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Abstract

We provide a clarification of scaling issues in giation models, distinguishing between sample size
determination, discovery of emergent propertiesliving a qualitative change in the behaviour ofskistem

at an aggregate level, and ‘true’ scaling, the ddpece of the quantitative behaviour of the sysa¢mmny
given level of aggregation, to its size. Scalirguis arise because we want to understand whatrisappen

we run one billion agents, without actually haviogun one billion agents. We discuss how we canthe
Buckingham Pi theorem, a key tool in dimensionallgsis, to provide guidance on the nature and &trec

of scaling relationships in agent-based models.
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1. Introduction

The ability to scale up is increasingly consideasdessential feature of agent-based (AB) modetserikio
and D’Souza (2008), for instance, simulate Epsaath Axtell's Sugarscape model (Epstein and Ax1€196)
with one million agents, while Robert Axtell himgeh a TED talk, explicitly aims at modelling tieeonomy
with 150 million agents, anticipating a one-to-anap with the US economy (Axtell, 2011). This woirid
principle allow all the projected individual agernajectories to differ, avoiding the distortioims/olved in
having multiple copies of the same agent, as eat&y drawing the simulated population from a repngative
sample of the real population, with weights attache each individual in the sample. At the sameefim
improvements in computer hardware and software itethres, in particular the advent of parallel
computing, make such goals increasingly within reach, wtiie excitement brought about by the ‘big data
revolution? further raises expectations by making availabke itiformation necessary to calibrate such
models. In addition, many economic variables streter orders magnitudes, with a small (potentiadyy
small) number of entries having a disproportiomapértance in the economy. Examples are power law
distributions of income and wealth, the size ofesitand firms, stock market returns, trading volume
international trade, executive pay, etc. (see GaRa09 for a review of the literature). Power |aams relations

of the typeY = kX? and are often represented as linear relationghips log-log scale (loy =c¢ + a'log X)
which remain stable over several orders of magsi(ience they are referred to as scale-invariaotyming

in or zooming out does not alter the pictéiModelling fat tails requires that rare categoses covered. This

in turn requires either to scale up the model @eoto allow for such rare categories, or to puratly distort

the underlying distributions to permit a small nimbf extreme cases in small populatiéns.

Indeed, there are a number of motivations for mig#AB models on scales much smaller than a onewo-o
map of the real world, and they are largely assediwith the computational demands entailed witceting

such full scale models. At best, the time requicedin an AB model scales linearly with the numtfesigents
involved. This can be seen by just consideringetttea iterations across the group of agents thag¢egssary

to cover the whole population. However, whenevégractions between agents are involved, for example
when each agent has to communicate with a subsghef agents, or the global information of the glas
calculated from agent interactions e.g. duringgfazmation in a market, combinatorial explosion t=ad to
super-exponential scaling of the execution timerédger, computational constraints such as the teed
distribute such large amounts of information acrom®puter cores and memory nodes, and the necessary

communications across these cores and the memergréiy, can further reduce the simulation speeal to

! See for instance Lysenko and D'Souza, 2008; Caoomier et al., 2008; Coakley et al., 2012; Holcend al., 2013.
2 The Economist (2010).
3 By contrast, Gaussian densities rapidly decay dveag the mean. The difference is highlighted by éixpression ‘fat
tail’, which applies to power law distributionsreaevents are less rare, and extreme events hpossible.
4 A crucial question in dealing with a model thasisspected to display power law behaviour is howyrarders of
magnitude need to be analysed to testriémains constant: a typical case of sample sirmeation (see section 2.1).
“As a rule of thumb, the scaling region should prfor at least three orders of magnitude on laotls for a reliable
estimate of the critical exponernd][ (Christensen and Moloney, 2005).
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point where the time required to run full scale glsdbecomes prohibitive. One may also need to denghe
financial costs involved of building and maintaigisuch extensive computer hardware required tditégei

the simulation of full scale models.

If a model has to be used by policy makers (e.theFederal Reserve) or regulators (e.g. the di8tates
Securities and Exchange Commission), a necessamreenent is that it can provide timely insightanhe
problem at hand and guidance on what to do. Mdtelstake ‘too long’ to run and produce data tkdtdo
large’ to analyse in the required time, are oftédiinterest for such users. But speed of execigionportant
also for academic researctnderstanding of model behaviouoften requires sophisticated and
computationally expensive tools of sensitivity aiséd (Saltelli et al.,, 2000, 2008Robustness analysis
checking whether relaxation or replacement of sofmie assumptions lead to dramatic changes in mode
outcome— becomes unfeasible if a model takes tog o run.Estimationpossibly involves millions of runs,

at different values of the parameters (Grazzini Riathiardi, 2015; Tsionas et al., 2015).

The above discussion suggests the importance afingereduced scale models that can run at a dract
the time of full scale models, much like enginearshitects and city planners build geometricadigiuced
scale models to test before building the real thindeed, guidance from these disciplines can badirt to
bear in producing reduced scale AB models in aroig® and consistent manner. In particular, we show
we can employ the Buckingham Pi theorem, a keyitodimensional analysis, to rewrite the modelemts
of dimensionless parameters. This implies a raiatip between the dimensional variables that sipeeted,
ensures the model behaviour remains the same nerrtisg scale (they are deensdahilar in the engineering
domain). As we shall see however, application eBhckingham Pi theorem is not always possible poaer,
additional scale effects might arise due to therdissation induced by smdil. Whether these discretisation
effects are of practical relevance depends ontiagacteristics of the system (such as how smathargalues

of discrete variables involved in the scaling rielaship).

As a preliminary step however, we wish to clariyre confusion about what scaling really is, and why
matters for modelling purposes. We distinguish isgafrom emergence and sample size determination.
Sample size determinatiguoints to increasing population size up to thenpaihere some desired level of
statistical significance is guaranteed, when amadyshe model resultfEmergencenvolves a qualitative
change in the behaviour of the system that is eackexistic of the macro level and cannot be i@ty just
looking at the constituent parts: an organism feedint from the sum of its cells, or, as the Nopete-
winning physicist Philip Anderson wrote back in 29ore is differen{Anderson, 1972)calingrefers to a
guantitative change in the behaviour of the systenmeasured by some statisticahich occurs at any given

level of aggregation as the size of the sysimcluding e.g. population size) changgs: Y(S).

The remainder of the paper is organised as foll@estion 2 elaborates on the distinction betweeatirgg
emergence, and sample size determination; secbow@s how to handle scaling issues using the Bgbldm
Pi theorem; section 4 offers an example of howawtrol for scaling effects in a simple AB modeljob

search; section 5 comes back to a queuing probleichvdisplays scaling effects, that we introduceention
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2, and explains why the Buckingham Pi theorem ctum@oapplied in that setting; section 6 offers our

concluding remarks.

2. Needs for increasing population size
2.1Rare events.

A first case when large-scale simulations are nééxlevhen we are concerned with the stochasti@ity
of the simulation outcomes, particularly when rawents are concerned. Consider for instance tHeapility
p of the occurrence of some event (e.g. a radigabvation) or of some individual trait (e.g. exceptl
charisma), or a mean(e.g. the mean income in the top 0.01% of the irecdistribution)> Our question, in
its basic form, is then how to select the poputatize so that the confidence interval of the stias of interest
at any given level does not exceed some choserimdrgrror. Suppose for instance that we are ésted in
95% confidence intervals. As predicted by the Gantimit Theorem, bothp and X are approximately
normally distributed in sufficiently large populatis® We can thus construct a confidence intervakfasing

ME = z*SE whereME is the margin of errog is thez-scoré andSEis the standard error of the estimator. In

the case of a proportion or probability, we h&fe= @, and therefordlE = z @. Solving forN
gives
Z 2 1

Without prior knowledge gf, a conservative assumption is to calculate sasipéeforp = 0.5. For instance,
if ME is set to 0.005 (a confidence interval ofdrgentage point) and we require a 99% confidertes\al,
we getN" = 66,349. Supposing we can safely assumejtisasmaller than 5%, we can reduce our sample size
to N" = 12,607. Of course, if we are interested in a e@@irrence we should also lower the accepted margi
of error which ceteris paribuscalls for an increase in the sample Size.

s [p(1-P)

In case of a population mean, we simply plug indtaedard error of the me&¥E = N wheresis

the standard deviation of the underlying variaflaterest (e.g. income), from which we obfain

5 Note that proportions are just particular casesieéins, where the underlying variable is an indicé variable that
can only take a value of O or 1).
8 Here we assume that the underlying distributiomsiot change with population size, i.e. there aréraal” scaling
problems (as defined in section 2.3).
"E.g. 1.645 for a 90% confidence interval, 1.964@&5% confidence interval, 2.58 for a 99% confikeimterval.
80ne could for instance specify the ME as a fractibp: ME = a p. For instance, if we are interested in a proptray
is supposed to characterize one person in 10.a8e (bp 0.01%"), and we are willing to tolerate 5@ confidence
interval equal to 1/10 of the predicted frequenzy=(.05), we need a sample size of over 15 milliafiviiduals.
9 With very small populations (i.&N < 30), the normal approximation fails and the &ntts T distribution should be
used, with the corresponditigcore. This slightly complicates the computatiersample size affects thscore as well
asN, via the degrees of freedom in the T distribution.
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Here we can’t avoid guessing a value for the st@hdaviations, as there is no theoretical maximum value,

but the guess can then be validated in the astifdata.

This is how we should dimension sample size suah #t any point in time (in the stationary stata)r
statistics of interest are measured within givearigs from their theoretical level, whatever thisNste that
it might well be the case that the ‘true’ valuestd statistics of interest are dependent on sasipddtself (a
case of scaling effects, as we will discuss inise@.3): as long as we are able to put a reasengiger value
on the standard deviation, we will measure it vétiough precision. Note also that the ‘true’ valoesld
display autocorrelation: for instance, the promorof the super-rich might be dependent on thenlessicycle.
Hence, if we want to describe the behaviour ofdygem, a single measurement at a given pointria is
likely to prove grossly inadequate, and (longitadintime averages should then be used (Grazzini and
Richiardi, 2015). By extending the length of thesetvation window and averaging over a longer peoibd
time, it is possible to improve on the level of @son attained. In principle, given enough simetatiata, the
statistics of interest can be estimated with amgll®f accuracy, for any sample size, even if digplg
autocorrelation, as long as the statistics areostaty. However, as we have noted above, exploitirig
property to excessively reduce sample size inceeagposure to scaling effects. Similarly, if thedabis
ergodic (roughly speaking, this means that all &wed runs are alik® we can average over multiple
replications to improve on accuracy and/or redaeepde size (but see the caveats before). Finalraging
over long periods of time or high numbers of regtiiens is the only way to obtain measurementssfesyic
events are concerned: these are events that adwdsadhe whole system (like a sudden collapseaf@mic
activity, or an outbreak of an epidemic), and thusclude the exploitation of individual variabiligt any
given point in time for estimating the underlyingbpability distribution. The formulas above canrtlioe used
to have an initial guess of how many simulationigeés or how many simulation runs will be necesdary

estimate such systemic events at the desired déaecuracy.

2.2 Emergent behaviour

A second case when large-scale simulations aresddgedully understand the properties of a systemhien
repeated interactions between the agents quaditataffect their behaviour, to a point where sonesvn
regularity emerges at an aggregate level. Emetgsmaviour resides in the properties of the ensenaler
than of any individual state, and it arises whenghvironment interacts with the system to selecatlowable
states (Bar-Yam, 2004). We referred to the diffeecletween cells and an organism previously, anthan

example is pedestrian movements. At small densifiedestrian movements are determined by individual

10 See Grazzini and Richiardi (2015) for a more ipttediscussion of ergodicity and non-ergodicityuiss in AB
modeling.
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preferences and aims, and they are largely unpadadéc At higher densities however, pedestrian mres
become constrained by repulsive interactions, featti the predictable dynamics of separate lanasidrm
walking direction in crowds of oppositely movingdastrians, or oscillations of the passing direct@n
bottlenecks (Helbing et al., 2001). These dynaraiesself-organised (there is no top-down coordimytand
characterise the behaviour of the system only @tganegate level: the crowd behaves as if it wesparate
entity, with its own laws of motion which bearlittresemblance to those of the individuals comgpgirThe
same is true of the flocking of birds (which are kel in any way, even though they may appear jpdrds
foraging for food (each follows a set of simpleesylbut the colony as a whole acts in a sophisticagy),
the growth of tumours (which elaborate sophistidaemmunication and decision-making), traffic jaonsa
motorway (even though all of the cars are movingvérd, the traffic jam tends to move backwardsy e

formation and scattering dynamics of insurgenttiaifjroups fighting guerrilla wars (Bohorquez et 2009).

Also, when there are multiple equilibria, achievihg necessary coordination to switch between ibgiail
might become increasingly difficult as sample simgeases, causing an ergodic system to behavét ass
de factonon-ergodic (Grazzini and Richiardi, 2015). A cageen this might happen is when social norms are
involved: once a norm is established (e.g. weaaitig in the workplace) it might be very diffictitt change
it, especially if it is shared by many individugks.g. many work interactions). At the micro levegch
individual can be in one of many states, a prop#rét is lost with aggregation. Another exampleéhis
behaviour of attendees at a public performancédt anty a few people, everybody comfortably sits dpand
those who stand up are kindly requested to retuthdir previous position and not to obstruct thexwof
others; as the number of participants increasegherythe likelihood of this happening decreased,iathe

end everybody has to stand up.

In all these examples, emergence of a collectiveieur depends odensity The probability of observing

an emergent phenomenon increases with densityralgnfellowing an S-shaped curve, with an extreztase
being a step function around a deterministic dgrikiteshold. Often, this deterministic thresholalgained
asymptotically when the size of the system is itdinFor instance, a classic problem in percolatfwaory
considers a regular lattice where each cell is pieclwith probabilityp. Percolation is obtained whenever a
cluster —a group of nearest neighbouring occupegdld-cextends across opposite sides of the |latipeoperty

that can be assessed only at the macro levefimitalattice, for any occupancy probabilipythere are some
random configurations where the system percolaied,some others where the system does not percolate
hence there exists only a probability of percolattp an S-shaped curve describes how the percolation
probability q increases with the occupation probabifityThe critical occupation probability (or density)

can then be defined as a fractipof the possible configurations that percolate, niehibe remaining fraction

1- 7 do not percolate (a standard value fas .5). As the size of the lattice increases, $hghaped curve
becomes steeper, converging to a step functiorliattices of infinite size: above a critical occupat
probability the probability of percolation is 1;lbe the critical density, the probability is O (etlye best recent
estimate ip. = 0.59274621 for two-dimensional infinite squaatites).
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Figure 1: Percolation (spanning) probability agamscupation probability (concentration), on fingguare
lattices of different sizels. The lattice is viewed as a torus, so that petioolas to be understood as wrapping

along either of the lattice dimensions. By fixingvalue 7, one can find a sequence of valyeér) for

increasing lattice sizds approaching the critical threshgldg Source: de Oliveira et al. (2003).

This discussion exemplifies the difference betwermergence and scaling: percolation is an emergepegy
of a system, which changes its qualitative behavMihen a system is at the critical threshold, numntities

— the cluster number density, the average clustey stc. — are insensitive to the underlyingdattletails, and
depend only on the dimension of the system (1, 2n.dimensions, corresponding to a line, a plane or a

volume etc.). As such, they are characterisedrtiyersal critical exponents On the other hand, the critical
occupation probability depends on the size of #téck (and on other lattice details), and is tfosescale-

sensitive. This finally leads us to a discussiosa#ling.

2.3Scaling issues

A third case when one might consider running ‘lasgmulations occurs when the behaviour of the nhode
., d)) denote a fundamental system of

guantitatively depends on its scale. In order findescale, letd;, do,
units, such as money, time, number of individuald mumber of firms, whilex(, x, ..., X,) are quantities that

are measurable with respect to this system, inetugiarameters, dependent variables, and independent

variables. The dimension of eachdenoted as«], is then given by

[x;] =d;"dy ... d;™

®3)

., +)). For instance, the hiring rate is defined as @essired per period,

for suitable exponentsx(;, a2, ..
and thus has dimensiddT?, whereN measures individuals and measures time. A model is said to be

invariant under a change in units— 4;d;, j = 1, ..., r,if

11 See for instance Christensen and Moloney (2005).
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x> A L A, =1, .0 (4)

for any (11, A2, ..., A:) > 0. This implies that any relationship of thedy; = f(x,, ..., x;;) between

measurable quantities in the model satisfies thewiting scaling propertyZohuri, 2015):

ATA o AT (g s X)) = A P27 o ApTP X, e ADTAS L AT ) (5)

r 1 r

For instance, a model of bank failures is scalaiiawt if the fraction of banks that become bankremains
constant when we multiply the number of banks endyistem by a factar(i.e. if we change the units in which

we count banks to A/units).

However, there are cases where a simple normalisdibes not remove scale effects. An example ys cit
dynamics, where many urban properieare described by scaling relations of the fafm cN, wherec and
[ are constants. Superlinear scalifg(1) is common with ‘social’ quantities (such as wagesnventions),

while urban infrastructures are generally subjecublinear scalingd< 1) (Bettencourt, 2013).

Another example is the calculations of service-flimg elements, as described by the Erlang lossetad
classical result in queuing theory. The model imecwnly used by telephone system designers to dstitine
number of lines, telephone circuits, telephone @ity equipment or call centre staff (more gengrall
capacity) required to meet given quality standabds,can also describe the number of copies ofak lao
library needs to own in order to keep unmet requastler control, for instanééThe model assumes that
there areN homogenous servers working in parallel and noaewtaiting space; customers that find Ml
servers busy upon arrival are blocked (lost). Urtiderfurther assumptions that customers arriverdouog to

a Poisson process with rateaind that service times are independent and extahgmlistributed with mean

1/u, the steady-state probabilipythat a customer is blocked is given by the Erlarfigrmula?

p=—"N_ (6)

whereN is capacity, i.e. the number of identical parakslources such as servers, telephone lines, bpidsgo
etc. andd=v/u is the offered load. Note thatis a dimensionless unit and it is equal to themszaival rate
multiplied by the mean holding timté Figure 2 depicts the relationship between thereffdoad 4) and
capacity N), for three different levels of the blocking prbiay p.'°

2We thank Dan Tang for having shared this examjitle us.

B The case when queuing is allowed is describedyubim Erlang C formula.
¥ n telephony the load unit is referred to asdang

15 See van Leeuwaarden and Temme (2009).
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Figure 2. The Erlang B relationship between offdoeati A and capacityN (number of servers), for different

values of the blocking probability. The smaller diagram zooms in for smaller valueld.o

The relationship is nonlinear: a higher load pevesecan be carried, ceteris paribus, when thezerare

servers. Said differently, there dnereasing returns to scalat a system level. The relationship betwden

andN tends asymptotically to linearity. However, thamalised statistics ‘offered load per server’ il st

scale-sensitive for a large intervald{figure 3).
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Figure 3. The Erlang B relationship between offdoed per served/N and capacityN (humber of servers),

for different values of the blocking probabilpy The smaller diagram zooms in for smaller values.o
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Whether scaling is an issue in practical applicetiovhere the system can in principle exhibit insireg or
decreasing returns to scale, but tends asymptigticatonstant returns to scale, depends thergiiothe size
of the real system. To continue with the queuingneple, suppose the real world capacity is measareshs
or hundreds of thousands of servers. Then, a siibnlehich considers only 1,000 servers would preva
good approximation, in per server terms, if theckiog probability is not too low. However, if theal capacity
of the system is measured in hundreds of senres,further scaling down introduces a significaaspwhich

has to be taken into consideration.

3. Scaling in a rigorous and consistent way: the Buckgham Pi Theorem
3.1 Similitude and the importance of scaling AB el®g@roperly

Engineers, architects and city planners often ereatluced-scale models on which to test and perform
experiments before building the real thing. Indebd topic is known asimilitude and the three main criteria
under which the similarity of reduced-scale phylsmadels to full-scale models is assessed geemetric
similarity (the lengths of components in the model haveedhlscaled by the same factor in all three spatial
dimensions)kinematic similarity(the rates of change of components are all sdaldtie same factor), and

dynamic similarity(the ratios of forces acting on components, sedamnd fluids are constant).

Building such reduced-scale models minimise thescand time involved in constructing well-functiogi
full-scale systems. Insights gained by performixgeziments on reduced-scale models are often inbédu-
think of the importance of building structurallyfsdridges and buildings, of constructing aeroptathet are
aerodynamically stable, and of designing citieshvdtnoothly flowing traffic. Analogously, it mighteb
desirable to keep an AB model to a small scalethea need to understand how to consistently stale t

model, in order to achieve the benefits of a largge simulation without having to bear its cost.

A danger that exists in AB modelling is the temiatiat when wanting to change the scale of the mddel,
naively vary only the size of the population of migeand leave all other quantities and parametahseimodel
the sam®. This is equivalent to building a reduced-scalelel@f an aeroplane by scaling down the length of
the plane’s body whilst keeping the width of thegé at full scale. Clearly any experiments in anndgamic
wind tunnel on such a scale model will not prowige necessary insight into the maximum load thetitimgs
can support in a properly scaled aeroplane, antyiagpany information obtained in designing a fsite
plane would be downright dangerous! In the samartegf policy makers and regulators applied inggh

gained from an AB model whose parameters have men kxonsistently scaled, it could have similar

6 The variation in the population size of agentiither complicated if the model contains more thar class of agent
or aggregate grouping of agents. For example, whaling a model of health inequality such as inf@ém et al. (2016),
if one varies the number of people, how should soae the number of neighbourhoods that the pédivglén?
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catastrophic consequences. Returning to the fiaitiee percolation model discussed earlier, ifapasider
the occupation probability as analogous to the ramalb agents in an AB model, increasing the nunaber
occupied lattice points raises the likelihood tihegt system is in a percolating phase. Howevergifnant to
build a larger scale model of the system that namstthe same probability of being in a percolaphgse, it
is necessary to scale other aspects of the mad#l,as increasing the size of the lattice (the rerroblattice

points).

Also, when scaling up a population in an AB modekbme facton, it is not generally the case that all other
parameters in the model should be multiplieduas well — such transformations may move the mindela
different phase of behaviour. So we are faced witbroblem of how to consistently vary the numerous
parameters that are often prevalentin AB modelgtder to avoid the behaviour of the model chaggierely

because the inconsistent scaling of parametersibaed it to a completely different phase of theeys

Fortunately, guidance from engineering disciplinas be brought to bear in scaling AB models irgamus
and consistent manner. As discussed by Sterred9j2€he general methodology that informs engineers
how to build reduced scale models in a consistemtmar has been developed over centuries by marplgoeo
including Newton. However it was only in 1914 tBaickingham made the formalism explicit, with histaus

Pi theorem (Buckingham, 1914). It has since beedenmore mathematically rigorous by Langhaar (1951)
and Palacios (1964), though Buckingham’s publiceiticnormally cited in the engineering literaturle first
time Buckingham's Pi theorem was advocated forimsealing AB models appears to be in Osgood (2009)
who discusses many of the concepts in section 3laridhis paper, although his focus is on redutigsize

of the AB model for reasons of computational feidisjbo Moreover, Sterrett (2015) claims that “itrmains an
open research question whether, and how, the con€spmilar systems might be applied to... econorfiics

We provide an example in section 4, which demotestriés use in an AB model of job search.

3.2 Invariance of the real world to unit-systemsl éime Buckingham Pi theorem

A key insight of the real world is that its propestare invariant to the systems of units thatiaesl to measure
them?!’ For example, the properties of a structure lilsispension bridge should not depend on whether its
length is specified in miles or kilometres, or wiertthe maximum mass it can carry is measuredagridams

or pounds. Mathematical and computational models attempt to represent real world systems shdatd a
capture this property. The Buckingham Pi theoréere a way of exploiting the dimensionality of quigies

in the model to re-specify it in a form that no den depends on physical (dimensional) units sudimaes
length, money etc. By expressing the model andaismeters in a dimensionless form, the modelrbeso

invariant to changes in the scales of dimensionds i.e. seconds, metres, dollars).

17 Note that we are not discussing the minimum sizda@fmeasurement scale i.e. the granularity ooluti®n’ of the
measuring apparatus, merely the unit that the meamnt is reported in, so Mandelbrot’s (1967) faswmmark about
the length of the coastline of Great Britain depegan the length of the measuring stick is irreletv
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The Buckingham Pi theorem claims the following. Bay physical (dimensionally consisténtelationship
that is expressed as a function= f (x5, ..., x,,) wherex, is the dependent variable and the othemren-1
non-zero independent variables specifiedririndependent physical dimensions, the relationstap
equivalently be written in terms ofi-¢) dimensionless quantities in the formm, = g(m,, ..., T,_;), Where
7, is the corresponding dependent variable in theedsionless form of the model. We shall see hovibtain

the dimensionless variable§in the next subsection.

Note that it is not necessary to know the formha& tunctions or g, and that often the hardest part of the
procedure is determining which variablegcalled the ‘governing parameters’) are relevarthe problem.
The process of specifying the model in terms ofaisionless variables enables all the useful infaoma
relating the dependent variable of interest toitidependent variables to be presented in the nibsieat
way, analogous to the method Bfincipal Components Analysism Econometrics. In particular, the
Buckingham Pi theorem allows to reduce the numbganables by the number of fundamental dimensions
from n to n-r, thus reducing the potential number of parameteestimate and simplifying the calibration of

such a model.

From an engineer’s perspective, if we modelledséesy at full scale with a relation = f (x5, ..., x,,), whilst
the reduced-scale model has parameters and variadscribed byx’'; = f(x',,...,x";), then from
Buckingham’s Pi theorem, we can express theseieqsaist, = g(m,, ..., m,_,) andm; = g(1y, ..., Tn_r),
respectively. We are now in a position to define taystems asimilar whenever they have the same
dimensionless variables iz, = r;, and thus behave in the same way. These two systey have physical
guantities such as length or oscillating behavieitin frequencies that differ by several orders afgmitude,
however if they have the samevariables, they represent the same state of thersy®ote that the choice
of dimensionless parameters is not unique, Wf[lalso being a valid dimensionless variable for amy-nero

rational numbep.

3.3 Finding the dimensionlegsvariables

As Barenblatt (2003) argues, dimensional analysiseais not usually sufficient to prove self-simitg and
to find scaling laws. However, he also comments‘tha basic difficulty always lies in finding apropriate
model, even a preliminary one. This is a mattesrtfand no general recipe can be offered herewBReh a
researcher arrives at a particular model, and legntention of working with this model, a certgjeneral

system of rules can be recommended,” (p. 91).dursntention to describe this system of rulesher

18 Dimensional consistency (or homogeneity) requines all additive terms of an equation must havestirae
dimensions (if the left-hand side of an equatigiresents a velocity, the terms on the right-hadd siust also have
dimensions of [Length] / [Time]) in order to be gigally meaningful.
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Referring to our relation; = f(x,, ..., x,), if the mathematical form of is known, then the governing
parameters; are the variables and parameters that appeae iephation, along with any initial and boundary
conditions. If, on the other handis not known, then “the governing parameters roesthosen on the basis
of a qualitative model of the phenomenon, to bestiocted by each investigator using his/her owreggpce

and intuition as well as an analysis of previousligts,” (Barenblatt, p.91).

In order to construct the dimensionless varialiteis, necessary to choosedimensionally distinct ‘scaling
variables’ {5} (also known as ‘repeating variables’) from the{sg}. “It is preferable to select those... whose
importance to the phenomenon being studied is fitoslty established,” (Barenblatt, p.92). As the lstg
variabless are dimensionally distinct (independent), they nspsn all the physical dimensions in the model
{Di}. In addition, the scaling variables must be disienally distinct, by which we mean thaf f# [s]* for

allj # k and any numbez*®

Then, for each of the remainingr non-scaling variableg from the set of governing parameters} {a
dimensionless variabla is constructed by choosing non-zero rational numag ay, ..., & such that the

dimensions cancel on the right hand side of tHewvidghg equation:
[m:] = [&:] - [s1]% - [s2]9% - . - [s,]%" (7)

Note that there is a different dimensionless vagiabfor each non-scaling governing variabl€ We use the
convention that the first-r governing parametersa( Xz, ..., X.r) refer to then-r non-scaling variableda( to,
..., tnr) respectively, while the lastgoverning parametergn(-+1, Xn-r+2, ..., Xn) refer to the scaling variables

(s1, & ..., S) respectively.

After finding the expressions for allr dimensionless variablesin terms of their corresponding non-scaling
variablet; and the set of scaling variables}{ we estimate the numerical values afi{by plugging in the
estimated values of all the governing paramete}sthe physical variables of the model. This det@es the
state of the model in dimensionless form, whilertiationship between the dependent dimensionkesable

w1 and the independent dimensionless variabtes}{can be discovered through simulation and expenime

19 For example, if we represent the dimensions ofabée x; by [x], if xi = 30 km/hour, then byx|] we mean Length
Timel. If the dimensions of a model are in terms oftiiee dimensions Length, Time and Mass, then efthese
dimensions must appear in at least one of the swakng variables’ dimensionss}. In our example, if ] = Length

- Time, and the dimensions ef also only represent Length and Time, theh+# Length - Time " for any numbeu,
although it is possible fosf] = Length' - Time' for any rational, v, as long as # -v (so that §] is not merely §:]?). To
complete this particular exampleg][must involve Mass ag ands, do not feature this dimension, whikg][may include
the other dimensions of length and time raisechtorational powers as well.

20 For example, if the non-scaling varialjeepresents a force in the model, the unit of fasddie Newton, which can
be expressed in terms of S| units as kilogramstres second. In this instancet{] = Mass: Length: Time?2. If, in our
example, the scaling variables had the followingetisions$i] = Mass, §] = Lengtl? (e.g.s; represents a volume), and
[ss] = Length- Time? (s; represents a velocity), then by inspection wesssnthati = -1, b = -23 andc = 2. In this case,
we are left with £1] = Mas$ - Lengtl? - Timé® = 1, i.e.n; is dimensionless. This gives us the functionainfdor the
dimensionless variable, =t; - s - 5,2 - s5°. Repeating this procedure to producenall dimensionless variables
allows us to express the model in dimensionless for
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observing how the state of the system changes agawyethe dimensionless variables. This captures th

behaviour of the system in its most fundamentahfor

3.4 Using the Buckingham Pi methodology to scaleagels

Take a model at one scadlethat is expressed in terms of governing paraméserpartitioned into scaling
variables &} and non-scaling variablegi}, and the same model at another sddlehat is expressed in terms
of governing parameters{} partitioned into scaling variablesf} and non-scaling variableg . They can

be compared in terms of their dimensionless vagmhlandz’; respectively, to see if the two models are in
similar states (i.ex; = m; for alli). Moreover, if we know the physical quantitiesahxed inM (so we know
{s} and {t}), and we also have the scaling variableg} {of model M’, we can determine the non-scaling

variables{t;} by equating each dimensionless variabje= 7r; and solving for {i}:

a; a; a
S S S T
t=t- (—) - (—) o (3) (®)
S1 S5 Sy
This tells us the necessary values of the phypa@meters that we must use in order to ensuré¢hatodel

has been consistently scaled. A general overviethdqractical aspects of this procedure can bedon
Barenblatt (2003, p.92).

We are also now in a position to see how the degrndariablex; on the left-hand side of the original
formulationx; = f(x2, X3, ..., Xn) vVaries with scale. As Osgood (2009) suggeststdasons of computational
feasibility, we may perform a small scale AB mobielwhose output of interest i (equivalently the non-
scaling variabld;). We can then determine the value(equivalent to the non-scaling variablg that we

would obtain from simulating a larger (or full-seapmodel using equation (8).

There is a straightforward procedure involving solmear algebra to calculate the formulas for the
dimensionless variables; this will be presented in section 4. We will theé@monstrate how to apply this

procedure by applying it to a simple AB model.

It is important to note that, whilst these techeigjare important in ensuring consistency when dhgrtge
scale of a model, there may still be discretisaéifiacts at the smallest scale of AB model, whely arfew
agents are simulated. These are analogous to ttom d ‘incomplete similarity’ in the engineerirtippmain,
for instance in hydraulic modelling. Whilst it mbg possible to scale down the geometric aspetieahodel
so that all lengths are reduced by a constant fdgeometric similarity), the properties of theiflue.qg.
viscosity and surface tension) and the propertfesudace roughness or sediment size (e.g. in rieat
modelling) may not be easy to scale down, and sx#ien not faithfully represented in the reduceale

model.
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Another issue, as Osgood (2009) warns, can occanwiodelling heterogeneity within the agent popoitat
If an agent can only exist in one of a finite numbEstates, the likelihood that there are no agenth a
particular state increases as the agent populatzenis reduced,; in this case, the heterogeneitgeomodel
cannot be fully realised. However, on closer insipac this is nothing more than the problem of skngize
determination that we discussed in section 2.1:sdw@ple size is insufficient for guaranteeing ttre

frequency of some particular state is differentrfr@ at the desired confidence level.

Finally, note that if the goal is to scale up ABdets to larger sizes rather than scaling them ddwth the
discretisation effect and heterogeneity issue besol@ss significant (unless of course we also asadhe

number of possible discrete states).

4. Applying the Buckingham Pi procedure to scale a siple AB job search model
4.1 The model

We apply the Buckingham Pi procedure to demonstatsistent scaling of a simple AB job search model
This is one of the sample models included in thajaased JAS-mine AB modelling suite: a descriptbn
the model and the source code are available aitBemine websité The model consists df worker agents,
who apply for job vacancies whenever they are uheyegd. At each time-step, a number of new vacancies
are created and subsequently remain opehi flame-steps. Then, each unemployed worker sendsréer
of job application® per time-step. When it is time for the vacancgltse { time-steps after it opened), an
applicant is randomly accepted for the job, andhalother applications that the successful apmtiibas sent
(to other vacancies) are removed from the systeradtlition, the other applicants who are still upkyed
are informed that they have been unsuccessfultivitin application for this vacancy. To simplify theodel,
employment relationships only last for a singledtistep, after which the worker becomes unemployed a
again proceeds apply to the available job vacangigsuch, each vacancy has a list of applicants$,each
unemployed worker has a list of vacancies they lepgied to. The model thus involves four indepernde

dimensions: ‘Workers’, ‘Applications’, ‘Vacancieahd ‘Time’.

At time O, there are no open vacancies, and alkersrstart as unemployed. The model then undergoes
transient phase where the number of open vacantige system linearly increases (at a rate/afew
vacancies per period) until tinte= H, when the first vintage of vacancies closes amildsessed. During this
initial period, job applications also pile up ireteystem up untit = H, when the employment rate jumps to

its equilibrium level.

Assume we are interested in modelling job quepedefined as the average number of applicants pen o

vacancy. This is our dependent variable, cakedising the conventions in section @.has dimensions

2 http://www.jas-mine.net/demo/applications.
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Applications- Vacancies. Up to timer = H, the average number of applicants per open vadargiynply
equal toN - A/ V(a constant number of new vacancies and new afiplisaare added at each time-stepQso
remains constant). After time = H, the job queue decreases as successful applivdthtdraw their
applications to other vacancies. The equilibrienel Q* is reached at time= 2H, when the last vacancy to
open during the initial period of total unemployrméand consequently having receiving more than the

equilibrium number of applications), is finally sked.

To use the Buckingham Pi’s procedure, as theréoareindependent dimensions, we must therefore sdoo
four ‘scaling variables’q, s, ss andsy) for the analysis. These scaling variables cahaatimensionless and
must be linearly independent, spanning the spacallothe four dimensions (in our case ‘Workers’,
‘Applications’, ‘Vacancies’ and ‘Time’). Recall théhese scaling variablesmust be ones that are believed
to have the greatest influence on the dependerablax:, and should also be the variables that we exilicit
wish to specify for each scale of the model. Thiam easy choice in our simple model, where we Have
current simulation time whose dimension is (obviously) Time, the numbenef vacancies per time-step
with dimensions VacancieSime?, the number of applications an unemployed workénsts per time-step
A with dimensions ApplicationsWorker! - Time?, and the number of workek$with dimension Workers.
The only other parameter in the model, the numlbdinme-steps that a job vacancy remains operas
dimension Time which is dimensionally dependenttlom simulation time (both variables have the same
dimension)H cannot therefore be a scaling variabl@nd must be a non-scaling variable, which wellgbe
Lastly, the only other non-scaling variable in thigscription is the dependent variable of interdet Job

Queuexi, which by convention is labelled as the first remading variablé;.

To solve for the dimensionless variablgswe simply take the logarithm of equation (7), aachember that

[7]=1,
0 = logf] + a1 log[s1] + a1 log[sg] + ... +a log[s] (9)

As the dimensions of the scaling variabdeare linearly independent and the equation must fa all i,
constraints are placed on the values of the expsr@ena, anda,. More details on the derivation of the
formulae for ther; are described in the Appendix. Applied to thegelrch model, we get
m=Q-N1-Al-vV
(10)

m=H-r?
Each dimensionless variabteandr: is associated with one non-scaling variaQeaidH respectively), and
expressed as a combination of powers of the ndimgozariable and the set of scaling variable$, {ust as
described by equation (7). The formulae for theetisionless variables are specific to the choice of scaling
variables §} and the dimensionality of the dependent variaBleoosing a different dependent variable with
the same dimensions @would produce the same formulae for the dimens&sariables;, given the same
scaling variable set. Moreover, changing the depeiariable would only affect the formula far Changing
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the scaling variabless{ to ones with different combinations of dimensipogs the other hand, will change

the formulae for all dimensionless variableg{

4.2 Using the dimensionless variables to scaleMygications model

Consider running the model at two scaMsand M’; this entails two sets of (independent) governing
parametersi, A, V,r, H} and {N’, A’, V', 7, H'} respectively. We assume thiltis computationally more
feasible to run thaM’, i.e.M requires less computing time and/or memory, fangxe, because it involves
fewer numbers of worker agentd € N'). In order to infer the properties lgf from simulations oM, the two
versions of the model must bemilar (defined in section 3.2 as meaning 7'i). If this does not hold, then it
is impossible to rule out a difference in behaviollM’ compared tdV as the two versions of the model are
in a different phase-state. We therefore consticso that it is similar t& by equating the dimensionless
variables ofM’ to those inM. This provides two additional constraints on tleagning parameterd\{, A’
V', 7, H'} of modelM’, as demonstrated in equation (11).

Q'NAl.V=m=r1=Q -N1-A1.V

(11)
H- T'l=7T2=7l"2=H’ -7l

We can use the formulae in equation (11) to salveife dependent variable in the molle] in our case, the

job queudd’, as in equation (12):

Q =Q - (N/N)-(ATA) - (VIV)) (12)

Thus we can determine ha@ is related to the corresponding vaf@econditional on knowledge of how the
parametersN’, A’ andV’} compare to {\, A andV}. Note that the latter equation (12) seems toifiviely
make sense; the job queReincreases if we increase the number of workki@nd the number of applications
each worker make&’, compared to parameters of the simulated verditimeomodel N andA respectively).
Additionally, the job queue shortens if we incretts® number of vacancies that open at each tinpe\ste
Note that no knowledge of the underlying procegdesfunctiond andg in section 3) has been used to derive

these scaling relations, merely the dimensionb®félevant variables.

We show the estimates of the equilibrium value®®for several scaled parameter sets in table 1galoth
the average equilibrium values obtained by simoite. Note that as we are interested in the equilibyiwen
do not include values for the simulation timelthough we illustrate the typical evolution otl@ough time

by providing simulated time-series @fr) in figures 4 and 5.
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Independent Variables (the model parameters) Depermaht Variable
Simulation Duration of Applications | New Estimated Realised
. , Number of . . oo N
Run (‘scale’) | open workers.N per time-step, | vacancies per| equilibrium equilibrium
vacanciesH ' A time-stepV job queueQ* | job queue
1 (scaleM) 30 1,000 1 30 - 16.72 £0.16
2 30 10,000 1 30 167.2 167.64 + 0.50
3 10 250,000 2 15,000 16.72 16.67 + 0.0[L
4 5 370,000 3 9,000 61.86 61.67 = 0.0
5 150 1,000 1 30 16.72 16.68 £ 0.07
6 10 1,000 1 30 16.72 16.76 + 0.3(

Table 1. Simulations of the Applications Model. Thelues of the parameter$i{ N, A andV} and the
estimatedQ* and realised) values of the equilibrium job queue for distinthglation runs. The estimates
Q* have been calculated using equation (12) and lenhye of the realised valu@ for Simulation Run 1

(corresponding to scald).

Note that there is no entry for the estimated joewepQ* in Simulation Run 1, as this is the baseline wersi
of the model (corresponding to sc8@ to which the other simulation runs are compafdgk realised value
of the job queu® in this run, along with the other model paramef{éisN, A, V} are used in equation (12)
in order calculate the predicted (‘estimated’) eadii the job queu®*, given the parameter setd’{ N’, A’,

V’} — the new ‘scalesM’ — of the other simulation runs.

Simulation Run 2 is an example of inconsistentisgaln the sense that by only increasing the nunolbe
agents, we are not scaling the system up as a whelely changing one of the model parametersizareby
effecting the behaviour of the model output — &ndey the fact that the realised equilibrium joleweQ has
increased by the same factor as the number of agadeed, equation (12) correctly predicted tleg fob

gueue value, as can be seen in the colum@for

If we wanted to be able to scale the system upamgwhile ruling out any change in behaviour calisg
moving the system to a different phase-state (édtilas a change in the dimensionless parametestthe
system), we can use equation (10) to guide us. Mieree similarity of the scales by equating all the
dimensionless parameters between the initial smadethe desired scale. Having done this earlieletove

equation (12), settin@ = Q in this equation (12) gives the following relation
1= (N/N)- (A'/A) - (VIV) (13)

So knowing the change in scale of any two paramdtem {N, A, V} fixes the change in scale of the third.
We demonstrate this in Simulation Run 3, where amdomly chose a set of parameters to allow us to

consistently scale up the Applications model frdd@@ agents to 250,000 agents. As can be seeblinla
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the observed equilibrium job que@* of the simulation was 16.67 applications per vagarn close

agreement with the predicted Q value of 16.72.

In Simulation Run 4, we demonstrate the abilitgstmate the job queue for a much more computdijona
intensive parameter set, involving 370,000 worleerd the creation of 9,000 new vacancies at eachdiep.
The use of the Buckingham Pi methodology presehezrd allowed us to estimate the correct equilibrium
value of the job queue, without having to endueeftlr greater computational costs involved in atitaj the

value through simulation. We do, however, provite result of the simulation as a cross-check.

Simulation Runs 5 and 6 illustrate the power of Buckingham Pi methodology in determining which
parameters are not considered to affect the depemdaable. In this case, equation (12) suggéstetis no
dependence of the job que@eon parameteH, the number of time-steps that a vacancy remgies.olNe
test this by comparing Simulation Runs 5 and 6iteutation Run 1 and find there is indeed no effacthe

realised equilibrium job queue val@e

We illustrate the time-series of the job qu&ué versions of the model that have been scaledistamtly,
(i.e. in engineering terms, they aieilar) in figure 4. (Note that we ignore kinematic sianity for the time

being, as we discuss the impact of changing pasrdatext).

BRun3 ARunb6
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SIMULATION TIME-STEP, T

Figure 4. The time-series of the job qu&uéor simulations that have been scaled consistendlythey are

similar.

Finally, we focus on the second dimensionless khian the model, using equation (11) and the same

procedures to derive the following equation for dueation of open vacancies:

7=t (HIH) (14)
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This suggests that reducing the value of the durdtr which vacancies remain open to a third efittitial
scale (i.eH’ =H/3) will triple the ‘speed’ of processes in the syst(i.e. 17 = 37), asris the simulation
time soris the rate of evolution in the system. We illagtrthis behaviour by comparing the time series’ of
the job queu® in Simulation Runs 1 and 6 in figure 5. We alsovle an example of slowing the speed of

processes by increasikpby a factor of 5 in Simulation Run 5.

Run 1 Run5 aRuné6
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Figure 5. The time-series of the job qu€uéor Simulation Runs 1, 5 and 6 are geometricatiilar, but not
kinematically similar. The parameter controlling thumber of time-steps that a job vacancy remgiesid

influences the speed of the convergence to thdilegun job queue.

To summarise, without any detailed knowledge ofuhderlying processes and structure of the mobel, t
procedure we have outlined in sections 3 and 4lased us to correctly predict the dependent deia the
job queueQ — of a simple AB job search model, for a varietyifferent parameter sets (‘scales’) based on
the simulation results from one simulation usingf@rence parameter set. We have been able tostade
the influence that the independent variables hatthenlependent variable, and also the relationdlgpseen
the independent variables. While Osgood (2009) applies this procedure on an AB epidemiologicatiet

to good effect, we cannot be sure it will alwaysrkveo successfully. Indeed, Barenblatt (2003) wainas
“the situation when everything including scalingvéacan be obtained through dimensional analysiseail®

in fact very rare,” (p. 69).

5. A case when the Buckingham Pi theorem cannot helpithl scaling: the Erlang model

In section 2.3 we described the Erlang B queuingdeh@s an example where the behaviour of the isy&tes
blocking probabilityp) depends on the size of the system (the numbsgrgersN). One might wonder if the

Buckingham Pi theorem can offer some guidance enthe model scales, without knowing the exact agali
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relationship, equation (6). After all, it is quitmlikely that a mathematical expression for atreteship
between aggregate variables can be derived in amédil. However, at a closer inspection it is cteat the

Buckingham Pi theorem cannot be applied in thisngget

The model, in its compact form, has 3 variables: the blocking probabilipy the parameter measuring the
offered loadA, and the number of servels and only one dimension, Servers. From theseridhlas, we
need to select a scaling variable, however givahlibthp andA are dimensionless parameters, they must be
non-scaling variabledi(andt, using the labelling conventions from section 3)e humber of serveid, must

therefore be used as the scaling variadlby convention of section 3). Equation (7) theregius the formulae

[m1] = [p] - [N]*
()
[m2] = [A] - [N]”

However, in order for the right-hand sides of betbressions to be dimensionless, the exporaesutsib have
to be equal to zero. Thus, no scaling variablesvsbhp in the 77terms — indeedp and A are already
dimensionlesgrterms. There is no room to manoeuvre: the modeloavariables that can offset the effect

of N on the model output.

Specifying the model in terms of the arrival nafthe parameter of the Poisson distribution) ard(thverse
of the) mean call duratioua (the parameter of the negative exponential digtidin) does not help either. Now
the number of variables is equalrtc= 4 (p, v, i, N) and the number of dimensions has increased-=t®&
(Servers, Calls and Time); hence, three dimendipimalependent variables are required as scalinighvias.
However, we cannot use bothand  as scaling variables because they have the sdatweedimensions
(Calls - Time* for k = +1) and so are not dimensionally independeniiSp for the equations nonetheless

simply restates the definition of the offer lo&dz, = A = vip.

6. Conclusions

We defined scale effects as a situation in whighesoutcome of interegtdepends on the size of the system
S and we suggested a way in which this dependeanybe modelled even without knowing the explicit
functional formy = y(S). This involves the ‘nondimensionalisation’ of thgstem, whenever possible, using
the Buckingham Pi theorem. The theorem suggesksoto at transformations of the outcome variables of
interest that are invariant to scaling, and suggastay to scale the system consistently. Givesintplicity,

the Buckingham Pi theorem is a very general andepimlvresult, and it provides necessary conditifors
scaling an AB model from one ‘size’ (set of para@ng) to another in a way that guarantees similagtyveen
the scales. If two versions of a model with diffgriscales are not deemsichilar in the engineering sense,

then it should not be surprising if their behavidifers. Moreover, the Buckingham Pi frameworkpdes
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valuable insights into the nature of the scalisgéseven when the theorem cannot be applied,ths Erlang

B example.

However, one might ask why the scaling parame&egs the number of agents, the size of the simailateld,
etc.) are not simply treated as any other paranoétile model (such as behavioural parametersy Wwhuld
entail applying the tools of sensitivity analysisinderstand the effects of the scaling parametetise model
outcome, in exactly the same way we do for theroffaameters: by simulating the model for different
parameters values. The answer is, obviously, thatdany cases it is computationally too costly to tie
necessary number of simulations with realistic galaf the parameters. While we might be able tdimitis

on the admitted values of behavioural parametbey, temain intrinsically unknown (hence the inteias
estimating them). On the other hand, often we ktt@vreal’ value of the scaling parameters already;do
not even need to estimate them and can simply dpeiy in the model. The problem is that they ateroin
the order of millions (e.g. the number of indivithydhousehold, or firms in an economy). Therefinepuld

be invaluable to be able to understand the behawba full scale model simply by simulating it @astly
reduced scales. When the Buckingham Pi theoreppigcable, that is, when there are enough dimedipn
independent scaling variables in the system to afldie scalable dimensions, it is possible toqauistraints
on how such small scale versions must look. Thaydver, should not dispense from running some
simulations at a much larger scale, in order toveieether additional scaling effects are presetiténmodel,
possibly due to the discrete nature of some vagidlle leave the investigation of how to deal whigse issues

open for further research.
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Appendix

In this Appendix we demonstrate a method for degvihe formulae for the; based on solving a matrix
equation, which reflects the underlying need toesal set of simultaneous linear equations thattcanghe

exponents on the governing parameters. We statefiging a block matrix structure as in table Al.

Governing Parameters X;
Non-scaling Variables t; Scaling Variables,s
1=t | X=t Yor Sty | LT X =S
S

D1

Dimensions r by n-r matrix, T r by r matrix, S
Dr
T

?}2?:&22';35 n-r by n-r Identity matrix,| n-r by r matrix, P
Tlner

Table Al. Block structure of the Dimensional Matrix

The entries of the sub-matric€sandT in table 1 are the exponents of the dimensionshengoverning
parameters;. Note that the dependent variable is represemeith® left-most columrx: (equivalentlyts).
Also, if a governing parameter is dimensionlesss @gssible for non-scaling variables such as ymeyment
rates or the blocking probability in the Erlang rab¢l.e. ] = [t] = 1), the associated colunknwill only
have entries of zeroes in matfixIn this case, the governing parametehe dimensionless variable, im.=

Xk

Entries in matrice$ andP reflect the exponents of the governing parametens the expression for the
dimensionlesg; variables; once matriR is known, it is easy to obtain the formulae foe #h as we shall
explain. Then-r by n-r identity matrixl occupying the bottom left block associate a dinmressz; variable
for each non-scaling variabte while the matrixP is calculated by solving the implied set of simnkous
linear equations that constrain the exponents @fgtbverning parameters, as in equation (9). Thisbea

expressed succinctly as solving the following nxadiquation:

P=-@©"T) (A1)
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It is now clear why the scaling variables}{have to be (dimensionally) independent and spamumber of

dimensions (for matrigsto be full rank) — this is because thaeeds to be invertible to solve fer

In our job search model example, the matrix formeesented below (table A2), after solving fotnmaP.

Non-scaling Variables Scaling Variables
Duration of L New
Job open Number of Agrpi:(rzr;aél_ons vacancies glrgLT:tﬁ on
gueueQ | vacancies, | workers,N gte A per time- time
H P step,V Ime,
Workers 0 0 1 -1 0 0
Applications 1 0 0 1 0 0
Dimensions
Vacancies -1 0 0 0 1 0
Time 0 1 0 -1 -1 1
Dimensionless m 1 0 -1 -1 1 0
Variables T 0 1 0 0 0 1

Table A2. The Dimensional Matrix for the Applicat®model

The formulae for the dimensionless variables cam be deduced by reading the entries for the bottem

rows of Table 2. The entries are the exponentseofbverning parameters associated with each diordess

variable, and give equation (10) in the text.
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