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Abstract: Models of consumer learning and inventory behavior have both proven to be valuable 

for explaining consumer choice dynamics. In their pure form these models assume consumers 

solve complex dynamic programming (DP) problems to determine optimal choices. For this 

reason, these models are best viewed as “as if” approximations to consumer behavior. In this 

paper we present an estimation method, based on Geweke and Keane (2000), which allows us to 

estimate dynamic models without solving a DP problem and without strong assumptions about 

how consumers form expectations about the future. The relatively low computational burden of 

this method allows us to nest the learning and inventory models. We also incorporate the “price 

consideration” mechanism of Ching, Erdem and Keane (2009), which essentially says that 

consumers may not pay attention to a category in every period. The resulting model may be 

viewed as providing a more “realistic” or “descriptive” account of consumer choice behavior. 
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1. Introduction  

The goal of this paper is develop and estimate a single choice model that incorporates 

learning, inventories and category consideration. Prior literature has considered these aspects of 

behavior separately but not jointly. Early papers on consumer learning were Erdem and Keane 

(1996), Ackerberg (2003) and Crawford and Shum (2006); for inventory behavior see Erdem, 

Imai and Keane (2003) and Hendel and Nevo (2006), and for catergory consideration see Ching, 

Erdem and Keane (2009).
1
 Key open questions are whether learning or inventories provide a 

better explanation of consumer choice dynamics (see Erdem, Keane and Sun (2008)), and 

whether the category consideration mechanism is also an important aspect of choice behavior.   

One approach to this question is to develop a structural model that incorporates all three 

mechanisms (learning inventories, consideration), and to test which are most important for 

explaining choice dynamics. Unfortunately, both learning and inventories lead to models that are 

difficult to estimate, as they require solution of dynamic programming (DP) problems.
2
 This 

computational burden is greatly compounded if we combine learning and inventories into one 

model. There are simply too many state variables – levels of perceived quality and uncertainty 

for all brands, current and lagged prices of all brands, and inventories – making the DP problem 

very time-consuming. Thus, it has not been feasible to estimate dynamic structural models that 

include both mechanisms (let alone to also include category consideration). 

In this paper, we take a step towards addressing this issue. We present a new approach 

that allows one to estimate models with both learning and inventory effects, while also including 

category consideration. Specifically, we extend a method developed by Geweke and Keane 

(2000) that makes it possible to estimate dynamic models without having to solve the DP 

problem. By using the Geweke-Keane method, we can, for the first time, estimate a model with 

both learning and inventories, and shed light on the role of each. Our approach also allows us to 

relax many of the strong assumptions about choice behavior that underlie the conventional DP 

                                                           
1
 Seiler (2013) extends Ching, Erdem and Keane (2009) by introducing category consideration in an inventory 

stockpiling model. 
2
 Dynamic programming is needed to model behavior of forward-looking consumers. Consumers in an inventory 

model must be forward-looking, as there is no reason that myopic consumers would hold inventories. On the other 

hand, consumers in a learning model need not be forward-looking. If they are forward-looking they will engage in 

strategic trial or experimentation, as in Eckstein et al (1988). If they are myopic they still learn over time, updating 

their priors as more information is received, as in Roberts and Urban (1988). But they do so passively, with no 

strategic trial. But to nest learning and inventories within one model, we must allow for forward-looking consumers. 

Otherwise the inventory model would be ruled out a priori.   
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approach. We can also test whether consumers engage in strategic trial as the forward-looking 

learning model implies. 

Our empirical application is to the demand for diapers. This category is ideal for studying 

learning and inventory behavior. This is because there is a well-defined point when a consumer 

enters the market – the birth of a child. In contrast, in most categories (e.g., detergent, cereal) 

consumers will usually have been in the market for years before we first observe them.  

The outline of the paper is as follows: Section 2 describes the standard Bayesian learning 

model. Section 3 describes the Geweke-Keane method. Sections 4-7 shows how we apply it to a 

model that contains learning, inventories and category consideration, and how we test for 

forward-looking behavior.  Section 8 presents the estimation results. Section 9 concludes. 

  
2. The Basic Bayesian Learning Model   

Here we describe a standard learning model, similar to Erdem and Keane (1996). The key 

feature of the model is that consumers do not know the attributes of brands with certainty. Before 

receiving any information via use experience, consumers have a normal prior on brand quality: 

 

(1)              
   

 
This says that, prior to any use experience, consumers perceive that the true quality of brand j 

(Qj) is distributed normally with a mean of Qj0 and variance    
 . The values of Qj0 and    

  may 

be influenced by many factors, such as reputation of the manufacturer, advice from friends, etc. 

Use experience does not fully reveal quality because of “inherent product variability.” 

This has multiple interpretations. First, quality of different units of a product may vary. Second, 

and more importantly, a consumer’s experience of a product will vary across use occasions. For 

instance, a diaper may hold all of a baby’s urine on some occasions but not on others (depending 

on how much milk the baby drank). And a baby would take some time to develop a diaper rash.  

Given inherent product variability, there is a difference between “experienced quality” by 

consumer i for brand j on purchase occasion t, which we denote    
 , and true quality Qj. Assume 

the experienced quality delivered by use experience is a noisy signal of true quality, as in: 

 

(2)      
         where             

   

 
Here   

  is the variance of inherent product variability, which we often refer to as “experience 
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variability.” It should be noted that all brands have experience variability, so (2) holds for all j.   

Note that we have conjugate priors and signals, as both the prior on quality (1) and the 

noise in the quality signals (2) are assumed to be normal. The posterior for perceived quality at 

t=1, after a single use experience signal is received, is given by the updating formulas: 

 

(3)      
   
 

   
    

     
  

  
 

   
    

     

   

(4)     
  

 

(    
 ⁄  )     

  ⁄
 

 
Equation (3) describes how a consumer’s prior on quality of brand j is updated as a result of the 

experience signal     
 . Note that the extent of updating is greater the more accurate is the signal 

(i.e., the smaller is   
 ). Equation (4) describes how a consumer’s uncertainty declines as he/she 

receives more signals.     
  is often referred to as the “perception error variance.”  

 Equations (3) and (4) generalize to any number of signals. Let Nij(t) denote the total 

number of use experience signals received by person i through time t.  Then we have that: 

 

(5)      
         

 

         
    

 ∑     
  

        
  
 

         
    

      

   

(6)     
  

 

(    
 ⁄ )           

  ⁄
 

 
where      is an indicator for whether brand j is bought/consumed at time t by person i. 

 In (5), the perceived quality of brand j at time t, Qijt, is a weighted average of the prior 

and all quality signals received up through time t, ∑     
  

       . Perceived quality is random 

across consumers, as some receive, by chance, better quality signals than others. So the learning 

model endogenously generates heterogeneity across consumers in their perceptions of products. 

We will also include advertising as a signal of quality. We discuss this extension in Section 6. 

 Let Sit denote consumer i’s information set. As equation (6) indicates, the variance of 

perceived quality around true quality declines as more signals are received, and in the limit 

perceived quality converges to true quality. Still, heterogeneity in Sit may persist over time, 

because: (i) both brands and consumers are finitely lived, (ii) as people gather more information 

the value of trial purchases diminishes, and so eventually learning about unfamiliar products will 



4 

 

become slow; (iii) there is a flow of new brands and new consumers entering a market. 

We assume consumer i’s (conditional indirect) utility of consuming brand j is: 

 

(7)   (   
     )   (    

 )             , 

 
Where Pijt is price, wP is marginal utility of income and eijt is an idiosyncratic brand, time and 

person specific error, distributed iid extreme value.  If we assume that  (    
 ) takes the constant 

absolute risk aversion form (CARA), then the expected utility is given by:  

 

(8)  [ (    
      )|   ]      (  (     

 

 
(    

    
 )))             ,  

 
where r > 0 captures risk aversion with respect to variation in product quality. There is also a no 

purchase option, whose expected utility is simply  [   |   ]       (see Section 7 for details). 

 
3. An Overview of the Geweke-Keane Method for Estimating Dynamic Models 

In general, learning models like the one in Section 2 must be solved by dynamic 

programming (DP). This is because today’s purchase affects tomorrow’s information set, which 

affects future utility. Consumers choose a brand that gives them the highest expected current 

utility plus expected discounted future payoffs; that is, the highest value function: 

 

(9a)      |     [     
      |  ]          |                    for             j=0,…,J, 

 
where the next period information set, or state space,      is given by: 

 

(9b)       {                      
          

 }.   

 
Equation (9a) is called the “alternative specific” value function, as it is the value of choosing 

option j. As we see in (9a), choosing the brand with the highest expected current utility is not 

necessarily optimal, because the “future component”         |      is also relevant. 

Notice that in (9a)-(9b) we have suppressed the consumer subscript i to simplify notation. 

We will continue to do so in the remainder of this section, as well as in Sections 4-5. 

A key limitation of existing learning models is they ignore inventories, which are another 

key source of dynamics in consumer choice behavior. It is not feasible to estimate a model of 

forward-looking agents with both learning and inventories, as the state space is even larger than 
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in (9b), making it intractably large. Here we propose a potential solution to this problem. 

Geweke and Keane (2000, 2001) present a method to estimate dynamic models without 

the need to solve agents’ DP problem. The basic idea is to replace equation (9) by:    

 

(10)      |     [     
      |  ]   [          |  ]                for             j=0,…,J. 

 
 
Here  [          |  ]          |      is a flexible function of the state variables designed to 

approximate the “future component” of the value function. And πt is a vector of reduced form 

parameters that characterize the F(∙) function. The idea of the Geweke-Keane (GK) method is to 

estimate the πt jointly with the structural parameters that enter the current period utility function. 

The Bayesian learning model implies a particular mapping from the structural parameters 

to the reduced form parameters πt. However, if the πt are identified, one can estimate them freely, 

without imposing the structural restrictions. In the GK method, they are estimated freely. Thus, 

the estimated πt may approximate the optimal DP solution, but they may imply other types of 

behavior, like myopia (πt=0), or failure to form expectations optimally. Thus we can use the 

estimated πt to test assumptions about how consumers behave (as in Houser, Keane and McCabe 

(2004)). In particular, we will show how to test if strategic trial is important. 

The intuition for the GK method is similar to Hotz and Miller (1993). Consumers solve 

their own problem, so we can infer the parameters of the solution (πt) from their behavior, 

without having to solve the problem ourselves. The key difference is that the GK method 

assumes only that both the econometrician and the consumers have common knowledge about 

the laws of motion of the state variables. Unlike Hotz and Miller (1993), GK do not assume the 

econometrician knows how consumers form expectations (which would be necessary to form the 

mapping from the structural parameters to the πt). Hence GK do not assume we know a priori 

exactly what problem the consumers are actually solving. Rather, we make inferences about their 

solution (i.e., their behavior) from the πt estimates.           

The GK method has been applied to life-cycle labor supply (Houser, 2003), and behavior 

in dynamic choice experiments (Houser, Keane, McCabe, 2004). In those applications, current 

payoffs are at least partially observed. This allows one to separate the πt from the utility function 

parameters. Otherwise, one could not determine if a variable affects choices by shifting current 

utility or the future component. But in the typical learning model this approach is not useful, as 
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we do not observe the current payoffs (i.e., we observe only choices, not utility). 

Here, we show that an alternative method of identification is possible if some state 

variables enter the future component of the value functions but not current payoffs. These state 

variables must also vary across the equations of the discrete choice model, thus generating a 

cross-equation exclusion restriction. As we’ll see, this is true of the (updated) perception error 

variances in the Bayesian learning model.  

 
4. Estimating the Bayesian Learning Model using the Geweke-Keane Method 

In this section we show how to estimate the Erdem and Keane (1996) learning model 

using the GK method. (We add inventories in section 5). First, write the future component of the 

value function in the Bayesian learning model as follows: 

 

(11)           |                        
          

 |    

 

We obtain (11) from (10) by specifying that the state variables in It+1 are {Qjt} and {      
 }. The 

following point is important: The    
  evolve deterministically, so a consumer at time t knows 

what their values will be at t+1. Thus, the expectation at time t conditions on the {      
 }. In 

contrast, the {Qjt} are rational forecasts of quality, given all current information. A consumer 

cannot anticipate changes in the {Qjt}, so the expected value depends only on the current value.
3
 

Now, consider the future component of the value function conditional on brand j being 

chosen at time t:  

 

(12)       (    |         )                 
          

       
 |    

 

Note that all the state variables that are arguments of F(·) are dated at time t, except for       
 . 

This is because (i) the chosen brand j is the only one whose perception error variance will drop 

due to trial, and (ii) as we just discussed, expected qualities at t+1 are the same as those at time t.  

 A key point is that only utility differences matter for choices in any discrete choice model 

(including dynamic models). Thus, it is standard to define a base alternative and measure utilities 

(or value functions) relative to that alternative. In the present case, we choose the no-purchase 

                                                           
3
 Informally, a rational consumer cannot expect to discover (through further information gathering) that a brand is 

better or worse than he/she thinks it is. Formally, the law of iterated expectations applies to rational forecasts. 
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option as the base alternative. The future component associated with no-purchase has the form:      

 

(13)      (    |            )                 
       

       
 |    

 
If we compare (12) and (13), we see the only source of difference between the two functions is 

the difference between       
 and    

 . This is useful, as it means the differenced value functions  

(i.e., between choice of j and choice of the no purchase option) take on a rather simple form. 

For example, assume the future component is approximated as a polynomial in the state 

variables. Then, if we take the difference between (12) and (13), any terms that do not involve 

the change in    
  will drop out.

4
 For instance, suppose we have: 

 

(14)  (             
       

 |  )    (  )    (    
 )    (       

 )           
    

  

Here, the Pk( · ) denote polynomials in the indicated arguments. For instance,   (       
 ) is a 

polynomial that includes interactions between perceived qualities and perception error variances 

other than that for brand j. When we take differences with respect to the no purchase option, all 

the polynomials except          
   will drop out. To be concrete, let P3 take the simple form: 

 

(15)   (      
 )                           

 . 

 
Then, conditional on brand j being chosen at time t, P3 takes the value: 

 

(16)   (         
 )                              

 . 

 
If we difference the future components associated with choice of brand j vs. no purchase we get: 

 

(17)  ( |     )     |                                    
 , 

 

where        
        

     
 .  Then, we have that:  

 

(18)    
           [ (   

     )|  ]   [   |  ]                               
  

 

                                                           
4
 A key point is that the F(·) function does not differ across alternatives in its parameters, only in its arguments. This 

is clear from comparison of (9) and (10), and is reflected in the notation in (11)-(13), i.e., F has no j subscript. 
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It is worth emphasizing that we only used the laws of motion of the state variable to derive (18), 

along with the assumed form of the approximating function F(∙). We have not assumed anything 

about how consumers actually solve the DP problem (i.e. how they form expectations      |   ).  

Of course we may choose different forms for the function F in (14). We should choose a 

form based on fit to the data, as well as considerations of parsimony and interpretability. For 

instance, we could complicate (16) by specifying that P3( · ) involves higher order terms in     

and/or    
 . We could also simplify (16) by assuming that P3( · ) does not involve quality levels 

    for brands other than j. This would give us   (      
 )                  

  and hence: 

 

(19)    
           [ (   

     )|  ]   [   |  ]                      
 . 

 
In our empirical work we adopt the simple specification in (19) for three main reasons: 

First, the GK method has never been applied to learning models, so it seems best to start 

with a parsimonious specification (to avoid any risk of identification problems). Second, we find 

that even the simple model in (19) leads to an improvement in fit over a myopic model. Third, 

equation (19) is intuitive and easily interpretable: Parameter π0j captures the value of information 

gained through a trial purchase of brand j. Of course, this value may differ across brands, a point 

we examine in the empirical work.
5
 Parameter π1j captures that this trial value may differ 

depending on the perceived quality of a brand. The sign of π1j is not clear a priori. 

Estimation of a learning model using the GK method is of considerable interest in itself. 

It enables us test whether strategic trial is empirically important without needing to fully impose 

the strong assumptions about learning behavior implied by the Bayesian learning framework. 

 

5. Incorporating Inventories in the Basic Learning Model 

Next we include inventory behavior in the model in a simple way. Let the law of motion 

of inventories be It+1 = It + Nt – Rt, where Nt ≥ 0 is the number of units bought at time t, and Rt is 

the product usage rate. In the event of a stock out, [It + Nt < Rt], we have It+1=0. Next, add stock 

out costs (cs) and inventory carrying costs (cc) to the expected current payoff in equation (8). 

Specifically, add the terms –cc (It +Nt) – cs P[It + Nt < Rt], where P[It + Nt < Rt] is the probability 

                                                           
5
 There are many reasons why the value of trial information may differ across brands. For example, say brand 2 has 

a much lower market share than brand 1 (perhaps because it is priced high relative to its quality). In that case, 

information about brand 2 may be almost irrelevant for the value function compared to information about brand 1. 
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of a stock out. We assume the number of units purchased (Nt) is the same regardless of which 

brand is bought, which is a fairly common assumption in discrete/continuous choice modeling. 

Consumers in an inventory model must be forward-looking, as there is no reason that 

myopic consumers would hold inventories. So next we add inventories It+1 to the state space in 

(9b). We could also add variables that help predict future prices, as in Erdem, Imai and Keane 

(2003). But for the sake of simplicity we assume that prices are serially uncorrelated (aside from 

mean differences across brands). So we now have St+1 = {                      
          

      }.  

The intuition of the inventory model is that: (i) the good is storable, so consumers try to 

time purchases for when price is low, and (ii) consumers hold inventory to avoid stock outs. For 

stock out risk to exist, consumption must occur after the purchase decision, and Rt must be 

stochastic. Then, reservation prices rise as inventory drops, because one tries to avoid stock outs.  

An important point is that the expected value function        |      in the inventory 

model is a function of It + Nt, not It+1. This is because Rt is not known at the time the purchase 

decision is made, so it must be integrated out when the expectation is formed. As we have seen, 

the quantity It +Nt also determines the carrying cost and stock out risk that enter current payoffs.  

Thus, in contrast to the learning model, the inventory model does not generate exclusion 

restrictions whereby some quantities appear in the future component of the value function but not 

in current payoffs. This means the structural parameters of the inventory model, cs and cc, are not 

identified separately from the reduced form parameters π related to inventories in the future 

component approximation. We now describe how we add inventory to the future component.   

Ideally, we would like to add inventory to the state space in (9b). Unfortunately, as is 

typical, we do not observe inventory directly. So we proxy for inventory using weeks since last 

purchase, henceforth pgapt. The law of motion for pgapt is obvious: If one chooses no purchase, 

pgap is increased to pgapt+1 = pgapt +1. But if one buys any brand at t it is reset to pgapt+1 =1. 

Thus, the value function difference, (19), is simply augmented to include pgapt itself:   

 

(20)    
           [ (   

     )|  ]   [   |  ]  (          )         
          . 

 
Note that πpg is common across brands as pgapt shifts all their values relative to no purchase.  

 It worth emphasizing that pgapt proxies for the state variable It+Nt, which, as discussed 

earlier, shifts both the future component and current payoffs. Thus, the parameter πpg combines 
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effects of inventories on current payoffs and        |     . So πpg is a reduced form parameter, 

and its sign is ambiguous. Concern about stock-outs when the inventory is low will tend to make 

πpg positive, but the storage/carrying costs associated with high inventory push it in a negative 

direction. If the former effect dominates, so that purchase probability increases with time since 

last purchase, we would have πpg > 0. But as we’ll see, once we introduce category consideration 

the situation is more complex: inventory may have different effects on the consideration 

probability and the probability of purchase conditional on consideration.  

 
6. Adding the “Price Consideration” Mechanism to the Basic Model  

Next, we incorporate the “Price Consideration” (PC) mechanism of Ching, Erdem and 

Keane (2009). This generalizes conventional choice models by assuming consumers may not 

consider a category in every period. For example, after buying and replenishing inventory, 

consumers may not look at a category again for a few weeks. During this interlude, they may not 

respond even to deep price discounts, simply because they do not see them. Or, some consumers 

may only consider a category when it is on display or promotion. Ching et al (2009) find the PC 

model gives a much better fit to observed purchase hazard rates – especially for short inter-

purchase spells – than traditional models where consumers consider a category every period. 

In each period t, the PC model has two stages. In stage one, consumers decide whether to 

consider a category. If they consider, then, in stage two, they choose an option j=0,…,J using the 

model in (20). We model consideration using a simple logit (suppressing household i subscripts): 

 
(21)                      

         ∑          ∑       

 
Factors that affect consideration include time since last purchase (pgap) and time since the 

household first entered the diaper market (  
 ).

6
 Vector X contains factors that may shift the usage 

rate (i.e., indicators for a household being young, high income or low education). Marketing 

activity may also cause a household to consider the category; ftjt and dpjt are indicators for if 

brand j is on feature or display at time t, respectively. These are summed over brands, so 

marketing activity for the whole category shifts the consideration probability. Note that if    >0 

the interpretation is that low inventory makes consumers more likely to consider a category. Our 

                                                           
6
 Time in the market may affect the consideration probability because the usage rate for diapers falls as a child ages. 
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estimates of     and     will shed some light on whether inventories matter primarily through 

their effect the consideration probability or on the conditional purchase probability. 

 
7. Details of the Specification 

To complete the model, we need to select a functional form for the expected utility 

function in (9a).
7
 We assume an augmented version of the CARA form in equation (8): 

 

(22)  [ (  
    )|  ]      (  (    

 

 
(   

    
 )))        

                                                                                                                                            

 
Equation (22) generalizes (8) by allowing for direct persuasive effects of advertising. We do this 

by letting feature (fjt), display (dpjt) and ad expenditure (adijt) affect utility directly. The literature 

on advertising typically views it as affecting demand either through information (e.g., learning) 

or persuasion; i.e., a direct effect on utility, as in Nerlove and Arrow (1962). We allow for direct 

persuasive effects of ads to allay any concern that we only find learning is important only 

because we omit the persuasion channel.
8
 Also, note that in (22) a brand’s utility depends on its 

own advertising, while in (21) category consideration depends on total advertising activity of the 

category. This exclusion restriction helps distinguish consideration from promotion effects.     

Recall that that expected utility from no-purchase is simply  [    |   ]      , where eiot 

is extreme value. No-purchase contains no intercept. This is an identification assumption, as all 

other utilities are measured relative to no-purchase. Also, the data contains two very small brands 

(labeled 5 and 6). We model utility from these as just a constant plus an extreme value error.  

As we discussed in Section 2, the learning aspect of our model is based on Erdem and 

Keane (1996). In addition to use experience, they also let advertising exposures signal brand 

quality. However, unlike EK, we do not observe ad exposure at the individual level. So instead, 

we use ad expenditure to proxy for the volume of ads received by consumers.  

Specifically, let Aijt denote the advertising signal received by person i for brand j in 

period t. Analogous to equation (2), we assume: 

                                                           
7
 For simplicity, timing of consumption is not modeled. The use experience signal arrives at the time of purchase. 

8
 As we discuss in Ching, Erdem and Keane (2013), we don’t think this is the correct way to estimate the importance 

of the persuasion channel, as the feature, display and ad expenditure that we include in the utility function may be 

significant for other reasons (e.g., they might “sop up” misspecification of the inventory mechanism).  
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(23)              
  where          

           

     and        

    
        

  
As in EK, ad signals Aijt provide unbiased but noisy information about brand quality.

9
 The noise 

has variance      
 . In our Bayesian updating framework, the information in N ads, each with 

variance   
 , is equivalent to that in a one ad with variance   

   . We let      

    
        where 

adijt is advertising expenditure by brand j to consumer i at time t. This equation embeds an 

assumption about how ad spending maps into an effective number of ads seen (i.e.,        ). 

Finally, note that consumers from two different cities will have different exposure to advertising. 

It is simple to extend the Bayesian updating rules in (5)-(6) to allow for two types of 

signals – i.e., both use experience and advertising. Then we obtain the formulas: 

 

(24)                   (   
       )     

      (         )   

 

where         
 (   

    
 )⁄   and         

 (   
       

 )⁄ , and, for the perceived variance: 

 

(25)    
  

 

(      
 ⁄ )     

  ⁄         
  ⁄

 

 
Note that, in contrast to Erdem and Keane (1996), the timing of ad signals does matter here (not 

just the total stock). This is because the      

 varies over time as ad spending varies over time.   

Next, consider the prior on quality. Most papers assume this is common across brands 

and consumers. We relax this by letting prior means be consumer and brand specific, as in:  

 

(26)                                     ̅̅̅̅     

 

Here   ̅̅̅̅                                         . Thus, the prior mean of person i for 

brand j depends on the brand’s ad spending (in the prior month), and the person’s education and 

age. We continue to assume the prior variance (  
   is the same across households and brands. 

 Finally, it is clear from (22) that one cannot identify r, the quality levels, and the signal 

variances separately. Hence, we fix r=1 for identification (see Ching and Ishihara (2010)). 

 
  

                                                           
9
 Note that use experience variability affects a consumer’s experienced utility from consuming the product, while 

advertising signals do not. But both types of signals are used in a similar way to learn about brands.  
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8. Empirical Results 

We apply our model to weekly scanner panel data for diapers provided by AC Nielsen.  

Diapers are a good category for studying learning, because an exogenous event, birth of a first 

child, triggers entry into the market. Before that, most people presumably know little about 

diapers. Unfortunately, the Nielsen data do not record births. Thus, we use selection criteria that 

make it likely our households entered the market due to a first birth during our sample period. 

Loosely speaking, we take households who took a long time before making their first in-sample 

purchase, and who make rather frequent purchases thereafter.
10

 Such households probably did 

not enter the diaper market until after the start of the sample.
11

 We also drop right censored inter-

purchase spells from the data (some of these are very long, implying that some consumers have 

dropped out of the market or stopped reporting).  

Our estimation sample consists of 91 households and 4588 observations (on average 50.4 

weeks per household). Tables 1 and 2 give summary statistics on households and brands, 

respectively. There are four major brands: The leading name brands are Pampers (34.4%) and 

Huggies (30.7%), followed by LUVS (10.9%). The market share of Store Brands is 20.9%. 

Households rarely buy small brands, which we label “Other” or multiple brands in a shopping 

trip, which we label “multiple brands.”   

To investigate the importance of different types of dynamics, we estimate the full model 

of equations (20)-(21), as well as models (i) without the PC stage (i.e., without equation (21)), 

and (ii) without strategic trial. The latter shut down the (         )         
  terms in (20), 

leaving a myopic learning model. However, we always include the          term in (20), so 

consumers are always allowed to be forward-looking with regard to inventories. Myopic agents 

would not care about inventories, so it makes no sense to consider a myopic inventory model. 

We estimate all the models by simulated maximum likelihood (see e.g., Geweke and Keane, 

2001). We now discuss the estimates of our models:   

                                                           
10

 Specifically, we include households who satisfy the following criteria: (a) the first inter-purchase spell must be 

longer than any subsequent inter-purchase spell, (b) the child must be under six, (c) age of the primary shopper is 

under 55, (d) they cannot purchase over 500 diapers in any week, (e) they must purchase at least 5 times and less 

than 60 times during the sample period. To model consumer heterogeneity in the initial prior on quality, we also 

need to observe three weeks of advertising expenditures before households enter the diaper market. 
11

 Of course, there are other explanations. Most obviously, a household may have had one or more children several 

years earlier, followed by a long gap before the present child. In that case they would have had prior experience of 

diapers with the older children. On the other hand, that experience may too old to be relevant to the current market.   
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(i) Myopic Learning model with no PC stage. This is our most basic model, as it does not 

contain either strategic trial or category consideration decisions. In Table 3, column 1, we see 

that prior mean quality levels for Huggies and Pampers are 1.96 and 1.93, respectively, while 

those for LUVS and the Store brand are 1.59 and 1.80, respectively. The estimates of true mean 

quality levels range from 1.63 to 3.17. Priors appear to be pessimistic for Huggies and LUVS, 

and over-optimistic for Pampers and the store brand. Interestingly, the estimate of true quality is 

highest for the 3
rd

 highest market share brand (LUVS). The λ parameters (see equation (26)) 

imply lagged advertising has no significant effect on priors for quality. 

Table 3 also reports the key learning parameters. The prior variance is 2.64 (=1.626
2
) and 

the experience signal variance is 3.77 (=1.941
2
). As noted earlier, we map ad expenditure into 

the ad signal variance using the equation      

    
       .  For example, as    = 784.6, an 

expenditure of $6,300, which is the mean for Huggies, implies an ad signal standard deviation of 

784.6/√     = 9.89.  

Note the relative size of the standard deviations for the prior, experience and advertising 

signals, which are 1.63, 1.94 and 9.89, respectively, are rather different from those found by 

Erdem and Keane (1996) in their study of the detergent market; i.e., 0.20, 0.57 and 1.75. It would 

not make sense to compare the levels of the standard deviations between the two studies, as the 

scale normalizations are different. So we should instead compare their relative magnitudes. 

When we do this, we see that for diapers the experience signal standard deviation is only slightly 

larger than the prior standard deviation (i.e., 1.94 vs. 1.63). But in detergent the experience signal 

standard deviation is roughly three times larger (0.57 vs 0.20). Thus, in the diaper category, 

experience signals are more informative relative to the prior.  

The parameters of the expected utility function (22) are reported in Table 4. The price 

coefficient is -0.010 with a t-statistic of -2. As expected, display increases the probability of 

purchase (i.e., the coefficient on the display indicator is a substantial 2.60). But, interestingly, 

feature and advertising have no direct (i.e., persuasive) effect on the probability of purchase.   

Finally, the inventory term πpg from equation (20) is reported in Table 5. Interestingly, it 

is small and insignificant. This suggests inventory is not an important determinant of purchase 

probability for diapers. This may appear surprising, but it is important to note that inventory does 

not necessarily have much effect on purchase timing in an inventory model. The main prediction 
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of inventory models is that consumers time purchases for when prices are low. If carrying costs 

for a good are low (relative to its value), then (i) consumers will always be interested in buying 

on deal, even if inventory is high, and (ii) consumers may buy in large quantities when price is 

low, so inventory ceases to be a concern for many periods. Given that diapers are (i) expensive, 

(ii) needed over a long horizon, (iii) have a high usage rate, and (iv) a long life span, it is 

intuitive that parents would always be interested in buying on deal, even if they have inventory.   

(ii) Forward-looking Learning Model with no Consideration (PC) Stage. The estimation 

of a model with forward-looking consumers would normally require solving a DP problem. But 

in the GK approach all we need do is add the (         )         
  terms that approximate the 

future component to equation (20). Table 5, column 2, reports the estimates of the    parameters. 

They are highly significant for all four major brands. Thus, consumers act as if they are forward-

looking and engage in strategic trial behavior. In all cases the linear term (π0j) is negative while 

the interaction with quality (π1) is positive. This means that trial is more valuable for brands with 

higher perceived quality.  

Table 6, columns 1 and 2, compare the fit of the myopic and forward-looking learning 

models. As we see, the log-likelihood improves from -3600 to -3584 (or 16 points) when the 

future component terms are included. This adds 8 parameters. The AIC improves by 17 points, 

but BIC, which imposes a larger penalty for extra parameters, deteriorates by 34 points. Based on 

these results it is somewhat ambiguous whether strategic trial is really an important factor in 

consumer choice dynamics. But results discussed below will clarify this issue.   

In terms of other results, in Table 3, column 2, we see that the estimates of the prior 

means on quality and the true mean quality levels all shift up by factors of 2 to 3. Consumers 

clearly have pessimistic priors on all four brands. Estimates of the forward-looking learning 

model also imply a lower level of prior uncertainty. The estimated standard deviations of the 

prior, experience and advertising signals, are now 1.03, 3.03 and 9.86, respectively. The relative 

magnitudes of these standard deviations are very close to those found in Erdem and Keane 

(1996) in their study of the detergent market (i.e., 0.20, 0.57 and 1.75). In Table 4, we see the 

price coefficient increases substantially (from -0.01 to -0.054) when we move from the myopic 

model to the forward-looking learning model, but the other parameters of the expected utility 

function (display, feature, ad exposure) are little affected.  
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(iii) Forward-looking Learning model with Consideration (PC) Stage. This is our most 

complete model, as it takes the myopic learning model and adds both forward-looking behavior 

(i.e., strategic trial) and a category consideration stage. Thus, consumers may not consider the 

category in every period, but, when they do, they may take into account both inventories and 

learning opportunities when making purchase decisions. Recall that we do not impose that 

consumers take these factors into account (as would be the case in a fully structural approach). 

Instead, the estimates of the π parameters determine the importance of learning and inventories. 

The estimates of the category consideration equation are reported in Table 5, column 4, 

top panel. Four variables are significant determinants of consideration: display, time since first 

purchase, age and pgap. Most interestingly, the coefficient on time since last purchase (our proxy 

for inventories) is positive, substantial (.482), and highly significant (t=4.4). This estimate 

implies that consumers become more likely to consider the diaper category as their inventory 

gets low (i.e., time since last purchase gets large), presumably due to concern about stock-outs.  

In Table 6, last column, we see that including the consideration stage leads to a 

substantial improvement in model fit. Adding the PC stage improves the BIC by 60 points over 

the forward-looking learning model, and the AIC by 111 points. This is clear evidence that 

accounting for the consideration stage helps improve the fit to consumer choice dynamics.
12

 

These results are consistent with a multi-stage decision process with bounded rationality. 

In particular, if mental resources are scarce, consumers may rely on non-price factors (e.g., 

display) to trigger their purchase mindset. Once the purchase mindset is on, they devote more 

mental resources to purchase decisions, and a “rational” forward-looking consumer theory 

becomes relatively more applicable. 

Adding the category consideration stage also has several notable effects on the other 

estimates. As we see in Table 3, it causes the prior and true quality parameters to be scaled up 

substantially. This is because, if probability of consideration is less than one, choice probabilities 

(conditional on consideration) must be proportionately higher to generate the same observed 

level of sales. As a result, the utilities from the purchase options must be scaled up. If we look at 

the relative size of the Qj0 and Qj parameters, we see that estimates of true quality still exceed the 

priors (as in model#2), implying consumers are pessimistic. But, unlike the two previous models, 

                                                           
12

 Of course, the PC model nests standard inventory models as the consideration probability approaches one. 
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we now get the more plausible result that true quality for Pampers and Huggies (the two major 

brands) are higher than that for LUVS. 

Next, as we see in Table 4, the price coefficient increases by 60% in absolute value (from 

-0.054 to -0.083), and the display coefficient drops from 2.76 to 2.04, compared to the forward-

looking model without category consideration. These changes are as expected. First, as price is 

not relevant in the consideration stage, it appears to be more important in the purchase decision 

stage. As Ching, Erdem and Keane (2009) note, this is precisely how the PC model is able to 

explain the empirical generalization that brand choice is much more sensitive to price than it is to 

purchase timing. Second, as display now matters through the consideration stage (Table 5), it is 

not surprising that it becomes less important in the utility function.  

Finally, as we see in Table 5, bottom row,     is now negative and significant. This, 

together with positive γpg in the consideration stage, appears consistent with a view that stock-out 

concerns primarily affect the consideration decision. Once this factor is controlled for, the 

parameter     primarily captures the influence of storage/carrying costs, whereby consumers 

prefer to have less inventory.  

Summary of Results. Comparing the full model (learning, strategic trial, consideration) 

with the most basic model (myopic learning), the BIC improvement is 26 points. An interesting 

question is whether most of this improvement could have been achieved by adding the 

consideration stage alone. Is strategic trial (i.e., forward-looking behavior) really important?  

To answer this question, we also estimated a myopic learning model with a consideration 

stage. The fit is reported in Table 6 column 3 (“myopic with category consideration”). The log-

likelihood of this myopic model with consideration is 43 points worse than the full model, the 

AIC is 69 points worse, and the BIC is 18 points worse. Moreover, the majority of the 

improvement of the full model over the basic over the basic model is achieved by including 

strategic trial. Of the 26 point improvement, 8 points is achieved by adding consideration 

(compare columns #1 and #3) while an additional 18 points is achieved by adding strategic trial 

(compare columns #3 and #4). Thus, we now have clear evidence that strategic trial is important.  

Recall that when we compared models #1 and #2 (i.e., the myopic and forward-looking 

learning models), the AIC and BIC generated contradictory results about the importance of 

strategic trial. But, if we start from the myopic model that includes the consideration stage, and 



18 

 

add forward-looking behavior (strategic trial), we get an unambiguous improvement in model fit 

(compare columns 3 and 4 of Table 6). Clearly then, there is an interaction such that the evidence 

for strategic trial is much stronger if we also account for consideration. 

This result is very interesting and also intuitive. Obviously a consumer cannot operate in 

a forward-looking mode in periods when he/she does not even consider the category. Put simply, 

how can a consumer contemplate strategic trial in periods when he/she does not even look at the 

category? However, once the purchase mindset is on, consumers devote more mental resources 

to purchase decisions, and strategic trial does come into play.  

Our model #2 (learning and no consideration stage) imposes that, if consumers engage in 

forward-looking behavior, they must do so in every period. But our more general model #4, 

which includes the consideration stage, permits consumers to only contemplate strategic trial in 

those periods when they actually consider the category. 

Ching, Erdem and Keane (2013) note that forward-looking learning models have often 

been found to fit only slightly better than myopic learning models. We find that here as well 

when we compare models #1 and #2. But here we find that allowing for forward-looking 

behavior leads to a substantial improvement in fit over a myopic model, as long as both models 

include a consideration stage (compare models #3 and #4). This suggests that the reason prior 

work has not found very strong evidence of forward-looking behavior is that it is too strong to 

assume that consumers are forward-looking in every period. Instead, consumers appear to act in 

a forward-looking manner only in those periods when the purchase mindset is on.        

In summary, our results suggest that learning, strategic trial, inventories, and category 

consideration are all important factors driving choice dynamics in the diaper category.  

 
9. Conclusion 

In this paper, we have (1) developed a new and simpler approach to estimating dynamic 

models, and (2) used this new approach to estimate a model that includes learning, inventory and 

category consideration effects simultaneously. In an application to the diaper category, we found 

that learning, strategic trial, inventories and category consideration are all important factors 

driving choice dynamics. Our results favor a two stage decision model where, in stage 1, 

consumers decide whether to consider a category, and inventories play an important role in this 

decision. In stage two, consumer behavior is well described by a forward-looking learning model 
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with strategic trial. This two-stage model fits better than a standard learning model, presumably 

because it relaxes the strong assumption that consumers engage in forward-looking behavior in 

every period. Instead, it assumes that consumers only engage in this higher level of mental 

processing in a subset of periods when they consider the category.     

We stress that these findings are category specific, and caution against generalizing to 

other contexts. Our main contribution is to provide a framework within which it is feasible to: (1) 

test for forward-looking behavior and (2) investigate the extent to which learning vs. inventories 

explain the observed dynamics in consumer choice behavior. 

Typically, we cannot fully understand the empirical implications of incorporating 

different sources of dynamics in a model until we solve the model and estimate its structural 

parameters.  But the computational burden of solving for the optimal solution via dynamic 

programming has been the main hurdle for such a research agenda. Our approach should assist in 

this process by allowing us to estimate more complex models without the need to fully solve the 

DP problem. This allows us to at least test whether various sources of dynamics are important 

(e.g., strategic trial, inventories) without the need for fully structural estimation.  

Finally, we should also highlight the drawbacks of our proposed approach.  Because we 

do not impose all the structure implied by a dynamic model, our “semi-structural” model has 

more parameters than a fully structural model. This is because, in addition to the structural 

parameters of the utility function, we must also estimate the reduced form parameters that 

describe how the expected value functions depend on the state variables.  

Our approach is also more data intensive that a fully structural approach, as it requires 

exclusion restrictions (i.e., variables that shift the future component of the value functions but do 

not affect current payoffs). Still, given the identification results of Thesmar and Magnac (2002) 

and Rust (1994), it seems clear that one would like to have such exclusions when estimating a 

dynamic model, even if the model is formally identified from functional form restrictions.      

Finally, our semi-structural approach cannot be used for counterfactual experiments that 

would change the functional form of the expected future value functions. This requires full 

solution of the DP problem. However, as we recover the expected future value functions as a 

flexible function of the state variables, we believe our approach should provide useful guidance 

about how consumers form expectations. 
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Table 1.  Summary statistics of household characteristics 

 

 

Table 2.  Summary statistics of product characteristics 

 

* When calculating the "brand-specific" spell, we count a spell belongs to the brand that someone bought 

at the beginning of the spell. 

** Normalized spells are calculated by dividing each spell with the number of diapers bought at the 

beginning of the spell. 

 

 

  

#Households 91

Average household income* 19.98

Average household size 3.46

Percentage of households with 

female head < 30 45.1%

Percentage of households with 

female head below college education 83.5%

Total number of observations 4588

Total number of purchases 1166

No purchase Huggies Pampers LUVS Store Brand Others Multiple Brands

Share (%) 74.60% 7.80% 8.74% 2.77% 5.32% 0.15% 0.63%

mean(pjt) n.a. 26.44 27.48 22.03 19.58 n.a. n.a.

mean(displayjt) n.a. 0.001 0.002 0.001 0.003 n.a. n.a.

mean(adjt) (X1000) n.a. 6.30 9.78 3.29 0.255 n.a. n.a.

mean(interpurch spell)* n.a. 4.04 3.84 2.95 4.28 8.38 4.03

mean(normalized spell)** n.a. 0.060 0.056 0.057 0.074 0.189 0.033
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Table 3.  Estimates of learning related parameters 

 
*5% level of significance; **10% level of significance. 
 

Table 4:  Estimates of Expected Utility Function Parameters 

 
 *5% level of significance; **10% level of significance. 

  

parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.

Q10 1.961* 0.720 3.874* 0.165 4.516* 1.091 12.28* 0.643

Q20 1.932* 0.722 3.605* 0.22 4.476* 1.091 12.29* 0.644

Q30 1.594* 0.706 3.716* 0.146 4.130* 1.089 11.66* 0.63

Q40 1.802* 0.709 3.797* 0.191 4.359* 1.091 12.58* 0.645

Q1 2.238* 0.703 6.333* 0.359 5.340* 1.175 16.78* 0.767

Q2 1.867* 0.633 6.407* 0.514 5.428* 1.285 16.91* 0.754

Q3 3.170* 0.886 8.251* 0.491 7.083* 1.252 16.00* 0.714

Q4 1.627* 0.616 6.051* 0.438 4.930* 1.221 17.53* 0.942

λ1 0.003 0.007 0.001 0.003 0.003 0.006 0.001 0.002

λ2 -0.005 0.007 -0.002 0.004 -0.004 0.006 -0.002 0.002

λ3 -0.004 0.011 -0.002 0.006 -0.004 0.011 -0.005 0.004

σ0 1.626* 0.158 1.029* 0.034 1.702* 0.123 0.888* 0.018

σδ 1.941* 0.254 3.028* 0.07 2.914* 0.338 5.305* 0.118

σA 784.6* 1.259 782.4* 1.292 844.2* 1.000 846.2* 1.032

Without category consideration With category consideration

Myopic Forward-looking Myopic Forward-looking

parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.

Utiltiy parameters for control variables

ϕp (price) -0.010* 0.005 -0.054* 0.006 -0.003 0.005 -0.083* 0.007

ϕf (feature) 0.326 0.412 0.260 0.414 0.325 0.420 0.240 0.469

ϕd (display) 2.597* 0.984 2.764* 0.990 2.061* 0.998 2.04* 0.993

ϕad (ad exp) -0.0008 0.002 -0.002 0.002 -0.001 0.002 -0.004 0.003

α5 -6.419* 0.372 -6.386* 0.391 -6.003* 0.374 -5.532* 0.376

α6 -5.001* 0.169 -4.969* 0.190 -4.596* 0.199 -4.123* 0.216

Utility of other small brands (just brand intercepts)

Without category consideration With category consideration

Myopic Forward-looking Myopic Forward-looking



24 

 

Table 5.  Estimates of the Category Consideration Stage  

and Future Component Polynomial 

 

 
*5% level of significance; **10% level of significance. 

 

Table 6.  Goodness-of-fit, AIC, BIC  

 

 

parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.

γ0 (intercept) 0.391 0.515 -0.390 0.27

γet (time since 1st buy) -0.032* 0.005 -0.018* 0.003

γage (age) 0.953** 0.541 1.421* 0.393

γinc (income) 0.263 0.331 0.149 0.196

γedu (I_(fedu=low)) 0.203 0.481 0.214 0.237

γf (sum_feature_j) -0.306 0.686 -0.357 0.358

γd (sum_display_j) 169.9* 1.001 153.2* 2.896

γpg (pgap) 0.908* 0.268 0.482* 0.112

π01 (Δσi1) -70.35* 10.46 -73.27* 1.325

π02 (Δσi2) -29.97* 4.288 -39.56* 1.025

π03 (Δσi3) -83.87* 13.08 -103.86* 1.308

π03 (Δσi4) -42.94* 10.27 -37.13* 1.017

π11 (Qi1*Δσi1) 20.98* 3.104 37.30* 2.985

π12 (Qi2*Δσi2) 13.97* 2.019 34.27* 2.848

π13 (Qi3*Δσi3) 22.63* 3.505 64.47* 4.658

π14 (Qi4*Δσi4) 12.89* 3.026 21.53* 1.854

πpg (pgap) 0.011 0.0078 0.010 0.009 -0.028* 0.01 -0.051* 0.011

Category Consideration Stage

Expected Future Components

Without category consideration With category consideration

Myopic Forward-looking Myopic Forward-looking

log-likelihood

(-2*log-likelihood)

AIC

BIC

#parameters

#obs

Forward-looking Myopic Forward-looking

-3520.55

4588 4588

7370.98 7353.05

Without category consideration With category consideration

21 29

Myopic

4588

29

-3600.95 -3584.15 -3563.24

4588

7243.90 7226.30 7184.48 7115.10

37

7168.30 7126.48

7378.60 7412.80

7201.90 7041.10


