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Abstract 

We provide a clarification of scaling issues in simulation models, distinguishing between sample size 

determination, discovery of emergent properties involving a qualitative change in the behaviour of the system 

at an aggregate level, and ‘true’ scaling, the dependence of the quantitative behaviour of the system at any 

given level of aggregation, to its size. Scaling issues arise because we want to understand what happens when 

we run one billion agents, without actually having to run one billion agents. We discuss how we can use the 

Buckingham Pi theorem, a key tool in dimensional analysis, to provide guidance on the nature and structure 

of scaling relationships in agent-based models.  
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1. Introduction 

The ability to scale up is increasingly considered an essential feature of agent-based (AB) models. Lisenko 

and D’Souza (2008), for instance, simulate Epstein and Axtell’s Sugarscape model (Epstein and Axtell, 1996) 

with one million agents, while Robert Axtell himself, in a TED talk, explicitly aims at modelling the economy 

with 150 million agents, anticipating a one-to-one map with the US economy (Axtell, 2011). This would in 

principle allow all the projected individual agents’ trajectories to differ, avoiding the distortions involved in 

having multiple copies of the same agent, as entailed by drawing the simulated population from a representative 

sample of the real population, with weights attached to each individual in the sample. At the same time, 

improvements in computer hardware and software architectures, in particular the advent of parallel 

computing1, make such goals increasingly within reach, while the excitement brought about by the ‘big data 

revolution’2 further raises expectations by making available the information necessary to calibrate such 

models. In addition, many economic variables stretch over orders magnitudes, with a small (potentially very 

small) number of entries having a disproportional importance in the economy. Examples are power law 

distributions of income and wealth, the size of cities and firms, stock market returns, trading volume, 

international trade, executive pay, etc. (see Gabaix, 2009 for a review of the literature). Power laws are relations 

of the type Y = kXα and are often represented as linear relationships on a log-log scale (log Y = c + α log X) 

which remain stable over several orders of magnitude (hence they are referred to as scale-invariant): zooming 

in or zooming out does not alter the picture.3 Modelling fat tails requires that rare categories are covered. This 

in turn requires either to scale up the model in order to allow for such rare categories, or to purportedly distort 

the underlying distributions to permit a small number of extreme cases in small populations.4 

Indeed, there are a number of motivations for running AB models on scales much smaller than a one-to-one 

map of the real world, and they are largely associated with the computational demands entailed with executing 

such full scale models. At best, the time required to run an AB model scales linearly with the number of agents 

involved. This can be seen by just considering the extra iterations across the group of agents that is necessary 

to cover the whole population. However, whenever interactions between agents are involved, for example, 

when each agent has to communicate with a subset of other agents, or the global information of the model is 

calculated from agent interactions e.g. during price formation in a market, combinatorial explosion can lead to 

super-exponential scaling of the execution time. Moreover, computational constraints such as the need to 

distribute such large amounts of information across computer cores and memory nodes, and the necessary 

communications across these cores and the memory hierarchy, can further reduce the simulation speed to a 

                                                           
1 See for instance Lysenko and D'Souza, 2008; Caron-Lormier et al., 2008; Coakley et al., 2012; Holcombe et al., 2013. 
2 The Economist (2010). 
3 By contrast, Gaussian densities rapidly decay away from the mean. The difference is highlighted by the expression ‘fat 
tail’, which applies to power law distributions: rare events are less rare, and extreme events are still possible. 
4 A crucial question in dealing with a model that is suspected to display power law behaviour is how many orders of 
magnitude need to be analysed to test if α remains constant: a typical case of sample size determination (see section 2.1). 
“As a rule of thumb, the scaling region should persist for at least three orders of magnitude on both axes for a reliable 
estimate of the critical exponent [α]” (Christensen and Moloney, 2005). 
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point where the time required to run full scale models becomes prohibitive. One may also need to consider the 

financial costs involved of building and maintaining such extensive computer hardware required to facilitate 

the simulation of full scale models.  

If a model has to be used by policy makers (e.g. at the Federal Reserve) or regulators (e.g. the United States 

Securities and Exchange Commission), a necessary requirement is that it can provide timely insight into the 

problem at hand and guidance on what to do. Models that take ‘too long’ to run and produce data that is ‘too 

large’ to analyse in the required time, are of limited interest for such users. But speed of execution is important 

also for academic research. Understanding of model behaviour often requires sophisticated and 

computationally expensive tools of sensitivity analysis (Saltelli et al., 2000, 2008). Robustness analysis –

checking whether relaxation or replacement of some of the assumptions lead to dramatic changes in model 

outcome– becomes unfeasible if a model takes too long to run. Estimation possibly involves millions of runs, 

at different values of the parameters (Grazzini and Richiardi, 2015; Tsionas et al., 2015). 

The above discussion suggests the importance of creating reduced scale models that can run at a fraction of 

the time of full scale models, much like engineers, architects and city planners build geometrically reduced 

scale models to test before building the real thing. Indeed, guidance from these disciplines can be brought to 

bear in producing reduced scale AB models in a rigorous and consistent manner. In particular, we show how 

we can employ the Buckingham Pi theorem, a key tool in dimensional analysis, to rewrite the model in terms 

of dimensionless parameters. This implies a relationship between the dimensional variables that, if respected, 

ensures the model behaviour remains the same no matter the scale (they are deemed similar in the engineering 

domain). As we shall see however, application of the Buckingham Pi theorem is not always possible; moreover, 

additional scale effects might arise due to the discretisation induced by small N. Whether these discretisation 

effects are of practical relevance depends on the characteristics of the system (such as how small are the values 

of discrete variables involved in the scaling relationship).  

As a preliminary step however, we wish to clarify some confusion about what scaling really is, and why it 

matters for modelling purposes. We distinguish scaling from emergence and sample size determination. 

Sample size determination points to increasing population size up to the point where some desired level of 

statistical significance is guaranteed, when analysing the model results. Emergence involves a qualitative 

change in the behaviour of the system that is a characteristic of the macro level and cannot be inferred by just 

looking at the constituent parts: an organism is different from the sum of its cells, or, as the Nobel prize-

winning physicist Philip Anderson wrote back in 1972, more is different (Anderson, 1972). Scaling refers to a 

quantitative change in the behaviour of the system, as measured by some statistics y, which occurs at any given 

level of aggregation as the size of the system S (including e.g. population size) changes: y = y(S). 

The remainder of the paper is organised as follows: section 2 elaborates on the distinction between scaling, 

emergence, and sample size determination; section 3 shows how to handle scaling issues using the Buckingham 

Pi theorem; section 4 offers an example of how to control for scaling effects in a simple AB model of job 

search; section 5 comes back to a queuing problem which displays scaling effects, that we introduce in section 
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2, and explains why the Buckingham Pi theorem cannot be applied in that setting; section 6 offers our 

concluding remarks. 

 

2. Needs for increasing population size 

2.1 Rare events. 

A first case when large-scale simulations are needed is when we are concerned with the stochastic variability 

of the simulation outcomes, particularly when rare events are concerned. Consider for instance the probability 

p of the occurrence of some event (e.g. a radical innovation) or of some individual trait (e.g. exceptional 

charisma), or a mean x (e.g. the mean income in the top 0.01% of the income distribution).5 Our question, in 

its basic form, is then how to select the population size so that the confidence interval of the statistics of interest 

at any given level does not exceed some chosen margin of error. Suppose for instance that we are interested in 

95% confidence intervals. As predicted by the Central Limit Theorem, both �̂ and �� are approximately 

normally distributed in sufficiently large populations.6 We can thus construct a confidence interval for �� using 

ME = z*SE, where ME is the margin of error, z is the z-score7 and SE is the standard error of the estimator. In 

the case of a proportion or probability, we have �� = 	
�(�

�)
� , and therefore �� = �	
�(�

�)

� . Solving for N 

gives 

�∗ = � �
���� �̂(1 − �̂). (1) 

Without prior knowledge of �̂, a conservative assumption is to calculate sample size for �̂ = 0.5. For instance, 

if ME is set to 0.005 (a confidence interval of 1 percentage point) and we require a 99% confidence interval, 

we get N* = 66,349. Supposing we can safely assume that �̂ is smaller than 5%, we can reduce our sample size 

to N* = 12,607. Of course, if we are interested in a rare occurrence we should also lower the accepted margin 

of error which, ceteris paribus, calls for an increase in the sample size.8 

In case of a population mean, we simply plug in the standard error of the mean, �� = �
√� 	
�(�

�)

� , where s is 

the standard deviation of the underlying variable of interest (e.g. income), from which we obtain9 

                                                           
5 Note that proportions are just particular cases of means, where the underlying variable is an indicator (a variable that 
can only take a value of 0 or 1). 
6 Here we assume that the underlying distributions do not change with population size, i.e. there are no “real” scaling 
problems (as defined in section 2.3). 
7 E.g. 1.645 for a 90% confidence interval, 1.96 for a 95% confidence interval, 2.58 for a 99% confidence interval. 
8 One could for instance specify the ME as a fraction of ��: ME = α ��. For instance, if we are interested in a property that 
is supposed to characterize one person in 10.000 (“the top 0.01%”), and we are willing to tolerate a 95% confidence 
interval equal to 1/10 of the predicted frequency (α = .05), we need a sample size of over 15 million individuals. 
9 With very small populations (i.e. N < 30), the normal approximation fails and the Student’s T distribution should be 
used, with the corresponding t-score. This slightly complicates the computation as sample size affects the t-score as well 
as N, via the degrees of freedom in the T distribution. 
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�∗ = � �
���� �. (2) 

Here we can’t avoid guessing a value for the standard deviation s, as there is no theoretical maximum value, 

but the guess can then be validated in the artificial data. 

This is how we should dimension sample size such that, at any point in time (in the stationary state), our 

statistics of interest are measured within given bounds from their theoretical level, whatever this is. Note that 

it might well be the case that the ‘true’ values of the statistics of interest are dependent on sample size itself (a 

case of scaling effects, as we will discuss in section 2.3): as long as we are able to put a reasonable upper value 

on the standard deviation, we will measure it with enough precision. Note also that the ‘true’ values could 

display autocorrelation: for instance, the proportion of the super-rich might be dependent on the business cycle. 

Hence, if we want to describe the behaviour of the system, a single measurement at a given point in time is 

likely to prove grossly inadequate, and (longitudinal) time averages should then be used (Grazzini and 

Richiardi, 2015). By extending the length of the observation window and averaging over a longer period of 

time, it is possible to improve on the level of precision attained. In principle, given enough simulated data, the 

statistics of interest can be estimated with any level of accuracy, for any sample size, even if displaying 

autocorrelation, as long as the statistics are stationary. However, as we have noted above, exploiting this 

property to excessively reduce sample size increases exposure to scaling effects. Similarly, if the model is 

ergodic (roughly speaking, this means that all simulated runs are alike10) we can average over multiple 

replications to improve on accuracy and/or reduce sample size (but see the caveats before). Finally, averaging 

over long periods of time or high numbers of replications is the only way to obtain measurements if systemic 

events are concerned: these are events that characterise the whole system (like a sudden collapse of economic 

activity, or an outbreak of an epidemic), and thus preclude the exploitation of individual variability at any 

given point in time for estimating the underlying probability distribution. The formulas above can then be used 

to have an initial guess of how many simulation periods or how many simulation runs will be necessary to 

estimate such systemic events at the desired level of accuracy. 

 

2.2 Emergent behaviour 

A second case when large-scale simulations are needed to fully understand the properties of a system is when 

repeated interactions between the agents qualitatively affect their behaviour, to a point where some new 

regularity emerges at an aggregate level. Emergent behaviour resides in the properties of the ensemble rather 

than of any individual state, and it arises when the environment interacts with the system to select the allowable 

states (Bar-Yam, 2004). We referred to the difference between cells and an organism previously, and another 

example is pedestrian movements. At small densities, pedestrian movements are determined by individual 

                                                           
10 See Grazzini and Richiardi (2015) for a more in-depth discussion of ergodicity and non-ergodicity issues in AB 
modeling. 
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preferences and aims, and they are largely unpredictable. At higher densities however, pedestrian movements 

become constrained by repulsive interactions, leading to the predictable dynamics of separate lanes of uniform 

walking direction in crowds of oppositely moving pedestrians, or oscillations of the passing direction at 

bottlenecks (Helbing et al., 2001). These dynamics are self-organised (there is no top-down coordination) and 

characterise the behaviour of the system only at an aggregate level: the crowd behaves as if it was a separate 

entity, with its own laws of motion which bear little resemblance to those of the individuals composing it. The 

same is true of the flocking of birds (which are not led in any way, even though they may appear to be), ants 

foraging for food (each follows a set of simple rules, but the colony as a whole acts in a sophisticated way), 

the growth of tumours (which elaborate sophisticated communication and decision-making), traffic jams on a 

motorway (even though all of the cars are moving forward, the traffic jam tends to move backwards), and the 

formation and scattering dynamics of insurgent militia groups fighting guerrilla wars (Bohorquez et al., 2009).  

Also, when there are multiple equilibria, achieving the necessary coordination to switch between equilibria 

might become increasingly difficult as sample size increases, causing an ergodic system to behave as if it was 

de facto non-ergodic (Grazzini and Richiardi, 2015). A case when this might happen is when social norms are 

involved: once a norm is established (e.g. wearing a tie in the workplace) it might be very difficult to change 

it, especially if it is shared by many individuals (e.g. many work interactions). At the micro level, each 

individual can be in one of many states, a property that is lost with aggregation. Another example is the 

behaviour of attendees at a public performance: with only a few people, everybody comfortably sits down, and 

those who stand up are kindly requested to return to their previous position and not to obstruct the view of 

others; as the number of participants increases however, the likelihood of this happening decreases, and in the 

end everybody has to stand up. 

In all these examples, emergence of a collective behaviour depends on density. The probability of observing 

an emergent phenomenon increases with density, generally following an S-shaped curve, with an extreme case 

being a step function around a deterministic density threshold. Often, this deterministic threshold is obtained 

asymptotically when the size of the system is infinite. For instance, a classic problem in percolation theory 

considers a regular lattice where each cell is occupied with probability p. Percolation is obtained whenever a 

cluster –a group of nearest neighbouring occupied cells– extends across opposite sides of the lattice, a property 

that can be assessed only at the macro level. In a finite lattice, for any occupancy probability p, there are some 

random configurations where the system percolates, and some others where the system does not percolate, 

hence there exists only a probability of percolation q: an S-shaped curve describes how the percolation 

probability q increases with the occupation probability p. The critical occupation probability (or density) pc 

can then be defined as a fraction τ of the possible configurations that percolate, where the remaining fraction 

1- τ do not percolate (a standard value for τ is .5). As the size of the lattice increases, the S-shaped curve 

becomes steeper, converging to a step function for lattices of infinite size: above a critical occupation 

probability the probability of percolation is 1; below the critical density, the probability is 0 (e.g. the best recent 

estimate is pc = 0.59274621 for two-dimensional infinite square lattices).  
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Figure 1: Percolation (spanning) probability against occupation probability (concentration), on finite square 

lattices of different sizes L. The lattice is viewed as a torus, so that percolation is to be understood as wrapping 

along either of the lattice dimensions. By fixing a value τ, one can find a sequence of values pL(τ ) for 

increasing lattice sizes L, approaching the critical threshold pc. Source: de Oliveira et al. (2003). 

This discussion exemplifies the difference between emergence and scaling: percolation is an emergent property 

of a system, which changes its qualitative behaviour. When a system is at the critical threshold, many quantities 

– the cluster number density, the average cluster size, etc. – are insensitive to the underlying lattice details, and 

depend only on the dimension of the system (1, 2, …, n dimensions, corresponding to a line, a plane or a 

volume etc.). As such, they are characterised by universal critical exponents.11 On the other hand, the critical 

occupation probability depends on the size of the lattice (and on other lattice details), and is therefore scale-

sensitive. This finally leads us to a discussion of scaling. 

 

2.3 Scaling issues 

A third case when one might consider running ‘large’ simulations occurs when the behaviour of the model 

quantitatively depends on its scale. In order to define scale, let (d1, d2, …, dr) denote a fundamental system of 

units, such as money, time, number of individuals and number of firms, while (x1, x2, …, xn) are quantities that 

are measurable with respect to this system, including parameters, dependent variables, and independent 

variables. The dimension of each xi, denoted as [xi], is then given by 

[��] =  �
!",$ �

!%,$ …   '!(,$ (3) 

for suitable exponents (α1,i, α 2,i, …, α r,i). For instance, the hiring rate is defined as persons hired per period, 

and thus has dimension NT-1, where N measures individuals and T measures time. A model is said to be 

invariant under a change in units  ) → +) ), j = 1, …, r, if  

                                                           
11 See for instance Christensen and Moloney (2005). 
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�� → +�
!",$+�

!%,$ …  +'!(,$��,   i = 1, …, n (4) 

for any (λ1, λ 2, …, λ r) > 0. This implies that any relationship of the type �� = ,(��, … , �-) between 

measurable quantities in the model satisfies the following scaling property (Zohuri, 2015): 

+�
!","+�

!%," …  +'!(,",(��, … , �-) = ,(+�
!",%+�

!%,% …  +'!(,%��, … , +�
!",.+�

!%,. …  +'!(,.�-) (5) 

For instance, a model of bank failures is scale invariant if the fraction of banks that become bankrupt remains 

constant when we multiply the number of banks in the system by a factor λ (i.e. if we change the units in which 

we count banks to 1/λ units). 

However, there are cases where a simple normalisation does not remove scale effects. An example is city 

dynamics, where many urban properties Y are described by scaling relations of the form Y = cNβ, where c and 

β are constants. Superlinear scaling (β > 1) is common with ‘social’ quantities (such as wages, or inventions), 

while urban infrastructures are generally subject to sublinear scaling (β < 1) (Bettencourt, 2013). 

Another example is the calculations of service-providing elements, as described by the Erlang loss model, a 

classical result in queuing theory. The model is commonly used by telephone system designers to estimate the 

number of lines, telephone circuits, telephone switching equipment or call centre staff (more generally: 

capacity) required to meet given quality standards, but can also describe the number of copies of a book a 

library needs to own in order to keep unmet requests under control, for instance.12 The model assumes that 

there are N homogenous servers working in parallel and no extra waiting space; customers that find all N 

servers busy upon arrival are blocked (lost). Under the further assumptions that customers arrive according to 

a Poisson process with rate ν and that service times are independent and exponentially distributed with mean 

1/µ, the steady-state probability p that a customer is blocked is given by the Erlang B formula13 

� =
+�
�!

∑ +�
1!��23

 (6) 

where N is capacity, i.e. the number of identical parallel resources such as servers, telephone lines, book copies, 

etc. and λ=ν/µ is the offered load. Note that λ is a dimensionless unit and it is equal to the mean arrival rate 

multiplied by the mean holding time.14 Figure 2 depicts the relationship between the offered load (λ) and 

capacity (N), for three different levels of the blocking probability p.15  

                                                           
12 We thank Dan Tang for having shared this example with us. 
13 The case when queuing is allowed is described using the Erlang C formula. 
14 In telephony the load unit is referred to as an erlang. 
15 See van Leeuwaarden and Temme (2009). 
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Figure 2. The Erlang B relationship between offered load λ and capacity N (number of servers), for different 

values of the blocking probability p. The smaller diagram zooms in for smaller values of N.  

 

The relationship is nonlinear: a higher load per server can be carried, ceteris paribus, when there are more 

servers. Said differently, there are increasing returns to scale at a system level. The relationship between λ 

and N tends asymptotically to linearity. However, the normalised statistics ‘offered load per server’ is still 

scale-sensitive for a large interval of N (figure 3).  

 

 

Figure 3. The Erlang B relationship between offered load per server λ/N and capacity N (number of servers), 

for different values of the blocking probability p. The smaller diagram zooms in for smaller values of N.  
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Whether scaling is an issue in practical applications where the system can in principle exhibit increasing or 

decreasing returns to scale, but tends asymptotically to constant returns to scale, depends therefore on the size 

of the real system. To continue with the queuing example, suppose the real world capacity is measured in tens 

or hundreds of thousands of servers. Then, a simulation which considers only 1,000 servers would provide a 

good approximation, in per server terms, if the blocking probability is not too low. However, if the real capacity 

of the system is measured in hundreds of servers, then further scaling down introduces a significant bias, which 

has to be taken into consideration.  

 

3. Scaling in a rigorous and consistent way: the Buckingham Pi Theorem 

3.1 Similitude and the importance of scaling AB models properly 

Engineers, architects and city planners often create reduced-scale models on which to test and perform 

experiments before building the real thing. Indeed, the topic is known as similitude, and the three main criteria 

under which the similarity of reduced-scale physical models to full-scale models is assessed are: geometric 

similarity (the lengths of components in the model have all been scaled by the same factor in all three spatial 

dimensions), kinematic similarity (the rates of change of components are all scaled by the same factor), and 

dynamic similarity (the ratios of forces acting on components, surfaces and fluids are constant). 

Building such reduced-scale models minimise the costs and time involved in constructing well-functioning 

full-scale systems. Insights gained by performing experiments on reduced-scale models are often invaluable – 

think of the importance of building structurally safe bridges and buildings, of constructing aeroplanes that are 

aerodynamically stable, and of designing cities with smoothly flowing traffic. Analogously, it might be 

desirable to keep an AB model to a small scale: we then need to understand how to consistently scale the 

model, in order to achieve the benefits of a large scale simulation without having to bear its cost. 

A danger that exists in AB modelling is the temptation, when wanting to change the scale of the model, to 

naively vary only the size of the population of agents and leave all other quantities and parameters in the model 

the same16. This is equivalent to building a reduced-scale model of an aeroplane by scaling down the length of 

the plane’s body whilst keeping the width of the wings at full scale. Clearly any experiments in an aerodynamic 

wind tunnel on such a scale model will not provide the necessary insight into the maximum load that the wings 

can support in a properly scaled aeroplane, and applying any information obtained in designing a full size 

plane would be downright dangerous! In the same regard, if policy makers and regulators applied insights 

gained from an AB model whose parameters have not been consistently scaled, it could have similar 

                                                           
16 The variation in the population size of agents is further complicated if the model contains more than one class of agent 
or aggregate grouping of agents.  For example, when scaling a model of health inequality such as in Wolfson et al. (2016), 
if one varies the number of people, how should one scale the number of neighbourhoods that the people live in? 
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catastrophic consequences. Returning to the finite lattice percolation model discussed earlier, if we consider 

the occupation probability as analogous to the number of agents in an AB model, increasing the number of 

occupied lattice points raises the likelihood that the system is in a percolating phase. However, if we want to 

build a larger scale model of the system that maintains the same probability of being in a percolating phase, it 

is necessary to scale other aspects of the model, such as increasing the size of the lattice (the number of lattice 

points). 

Also, when scaling up a population in an AB model by some factor α, it is not generally the case that all other 

parameters in the model should be multiplied by α as well – such transformations may move the model into a 

different phase of behaviour. So we are faced with a problem of how to consistently vary the numerous 

parameters that are often prevalent in AB models, in order to avoid the behaviour of the model changing merely 

because the inconsistent scaling of parameters has moved it to a completely different phase of the system. 

Fortunately, guidance from engineering disciplines can be brought to bear in scaling AB models in a rigorous 

and consistent manner. As discussed by Sterrett (2009), the general methodology that informs engineers on 

how to build reduced scale models in a consistent manner has been developed over centuries by many people 

including Newton. However it was only in 1914 that Buckingham made the formalism explicit, with his famous 

Pi theorem (Buckingham, 1914). It has since been made more mathematically rigorous by Langhaar (1951) 

and Palacios (1964), though Buckingham’s publication is normally cited in the engineering literature. The first 

time Buckingham’s Pi theorem was advocated for use in scaling AB models appears to be in Osgood (2009), 

who discusses many of the concepts in section 3 and 4 of this paper, although his focus is on reducing the size 

of the AB model for reasons of computational feasibility. Moreover, Sterrett (2015) claims that “it remains an 

open research question whether, and how, the concept of similar systems might be applied to… economics.” 

We provide an example in section 4, which demonstrates its use in an AB model of job search. 

 

3.2 Invariance of the real world to unit-systems and the Buckingham Pi theorem  

A key insight of the real world is that its properties are invariant to the systems of units that are used to measure 

them.17 For example, the properties of a structure like a suspension bridge should not depend on whether its 

length is specified in miles or kilometres, or whether the maximum mass it can carry is measured in kilograms 

or pounds. Mathematical and computational models that attempt to represent real world systems should also 

capture this property.  The Buckingham Pi theorem offers a way of exploiting the dimensionality of quantities 

in the model to re-specify it in a form that no longer depends on physical (dimensional) units such as time, 

length, money etc. By expressing the model and it’s parameters in a dimensionless form, the model becomes 

invariant to changes in the scales of dimensional units (i.e. seconds, metres, dollars). 

                                                           

17
 Note that we are not discussing the minimum size of the measurement scale i.e. the granularity or ‘resolution’ of the 

measuring apparatus, merely the unit that the measurement is reported in, so Mandelbrot’s (1967) famous remark about 
the length of the coastline of Great Britain depending on the length of the measuring stick is irrelevant. 
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The Buckingham Pi theorem claims the following. For any physical (dimensionally consistent18) relationship 

that is expressed as a function �� = ,(��, … , �-) where �� is the dependent variable and the other �� are n-1 

non-zero independent variables specified in r independent physical dimensions, the relationship can 

equivalently be written in terms of (n-r) dimensionless quantities πj in the form 4� = 5(4�, … , 4-
'), where 

4� is the corresponding dependent variable in the dimensionless form of the model. We shall see how to obtain 

the dimensionless variables 4) in the next subsection. 

Note that it is not necessary to know the form of the functions f or g, and that often the hardest part of the 

procedure is determining which variables �� (called the ‘governing parameters’) are relevant to the problem. 

The process of specifying the model in terms of dimensionless variables enables all the useful information 

relating the dependent variable of interest to the independent variables to be presented in the most efficient 

way, analogous to the method of Principal Components Analysis in Econometrics. In particular, the 

Buckingham Pi theorem allows to reduce the number of variables by the number of fundamental dimensions, 

from n to n-r, thus reducing the potential number of parameters to estimate and simplifying the calibration of 

such a model. 

From an engineer’s perspective, if we modelled a system at full scale with a relation �� = ,(��, … , �-), whilst 

the reduced-scale model has parameters and variables described by �6� = ,(�6�, … , �6-), then from 

Buckingham’s Pi theorem, we can express these equations as 4� = 5(4�, … , 4-
') and 4�6 = 5(4�6 , … , 4-
'6 ), 

respectively. We are now in a position to define two systems as similar whenever they have the same 

dimensionless variables i.e. 4� = 4�6, and thus behave in the same way. These two systems may have physical 

quantities such as length or oscillating behaviour with frequencies that differ by several orders of magnitude, 

however if they have the same 4� variables, they represent the same state of the system. Note that the choice 

of dimensionless parameters is not unique, with 4�
 also being a valid dimensionless variable for any non-zero 

rational number p. 

 

3.3 Finding the dimensionless π variables 

As Barenblatt (2003) argues, dimensional analysis alone is not usually sufficient to prove self-similarity and 

to find scaling laws. However, he also comments that “the basic difficulty always lies in finding an appropriate 

model, even a preliminary one. This is a matter of art, and no general recipe can be offered here. But when a 

researcher arrives at a particular model, and has the intention of working with this model, a certain general 

system of rules can be recommended,” (p. 91). It is our intention to describe this system of rules here. 

                                                           

18
 Dimensional consistency (or homogeneity) requires that all additive terms of an equation must have the same 

dimensions (if the left-hand side of an equation represents a velocity, the terms on the right-hand side must also have 
dimensions of [Length] / [Time]) in order to be physically meaningful. 



13 
 

Referring to our relation �� = ,(��, … , �-), if the mathematical form of f is known, then the governing 

parameters �� are the variables and parameters that appear in the equation, along with any initial and boundary 

conditions. If, on the other hand, f is not known, then “the governing parameters must be chosen on the basis 

of a qualitative model of the phenomenon, to be constructed by each investigator using his/her own experience 

and intuition as well as an analysis of previous studies,” (Barenblatt, p.91). 

In order to construct the dimensionless variables, it is necessary to choose r dimensionally distinct ‘scaling 

variables’ {sj} (also known as ‘repeating variables’) from the set {xi}. “It is preferable to select those… whose 

importance to the phenomenon being studied is most firmly established,” (Barenblatt, p.92). As the scaling 

variables sj are dimensionally distinct (independent), they must span all the r physical dimensions in the model 

{ Di}. In addition, the scaling variables must be dimensionally distinct, by which we mean that [sj] ≠ [sk]z for 

all j ≠ k and any number z.19  

Then, for each of the remaining n-r non-scaling variables ti from the set of governing parameters {xi}, a 

dimensionless variable πi is constructed by choosing non-zero rational numbers a1, a2, …, ar such that the 

dimensions cancel on the right hand side of the following equation: 

[4�] = [7�] ∙ [��]9" ∙ [��]9% ∙ … ∙ [�']9( (7) 

Note that there is a different dimensionless variable πi for each non-scaling governing variable ti.20 We use the 

convention that the first n-r governing parameters (x1, x2, …, xn-r) refer to the n-r non-scaling variables (t1, t2, 

…, tn-r) respectively, while the last r governing parameters (xn-r+1, xn-r+2, …, xn) refer to the r scaling variables 

(s1, s2, …, sr) respectively. 

After finding the expressions for all n-r dimensionless variables πi in terms of their corresponding non-scaling 

variable ti and the set of scaling variables {si}, we estimate the numerical values of {πi} by plugging in the 

estimated values of all the governing parameters {xi}, the physical variables of the model. This determines the 

state of the model in dimensionless form, while the relationship between the dependent dimensionless variable 

π1 and the independent dimensionless variables {πj≠1} can be discovered through simulation and experiment, 

                                                           
19 For example, if we represent the dimensions of variable xi by [xi], if xi = 30 km/hour, then by [xi] we mean Length ∙ 
Time-1. If the dimensions of a model are in terms of the three dimensions Length, Time and Mass, then each of these 
dimensions must appear in at least one of the three scaling variables’ dimensions {[sj]}. In our example, if [s1] = Length 
∙ Time-1, and the dimensions of s2 also only represent Length and Time, then [s2] ≠ Lengthu ∙ Time- u for any number u, 
although it is possible for [s2] = Lengthu ∙ Timev for any rational u, v, as long as u ≠ -v (so that [s2] is not merely [s1]z

 ). To 
complete this particular example, [s3] must involve Mass as s1 and s2 do not feature this dimension, while [s3] may include 
the other dimensions of length and time raised to any rational powers as well. 
20 For example, if the non-scaling variable t1 represents a force in the model, the unit of force is the Newton, which can 
be expressed in terms of SI units as kilograms ∙ metres ∙ second-2. In this instance, [t1] = Mass ∙ Length ∙ Time-2. If, in our 
example, the scaling variables had the following dimensions [s1] = Mass, [s2] = Length3 (e.g. s2 represents a volume), and 
[s3] = Length ∙ Time-1 (s3 represents a velocity), then by inspection we can see that a = -1, b = -2/3 and c = 2. In this case, 
we are left with [π1] = Mass0 ∙ Length0 ∙ Time0 = 1, i.e. π1 is dimensionless. This gives us the functional form for the 
dimensionless variable, π1 = t1 ∙ s1

-1 ∙ s2
-2/3 ∙ s3

2. Repeating this procedure to produce all n-r dimensionless variables πi 
allows us to express the model in dimensionless form. 
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observing how the state of the system changes as we vary the dimensionless variables. This captures the 

behaviour of the system in its most fundamental form. 

 

3.4 Using the Buckingham Pi methodology to scale up models 

Take a model at one scale M that is expressed in terms of governing parameters {xi} partitioned into scaling 

variables {si} and non-scaling variables {ti}, and the same model at another scale M’  that is expressed in terms 

of governing parameters {��6} partitioned into scaling variables {��6} and non-scaling variables {7�6}. They can 

be compared in terms of their dimensionless variables πi and π’ i respectively, to see if the two models are in 

similar states (i.e. 4� = 4�6 for all i). Moreover, if we know the physical quantities involved in M (so we know 

{ si} and {ti}), and we also have the scaling variables {��6} of model M’ , we can determine the non-scaling 

variables { 7�6} by equating each dimensionless variable 4� = 4�6 and solving for {t’ i}: 

7�6 = 7� ∙ :����6 ;
9" ∙ :����6 ;

9% ∙ … ∙ <�'�'6 =9(
 (8) 

This tells us the necessary values of the physical parameters that we must use in order to ensure that the model 

has been consistently scaled. A general overview to the practical aspects of this procedure can be found in 

Barenblatt (2003, p.92). 

We are also now in a position to see how the dependent variable x1 on the left-hand side of the original 

formulation x1 = f(x2, x3, …, xn) varies with scale. As Osgood (2009) suggests, for reasons of computational 

feasibility, we may perform a small scale AB model M whose output of interest is x1 (equivalently the non-

scaling variable t1). We can then determine the value ��6  (equivalent to the non-scaling variable 7�6 ) that we 

would obtain from simulating a larger (or full-scale) model using equation (8).  

There is a straightforward procedure involving some linear algebra to calculate the formulas for the 

dimensionless variables πi; this will be presented in section 4. We will then demonstrate how to apply this 

procedure by applying it to a simple AB model. 

It is important to note that, whilst these techniques are important in ensuring consistency when changing the 

scale of a model, there may still be discretisation effects at the smallest scale of AB model, when only a few 

agents are simulated. These are analogous to the notion of ‘incomplete similarity’ in the engineering domain, 

for instance in hydraulic modelling. Whilst it may be possible to scale down the geometric aspects of the model 

so that all lengths are reduced by a constant factor (geometric similarity), the properties of the fluid (e.g. 

viscosity and surface tension) and the properties of surface roughness or sediment size (e.g. in river bed 

modelling) may not be easy to scale down, and so are often not faithfully represented in the reduced-scale 

model.  
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Another issue, as Osgood (2009) warns, can occur when modelling heterogeneity within the agent population. 

If an agent can only exist in one of a finite number of states, the likelihood that there are no agents with a 

particular state increases as the agent population size is reduced; in this case, the heterogeneity of the model 

cannot be fully realised. However, on closer inspection, this is nothing more than the problem of sample size 

determination that we discussed in section 2.1: the sample size is insufficient for guaranteeing that the 

frequency of some particular state is different from 0 at the desired confidence level. 

Finally, note that if the goal is to scale up AB models to larger sizes rather than scaling them down, both the 

discretisation effect and heterogeneity issue becomes less significant (unless of course we also increase the 

number of possible discrete states). 

 

4. Applying the Buckingham Pi procedure to scale a simple AB job search model 

4.1 The model 

We apply the Buckingham Pi procedure to demonstrate consistent scaling of a simple AB job search model. 

This is one of the sample models included in the java-based JAS-mine AB modelling suite: a description of 

the model and the source code are available on the JAS-mine website.21 The model consists of N worker agents, 

who apply for job vacancies whenever they are unemployed. At each time-step, a number of new vacancies V 

are created and subsequently remain open for H time-steps. Then, each unemployed worker sends a number 

of job applications A per time-step. When it is time for the vacancy to close (H time-steps after it opened), an 

applicant is randomly accepted for the job, and all the other applications that the successful applicant has sent 

(to other vacancies) are removed from the system. In addition, the other applicants who are still unemployed 

are informed that they have been unsuccessful with their application for this vacancy. To simplify the model, 

employment relationships only last for a single time-step, after which the worker becomes unemployed and 

again proceeds apply to the available job vacancies. As such, each vacancy has a list of applicants, and each 

unemployed worker has a list of vacancies they have applied to. The model thus involves four independent 

dimensions: ‘Workers’, ‘Applications’, ‘Vacancies’ and ‘Time’.  

At time 0, there are no open vacancies, and all workers start as unemployed. The model then undergoes a 

transient phase where the number of open vacancies in the system linearly increases (at a rate of V new 

vacancies per period) until time τ = H, when the first vintage of vacancies closes and is processed. During this 

initial period, job applications also pile up in the system up until τ = H, when the employment rate jumps to 

its equilibrium level.  

Assume we are interested in modelling job queues Q, defined as the average number of applicants per open 

vacancy. This is our dependent variable, called x1 using the conventions in section 3. Q has dimensions 

                                                           

21
 http://www.jas-mine.net/demo/applications. 
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Applications ∙ Vacancies-1. Up to time τ = H, the average number of applicants per open vacancy is simply 

equal to N ∙ A / V (a constant number of new vacancies and new applications are added at each time-step, so Q 

remains constant).  After time τ = H, the job queue decreases as successful applicants withdraw their 

applications to other vacancies.  The equilibrium level Q* is reached at time τ = 2H, when the last vacancy to 

open during the initial period of total unemployment (and consequently having receiving more than the 

equilibrium number of applications), is finally closed.  

To use the Buckingham Pi’s procedure, as there are four independent dimensions, we must therefore choose 

four ‘scaling variables’ (s1, s2, s3 and s4) for the analysis.  These scaling variables cannot be dimensionless and 

must be linearly independent, spanning the space of all the four dimensions (in our case ‘Workers’, 

‘Applications’, ‘Vacancies’ and ‘Time’). Recall that these scaling variables si must be ones that are believed 

to have the greatest influence on the dependent variable x1, and should also be the variables that we explicitly 

wish to specify for each scale of the model. This is an easy choice in our simple model, where we have the 

current simulation time τ whose dimension is (obviously) Time, the number of new vacancies per time-step V 

with dimensions Vacancies ∙ Time-1, the number of applications an unemployed worker submits per time-step 

A with dimensions Applications ∙ Worker-1 ∙ Time-1, and the number of workers N with dimension Workers. 

The only other parameter in the model, the number of time-steps that a job vacancy remains open H, has 

dimension Time which is dimensionally dependent on the simulation time (both variables have the same 

dimension). H cannot therefore be a scaling variable si, and must be a non-scaling variable, which we label t2. 

Lastly, the only other non-scaling variable in this prescription is the dependent variable of interest, the Job 

Queue x1, which by convention is labelled as the first non-scaling variable t1. 

To solve for the dimensionless variables πi, we simply take the logarithm of equation (7), and remember that 

[πi] = 1, 

0 = log[ti] + a1 log[s1] + a1 log[s2] + ... + ar log[sr] (9) 

As the dimensions of the scaling variables si are linearly independent and the equation must hold for all i, 

constraints are placed on the values of the exponents a1, a2 and ar. More details on the derivation of the 

formulae for the πi are described in the Appendix. Applied to the job search model, we get  

π1 = Q ∙ N-1 ∙ A-1 ∙ V 

π2 = H ∙ τ -1 
(10) 

Each dimensionless variable π1 and π2 is associated with one non-scaling variable (Q and H respectively), and 

expressed as a combination of powers of the non-scaling variable and the set of scaling variables {si}, just as 

described by equation (7). The formulae for the dimensionless variables πi are specific to the choice of scaling 

variables {si} and the dimensionality of the dependent variable. Choosing a different dependent variable with 

the same dimensions as Q would produce the same formulae for the dimensionless variables πi, given the same 

scaling variable set. Moreover, changing the dependent variable would only affect the formula for π1. Changing 
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the scaling variables {si} to ones with different combinations of dimensions, on the other hand, will change 

the formulae for all dimensionless variables {πi}. 

 

4.2 Using the dimensionless variables to scale the Applications model 

Consider running the model at two scales M and M’ ; this entails two sets of (independent) governing 

parameters {N, A, V, τ, H} and {N’, A’, V’, τ’, H’ } respectively. We assume that M is computationally more 

feasible to run than M’ , i.e. M requires less computing time and/or memory, for example, because it involves 

fewer numbers of worker agents (N < N’). In order to infer the properties of M’  from simulations of M, the two 

versions of the model must be similar (defined in section 3.2 as meaning πi = π’ i). If this does not hold, then it 

is impossible to rule out a difference in behaviour of M’  compared to M as the two versions of the model are 

in a different phase-state. We therefore construct M’  so that it is similar to M by equating the dimensionless 

variables of M’  to those in M. This provides two additional constraints on the governing parameters {N’, A’, 

V’, τ’, H’ } of model M’ , as demonstrated in equation (11). 

Q ∙ N-1 ∙ A-1 ∙ V = π1 = π’ 1 = Q’ ∙ N’-1 ∙ A’-1 ∙ V’ 

H ∙ τ -1 = π2 = π’ 2 = H’  ∙ τ’ -1 
(11) 

 

We can use the formulae in equation (11) to solve for the dependent variable in the model M’ , in our case, the 

job queue Q’, as in equation (12): 

Q’ = Q ∙ (N’/N ) ∙ (A’/A ) ∙ (V/V’) (12) 

 

Thus we can determine how Q’ is related to the corresponding value Q, conditional on knowledge of how the 

parameters {N’, A’ and V’} compare to {N, A and V}. Note that the latter equation (12) seems to intuitively 

make sense; the job queue Q’ increases if we increase the number of workers N’ and the number of applications 

each worker makes A’, compared to parameters of the simulated version of the model (N and A respectively). 

Additionally, the job queue shortens if we increase the number of vacancies that open at each time-step V’. 

Note that no knowledge of the underlying processes (the functions f and g in section 3) has been used to derive 

these scaling relations, merely the dimensions of the relevant variables. 

We show the estimates of the equilibrium values of Q* for several scaled parameter sets in table 1, along with 

the average equilibrium values obtained by simulation Q. Note that as we are interested in the equilibrium, we 

do not include values for the simulation time τ, although we illustrate the typical evolution of Q through time 

by providing simulated time-series of Q(τ) in figures 4 and 5. 
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 Independent Variables (the model parameters) Dependent Variable 

Simulation 
Run (‘scale’) 

Duration of 
open 
vacancies, H 

Number of 
workers, N 

Applications 
per time-step, 
A 

New 
vacancies per 
time-step, V 

Estimated 
equilibrium 
job queue, Q* 

Realised 
equilibrium 
job queue, Q 

1 (scale M) 30 1,000 1 30 - 16.72 ± 0.16 

2 30 10,000 1 30 167.2 167.64 ± 0.50 

3 10 250,000 2 15,000 16.72 16.67 ± 0.01 

4 5 370,000 3 9,000 61.86 61.67 ± 0.05 

5 150 1,000 1 30 16.72 16.68 ± 0.07 

6 10 1,000 1 30 16.72 16.76 ± 0.30 

Table 1. Simulations of the Applications Model. The values of the parameters {H, N, A and V} and the 

estimated Q* and realised Q values of the equilibrium job queue for distinct simulation runs. The estimates 

Q* have been calculated using equation (12) and knowledge of the realised value Q for Simulation Run 1 

(corresponding to scale M).  

 

Note that there is no entry for the estimated job queue Q* in Simulation Run 1, as this is the baseline version 

of the model (corresponding to scale M) to which the other simulation runs are compared. The realised value 

of the job queue Q in this run, along with the other model parameters {H, N, A, V} are used in equation (12) 

in order calculate the predicted (‘estimated’) value of the job queue Q*, given the parameter sets {H’ , N’, A’, 

V’} – the new ‘scales’ M’  – of the other simulation runs. 

Simulation Run 2 is an example of inconsistent scaling, in the sense that by only increasing the number of 

agents, we are not scaling the system up as a whole, merely changing one of the model parameters and thereby 

effecting the behaviour of the model output – as seen by the fact that the realised equilibrium job queue Q has 

increased by the same factor as the number of agents. Indeed, equation (12) correctly predicted this new job 

queue value, as can be seen in the column for Q*. 

If we wanted to be able to scale the system up or down, while ruling out any change in behaviour caused by 

moving the system to a different phase-state (exhibited as a change in the dimensionless parameters π’ i of the 

system), we can use equation (10) to guide us. We enforce similarity of the scales by equating all the 

dimensionless parameters between the initial scale and the desired scale.  Having done this earlier to derive 

equation (12), setting Q’ = Q in this equation (12) gives the following relation: 

1 = (N’/N) ∙ (A’/A) ∙ (V/V’) (13) 

So knowing the change in scale of any two parameters from {N, A, V} fixes the change in scale of the third. 

We demonstrate this in Simulation Run 3, where we randomly chose a set of parameters to allow us to 

consistently scale up the Applications model from 1000 agents to 250,000 agents.  As can be seen in table 1, 
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the observed equilibrium job queue Q* of the simulation was 16.67 applications per vacancy, in close 

agreement with the predicted Q value of 16.72. 

In Simulation Run 4, we demonstrate the ability to estimate the job queue for a much more computationally 

intensive parameter set, involving 370,000 workers and the creation of 9,000 new vacancies at each time-step. 

The use of the Buckingham Pi methodology presented here allowed us to estimate the correct equilibrium 

value of the job queue, without having to endure the far greater computational costs involved in obtaining the 

value through simulation. We do, however, provide the result of the simulation as a cross-check. 

Simulation Runs 5 and 6 illustrate the power of the Buckingham Pi methodology in determining which 

parameters are not considered to affect the dependent variable. In this case, equation (12) suggests there is no 

dependence of the job queue Q on parameter H, the number of time-steps that a vacancy remains open. We 

test this by comparing Simulation Runs 5 and 6 to Simulation Run 1 and find there is indeed no effect on the 

realised equilibrium job queue value Q. 

We illustrate the time-series of the job queue Q in versions of the model that have been scaled consistently, 

(i.e. in engineering terms, they are similar) in figure 4. (Note that we ignore kinematic similarity for the time 

being, as we discuss the impact of changing parameter H next). 

 

Figure 4. The time-series of the job queue Q for simulations that have been scaled consistently, i.e. they are 

similar. 

 

Finally, we focus on the second dimensionless variable in the model, using equation (11) and the same 

procedures to derive the following equation for the duration of open vacancies: 

τ’ -1 = τ -1 ∙ (H/H’ ) (14) 
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This suggests that reducing the value of the duration for which vacancies remain open to a third of the initial 

scale (i.e. H’  = H/3) will triple the ‘speed’ of processes in the system (i.e. 1/τ’  = 3/τ), as τ is the simulation 

time so τ -1 is the rate of evolution in the system. We illustrate this behaviour by comparing the time series’ of 

the job queue Q in Simulation Runs 1 and 6 in figure 5.  We also provide an example of slowing the speed of 

processes by increasing H by a factor of 5 in Simulation Run 5. 

 

Figure 5. The time-series of the job queue Q for Simulation Runs 1, 5 and 6 are geometrically similar, but not 

kinematically similar. The parameter controlling the number of time-steps that a job vacancy remains open H 

influences the speed of the convergence to the equilibrium job queue. 

 

To summarise, without any detailed knowledge of the underlying processes and structure of the model, the 

procedure we have outlined in sections 3 and 4 has allowed us to correctly predict the dependent variable – the 

job queue Q – of a simple AB job search model, for a variety of different parameter sets (‘scales’) based on 

the simulation results from one simulation using a reference parameter set.  We have been able to understand 

the influence that the independent variables had on the dependent variable, and also the relationships between 

the independent variables.  While Osgood (2009) also applies this procedure on an AB epidemiological model 

to good effect, we cannot be sure it will always work so successfully. Indeed, Barenblatt (2003) warns that 

“the situation when everything including scaling laws can be obtained through dimensional analysis alone is 

in fact very rare,” (p. 69).   

 

5. A case when the Buckingham Pi theorem cannot help with scaling: the Erlang model 

In section 2.3 we described the Erlang B queuing model, as an example where the behaviour of the system (the 

blocking probability p) depends on the size of the system (the number of servers, N). One might wonder if the 

Buckingham Pi theorem can offer some guidance on how the model scales, without knowing the exact scaling 
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relationship, equation (6).  After all, it is quite unlikely that a mathematical expression for a relationship 

between aggregate variables can be derived in an AB model. However, at a closer inspection it is clear that the 

Buckingham Pi theorem cannot be applied in this setting.  

The model, in its compact form, has n = 3 variables: the blocking probability p, the parameter measuring the 

offered load λ, and the number of servers N, and only one dimension, Servers.  From these 3 variables, we 

need to select a scaling variable, however given that both p and λ are dimensionless parameters, they must be 

non-scaling variables (t1 and t2 using the labelling conventions from section 3). The number of servers N, must 

therefore be used as the scaling variable (s1 by convention of section 3). Equation (7) then gives us the formulae 

[4�] = [�] ∙ [�]9  

[4�] = [+] ∙ [�]>  
(7) 

 

However, in order for the right-hand sides of both expressions to be dimensionless, the exponents a and b have 

to be equal to zero. Thus, no scaling variables show up in the π terms – indeed, p and λ are already 

dimensionless π terms. There is no room to manoeuvre: the model has no variables that can offset the effect 

of N on the model output. 

Specifying the model in terms of the arrival rateν (the parameter of the Poisson distribution) and the (inverse 

of the) mean call duration µ (the parameter of the negative exponential distribution) does not help either. Now 

the number of variables is equal to n = 4 (p, ν, µ, Ν) and the number of dimensions has increased to r = 3 

(Servers, Calls and Time); hence, three dimensionally independent variables are required as scaling variables. 

However, we cannot use both ν and µ as scaling variables because they have the same relative dimensions 

(Callsk ∙ Time-k for k = ±1) and so are not dimensionally independent. Solving for the equations nonetheless 

simply restates the definition of the offer load λ: π 2 = λ = ν/µ. 

 

6. Conclusions 

We defined scale effects as a situation in which some outcome of interest y depends on the size of the system 

S, and we suggested a way in which this dependency can be modelled even without knowing the explicit 

functional form y = y(S). This involves the ‘nondimensionalisation’ of the system, whenever possible, using 

the Buckingham Pi theorem. The theorem suggests to look at transformations of the outcome variables of 

interest that are invariant to scaling, and suggests a way to scale the system consistently. Given its simplicity, 

the Buckingham Pi theorem is a very general and powerful result, and it provides necessary conditions for 

scaling an AB model from one ‘size’ (set of parameters) to another in a way that guarantees similarity between 

the scales. If two versions of a model with differing scales are not deemed similar in the engineering sense, 

then it should not be surprising if their behaviour differs. Moreover, the Buckingham Pi framework provides 
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valuable insights into the nature of the scaling issue even when the theorem cannot be applied, as in the Erlang 

B example.  

However, one might ask why the scaling parameters (e.g. the number of agents, the size of the simulated world, 

etc.) are not simply treated as any other parameter of the model (such as behavioural parameters). This would 

entail applying the tools of sensitivity analysis to understand the effects of the scaling parameters on the model 

outcome, in exactly the same way we do for the other parameters: by simulating the model for different 

parameters values. The answer is, obviously, that in many cases it is computationally too costly to run the 

necessary number of simulations with realistic values of the parameters. While we might be able to put limits 

on the admitted values of behavioural parameters, they remain intrinsically unknown (hence the interest in 

estimating them). On the other hand, often we know the ‘real’ value of the scaling parameters already; we do 

not even need to estimate them and can simply apply them in the model. The problem is that they are often in 

the order of millions (e.g. the number of individuals, household, or firms in an economy).  Therefore, it would 

be invaluable to be able to understand the behaviour of a full scale model simply by simulating it on vastly 

reduced scales. When the Buckingham Pi theorem is applicable, that is, when there are enough dimensionally 

independent scaling variables in the system to span all the scalable dimensions, it is possible to put constraints 

on how such small scale versions must look. This, however, should not dispense from running some 

simulations at a much larger scale, in order to see whether additional scaling effects are present in the model, 

possibly due to the discrete nature of some variable. We leave the investigation of how to deal with these issues 

open for further research. 
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Appendix 

In this Appendix we demonstrate a method for deriving the formulae for the πi based on solving a matrix 

equation, which reflects the underlying need to solve a set of simultaneous linear equations that constrain the 

exponents on the governing parameters. We start by defining a block matrix structure as in table A1. 

 

 

Governing Parameters, xi 

Non-scaling Variables, ti Scaling Variables, si 

x1 = t1 x2 = t2 … xn-r = tn-r 
xn-r+1 = 

s1 
… xn = sr 

Dimensions 

D1 

r by n-r matrix, T r by r matrix, S … 

Dr 

Dimensionless 
Variables, πi 

π1 

n-r by n-r Identity matrix, I n-r by r matrix, P … 

πn-r 

Table A1. Block structure of the Dimensional Matrix.  

 

The entries of the sub-matrices S and T in table 1 are the exponents of the dimensions on the governing 

parameters xi. Note that the dependent variable is represented on the left-most column, x1 (equivalently, t1). 

Also, if a governing parameter is dimensionless, as is possible for non-scaling variables such as unemployment 

rates or the blocking probability in the Erlang model (i.e. [xk] = [tk] = 1), the associated column k will only 

have entries of zeroes in matrix T. In this case, the governing parameter is the dimensionless variable, i.e. πk = 

xk. 

Entries in matrices I and P reflect the exponents of the governing parameters xi in the expression for the 

dimensionless πi variables; once matrix P is known, it is easy to obtain the formulae for the πi, as we shall 

explain. The n-r by n-r identity matrix I occupying the bottom left block associate a dimensionless πi variable 

for each non-scaling variable ti, while the matrix P is calculated by solving the implied set of simultaneous 

linear equations that constrain the exponents of the governing parameters, as in equation (9). This can be 

expressed succinctly as solving the following matrix equation: 

P = - (S-1 ∙ T)T (A1) 
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It is now clear why the scaling variables {si} have to be (dimensionally) independent and span the number of 

dimensions (for matrix S to be full rank) – this is because the S needs to be invertible to solve for P.  

In our job search model example, the matrix form is represented below (table A2), after solving for matrix P. 

 

 

Non-scaling Variables Scaling Variables  

Job 
queue, Q 

Duration of 
open 
vacancies, 
H 

Number of 
workers, N 

Applications 
per time-
step, A 

New 
vacancies 
per time-
step, V 

Current 
simulation 
time, τ 

Dimensions 

Workers 0 0 1 -1 0 0 

Applications 1 0 0 1 0 0 

Vacancies -1 0 0 0 1 0 

Time 0 1 0 -1 -1 1 

Dimensionless 
Variables 

π1 1 0 -1 -1 1 0 

π2 0 1 0 0 0 -1 

Table A2. The Dimensional Matrix for the Applications model 

 

The formulae for the dimensionless variables can now be deduced by reading the entries for the bottom two 

rows of Table 2. The entries are the exponents of the governing parameters associated with each dimensionless 

variable, and give equation (10) in the text. 

 

 


