12
V11

(I∗i −α0xeiβsi −α1 · σ2
si
−α2 · σ2

si
cm1i −α′3xii−α′4cmi ),

while if Ei > 0 we simply set Êi = Ei.

13. SAS variables missing from the MCBS: cmi ∼ p(cmi |θ, Ê, I∗,Cm
−i,W, s,data, Si = 1).

The kernel of this posterior distribution is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
cm1i −α′3xii −α′4cmi

− V12

σ2
si

+ σ22

(Êi − β′sixei − γ ′siyii)
2/(2(V11 −

V 2
12

σ2
si

+ σ22

)))

· exp(−(cm1i −XCiΛ)′V −1
c (cm1i −XCiΛ)/2)

This kernel can be recognized as that of the conditional distribution p(cmi |θ, Êi,xii,xei; I
∗
i ),

where the joint distribution p(I∗i , c
m
i |θ, Êi,xii,xei) is multivariate normal with mean

[
I
c

i

ci

]
≡

 α0xeiβsi + α1σ
2
si

+ α2σ
2
si
· xc′iλ1 +α′3xii +α′4XCiΛ + V12

σ2
si

+σ22
(Êi − β′sixei − γ ′siyii)

XCiΛ


and variance matrix:

Vc
si

=

(
vc11si

α′4Vc + α2σ
2
si

v1·
c

Vcα4 + α2σ
2
si

v·1c Vc

)
≡
(

Vc
si11 Vc

si12

Vc
si21 Vc

)

where

vc11si
= V11 −

V 2
12

σ22 + σ2
si

+α′4Vcα4 + α2
2σ

4
si
· v11

c + 2α2σ
2
si

4∑
l=1

·α4l · v1l
c ,

and where vklc denotes klth element of Vc, while vk.c and v.kc denote kth row and kth

column of Vc, respectively. Using the results for the multivariate normal distribution
the posterior conditional distribution of cmi is given by

cmi |θ, Ê, I∗,Cm
−i,W, s,data, Si = 1 ∼ N(ci+Vc′

si12V
c−1

si11(I∗i −I
c
i), Vc−Vc′

si12V
c−1

si11V
c
si12).
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14. The conditional posterior density kernel of latent type propensities W̃i is given by:

exp(−W̃ 2
im/2−

m−1∑
j=1

(W̃ij − xw′iδj)
2/2) (25)

·
m∑
j=1

(
m∏
l=1

ι(W̃il ∈ (−∞, W̃ij])

)
(26)

· gw(j),

where

gw(j) =

{
exp(−

(I∗i − α0xeiβj − α1σ
2
j − α2σ

2
j c
o
1i −α′3xii − co

′
i α4)2

2V11

)

}Si=0

·
{

(V11 −
V 2

12

σ2
j + σ22

)−
1
2 · exp

(
−
[
I∗i − α0xeiβj − α1σ

2
j − α2σ

2
j c
m
1i −α′3xii

− cm
′

i α4 −
V12

σ2
j + σ22

(Êi − α0xeiβj − γ ′jyii)

]2

/(2(V11 −
V 2

12

σ2
j + σ22

))


· (σ2

j + σ22)−
1
2 · exp(−

(Êi − α0xeiβj − γjyii)
2

2(σ2
j + σ22)

)


Si=1

Draws from this distribution are obtained by the Metropolis within Gibbs step sug-
gested in Geweke and Keane (2007). The candidate draw W̃

∗
i is obtained from the

normal density with the kernel given by (25). The function (26) then determines the
candidate type j∗ : W̃ij∗ ≥ W̃il for all l = 1, ...,m. The candidate values are then

accepted as new draws W̃
n

i and sni with probability

min

{
gw(j∗)

gw(j(n−1))
, 1

}
,

where j(n−1) denotes observation’s i type from the previous iteration, i.e. j(n−1) = sn−1
i .

We checked that this algorithm was correctly implemented using the joint distribution tests
of Geweke (2004).

A-3. Inclusion of Exogenous Variables in the Equations of the
Model

Table A-2 shows specification of the equations of the model in terms of exogenous covariates
included in each equation. As discussed in section 4.1.A, to identify selection and moral
hazard effects we use cross-equation exclusion restrictions. In particular, we assume that
(i) health status variables (i.e. health factors 2-23) and survey year indicator affect insur-
ance status only indirectly (i.e. through their effect on expenditure risk E∗i ), and (ii) SAS
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variables, such as education, income, risk tolerance, cognitive ability, longevity expectations
and financial planning horizon, enter the insurance equation but not the expenditure risk
equation, once we condition on health status variables. That is, these SAS variables may af-
fect one’s health indirectly by shifting investment in health, but once we condition on health
itself, they have no direct effect on one’s health expenditure risk.

The demographic characteristics (i.e. marital status, ethnicity and interactions of gender
with marital status and age) are included in both the expenditure and the insurance equations
(in the full model). These variables are included in the expenditure equation to capture
differences in health status and tastes for medical care between different demographic groups.
Similarly, these variables are included in the final specification of the insurance equation
to capture heterogeneity in tastes for insurance. We do not include these variables in the
baseline model because insurers cannot legally price Medigap policies based on race or marital
status.

The specification of the insurance equation (I∗i ) is the same as in FKS. In particular,
in addition to expenditure risk E∗i , the benchmark model includes only insurance pricing
variables (polynomial in age, gender and location of residence). The potential SAS vari-
ables (education, income, risk tolerance, cognitive ability, longevity expectations, financial
planning horizon, race and marital status) are progressively added to the insurance equation
in extended specifications. Hence, variables indicated by “SAS” in column 3 of Table A-2
correspond to the vector [xi′i, ci] (see equation (3)) in the full specification of the insurance
equation, and ci consists of variables indicated in the last four rows of column 3 (risktol,
cogn, finpln and praliv75).

The variables marked by “Yes” in column 4 of Table A-2 correspond to the vector xei
of characteristics included in the specification of the expenditure risk E∗i (see equation (4)).
Income in thousands of dollars is included in the expenditure equation (1) but is not included
in the expenditure risk equation (4)).

The variables marked by “Yes” in column 5 of Table A-2 correspond to the vector xwi

of variables affecting type propensities W̃ (see equation (5)). Note, that the equations for
type propensities include most of the variables included in xei, with the exception of the
polynomial terms in age and the interactions of age with gender and gender with marital
status. We omit these variables to reduce the number of parameters, as the specification for
conditional mean of expenditure is already very flexible.

Finally, the model for missing SAS variable (SAS) includes most of the exogenous vari-
ables used in the analysis to maximize predictive power. The variables marked by “Yes” in
column 6 of Table A-2 correspond to the vector xci of exogenous variables included in the
prediction equation (7).
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Table A-2: Exogenous variables included in equations for insurance status, expenditure risk,
type probabilities and the prediction model for the SAS variables.

Variable Description I∗ E∗ W̃ SAS

1 2 3 4 5 6

Female Indicator for female Yes Yes Yes Yes
Age Age, years Yes Yes Yes Yes
Age2 Age squared Yes Yes Yes
Age3 Age cubed Yes Yes Yes
Married Indicator for being married SAS Yes Yes Yes
Age*Female Interaction of age polynomial with Female SAS Yes
Married*Female Interaction of Married and Female SAS Yes
Health factor 1 Health Status Factor Yes Yes Yes
Health factor 3 Health Status Factor Yes Yes Yes
Health factor 7 Health Status Factor Yes Yes Yes
Health factor 8 Health Status Factor Yes Yes Yes
Health factor 10 Health Status Factor Yes Yes Yes
Health factor 11 Health Status Factor Yes Yes Yes
Health factor 17 Health Status Factor Yes Yes Yes
Health factor 20 Health Status Factor Yes Yes Yes
Health factor 22 Health Status Factor Yes Yes Yes
Health factor 23 Health Status Factor Yes Yes Yes
Black Indicator for race black SAS Yes Yes Yes
Hispanic Indicator for Hispanic SAS Yes Yes Yes
Survey year Year Yes Yes
hgc: ls8th Education: less than high school SAS Yes
hgc: somehs Education: some high school SAS Yes
hgc: hs Education: high school SAS Yes
hgc: somecol Education: some college SAS Yes
hgc: college Education: college SAS Yes
hgc: gradschl Education: grad. school SAS Yes
hgc: nr Education non-response SAS Yes
inc 5k-10k Income: $5-10 thousand SAS Yes
inc 10k-15k Income: $10-15 thousand SAS Yes
inc 15k-20k Income: $15-20 thousand SAS Yes
inc 20k-25k Income: $20-25 thousand SAS Yes
inc 25k-30k Income: $25-30 thousand SAS Yes
inc 30k-35k Income: $30-35 thousand SAS Yes
inc 35k-40k Income: $35-40 thousand SAS Yes
inc 40k-45k Income: $40-45 thousand SAS Yes
inc 45k-50k Income: $45-50 thousand SAS Yes
inc 50plus Income: $50+ thousand SAS Yes
risktol Risk tolerance SAS
cogn Congnition factor SAS
finpln Financial planning horizon SAS
praliv75 Subjective probability to live to be 75 or more SAS

∗ Note: All equations include indicators for census divisions. The variables labelled “SAS” are not included in the
baseline specification of the insurance equation (I∗i ). They are added later as potential sources of adverse/advantageous
selection. The baseline insurance equation only includes pricing variables and expenditure risk.
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