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Abstract

We propose a method to explore the causal transmission of a catalyst vari-
able through two endogenous variables of interest. The method is based on the
reduced-form system formed from the conditional distribution of the two endoge-
nous variables given the catalyst. The method combines elements from instru-
mental variable analysis and Cholesky decomposition of structural vector autore-
gressions. We give conditions for uniqueness of the causal transmission.

1 Introduction

In general, it is difficult to deduce the causal ordering of two observed variables from
their joint distribution. However, if we can assume that a third variable is causal, it
may be possible to deduce how the effect of this third variable will transmit between
the two variables of interest. By conditioning on a catalyst, the joint distribution of a
bivariate system can be used to infer a causal transmission. Our approach allows for
different catalysts transmitting through the same two variables in different ways. We
formulate this for a general distributional setup.

Philosophers and scientists argue that some background of causal knowledge is re-
quired in order to construct new causal facts. The view “no causes in, no causes out”
Cartwright (1989) expresses the concern that we cannot jump from theory to cause
without some causal facts in hand. Pearl (2000) similarly underlines the importance
of distinguishing between causal and associational concepts, as every causal conclusion
relies on a causal assumption that is untested in observational studies. In contrast,
Granger (1969) causality is an example of an associational concept seeking to infer cor-
relations from data without a causal assumption. Causal analysis goes one step further
by inferring correlations under changing conditions.

Our method can be thought of as unifying instrumental variable analysis and recur-
sive ordering of structural vector autoregressions. Instrumental variable analysis will
in general not order the endogenous variables. Rather we use it to identify a struc-
tural relation uniquely. Cholesky decomposition orders endogenous variables, but the
ordering is not unique. By carrying out a Cholesky decomposition in the presence of
an instrument there is scope for a unique ordering which is interpretable as a causal
transmission. In this situation we will refer to the instrument as a catalyst.

The catalyst w may transmit causally through the variables y, z. It is possible that
w transmits through z to y or through y to z or, of course, that there is no ordering of
the variables. We present two sets of testable conditions. A first set of conditions are
needed for establishing that the catalyst w transmits through z to y, say, in a unique
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fashion. A second set of conditions are needed for showing that w actually affects y.
The econometric framework is a reduced-form based on the conditional distribution of
y, z given w. The theory is formulated for general densities but with special attention to
the most common cases, which include the bivariate normal distribution and mixtures
of a univariate normal distribution with a logit or probit distribution.

The ideas presented here are related to graphical modeling. Graphical model theory
seeks to represent dependence structures of statistical models in terms of graphs. There
are many quirks to statistical models and distribution theory, which in turn results in a
variety of types of graphs; most are directed and some require normality, see Lauritzen
(1996) and Wermuth and Sadeghi (2012) for details. Directed graphs and causality are
closely related, see Cox and Wermuth (2004). However, the causal transmission idea
presented here deviates from that literature in important ways. First, we are concerned
with the discovery of transmission, so we postpone the use of directed graphs as far as
possible. Secondly, we establish results for general densities. Thirdly, our causal trans-
mission requires a variety of both (conditional) independence and dependence properties.
As a result, we only make limited use of graphs as illustrations and carefully define the
properties of those graphs that we use.

Our notion of causal transmission bears many similarities to super exogeneity as
introduced in Engle et al. (1983). A variable z is super exogenous for y with respect
to w under two conditions: first, a structural invariance property, which is by and
large similar to our causal transmission; second, weak exogeneity of z for y, which is
an estimation property. We do not need the estimation property, which gives a more
flexible framework for studying causal transmission.

In §2 we define and explore causal transmissions. In §3 we generalize the idea to
situations with multiple catalysts which transmit through the variables of interest in
different ways and we offer a structural interpretation that combines Cholesky decom-
position and instrumental variable estimation. An empirical illustration using a UK
monetary data set follows in §4. Proofs are given in an appendix.

2 Causal transmission

Causal relations are asymmetric by nature: influence flows one way and cannot be re-
versed. We analyze a joint conditional probability model for two endogenous variables
given a catalyst. We start by exploring ordering within a bivariate normal setup. Sub-
sequently, we give results for unique ordering and non-trivial transmission in a general
bivariate distribution setup. From this we define causal transmission.

2.1 The uniqueness problem

Suppose we are interested in an economic relationship between two endogenous, or
modeled, variables (y, z) given a third variable w. The third variable w is deemed
exogenous. Thus, we are interested in the conditional distribution f(y, z|w). Under
normality the joint, conditional distribution is given by:(

y
z

)
=

(
γyw
γzw

)
w +

(
εy
εz

)
, (2.1)
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where the innovations are normally distributed, with positive definite variance:(
εy
εz

)
D
= N

{(
0
0

)
,

(
σyy σyz
σzy σzz

)}
. (2.2)

There are two different ways of ordering y and z, corresponding to two Cholesky
decompositions. First, we can condition y on z to obtain the equations

y = γyzz + γyw·zw + εy·z, (2.3)

z = γzw w + εz, (2.4)

with derived parameters γyz = σyz/σzz and γyw·z = γyw − γyzγzw, and independent,
normal innovations εy·z, εz with variances σyy·z = σyy − σ2

zy/σzz, σzz. Secondly, we can
condition z on y to obtain the equations

z = γzyy + γzw·yw + εz·y, (2.5)

y = γyw w + εy, (2.6)

where γzy = σzy/σyy and γzw·y = γzw−γzyγyw, and the independent, normal innovations
εz·y, εy with variances σzz·y = σzz − σ2

yz/σyy, σyy. Without further information the two
orderings are equivalent.

An ordering arises from the equations (2.3)-(2.4) under the restrictions γyw·z = 0
and γzw 6= 0. The equations (2.3)-(2.4) then reduce to

y = γyzz + εy·z, (2.7)

z = γzw w + εz. (2.8)

This ordering of (y, z) is unique in the sense that it is not possible to have γyw·z = 0
and γzw 6= 0 so that (2.3)-(2.4) reduce to (2.7)-(2.8), while γzw·y = 0 in (2.5)-(2.6). We
prove this result for general distributions in §2.2.

2.2 Result for general distributions

For a general joint, conditional distribution f(y, z|w), we explore testable restrictions
that ensure a unique and non-trivial chain from w through z to y. In §2.3 we interpret
w as a catalyst that initiates a unique causal transmission through z to y.

2.2.1 Unique transmission

The natural generalization of the result for normal distributions is a Markov property.
Generally, the joint density of (y, z|w) can be decomposed as

f(y, z|w)=f(y|z, w)f(z|w)=f(z|y, w)f(y|w). (2.9)

At this point, there is no natural ordering of the bivariate system. The uniqueness
result is inspired by the normal example. It presents a condition under which we can
rule out the possibility that both f(y|z, w)=f(y|z) and f(z|y, w)=f(z|y). In other words,
we give a condition that ensures a Markov chain from w to y through z, while excluding
a Markov chain from w to z through y.
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Theorem 2.1 Suppose the density f(y, z|w) has support on a product space, and it is
positive on this support. Suppose that, for all y, z,

f(y|z, w) = f(y|z). (2.10)

Then, it holds for all y, z in a set with positive probability that

f(z|w) 6= f(z) (2.11)

⇒ f(z|y, w) 6= f(z|y). (2.12)

The requirement in Theorem 2.1 that the support is a product space is satisfied in
a range of common situations, for instance in a normal setup. It allows for the less
interesting case where y or z is atomic. If z is atomic, then condition (2.11) always fails.
If y is atomic, then conclusion (2.12) reduces to (2.11).

Theorem 2.1 gives conditions for a unique Markov structure among the variables.
Condition (2.10) implies

f(y, w|z)=f(y|z)f(w|z). (2.13)

Theorem 2.1 shows that the conditions (2.10), (2.11) imply (2.12), and therefore there
is no Markov structure from w through y to z, that is

f(z, w|y) 6= f(z|y)f(w|y). (2.14)

In other words, the conditional model for y, z given w allows for two possible Markov
structures, but we can distinguish these through testable assumptions.

The next step is a requirement that the Markov structure is non-trivial.

Definition 2.1 Consider the conditional distribution of y, z given w with the Markov
structure f(y, z|w) = f(y|z)f(z|w). If f(y|z) 6= f(y) and f(z|w) 6= f(z), we have a non-
trivial Markov structure, which we represent by the undirected graph w—z—y.

We note that Theorem 2.1 implies that the two non-trivial Markov structures w—z—y
and w—y—z cannot hold simultaneously. We summarize this as follows.

Theorem 2.2 Suppose the density f(y, z|w) has support on a product space, and it is
positive on this support. Suppose that, for all y, z,

f(y|z, w) = f(y|z) , (2.15)

and that, for all y, z in a set with positive probability,

f(z|w) 6= f(z) and f(y|z) 6= f(y). (2.16)

Then we have a unique and non-trivial Markov structure w—z—y.

The non-trivial Markov structure w—z—y is symmetric in y and w. Thus, in itself
it does not give a direction from w to y. A non-trivial Markov structure does not, in
general, imply that w and y are dependent, so w may affect z without affecting y. We
explore this next and return to the directional issue and causality in §2.3.
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2.2.2 Non-trivial transmission

Suppose we have a non-trivial Markov structure w—z—y. In a causal context it is of
intest if w actually has an effect on y through z. Indeed, the Markov structure w—z—y
allows the possibility that y and w are independent. From a causal view point, this is
not so exciting. We will seek to characterise when the effect is non-trivial.

Definition 2.2 Consider a non-trivial Markov structure w—z—y. There is a non-
trivial transmission between w and y when f(y|w) 6= f(y).

When exploring the transmission between w and y, it is useful to introduce the
notation ⊥⊥ for independence, so that y ⊥⊥ w when f(y|w) = f(y). Note that the
conditional distribution of y given w is a compound distribution of the form

f(y|w) =

∫
f(y|z)f(z|w)dz. (2.17)

The integral can be interpreted as summation if the dominating measure dz is discrete.
We start with a sufficient condition for a trivial transmission.

Lemma 2.1 Suppose f(y, z|w) = f(y|z)f(z|w). Then y ⊥⊥ z or z ⊥⊥ w ⇒ y ⊥⊥ w.

In general, the sufficient condition is not necessary. From a causal transmission perspec-
tive, we are interested in exploring when the sufficient condition is necessary. Indeed,
with a non-trivial Markov structure w—z—y, we have the conditional dependence y 6⊥⊥ z
and z 6⊥⊥ w. Our question is when this implies y 6⊥⊥ w. We give some examples.

When z is binary the question relates to collapsibility of contingency tables. Dawid
(1980, Theorem 8.3) attributes the following result to Yule.

Lemma 2.2 Suppose w—z—y with binary z. Then y 6⊥⊥ w.

Moving away from binary z, we find the same result for some common distributions.

Lemma 2.3 Suppose w—z—y with normal (y, z|w) satisfying (2.1). Then y 6⊥⊥ w.

Lemma 2.4 Suppose w—z—y with binary y so that (y|z) is logit, logit{f(y = 1|z)} =
γyzz or probit, f(y = 1|z) = Φ(γyzz), while (z|w) is normal, N(γzww, σzz). Then y 6⊥⊥ w.

However, the sufficient condition is not necessary in general. An example follows.

Example 2.1 Suppose w—z—y, We construct an example where y 6⊥⊥ z and z 6⊥⊥ w,
yet y ⊥⊥ w. Let w, y be binary, while z takes three values. Describe the conditional
distributions f(z|w) and f(y|z, w) = f(y|z) by the transition matrices

0 1 2 z | w

4/8 3/8 1/8 0
4/8 2/8 2/8 1

0 1 y | z

1/4 3/4 0
2/4 2/4 1
2/4 2/4 2

The conditional distribution f(y|w), computed as the product of the transition matrices,
satisfies f(y|w) = f(y), that is

0 1 y | w

3/8 5/8 0
3/8 5/8 1
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2.3 Causal interpretation

Theorem 2.2 gave testable conditions ensuring that the conditional distribution f(y, z|w)
reduces to a non-trivial Markov structure w—z—y. This was followed in §2.2.2 by
a variety of conditions ensuring a non-trivial transmission between w and y. In the
following, we give this a causal interpretation. We will think of the variable w as taking
a value that is determined outside the system (y, z). This value then transmits through
the system as described by the conditional distribution f(y, z|w).

Definition 2.3 Consider variables w, z, y. Assume that for each realisation of w, then
f(y, z|w) describes the distribution of outcomes of y, z. Let w represent an intervention
on the system. Then we say that w is a catalyst.

Definition 2.4 Consider non-trivial Markov structure w—z—y with non-trivial trans-
mission between w and y and where w is a catalyst. Then we have a causal transmis-
sion of the catalyst w to y through z. This is represented by the notation w → z → y.

Our definition of a catalyst is related to the notion of a causal effect by (Pearl, 2000,
p. 70). Pearl’s definition is formulated for directed acylical graphs that assume a di-
rection. In contrast, Definitions 2.3, 2.4 consider the testable and undirected Markov
structure w—z—y and merely gives it a causal and directional interpretation. Thus, the
important distinction between our exposition and the existing literature is the objective
of characterizing potential transmission of catalysts using testable assumptions as far as
possible. Catalysts will not always be obvious but can potentially be discovered through
examination of observational data. Essentially, we are seeking to discover natural exper-
iments and straddle the boundary between observational and experimental frameworks.
Definition 2.4 has the feature that we are agnostic about the causal relationship between
the endogenous variables when a catalyst is not present.

We consider three special cases: a normal model and two types of logit/probit-normal
mixtures.

Example 2.2 Suppose (y, z|w) has a bivariate normal distribution as in (2.3)-(2.4) or
(2.5)-(2.6) with a positive definite covariance matrix. If γyw·z = 0 while γzw 6= 0, then
Theorem 2.1 implies a unique Markov structure. If in addition γyz 6= 0, then Theorem
2.2 and Lemma 2.3 imply a non-trivial Markov structure w—z—y and a non-trivial
transmission between w and y. When w is interpretable as a catalyst, then w → z → y.

Example 2.3 Suppose y is binary and (y, z|w) satisfies a logit-normal mixture model
or a probit-normal mixture model. That is, the conditional distribution (y|z, w) satisfies

logit{f(y = 1|z, w)} = γyzz + γyw·zw or f(y = 1|z, w) = Φ(γyzz + γyw·zw),

while (z|w) is N(γzww, σzz). If γyw·z = 0 while γzw 6= 0, then Theorem 2.1 implies a
unique Markov structure. If in addition γyz 6= 0, then Theorem 2.2 and Lemma 2.4
imply a non-trivial Markov structure w—z—y and a non-trivial transmission between
w and y. When w is interpretable as a catalyst, then w → z → y.

We note that in this situation f(y|z, w) is much easier to work with than f(z|y, w).
Due to Theorem 2.1, we only need to check the first instance to narrow the potential
orderings of the system (y, z|w).
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Example 2.4 Suppose z is binary and (y|z, w) is N(γyzz + γyw·zw, σyy·z). If γyw·z = 0
while f(z|w) 6= f(z|w) then Theorem 2.1 implies a unique Markov structure. If, in
addition, γyz 6= 0 then Theorem 2.2 and Lemma 2.2 imply a non-trivial Markov structure
w—z—y and a non-trivial transmission between w and y. When w is interpretable as
a catalyst, then w → z → y.

3 Structural considerations

The causal transmission concept unites ideas from Cholesky decompositions within
structural vector autoregressions with ideas from instrumental variable estimation. We
explore how causal transmission arises as a special case in those two settings. We draw
comparisons with the more restrictive concept of super exogeneity before delving into a
structural interpretation when multiple catalysts are available.

3.1 Cholesky decomposition

Sims (1980) used vector autoregressions to address the haphazard accumulation of re-
strictions to achieve identification in the large simultaneous equation models of the
time. This approach has evolved into the frequently-used structural vector autoregres-
sive (SVAR) approach, where a structural model is identified from the reduced-form. In
its basic form, this involves a recursive ordering of the variables. We will discuss how
Cholesky decomposition relates to causal transmission.

It is well-known that, while useful, recursive orderings are not unique. Causal trans-
mission takes its starting point in recursive orderings but uses a catalyst to establish
a unique ordering. If we ignore dynamic features we can explore this using the setup
in §2.1. The reduced-form system for the variables y, z given w is then given by (2.1).
Pre-multiplying that system by a square matrix A gives a structural model(

a1y a1z
a2y a2z

)(
y
z

)
=

(
b1w
b2w

)
w +

(
e1
e2

)
(3.1)

where e = Aε has covariance Ωe = AΣεA
′ and where Σε is the covariance matrix in

(2.2). A structural model of this general form is not identifiable from the reduced-form
model. We therefore consider two Cholesky decompositions where A is triangular and
Ω is diagonal. The first possibility is

A =

(
1 a1z
0 1

)
, Ωe =

(
ω11 0
0 ω22

)
, (3.2)

which is identifiable from (2.3), (2.4), when a1z = −γyz = −σyz/σzz, while ω11 = σyy·z
and ω22 = σzz. The second possibility is

A =

(
1 0
a2z 1

)
, Ωe =

(
ω11 0
0 ω22

)
, (3.3)

which is identifiable from (2.5), (2.6), when a2z = −γzy = −σzy/σyy, while ω11 = σyy
and ω22 = σzz·y. The Cholesky forms (3.2), (3.3) are observationally equivalent.
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Using the causal transmission analysis we may find, for instance, that w → z → y
in the reduced-form model. This is consistent with the first Cholesky form (3.2) with
the additional restriction that b1w = 0, that is:(

1 a1z
0 1

)(
y
z

)
=

(
0
b2w

)
w +

(
e1
e2

)
, (3.4)

where the errors e1 and e2 are independent. This model is asymmetric. It shows how
economic shocks in z can transmit to the structural relation y + a1zz. Subtly, the
asymmetry is captured by w rather than the errors e1, e2, which have a symmetric role.
Thus, the interpretation of this structural model is that it shows how, typically, large
shocks of the type w move through the economy, which is also subject to, typically, small
shocks of the type e1, e2. For instance, w may represent the onset of the financial crises
or a major government intervention, while the shocks e1, e2 represent the minor, daily
pulling and pushing forces in the economy. Thus, the structural assumption we need for
this analysis is that w is a catalyst. The remaining features of the causal transmission
w → z → y are testable and discoverable from reduced-form analysis. In §3.4 we extend
this analysis to a situation with multiple catalysts.

3.2 Instrumental variable estimation

The traditional simultaneous equations model has no causal direction. Instead, the focus
is to estimate the behavioral equations with the aid of instruments. We discuss this in
the context of a simple demand and supply example, with a focus on the demand curve.

The demand curve expresses the (log) quantity qd that would be demanded at a
given (log) price level p

qd = ad + bdp+ ed, (3.5)

or, reversing the equation, the price one would be willing to pay for a given quantity

p =
ad
bd

+
1

bd
qd − ed. (3.6)

Thus, the model has no causal direction.
If an observed instrument w changes the supply, we can estimate the demand function

from observations of traded quantities q and prices p. Ignoring intercepts, we can, for
instance, estimate the reduced-form system (2.1), that is(

q
p

)
=

(
γqw
γpw

)
w +

(
εq
εp

)
, (3.7)

where f(εq, εp|w) = f(εq, εp) is normal. From the reduced-form we can derive an equation
that does not depend on the instrument w

q =
γqw
γpw

p+ u where u = εq −
γqw
γpw

εp, (3.8)

when γpw 6= 0. From a reduced-form perspective, the error term u in equation (3.8)
has the property that it is independent of the instrument w, so that E(uw) = 0 with
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respect to the distribution f(εq, εp|w). Thus, we need the identifying assumption that the
demand error ed in (3.5) or (3.6) is uncorrelated with the instrument under a suitable
economic expectation. In this just-identified setup, the ratio of least squares estimators
for γqw and γpw is known as indirect least squares, two-stage least squares, or limited
information maximum likelihood.

The above argument is symmetric in price and quantity. We do not distinguish
between situations where the actual trades are driven by considerations to price or to
quantity. However, by imposing the testable restriction that u and εp are independent
or, equivalently, that γqw/γpw = Cov(εq, εp)/Var(εp), the model becomes directional. If
the instrument w can be viewed as a catalyst, it transmits causally through p to the
traded quantity q.

3.3 Super exogeneity

Broadly speaking, causal transmission is a weaker concept than super exogeneity intro-
duced by Engle et al. (1983): if we have causal transmission and weak exogeneity, we
get super exogeneity.

To appreciate the distinction we need to recall the definition of weak exogene-
ity. In a time series setup write the joint, conditional density of (yt, zt|wt, past) as
fξ,λ(yt, zt|wt, past) = fξ(yt|zt, wt, past)fλ(zt|wt, past), with parameters ξ, λ varying in a
parameter space Θ. If the parameter space is a product space Θ = Ξ× Λ so ξ ∈ Ξ and
λ ∈ Λ, then z is weakly exogenous for ξ. Then the joint likelihood can be optimized by
maximizing the conditional, partial likelihood for (yt|zt, past) and the marginal, partial
likelihood for (zt|past) separately. If, in addition, fξ(yt|zt, wt, past) = fξ(yt|zt, past) while
fλ(zt|wt, past) 6= fλ(zt, past) we get, essentially, super exogeneity of z for y with respect
to w. We note that these additional conditions are the conditions (2.10), (2.11) of the
uniqueness Theorem 2.1.

Causal transmission is a weaker than super exogeneity in the sense that the directions
of causal transmission and weak exogeneity need not match. To see this write

fξ,λ(y, z|w) = fξ(y|z, w)fλ(z|w) = fζ(z|y, w)fη(y|w).

The model may include further restrictions that are not explicitly stated here, so that
ξ, λ vary in a product space Ξ × Λ, whereas ζ, η do not vary in a product space. In
other words, z is weakly exogenous for y, but y is not weakly exogenous for z. At the
same time we may have w → y → z, so that w transmits causally through y to z.
This causal transmission is not compatible with weak exogeneity, so we do not have
super exogeneity. Some more subtle differences between the two concepts are that super
exogeneity of z for y with respect to w does neither require that fξ(y|z) 6= fξ(y) nor
fξ,λ(y|w) 6= fξ,λ(y).

3.4 Multiple causal transmissions

The concept of causal transmission generalizes to multiple catalysts that may flow
through the system in different ways. For notational convenience we present this by
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augmenting the linear, normal system (2.1) with two distinct catalysts w1, w2, so that:(
y
z

)
=

(
γy1
γz1

)
w1 +

(
γy2
γz2

)
w2 +

(
εy
εz

)
, (3.9)

where f(εy, εz|w) = f(εy, εz) is normal as in (2.2). The variables w1, w2 are observable
and may represent two types of shocks to the economy at different points in time.

We now set up the two possibilities for ordering y, z through conditioning. Condi-
tioning y on z gives

y = γyzz + γy1·zw1 + γy2·zw2 + εy·z, (3.10)

z = γz1 w1 + γz2 w2 + εz, (3.11)

where εy·z, εz are independent and γyz = σyz/σzz, while conditioning z on y gives

z = γzyy + γz1·yw1 + γz2·yw2 + εz·y, (3.12)

y = γy1 w1 + γy2 w2 + εy, (3.13)

where εz·y, εy are independent and γzy = σzy/σyy. Assuming w1, w2 are catalysts, we get
two causal transmission hypotheses

H1 : γy1·z = 0 ∩ γz1 6= 0 ∩ γyz 6= 0 ⇒ w1 → z → y, (3.14)

H2 : γz2·y = 0 ∩ γy2 6= 0 ∩ γzy 6= 0 ⇒ w2 → y → z. (3.15)

When the hypotheses H1 and H2 are both satisfied we get causal transmissions in opposite
directions, which we represent by superimposing two directed graphs

H1 ∩ H2 ⇒ w1 z y w2 (3.16)

The joint restrictions imposed by H1 ∩ H2 are possibly best expressed in terms of the
original system (3.9) as:

H1 ∩ H2 : γy1 =
σyz
σzz

γz1, γz2 =
σzy
σyy

γy2, γz1 6= 0, γy2 6= 0, σyz 6= 0.

Written in a vector format, we have the reduced-form model(
y
z

)
=

(
σyz/σzz

1

)
γz1w1 +

(
1

σzy/σyy

)
γy2w2 +

(
εy
εz

)
, (3.17)

Following the considerations in §3.1, the corresponding structural model is(
1 −γyz
−γzy 1

)(
y
z

)
=

(
0
δ21

)
w1 +

(
δ12
0

)
w2 +

(
e1
e2

)
, (3.18)

where γyz = σyz/σzz and γzy = σzy/σyy are multipliers for the catalysts, while δ21 =
(1 − ρ2)γz1 and δ12 = (1 − ρ2)γy2, with ρ2 = σ2

yz/(σyyσzz). The innovations of the
structural equation (3.18) satisfy(

e1
e2

)
D
= N

{(
0
0

)
,

(
σyy·z −σyz (1− ρ2)

−σzy (1− ρ2) σzz·y

)}
, (3.19)
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with correlation −ρ = −σyz(1−ρ2)/(σyy·zσzz·y)1/2. We have identified a structural model
with respect to catalysts w1 and w2 without imposing any ad hoc restrictions on the
causal ordering through the covariance matrix. These catalysts are orthogonal to each
other in the structural model, in the sense that w1 is omitted from the first structural
equation and w2 is omitted from the second structural equation. Structure is, therefore,
identified as a linear relationship that remains invariant to large shocks. Rather than
imposing structure to identify orthogonal shocks, we use shocks to identify structure.
Instead of having a structural model that is ordered for an entire sample, we are only
concerned with ordering during periods when large interventions take place. We note
that if the parameters γyz, γzy of the system (3.18) were unrelated to the covariance pa-
rameters σyy, σyz, σzz in (3.19) we would have a just-identified and undirected, bivariate
simultaneous equations model.

Causal transmissions in both directions depending on the type of shock seems com-
patible with the discussion of shocks in macroeconomics. In many situations, we use
indicator variables to represent large external shocks to the economy. When large ex-
ternal shocks arrive in quick succession, it may be difficult to separate the effect of
the individual shocks. A pertinent example is the beginning of the financial crisis in
2007-2008 when oil shocks, financial collapse, and large fiscal and monetary policy in-
terventions occurred in quick succession. We envisage that it would be possible to
disentangle the effect of these shocks by lining these up, individually, with shocks at
other points in time.

3.5 Comments

As we have seen, causal transmission is related to traditional approaches such as recur-
sive ordering induced by a Cholesky decomposition and instrumental variable estimation.

As a causal concept, causal transmission is modest in scope: all causal orderings are
relative to particular interventions with no attempt to give an overall causal ordering
of the variables of interest, y, z. The concept is more modest than the causal infer-
ence interpretation of quasi-experiments, where the difference of potential and realized
outcomes is estimated using an instrumental variable approach and the causal language
from random control trials is applied, see Imbens (2014). In practice, the consequence
is that it becomes clearer that results can only be extrapolated to future interventions
insofar as those interventions are comparable with the interventions in the sample.

The type of interventions are somewhat different in nature from the traditional
shocks of structural vector autoregressive analysis. Here we focus on large interventions
as opposed to the sample variance of the residuals, noting that the residuals simply
represent the unmodelled part of the data. The approach reflects a view that it is
difficult to disentangle many minor shocks to the economy.

Causal transmission is also restrictive in the sense that we need both a catalyst and
a Markov structure. At the same time it is potentially possible to discover catalysts
empirically. An empirical example follows in §4.
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Figure 4.1: Levels and first-differences of the variables in the system (v, C) plotted with
the selected outliers (wout, woil) from Hendry and Mizon (1993).

4 Empirical example

We illustrate the causal transmission using the simplified bivariate model of money
demand for the UK in Hendry and Nielsen (2007). This has the convenient features of
being bivariate, reasonably well-specified, and with two catalysts operating in opposite
directions. The data are formed from quarterly observations of log M1 money m, log
real total final expenditure x, its log deflator p, and a constructed net interest rate Rn

taken from Hendry and Mizon (1993) over the period from 1963:2 to 1989:2. To simplify
the analysis, we convert the four variables into a bivariate system, modelling the velocity
of circulation of money v and the cost of holding money C through

vt = xt −mt + pt, Ct = ∆pt +Rn,t.

We show how the the results from the previous sections may be applied in practice to
identify multiple causal transmissions. Subsequently, we provide impulse responses for
the interventions that are identified. Finally, we address the Lucas critique that asserts
that an econometric model may be unstable under changing conditions.

The graphics and subsequent computations were carried out in MATLAB (MAT-
LAB, 2014) and OxMetrics (Hendry and Doornik, 2014).
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Table 4.1: Three models estimated over the period 1963:4 to 1989:2. Standard errors
reported in parentheses.

Joint Conditional Structural
Model Models Model

∆vt ∆Ct ∆vt|∆Ct ∆Ct|∆vt ∆vt ∆Ct

∆vt – – – 0.433
(0.075)

– 0.402
(0.068)

∆Ct – – 0.606
(0.104)

– 0.579
(0.093)

−

∆vt−1 −0.343
(0.095)

−0.048
(0.081)

−0.314
(0.082)

0.100
(0.074)

−0.317
(0.091)

0.092
(0.076)

∆Ct−1 0.086
(0.117)

0.046
(0.099)

0.058
(0.100)

0.009
(0.085)

0.064
(0.108)

0.003
(0.090)

vt−1 −0.097
(0.014)

−0.005
(0.012)

−0.094
(0.012)

0.037
(0.013)

−0.095
(0.012)

0.035
(0.013)

Ct−1 0.529
(0.071)

−0.077
(0.060)

0.575
(0.062)

−0.306
(0.065)

0.575
(0.066)

−0.293
(0.068)

1 −0.004
(0.006)

0.009
(0.005)

−0.009
(0.005)

0.011
(0.004)

−0.009
(0.005)

0.011
(0.004)

wout,t 0.051
(0.012)

0.013
(0.010)

0.044
(0.010)

−0.010
(0.009)

0.039
(0.010)

0

woil,t 0.030
(0.012)

0.051
(0.010)

−0.001
(0.011)

0.038
(0.009)

0 0.039
(0.008)

σ̂
1/2
vv 0.019 – – – – –

σ̂
1/2
CC – 0.016 – – – –
ρ̂ 0.512 – 0.482

σ̂
1/2
vv·C – – 0.017 – 0.016 –

σ̂
1/2
CC·v – – − 0.014 – 0.014

likelihood 559.31 558.74

4.1 The unrestricted reduced-form

Figure 4.1 shows vt, Ct in levels and differences. The transformed data series are non-
stationary, but their first-order differences have a more stationary appearance. The
plots also show two dummy variables wout,t, woil,t representing large fiscal expansions in
1972:4–1973:1 and 1979:2 as well as the oil price shocks in 1973:3–4 and 1979:3. They
will later be interpreted as catalysts.

The dummy variables are taken from Hendry and Mizon (1993). They were originally
found through a residual analysis as large outliers. By including dummies for these
particular observations the remaining observations appear to match a normal reference
distribution, and the model passes standard specification tests including recursive tests.
At the same time these dummies have interpretation as interventions and are in this
respect related to the historical narrative approach of Romer and Romer (2010).

The initial specification is a second-order vector autoregressive model including the
two dummy variables wout,t and woil,t. The estimated model is the joint model reported
in equilibrium-correction form in the first two columns of Table 4.1.

Specification tests are reported in Table 4.2. The residual specification tests include
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Table 4.2: Specification tests for unrestricted joint model. p-values reported in brackets.

Test χ2
norm[2] Far(1−5)[5, 91] Farch(1−4)[4, 95] Fhet[10, 92] maxChow

∆vt 2.2 [0.33] 0.4 [0.86] 1.2 [0.32] 0.6 [0.81] 8.4 [0.29]
∆Ct 1.9 [0.39] 1.9 [0.10] 2.1 [0.08] 1.5 [0.15] 12.3 [0.04]

a cumulant based test χ2
norm for normality, a test Far for autoregressive temporal de-

pendence (Godfrey, 1978), a test Farch for autoregressive conditional heteroscedasticity
(Engle, 1982), a test Fhet for heteroscedasticity (White, 1980), and a test maxChow
based on the maximum of recursive 1-step-ahead Chow (1960) forecast test statistics.
We will benefit from this recursive test in §4.6. The above references only consider
static or stationary models, but the specification tests also apply for non-stationary
autoregressions, see Kilian and Demiroglu (2000) for χ2

norm, Nielsen (2006) for Far, and
Nielsen and Whitby (2015) for maxChow. We see that the specification for the velocity
equation is very good, while the specification for the cost equation is less good, but tol-
erable. The two Chow tests take their maximum values in 1971:1 and in 1976:4. These
dates correspond to the decimalization of the Pound and the debt intervention by the
International Monetary Fund. Overall, these tests indicate that we cannot reject the
model and that the innovations are independent, identically normal.

The dummy variables play a dual role in the subsequent analysis. First, we need
the dummy variables to achieve a reasonable specification of the econometric model.
Without these the residuals appear too irregular and we cannot perform valid inference.
The chosen statistical model is based on the normal distribution and the observations
captured by the dummy variables are outliers relative to this reference distribution.
Second, the dummy variables help us to distinguish between large and small shocks.
The large shocks occur infrequently and they are often interpretable as catalysts.

The above specification analysis indicate that the largest shocks after the oil crises
and output expansions are the the decimalization of the Pound in 1971:1 and the turmoil
around the IMF intervention in 1976:4. In terms of fit, the results in Table 4.2 do not
suggest that it is necessary to include dummies to represent these events. This could
be followed up with a sensitivity analysis for the inference we draw about about the oil
shocks and the output expansion. For instance, does it make a difference to include a
dummy for the decimalization? At the same time we could include dummies for the
decimalization and the IMF intervention to explore the transmission of those events. In
other words, if we are concerned with a particular macroeconomic intervention we can to
some extent search for similar interventions in the past and explore their transmission.

4.2 Causal transmission in UK money demand data

We now explore causal transmission. Table 4.1 reports the unrestricted reduced-form
model is columns 1 and 2. This is a model for vt, Ct given dummies and the past.

The effect of the oil price shocks can be explored by conditioning vt on Ct and follow
Example 2.2. The conditional equation for vt given Ct and the marginal equation for
Ct are reported in columns 3 and 2, respectively, in Table 4.1. The coefficient for woil,t
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is insignificant in the conditional equation, but significant in the marginal equation.
Theorem 2.1 shows there exists a unique Markov structure, so that vt and woil,t are
conditionally independent given Ct. Further, the coefficient for ∆Ct is significant in
the conditional equation. Theorem 2.2 then shows the Markov structure is non-trivial
so woil,t—Ct—vt. Lemma 2.3 then shows that the transmission between woil,t and vt is
non-trivial. Correspondingly, the coefficient for woil,t is significant in the marginal vt
equation. From an economic perspective, it seems reasonable to interpret the oil shocks
as catalysts so that woil,t → Ct → vt. The interpretation is that large oil price shocks
move prices and in turn the velocity.

To illustrate the uniqueness result we now consider the conditional equation for Ct
given vt in column four of Table 4.1. Here, woil,t is significant, so we cannot have a
Markov structure from woil,t through vt to Ct. This is in line with Theorem 2.1.

Turning to the output shock we condition Ct on vt. The conditional equation for Ct
given vt and the marginal equation for vt are reported in columns 4 and 1, respectively.
We follow Example 2.2 again. The output dummy wout,t is significant in the marginal
equation and insignificant in the conditional equation. Moreover, velocity, ∆vt, is sig-
nificant in the conditional equation. Theorems 2.1, 2.2 then show a non-trivial Markov
structure wout,t—vt—Ct. Lemma 2.3 shows that the transmission is non-trivial. Inter-
preting wout,t as a catalyst we then have wout,t → vt → Ct. Economically, large fiscal
expansions may impact the velocity of money without having an impact on inflation
straight away. The conclusion is, however, less clear than the causal transmission of the
oil shocks. Indeed, in line with the discussion in §2.2.2, we check if the fiscal shock wout,t
actually has a non-negligible effect on the cost of holding money. The coefficient in the
Ct equation has a t-statistic of 1.3, which at best shows marginal significance. Thus, we
may very well have wout,t → vt → Ct, but evidence for this transmission is weaker than
the evidence for the transmission of the oil shocks.

4.3 Imposing multiple catalysts

The two causal transmissions woil,t → Ct → vt and wout,t → vt → Ct can be imposed
individually. These are the hypotheses H1, H2 of (3.14), (3.15). Imposing both gives
w1 z y w2 as described in §3.4. This is a system of seemingly unrelated
regressions. When maximizing the likelihood we chose to parametrize it in terms of
σyy·z, σzz·y, ρ and derive standard errors for γyz and γzy using the δ-method.

The restricted model is reported in columns 5 and 6 of Table 4.1 in the structural form
derived from §3.4. The likelihood ratio statistic for the two restrictions is 2(559.31 −
558.74) = 1.14, which is not significant when compared to a χ2

2 distribution. The
structural estimates largely match those of the conditional models in Table 4.1. Writing
the model in structural form, it becomes very clear that the dummies wout,t, woil,t affect
distinct linear combinations of the endogenous variables. The first structural equation
is interpretable as the monetary quantity relation, showing how money demand reacts
to output shocks, while the second structural equation is interpretable as a cost-push
relation showing how money demand is driven by price shocks.
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4.4 Cointegration

The velocity and cost of holding money variables are non-stationary and should possibly
be subjected to a cointegration analysis. This is compatible with causal transmission.

Following the maximum likelihood setup of Johansen (1995), the cointegration model
with rank one is given by the equilibrium-correction model(

∆vt
∆Ct

)
=

(
αv
αC

)
(βvvt−1 + βCCt−1 + β1)

+

(
γvv γvC
γCv γCC

)(
∆vt−1
∆Ct−1

)
+

(
γv1 γv2
γC1 γC2

)(
wout,t
woil,t

)
+

(
εv,t
εC,t

)
(4.1)

The model with multiple causal transmissions and cointegration imposed has a likeli-
hood 555.44. For present purposes, we merely consider the likelihood ratio test for the
cointegration restriction within the model with multiple causal transmission imposed.
The test statistic is 2(558.74 − 555.44) = 6.60, which should be compared to a 95%
critical value of 9.1, see Johansen (1995, Table 15.2).

With a unit cointegration rank, the coefficients to vt−1, Ct−1 are proportional accross
the equations. This results in the cointegrating relation vt−1 = 6.239Ct−1, which is
interpretable as long-run money demand. The adjustment coefficient in the conditional
equation for vt given Ct is a modest 9.5% per quarter, whereas the adjustment in the
marginal equation for Ct is insignificant. We note that in a model without multiple
causal transmissions imposed, the constraint αC = 0 would be a hypothesis of weak
exogeneity Johansen (1995, §8), but the weak exogeneity is broken when imposing the
cross-equation restrictions implied by causal transmission.

4.5 Impulse responses

We now carry out an impulse response analysis with respect to the economic shocks
represented by wout,t and woil,t. We reconstruct empirical scenarios and compare our
results to the data. This offers a distinct advantage over impulse responses created by
placing identifying restrictions on the covariance matrix. Figures 4.2a, 4.2b explore the
period around the first oil crisis, where the fiscal expansions in 1972:4–73:1 are followed
by the oil shock in 1973:3–4. Likewise, Figures 4.2c, 4.2d explore the period around the
second oil crisis, where the fiscal expansions in 1979:2 are followed by the oil shock in
1979:3. In both cases, we provide joint impulse responses and compare these to real
data over a five-year horizon in Figure 4.2. All joint impulses perform remarkably well
compared to the scenario under consideration. What is more, the impulse response
functions do not decline in performance across each scenario, indicating a temporal
stability in causal transmission. This is addressed further in §4.6.

4.6 Lucas critique

Major shocks like the oil crises and fiscal expansions change the policy environment and,
in turn, may influence the behavior of individual agents. It has long been a concern
whether this results in instability for the parameters of an economic model, rendering it
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Figure 4.2: Impulse responses matched with the data for the early and late 1970s output
and oil shocks. Dashed lines are simulated 90% confidence bands.

useless for analyzing the effect of implementing the policy. This is known as the Lucas
(1976) critique, although the concern goes back to Frisch and Haavelmo.

Engle et al. (1983) argue that super exogeneity is a sufficient condition for valid
policy analysis in the context of a well-specified econometric model that passes recursive
specification tests. As remarked in §3.3, super exogeneity is essentially a combination of
causal transmission and weak exogeneity. We illustrate the use of causal transmission
in policy analysis by performing a recursive analysis of the money data.

Previously, woil,t was constructed as the sum of impulse indicators across the two oil
crises. Now, we construct dummies woil1,t, woil2,t for 1973:3–4 and 1979:3, respectively,
so that woil,t = woil1,t+woil2,t. We re-estimate the equations for (vt|Ct), (Ct) reported in
Table 4.1 over subsamples 1963:4–1977:2 and 1963:4-1989:3 using the split oil dummy.
The results are reported in Table 4.3. It is clear that the transmission of the first catalyst
woil1 → C → v does not differ in a statistically significant way from the transmission of
the second catalyst woil2 → C → v. Deconstructing the catalyst wout provides similar
evidence for the stability of the causal transmission of the output shocks. The search for
causal transmission in well-specified models therefore seems compatible with the Lucas
critique. This does, of course, go hand in hand with the fact that the model in Table
4.1 passes recursive specification tests.
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Table 4.3: Estimation for UK M1 data based on a sub-sample and the full sample.

1963:4-1977:2 1963:4-1989:2
∆vt|∆Ct ∆Ct ∆vt|∆Ct ∆Ct

∆Ct 0.542
(0.189)

– 0.605
(0.105)

–

∆vt−1 −0.359
(0.123)

−0.060
(0.094)

−0.311
(0.087)

−0.031
(0.084)

∆Ct−1 −0.004
(0.185)

−0.092
(0.142)

0.057
(0.101)

0.036
(0.099)

vt−1 −0.097
(0.032)

0.007
(0.025)

−0.094
(0.013)

−0.003
(0.012)

Ct−1 0.626
(0.145)

−0.146
(0.111)

0.574
(0.063)

−0.084
(0.061)

1 −0.012
(0.008)

0.012
(0.006)

−0.009
(0.005)

0.009
(0.005)

wout,t 0.042
(0.015)

0.016
(0.011)

0.044
(0.010)

0.013
(0.010)

woil1,t 0.001
(0.018)

0.058
(0.011)

0.000
(0.014)

0.055
(0.012)

woil2,t – – −0.002
(0.018)

0.043
(0.017)

5 Concluding remarks

Causal transmission has been introduced to capture the idea that large economic shocks
may transmit gradually through the macroeconomy.

There are three ingredients to the definition of causal transmission of catalyst w
through z to y. First, we need a non-trivial Markov structure w—z—y, that is the
Markov structure f(y, z|w) = f(y|z)f(z|w) needs to be non-trivial in the sense that y, z
are dependent and z, w are dependent. Secondly, we need a non-trivial transmission
between w, y, that is w, y are dependent. Thirdly, we need a causal assumption for the
catalyst w. When these conditions are satisfied we write w → z → y. We have shown
how this definition can be extended to the transmission of two unrelated catalysts.

Causal transmission is defined for general densities and it does not require normal-
ity. The first two conditions to the definition of causal transmission are testable using
observational data. In standard models, the first condition of a non-trivial Markov
structure implies the second condition of a non-trivial transmission. These standard
models include normal models and mixtures of normal and logit/probit models.

Causal transmissions also require a catalyst. As in instrumental variable analysis the
catalyst can be found as a natural experiment prior to the empirical analysis or it may
be discoverable from the empirical analysis of observational data. In this way, Hendry
and Santos (2010) give an algorithm for discovering super-exogeneity. This algorithm
generalizes the robustified least-squares approach used by Hendry and Mizon (1993) in
their UK money analysis. A theory for analyzing such algorithms is gradually emerging.
Indeed, a statistical theory for robustified least-squares is presented in Johansen and
Nielsen (2015). The causal transmission relies on an economic interpretation of the
catalyst. In this way it relates to the narrative approach of Romer and Romer (2010).

The analysis is inspired by B̊ardsen et al. (2012). They present 3-year ahead quarterly
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forecasts from March 2007 generated from their macro-econometric model for Norway.
The forecasts track actual unit labour cost, inflation, and unemployment rather well,
but fail spectacularly on the short-term interest rate. In 2008, policymakers in Norway
and abroad changed the policy rate dramatically in response to the financial crisis,
creating a large shift of the short-term interest rate. It appears that this had the causal
impact of offsetting potential big shifts in the labour market in such a way that the
macro-econometric model produces good forecasts of unit labour cost, inflation, and
unemployment. It is plausible that the effects seen in the forecasts of the Norwegian
macro-econometric models of B̊ardsen et al. (2012) could be described as a combination
of a major financial shock and a subsequent policy reaction calibrated to offset the
financial shock in the labour market. In future work, we will seek to generalize the ideas
presented here to facilitate such an analysis to guide economic policy.

A Proofs

The result in Theorem 2.1 hinges on the equivalence in the following lemma, of which
the left to right implications is a related to Lauritzen (1996, Proposition 2.1).

Lemma A.1 Suppose f(y, z|w) has support on a product space and that it is positive on
this support. Then, for all y, z

f(y|z, w) = f(y|z)
f(z|y, w) = f(z|y)

}
⇔ f(y, z|w)=f(y, z). (A.1)

Proof of Lemma A.1. Since the density is positive on a product space, then the
marginal densities are also positive.
⇒: By the definition of conditional densities, the first statement on the left hand

side of (A.1), and the definition of conditional densities

f(y, z|w) = f(y|z, w)f(z|w) = f(y|z)f(z|w) = f(y, z)f(z|w)/f(z).

Swap y, z and use the second statement on the left hand side of (A.1) to get

f(y, z|w) = f(y, z)f(y|w)/f(y). (A.2)

Equating the two expressions we get

f(y|w) = f(y)f(z|w)/f(z).

Fixing z this shows that f(y|w) = cf(y) for some constant c = f(z|w)/f(z), which must
be one so that the densities f(y|w), f(y) integrate to unity. Insert this in (A.2) to get
the desired right hand side of (A.1).
⇐: We prove the first left right hand side statement. Note that

f(y|z, w) = f(y, z|w)/f(z|w).

The right hand side of (A.1) shows f(y, z|w) = f(y, z). Integrate over y to get f(z|w) =
f(z). Insert these statements above to get

f(y|z, w) = f(y, z)/f(z) = f(y|z),
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as desired. The other left hand side statement is proved in a similar fashion. �

Proof of Theorem 2.1. Condition (2.10) shows f(y|z, w) = f(y|z). Thus

f(y, z|w) = f(y|z, w)f(z|w) = f(y|z)f(z|w). (A.3)

First, rearrange to get

f(y|z, w) = f(y, z|w)/f(z|w) = f(y|z). (A.4)

Then, note that Condition (2.11) has f(z|w) 6= f(z). Insert this in (A.3) to get

f(y, z|w) 6= f(y|z)f(z) = f(y, z). (A.5)

Now apply Lemma A.1. The first statement on the left of (A.1) holds through (A.4),
while the right hand side fails through (A.5). Thus, the second statement on the left
hand side of (A.1) fails as desired. �

Proof of Theorem 2.2. Combine Theorem 2.1 and Definition 2.1. �

Proof of Lemma 2.1. Consider the compound distribution integral (2.17).
If f(z|w) = f(z), then f(y|w) =

∫
f(y|z)f(z)dz =

∫
f(y, z)dz = f(y).

If f(y|z) = f(y), then f(y|w) =
∫
f(y)f(z|w)dz = f(y)

∫
f(z|w)dz = f(y). �

Proof of Lemma 2.2. Proof by contradiction. When z is binary the compound
integral (2.17) reduces to f(y|w) = f(y|z = 0)pw + f(y|z = 1)(1 − pw). If y ⊥⊥ w
then Dw,w† = f(y|w) − f(y|w†) = 0 for all y, w, w†. Combine to get Dw,w† = {f(y|z =
0) − f(y|z = 1)} (pw − pw†) = 0. With the independence structure y and w vary in a
product space. Thus pw = pw† so z ⊥⊥ w or f(y|z = 0) = f(y|z = 1) so y ⊥⊥ z. �

Proof of Lemma 2.3. Referring to equations (2.3), (2.4) the Markov assumption
implies 0 = γyw·z = γyw − γyzγzw. Thus, if γyz 6= 0 and γzw 6= 0 then γyw 6= 0. �

Proof of Lemma 2.4. We show that f(y = 0|w) is strictly decreasing in w if and only
if γyz 6= 0 and γzw 6= 0. The partial derivatives of the normal density f(z|w) and the
logit/probit probabilities f(y = 0|w) satisfy, using D as partial derivative symbol,

Dwf(z|w) = (−γzw/σ2
z)Dzf(z|w),

logit: Dzf(y = 0|z) = −γyzf(y = 0|z) {1− f(y = 0|z)} ,
probit: Dzf(y = 0|z) = −γyzφ(γyzz),

which are bounded. We can then differentiate the probability f(y = 0|w) and use
integration by parts to get

Dwf(y = 0|w) =

∫ ∞
−∞

f(y = 0|z)Dwf(z|w)dz

=
−γzw
σ2
z

∫ ∞
−∞

f(y = 0|z)Dzf(z|w)dz

=
γzw
σ2
z

∫ ∞
−∞

f(z|w)Dzf(y = 0|z)dz,

which is zero if and only if γyzγzw = 0. �
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