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1 Introduction

This paper introduces new ways of thinking about demand for indivisible goods, and
obtains new results about the existence of competitive equilibrium.1

“Demand types”
Our first key idea is to classify economic agents’ individual and aggregate valuations

into “demand types”. A “demand type” is defined by a list of vectors that give the
possible ways in which the individual or aggregate demand can change in response to a
small generic price change. These vectors are analogous to the rows of a Slutsky matrix;
with indivisibilities the dimensionality is low enough that we can characterize a class of
valuations globally in this way.

So the vectors defining a “demand type” specify the possible comparative statics of
any demand of that “type”, and thus much of what economists think important about
valuations. For example, a purchaser of lenses and spectacle frames who is interested
in having spare pairs might always buy in the ratio 2:1, so always increases or reduces
her demand for lenses and frames in this ratio, whatever the individual prices of the
goods. We will describe any such valuation as being of “demand type ±{(2,1)}”. As
another example, a consumer who views apples and bananas as substitutes would have
preferences of “demand type ±{(1,0),(0,1),(-1,1)}” if, whenever prices change slightly,
the bundle she chooses only ever changes in the direction of adding or subtracting an
apple, or of adding or subtracting a banana, or of substituting one piece of one kind of
fruit for one piece of the other kind.2

Our classification is parsimonious. For example, the “type” that comprises all possi-
ble substitutes preferences for indivisible goods is defined by the set of all vectors with
at most one positive integer entry, at most one negative integer entry, and all other en-
tries zero; the “type” that is all complements preferences for indivisible goods is defined
by the set of all vectors in which all the non-zero entries (of which there may be any
number) are integers of the same sign; the class of all “strong substitutes”3 preferences
for n goods is a “demand type” with just n(n+ 1) vectors.

Our classification clarifies the relationships between different classes of preferences.
For example, our “demand types” descriptions show clearly why the conditions for three
or more indivisible goods to all be (ordinary) substitutes are far more restrictive than
the conditions for them to all be complements–although they are, of course, symmetric
in the two-good case.

Our classification is also easy to work with, and very general. It always permits
multiple units of each good; the agents can include sellers, buyers, and traders who can
both buy and sell; and we will see that an aggregate valuation retains the “type” of the

1Baldwin and Klemperer (in preparation-c) shows our techniques also help analyse demand for
divisible goods. We assume, as is most common in the indivisible-goods literature, that preferences are
quasilinear, so there is no distinction between compensated and uncompensated demand.

2For example, in an auction in which goods’ characteristics suggest natural rates of substitution,
bidders can be asked to express preferences that come from the corresponding “demand type”. Indeed
the original version of the Bank of England’s Product-Mix Auction had one-for-one substitution built
into its design (see Klemperer, 2008, 2010).

3See Section 3.2: Milgrom and Strulovici’s (2009) “strong substitutes” generalised many existing
valuation structures.
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individual valuations it is based on. The classification also applies to matching models;
in this case, the demand type is just the set of possible coalitions.

Moreover, using “demand types” leads to powerful new results:

Equilibrium existence
We give a simple necessary and sufficient condition, which generalises existing results,

about whether or not competitive equilibrium always exists, whatever is the market
supply, if all agents’ valuations are drawn from a given class of valuations (i.e., are of a
specific “demand type”).

Our condition can easily be checked using the determinants of sets of the vectors in
the “demand type”. So we can quickly see whether any demand structure guarantees
equilibrium existence. Several well-known results are easy special cases. Moreover, our
results demolish the popular perception that the existence of equilibrium with indivisible
goods depends on substitutes valuations (or re-packagings of goods for which valuations
are substitutes). Indeed every demand type for which equilibrium is guaranteed can be
obtained as a basis change of a demand type involving only complementary relationships
(and for which equilibrium is also guaranteed)–and the corresponding result is not true
for substitute preferences.

Our geometric methods also give beautiful answers to whether or not competitive
equilibrium exists for any market supply, for a specific set of agents’ valuations, when
they are not all drawn from a “demand type” for which existence is always guaranteed.
These answers are also easy to apply.

In particular, we will show how the existence of equilibrium is related to the number
of price vectors at which more than one agent is indifferent between more than one
bundle. As an elementary illustration, suppose a hotel has two bedrooms. Paul’s family
would like both or neither. Elizabeth and her partner want at most one. We will see
that in this particular case there are at most two price vectors at which both Paul and
Elizabeth are indifferent between more than one bundle, and that competitive equilib-
rium exists for valuations such that there are exactly two such prices. For example,
imagine Paul is indifferent between paying £100 for both rooms, and looking elsewhere.
Elizabeth is prepared to pay up to £30 for the smaller room, or £60 for the larger room.
There are thus exactly two pairs of prices, (£30, £70) and (£40, £60), for the smaller
and larger rooms respectively, such that both Paul and Elizabeth are indifferent between
more than one option (Paul between taking neither room and both rooms, and Eliza-
beth between taking neither room and the one room she considers good value). And as
predicted, competitive equilibrium exists: there exist prices such that demand exactly
equals supply. (Indeed any pair of prices that exceed £30 for the smaller and £60 for
the larger, but add to less than £100, will clear the market). However, suppose Paul is
prepared to pay only £70 for the rooms. Now there is just one pair of prices (£20,£50)
such that both Paul and Elizabeth are indifferent between more than one option (Paul
between both rooms and neither, and Elizabeth between the two rooms). And we can
check there exists no competitive equilibrium for these valuations: at any prices at which
Paul is prepared to take both rooms, Elizabeth will also demand a room.4

The geometric objects we study, as described below, contain precisely those points
at which an agent is indifferent between multiple bundles. So a simple count of the

4Section 5.3 explains this example in detail.
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number of intersection points of these geometric objects often suffices to determine
whether competitive equilibrium exists!

Detailed description of the paper
The reason our “demand types” are a mathematically convenient way to categorize

valuations is that the vectors they comprise describe how price space is divided into
the different regions in which an agent demands different bundles. This division creates
precisely the geometric structures studied in “tropical” geometry.5 So we can apply
the tools of convex and tropical geometry. The duality between the geometric object
representing a valuation in price space, and the geometric object corresponding to the
same valuation in quantity space, is particularly fruitful.

So we begin, in Section 2, by translating some existing mathematics literature into
economics. We describe the properties of a “tropical hypersurface”, a geometric object
containing price vectors at which the agent is indifferent between two or more bundles.
The economic interest is that these are the prices at which the agent’s demand changes.
Moreover, we observe that any geometric structure of this kind corresponds to a valua-
tion function, so we can develop our understanding of demand by working directly with
these geometric objects; we believe this is the first paper to do this. We then explore
duality for indivisible demand.

Section 3 defines a “demand type” using the set of vectors describing the ways in
which the bundles demanded by the agent change with prices. These are associated
in a simple geometric way with the tropical hypersurface. It is then elementary to
check whether a demand type is, for example, substitutes, or complements, or “strong
substitutes”, or “gross substitutes and complements”, etc. Importantly, the “demand
type” of the aggregate valuation of multiple agents is simply the union of the vectors of
the individual “demand types”.

Section 4.1 therefore turns to aggregate valuations and competitive equilibrium for
“demand types”: whether or not equilibrium exists depends on the nature of the in-
tersections of agents’ tropical hypersurfaces, and in particular on their “multiplicities”.
So we prove that equilibrium always exists for any set of agents who all have concave
valuations of a given “demand type” on n goods, if and only if every subset of n of the
“type’s” vectors has determinant 0 or ±1 (plus an additional condition if the demand
type’s set of vectors is in fewer than n dimensions).

Our necessary and sufficient condition on demand types is easy to check. We simply
find the demand type of each individual agent separately, and it is then obvious whether
or not the demand type of their aggregate satisfies the criterion. By contrast, Bikhchan-
dani and Mamer’s (1997) and Ma’s (1998) conditions for existence of equilibrium for
a set of agents need to be checked against every possible combination of agents–this
seems both less practical and to give less insight into why agents’ valuations do or don’t
permit equilibrium.

5Tropical geometry is a branch of algebraic geometry recently developed by, among others, Mikhalkin
(2004, 2005). We believe it has not previously been applied to economics. Goeree and Kushnir (2012)
have used convex geometry (see, e.g., Rockafellar, 1970), on which tropical geometry builds, in a different
context, while Richter and Rubinstein (Forthcoming) have shown the economic applicability of a more
general and abstract definition of convexity. However, Danilov and Koshevoy and their co-authors’
methods of discrete convex analysis have closer connections to ours (see, in particular, Danilov et al.,
2001, Danilov et al., 2003 and Danilov and Koshevoy, 2004), as we discuss later in the introduction,
and in detail in Section 4.1.
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Our sufficient condition yields a class of results, each stating that equilibrium always
exists when every individual valuation has a certain property. An example of such a
result is that equilibrium always exists when every agent’s valuation is “strong substi-
tutes”. This specific result is not new (see Milgrom and Strulovici, 2009), but it follows
immediately from our theorem, as do others, such as some in Kelso and Crawford (1982),
Sun and Yang (2006), Hatfield et al. (2013), and Teytelboym (2014), and extensions of
many of these.

New economic properties that guarantee equilibrium are also easy to generate. For
example, we exhibit a “demand type” which involves only complementarities and, more-
over, which is not related (via any basis change) to any set of preferences for substitutes.

Because our condition is also necessary, we can quickly check whether equilibrium
will always exist if agents’ valuations are of any particular demand type. It follows
easily, for example, that with (multiple units of) three or fewer goods, equilibrium
always exists if and only if goods are either “strong substitutes” or a basis change
of strong substitutes.6 (However, this is not true with four or more distinct goods.)
Furthermore, our geometric approach immediately provides an example of failure of
equilibrium whenever our condition fails.

This theorem is closely related to the work in a remarkable series of papers by Danilov
and Koshevoy and their co-authors. In particular, Danilov et al. (2001) provide a
sufficient condition for equilibrium, which is mathematically very similar to our sufficient
condition. However, our concept of “demand types” shows how this condition can be
applied–for example, none of the papers listed above, whose equilibrium existence results
are obvious corollaries of our theorem, present their results as applications of Danilov et
al., since the latter’s relevance was not clear. Our “demand types” also illuminate the
condition’s economic meaning for individual agents and, moreover, they make clear the
sense in which the same condition is also necessary for equilibrium, which is not proved
in Danilov et al. (2001).7

Finally, Section 5 shows that our methods, unlike Danilov et al.’s, also yields addi-
tional existence results of a quite different kind, namely about when combinations of
specific valuations always yield equilibria (as distinct from when any set of valuations
from some class always yield equilibria):

Tropical hypersurfaces can be understood as transformations of “ordinary” geometric
objects, and versions of “ordinary” intersection theory apply tropically. In particular,
there is a tropical version of Bézout’s classic theorem that the number of intersections
of two curves, taking into account “multiplicities” such as tangencies, is equal to the
product of the degrees of their defining polynomials.8 Since, we will see, failures of

6Observe that our necessity result contrasts with “necessity” results of the kind given in several of
the works listed above, which show only that equilibrium always exists if all agents’ valuation functions
have a certain property, but may fail if just one valuation function does not.

7We especially thank Gleb Koshevoy for very helpful discussions. We discuss the relationships
to, and other distinctions from, Danilov and Koshevoy and their co-authors’ work in Section 4.1.
Analysing and interpreting our concept of “demand types” in price space allows us to develop economic
implications further than they do, since they almost exclusively study quantity space. Moreover, though
our techniques are novel, they are more straightforward than theirs. However, their work deserves far
more attention than it has thus far received.

8For example, in “ordinary” geometry, two lines intersect once (possibly at infinity). A quadratic
and a line intersect twice including intersections with complex coordinates (and counting intersections
at infinity, and double-counting tangencies). Two quadratics intersect four times (correctly counted),
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competitive equilibrium correspond to multiplicities, we can therefore often determine
the existence or failure of equilibrium by simply counting the intersections of the tropical
hypersurfaces!

Furthermore, even when this count does not suffice, our methods yield a recipe for
determining whether or not equilibrium always exists for a given set of individual agents’
valuations (for any possible market supply). Moreover, our recipe requires checking the
properties of the valuations at only a finite collection of prices, whose number we bound.

Section 6 presents applications: Sections 6.1–6.2 observe that our model encompasses
classic models such as Kelso and Crawford (1982), Hatfield et al (2013), and cycles of
complements. This clarifies the relationships between these papers, reveals how they can
be extended, and shows that their equilibrium-existence results are immediate special
cases of ours. Section 6.3 uses the fact that equilibrium properties are unaffected by
basis changes to show yet more results are easy corollaries of our work. Section 6.4,
by contrast, exhibits a new, purely-complements, demand type for which equilibrium is
guaranteed, but which is not a simple basis change of any standard demand type.

Section 6.5–6.6 notes that our approach yields new results about when stable matches
exist in matching models, not only in the well-studied bipartite case, but also for more
general multi-agent matchings, and has additional applications to the theory of an in-
dividual agent’s demand.

Finally, Section 6.7 observes that our geometric techniques can develop extensions
to the Bank of England’s “Product-Mix Auction”.9 Our methods show what kinds of
bids are needed to represent different kinds of preferences, analyse the implications of
different restrictions on bids, reveal how to efficiently solve for equilibrium (and when
it exists), etc.

Section 7 concludes. Appendix A contains proofs of results in the text.
This paper has been written for economists. Our ideas (and the economic context)

have been translated for a mathematical audience by Tran and Yu (2015), and mathe-
maticians may find it easier to read that paper first.10

etc.
9Bidders in these auctions make sets of either/or bids for alternative objects. The Bank of England

represents these bids geometrically as sets of points in multi-dimensional price space.
The then-Governor of the Bank (Mervyn King) told The Economist that the Product-Mix Auction

“is a marvellous application of theoretical economics to a practical problem of vital importance to
financial markets”; an Executive Director of the Bank described it as “a world first in central banking”,
and “potentially a major step forward in practical policies to support financial stability”; and current-
Governor Mark Carney announced plans for greater use of the auction, and introduced an updated
version endogenising total quantity and permitting more dimensions (i.e., more goods)–see Bank of
England, 2010, 2011, Milnes, 2010, Fisher, 2011, Fisher et al., 2011, and The Economist, 2012.

(In principle, of course, the loans that the Central Bank auctions are almost continuously divisible,
but we can use some of our same indivisible-good techniques to analyse this auction.)

10In addition to providing a mathematical exposition of our work, they also give an additional proof
(via integer programming) of theorem 4.2.
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Figure 1: A simple tropical hypersurface (TH). The bundle demanded on each side of
the TH is labelled.

2 Representing Indivisible Demand Geometrically

2.1 Assumptions, and Tropical Hypersurfaces (THs)

There are n goods, which come in indivisible units. Each agent has quasilinear utility,
with valuation function u : A → R on bundles in a finite domain A ( Zn.11 We make
no further restrictions on the domain A; it need not be discrete-convex,12 and it may
include negative bundles so agents can sell as well as buy. So at a price vector p ∈ Rn,
the agent demands

Du(p) := arg max
x∈A

{u(x)− p.x}.

We will be particularly interested in the prices at which demand changes, that is,
those prices at which the agent is indifferent among more than one bundle, namely the set
of p for which #Du(p) > 1. This set (with some additional structure–see Definition 2.1)
is known as a “tropical hypersurface” (TH).13 We will see that we have an essentially
perfect correspondence between THs and concave valuation functions (Theorem 2.7),
but believe ours is the first paper to use THs in economics.14

2.2 The Structure of Tropical Hypersurfaces

Fig. 1 shows a simple example of a TH. The agent’s valuations are u(0, 0) = 0,
u(1, 0) = 5 and u(0, 1) = 4. So it demands a unique bundle in each of the three unique
demand regions (UDRs), but switches between bundles along the three line segments,
which together form the TH. In general, a TH is made up of (n− 1)-dimensional linear
components, which we call facets, and which separate the n-dimensional UDRs from each

11That is, utility is linear in money (with no budget constraint): utility from bundle x at prices
p is u(x) − p.x. We assume different units of the same good always have the same price (which
can be negative)–we can, of course, model different units of a homogeneous good which are priced
independently by treating them as different goods.

We initially restrict to a single agent. We will later consider a finite set of agents with valuations uj

on domains Aj , j = 1, . . . ,m, and will then write A for the “aggregate” domain, {
∑

j x
j | xj ∈ Aj}.

12A is discrete-convex if all the integer points in its convex hull, ConvA, are in A, that is, (ConvA)∩
Zn = A.

13See Mikhalkin (2004) and others. In fact, our TH is “upside down” compared with Mikhalkin, who
considers the non-smooth locus of p 7→ maxx∈A{x.p− u(x)}, but his convention is not universal, and
our definition seems the most natural for economics.

14We developed these ideas first in our working paper, Baldwin and Klemperer (2012).
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other.15 A facet is defined to be closed, i.e., to contain its boundary; that boundary is
itself made up of finitely many (n− 2)-dimensional linear components, and this pattern
continues on down the dimensions.16 Any geometric object satisfying this description is
called a polyhedral complex. It is also rational if, as will always be the case for us, each
of its components can be defined by (linear) equations with integer coefficients. The
k-dimensional components are called k-cells. So, for example, the TH of Fig. 1 contains
three 1-cells, and one 0-cell (where the 1-cells meet). Observe that each 1-cell is the
complete set of prices where two specific bundles are demanded, while the 0-cell is the
unique price where all three possible bundles are demanded. More generally, any k-cell
is the set of prices at which a particular set of bundles is demanded. Appendix A.1.1
gives a full, formal, taxonomy of THs and their economic interpretation.

Demand is constant in each UDR, since demand cannot switch from one unique
bundle to another without passing through a price at which demand is non-unique. At
a price in a facet, the agent is indifferent between the bundles x and x′ demanded in
the UDRs on either side of the facet. That is, u(x)− p.x = u(x′)− p.x′ for every p in
any facet, F . So p.(x′ − x) is a constant for p ∈ F , and the vector x′ − x is therefore
normal to F . We call the greatest common divisor of the entries of x′− x the weight of
the facet, w(F ). So 1

w(F )
(x′ − x) is a “primitive” integer vector (the greatest common

divisor is 1), and it points from the UDR where x′ is demanded to the UDR where x
is. But since F is (n− 1) dimensional, there is a unique primitive integer vector normal
to F and pointing from the UDR of x′ to that of x. So if we know F , w(F ) and x, we
can derive x′. More generally, therefore, if we know the demand in any one UDR, we
can work out the demand in every UDR, if we also know (1) all the facets (i.e., all the
prices at which demand is non-unique), and (2) all the facet weights–and (1) and (2)
are precisely the information that defines a TH:

Definition 2.1 (Mikhalkin, 2004, Example 2). The tropical hypersurface Tu associated
with any valuation u is the weighted rational polyhedral complex such that:

(1) its underlying set is {p ∈ Rn| #Du(p) > 1};
(2) the weight wu(F ) of the facet F is the integer defined by wu(F )vF = x′ − x, in

which x′ is demanded in the UDR on one side of F ; x is demanded in the UDR
on the other side; and vF is the primitive integer normal vector pointing from the
former to the latter.

This definition is mathematically equivalent to Mikhalkin’s, but the mathematical
literature has not, of course, interpreted them in an economic context (that is, under-
stood the Du(p) as demand sets).

2.3 The correspondence between specific valuations and THs

If we follow an agent along a price path that ends where it started, the demand at
the end must be the same as that at the beginning. So the weights on the facets must
satisfy the balancing condition:

15Note that facets meet only at their boundaries. So in two dimensions, for example, the continuation
of a straight line past an intersection with another facet, forms a new and distinct facet.

16So in three dimensions, for example, the facets are pieces of planes, whose boundaries are the line
segments where they meet; the boundaries of the line segments are the points where line segments meet.
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Definition 2.2 (Mikhalkin, 2004, Definition 3). An (n−1)-dimensional weighted ratio-
nal polyhedral complex Π ( Rn is balanced if for every for every (n−2)-dimensional cell
G ( Π, the weights w(Fj) on the facets F1, . . . , Fl that are adjacent to G, and primitive
integer normal vectors vFj for these facets that are defined by a fixed rotational direction

about G, satisfy
∑l

j=1w(Fj)vFj = 0.17

This balancing condition is in fact the only condition that a weighted rational poly-
hedral complex has to satisfy to be the TH of some valuation function:18

Theorem 2.3 (Mikhalkin, 2004, Proposition 2.4; also Mikhalkin, 2005, Theorem 3.15).
Suppose that Π is an (n− 1)-dimensional balanced weighted rational polyhedral complex
in Rn. Then there exists a finite set A ( Zn and a function u : A → R such that Π is
the TH, Tu.

It follows that a set in Rn is the TH of some quasilinear valuation if and only if
it is a rational polyhedral complex and there exist weights for the facets such that it
is balanced. It is often much easier to develop our ideas and intuitions by working
with these geometric objects than by thinking of examples of valuations, and in the
subsequent sections we will see how describing the geometry of the objects gives us
insights into their economics.

We will be particularly interested in concavity of valuation functions in the standard
discrete sense:

Definition 2.4. A function u : A → R is concave if A is a discrete-convex set and u
can be extended to a weakly-concave function on Rn.

The significance of concavity is that it is a standard result that concave valuations
are precisely those for which every possible bundle is demanded at some price, and for
which the demand set at any price is discrete-convex, just as for divisible, weakly-concave
valuations, and for essentially the same reasons:19

Lemma 2.5. u : A→ R is concave
iff A is a discrete-convex set and for all x ∈ A there exists p such that x ∈ Du(p)
iff Du(p) is discrete-convex for all p.

17This is just the n-dimensional generalisation of the requirement in 2 dimensions that, when moving
in a sufficiently small circle around any point, the weights on any facets crossed be coherent. To choose
a rotational direction around G, pick a 2-dimensional affine subspace H of Rn orthogonal to G, such
that the intersection of each Fj with H is 1-dimensional. The intersection of H with the TH is then a
collection of 1-cells meeting at the 0-cell which is G ∩H. An ordinary choice of rotational direction in
this two-dimensional picture gives a rotational direction around G in Rn.

18There do not necessarily exist weights to balance a general rational polyhedral complex. For
example, in two dimensions, consider three points (0-cells), each with three adjacent facets, such that
each pair of points has an adjacent facet in common. There are six weights, which must satisfy six
equations (three balancing conditions in each of the two dimensions). But since the conditions are
trivially satisfied by setting all weights equal to zero, the conditions can only be satisfied by positive
integer weights if the conditions are not linearly independent–which is non-generic.

19For the divisible case see, e.g., Mas-Colell et al. (1995) pp. 135-8, especially Prop. 5.C.1(v), since a
quasilinear valuation is equivalent to a standard profit function with a single-output technology. These
results are also clear from considering the example in the next subsection (2.4).
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Furthermore, it is easy to see that any non-concave valuation has the same TH as the
minimal concave function that weakly exceeds it, since increasing any never-demanded
bundle’s value has no effect until the bundle is just marginally demanded, when the
value function becomes locally affine. The marginally defined bundle is now added to
the demand at some prices, but is never demanded uniquely, and all other bundles are
demanded exactly as they were previously, so:

Lemma 2.6. Let u′ be the minimal concave function that weakly exceeds u.20 Then
Tu′ = Tu.

Clearly, adding a constant to u(x) leaves the TH unchanged, as does increasing every
available bundle by a fixed bundle and making a corresponding shift in the valuation.21

So we have full equivalence between THs and concave valuation functions, up to shifts
by a constant:

Theorem 2.7 (Mikhalkin, 2004, Remark 2.3). THs with an identified “demand 0” UDR
are in bijective (1-1) correspondence with concave valuations u such that u(0) = 0 and
such that demand is 0 at prices in the “demand 0” UDR.

Importantly, therefore, any balanced weighted rational polyhedral complex also cor-
responds to some concave valuation, so we can develop our understanding of valuations
by working directly with these geometric objects. However, we will not restrict attention
to concave valuations.

2.4 Duality; and Subdivided Newton Polytopes (SNPs)

We constructed the TH in price space. We now construct a dual geometric object–
the Subdivided Newton Polytope (SNP)–in quantity space. This presents much of the
same information in a complementary way.22

Just as in the standard duality construction for a divisible, strictly-concave valuation,
we will see that any price vector defines a hyperplane, tangent to the graph of the agent’s
valuation, which meets this graph at the agent’s demand set for that price. But in our
case, because the demand set sometimes contains more than one bundle, some tangent
hyperplanes meet the graph at more than one point.

For example, Fig. 2a shows a valuation function, u, and Fig. 2b gives its graph,
using bars to associate a bundle, x, with its valuation, u(x). We will always present the
feasible bundles increasing to the left, and down. This will show the duality between
the SNP and the TH most clearly.

The bundles, x, demanded at a price, p, are those that maximise u(x) − p.x =
(−p, 1).(x, u(x)). So x is demanded at p if the point (x, u(x)) is “farthest out” from
the origin in the “direction of that price” (i.e., the direction (−p, 1)). Thus, the bundles
which are demanded for some price are those bundles, x, for which (x, u(x)) lies on the

20If u’s domain is not discrete-convex, then u′’s domain must be the minimum discrete-convex set
containing it.

21Of course, the bundle demanded in each UDR is then increased by the fixed bundle.
22The construction uses Legendre-Fenchel duality; e.g. see Murota (2003) but is not a precise duality:

as we will see, information is lost, so that a single SNP corresponds to a set of THs. For more on these
‘regular subdivisions’ and on polytopes in general see Thomas (2006) and De Loera et al. 2010.
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x1
2 1 0 u(x)
8 4 0 0
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(a) Tabular representation
of a valuation, u(x).

value

x2

x1

8
4

0

10

6

6

11

10
8

(b) A representation of the valu-
ation using bars.

x1

x2

value

(c) The “roof” of the valuation.

Figure 2: A valuation and its roof.

minimal concave function which is everywhere weakly greater than u (in this example,
they are every bundle except (1, 1)). We extend this latter function to the convex hull
of the set of feasible bundles, and call its graph the roof of the valuation. Looking at
Figs. 2b and 2c shows that the roof is simply the “top” of the convex hull of the points
(x, u(x)) with respect to the final coordinate.

Because the agent is indifferent between several bundles at some prices, the roof
is composed of linear pieces, that meet along lower-dimensional linear pieces; like the
TH, it is a “polyhedral complex”. (In our 2-good example, the roof includes pieces of
planes, line segments, and points.) Each of the roof’s vertices is at a bundle which is
the unique demand for some prices. Conversely, if a top-dimensional cell of the roof is
n-dimensional (a piece of hyperplane), this will correspond to a set of bundles among
which the agent is indifferent at some unique price, p, which is farthest out in a unique
direction, (−p, 1), from the origin. More generally, any cell of the roof is the intersection
of some tangent hyperplane(s) with the roof, and so is the convex hull of the demand set
for some price(s).

By projecting downwards the top dimensional pieces of the roof, we can subdivide
the convex hull of the set of feasible bundles–see Fig. 2c. Since the convex hull is called a
“Newton Polytope” (in standard terminology), we call the resulting object a Subdivided
Newton Polytope (SNP). We call the projection of a vertex of the roof a vertex of the
SNP (which therefore corresponds to a bundle that is uniquely demanded at some price),
and call the projection of a line segment of the roof an edge (which therefore corresponds
to the line joining two uniquely-demanded bundles).

Note in particular, therefore, that an edge of the SNP with endpoints x and x′

indicates the existence of prices, p, for which the demand set contains both these bun-
dles. Moreover, these prices form a facet of the TH: the family of tangent hyperplanes
passing through a line segment of the roof is (n − 1)-dimensional, and so the space of
vectors (−p, 1) normal to these hyperplanes is similarly (n − 1)-dimensional. As we
noted in Section 2.2, u(x) − p.x = u(x′) − p.x′, that is, p.(x′ − x) = constant, for
all these price vectors, p. So each (1-dimensional) edge of the SNP is normal to the
((n− 1)-dimensional) facet that corresponds to it in the TH.

11



More generally, each k-cell of the SNP is the convex hull of the bundles which form
the demand set for some price; and the set of prices, p, for which these bundles are
contained in the demand set Du(p) is an (n− k)-cell of the TH that is orthogonal to it:

Lemma 2.8. The k-cells of the SNP and the (n − k)-cells of the TH are in bijective
correspondence. Each TH cell is orthogonal to its corresponding SNP cell. That is,
(p′ − p).(x′ − x) = 0, for all p,p′ in the TH cell and x,x′ in the SNP cell.

In particular, each edge of the SNP is normal to its corresponding facet in the TH.

The SNP and TH of the valuation of Fig. 2a are pictured in Figs. 3a and 3b respec-
tively,23 depicting each cell in the same style as its dual cell in the other figure.

x1

x2

(a) The SNP.

p2

p1

(1, 1) (2, 2)

(4, 6)

22

(b) The TH of the valuation
given in Fig. 2a, and so corre-
sponding to the SNP in (a).

p2

p1

22

(c) Another TH corresponding to
the SNP in (a), but with a differ-
ent valuation.

Figure 3: (a) The SNP and (b) TH of the valuation shown in Fig. 2a, with dual ge-
ometric objects drawn with the same style and shading; (c) another TH of the same
combinatorial type.

Thus the 0-cells (vertices) of the TH at the prices (4,6), (2,2), and (1,1) correspond
to the dotted-, wavy-, and light-grey-, shaded 2-cells (areas) of the SNP, respectively,
and also to the three correspondingly-shaded pieces of planes of the roof in Fig. 2c;
the nine separately-distinguished 1-cells (line-segments) of the TH correspond to the
nine correspondingly-styled 1-cells of the SNP; and each of the seven UDRs of the TH
corresponds to one of the seven bundles that are the 0-cells of the SNP, and are shown
as white circles in the SNP–we discuss the dark grey and black SNP bundles below.24

Notice that the dark grey horizontal edge at the top of the SNP passes through the
grey bundle. This edge consists of two copies of the primitive integer vector, (1, 0),
in its direction, so we say that this edge has length 2.25 It is dual to the dark grey
vertical facet of the TH which correspondingly has weight 2, and is so labelled. Recall

23We typically draw a SNP without axes, since replacing A with A+c for some c ∈ Zn and re-defining
u to correspond gives us the same SNP and TH.

24Clockwise from the top right of the TH, the bundles demanded in the UDRs are (0,0), (0,1), (0,2),
(1,2), (2,2), (2,1), and (2,0).

25All other edges of this SNP have length 1 in this sense, which is of course not the Euclidean length.
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from Section 2.2 that a facet’s “weight” times its primitive integer normal vector is the
change in demand between the UDRs it separates.

Neither the grey bundle, nor the black bundle, is a 0-cell of the SNP, and, therefore,
no UDR corresponds to them: neither is uniquely demanded for any price. Furthermore,
neither the TH nor the SNP tells us whether a non-vertex bundle such as one of these
is demanded at all, for any price. If the valuation is affine in the relevant range, then
(x, u(x)) is in the roof for such a bundle, x, so it is demanded. But if the valuation is
non-concave at the non-vertex bundle, this bundle’s value lies strictly below the roof.
In such a case the bundle is “jumped over” as we cross between UDRs.

The grey bundle is an example of the former case. Its valuation, 4, is precisely the
average of the valuations, 0 and 8, of the bundles (0, 0) and (2, 0); see Figs. 2a and 2c.
It is therefore demanded for some prices (here, (4, p2) for p2 ≥ 6–see the TH) but is not
the unique demand at any price.

However, the black bundle’s value is strictly below the level of the “roof” (see Fig.
2c), so it is never demanded at any price.26

Note that because the central wavy-shaded (five-sided) SNP cell is the only SNP cell
that the black bundle lies in, the corresponding wavy-shaded 0-cell (at price (2,2)) of
the TH in which it is currently “hidden”, was the only price at which this bundle might
have been demanded: when a bundle is demanded, its position in the SNP dictates at
which price(s). That is:

Lemma 2.9. For x ∈ A, exactly one of the following holds:

(1) x is not demanded for any price;
(2) x is in an SNP cell iff, for every p in the corresponding TH cell, x ∈ Du(p).

The results of this section are laid out formally in Appendix A.1.3

2.5 The correspondence between sets of valuations and SNPs

It is easy to see that multiple valuation functions, u(x), yield the same SNP. That
is, there are many ways of changing the values of the bundles without affecting which
sets of bundles can jointly form the demand set. (For example, consider how we can
change the valuation of Fig. 2a without changing the connections in Fig. 2c.) Such
changes cannot affect the correspondences and orthogonality relationships discussed in
the previous subsection between the cells of the SNP and of the TH.

So a single SNP corresponds to a set of THs, all of which have cells with the same
dimensions and slopes, connecting to one another in the same way. We say that such
a set of THs (and the set of corresponding valuation functions) are all of the same
combinatorial type; they all correspond to agents who make the same trade-offs between
additional units of goods, even if not always at the same prices.

In sum,

26But if its valuation were greater, so the corresponding bar in Figs. 2b and 2c just touched the
roof, then it would still not be a vertex, but it would be demanded at the price corresponding to the
wavy-shaded 0-cell (that is, (8,8)) that is a vertex of the TH. And if it had an (even) higher valuation
(so “poked through” the current roof), then the corresponding SNP point would become a vertex, and
the corresponding TH 0-cell would “open up” to form a new UDR corresponding to the range of prices
at which the bundle (1,1) would then be demanded.
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Theorem 2.10 (Mikhalkin, 2004, Proposition 2.1). There is a bijective correspondence
between SNPs of THs and combinatorial types of THs.

Fig. 3c gives a TH of another valuation that has the same combinatorial type as the
valuation of Fig. 2a–its SNP is therefore also that shown in Fig. 3a.

It should be clear from our example that, starting from any SNP, it is easy to find
the combinatorial type of the TH; the exact location of the TH for any specific valua-
tion function can then easily be worked out from the values of the different bundles.27

Conversely, given any TH, it is easy to determine which bundle is demanded in each
UDR starting from the demand in any one UDR (see discussion above Definition 2.1),
and then also easy to find the corresponding SNP.28

Furthermore, if the set of feasible bundles is not too large, it is easy to list all the
possible SNPs, and so also all the possible combinatorial types of THs, that is, every
possible distinct structure of trade-offs that an agent might make between the goods.
Figs. 9 and 10 in Appendix A.1.4 give examples.

2.6 Representation in Price Space vs. Representation in Quan-
tity Space

Although the TH and SNP are “dual”, the price and quantity representations have
different properties and are useful in different contexts.

We will see (in Section 3) that the relationship between the economic properties of
a valuation and the geometric properties of its TH in price space allows us to classify
valuations into “demand types”, such as substitutes, complements, etc. It would be
almost equivalent to categorise valuations using the SNP in quantity space. However,
an important distinction is that any geometric object satisfying the simple “balanc-
ing condition” of Definition 2.2 is the TH of some valuation (see Theorem 2.3), but
not every subdivision of every Newton polytope arises from some valuation. Moreover,
there seems to be no straightforward check of whether or not a given subdivision cor-
responds to any valuation function.29 This distinction is very important for developing
(counter)examples and deepening our understanding.

So it seems easier to specify all the geometric objects in price space that represent a
particular economic property, than to do this in quantity space where we have to take
care to restrict attention to cases that can actually arise. And Theorem 2.3 guarantees
that if we develop examples to, e.g., test conjectures, working in price space, then the

27For example, for the valuation of Fig. 2a, it is clear from the valuations of bundles (1,0) and (0,1)
that the dotted-shaded 0-cell of the TH is at p = (4,6), since 4 and 6 are the prices below which the
agent will first buy any of goods 1 and 2, respectively, when the other good’s price is very high. And
the coordinates of the wavy-shaded 0-cell must be (2,2) since 8-6=2 is the incremental value of a second
unit of good 2, when the agent has no unit of good 1, and 10-8=2 would be the incremental value from
then adding a unit of good 1, etc.

28In two dimensions, we know each UDR (area) in the TH corresponds to a vertex (point) in the
SNP. A facet (line-segment) in the TH corresponds to an edge in the SNP in the orthogonal direction,
joining the vertices corresponding to the UDRs on either side; its length is given by the weight of the
facet. So we can immediately draw all the vertices and edges.

29Maclagan and Sturmfels (2015, Fig. 2.3.9) show a subdivision that corresponds to no valuation
function.
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corresponding valuations will exist; we have found in practice that this is considerably
easier than developing valuation functions directly.

Working in price space also makes it much easier to aggregate agents’ valuations (see
Section 3.3).

Furthermore, while an SNP shows only the collections of bundles among which the
agent is indifferent for some price vectors, THs show clearly which bundles are demanded
in which regions of prices. Thus THs are often easier to interpret.

So we will mostly develop our ideas in price space.
However, the different perspective offered by the geometric objects in quantity space

is also valuable. In particular, some essential information that is only implicit in the
TH becomes obvious in the SNP. For example, we will see in Sections 4 and 5 that a
0-dimensional, or low-dimensional, cell of the TH sometimes “hides” important detail
that is much more easily seen and interpreted in the higher-dimensional dual object in
the SNP.

Another virtue of the SNP is that the easiest way to compute the THs of specific
valuations is often via first computing the SNPs, so even when the TH is an easier-to-
understand representation, the SNP helps us construct it more quickly.30

The fact that the different representations are useful in different contexts makes the
ability to move easily between them, using duality, especially valuable.

3 “Demand Types”

3.1 Defining “demand types”

The previous section suggests classifying valuations according to the vectors that are
normal to their THs’ facets:31

Definition 3.1. A valuation is of demand type D if all the primitive integer normals to
the facets of its associated TH lie in a set, D, of primitive integer vectors in Zn, such
that if v ∈ D then −v ∈ D.32

For example, the valuation of Fig. 1 is of demand type ±{(1, 0), (0, 1), (−1, 1)} as,
of course, are many other valuations, for example, all those shown in Figs. 8a-c. Note
that a valuation is of any demand type which contains the facet normals of its TH; we
do not restrict to the minimal such set.33

30For example, in constructing the TH of the valuation of Fig. 2a, going via the SNP (see Section
2.4 and note 27) both separates the question “in what directions are there line segments?” from the
question “where in space are they?”, and also clarifies which bundles have to be compared with which.

31See Manzini et al. (2015) for recent work offering a different approach in classifying valuations.
32We will write “demand type D” for the set of valuations defined by the set D of vectors; given

a demand type, we will refer to the defining vectors as the “demand type’s vectors”. These will all
be non-zero. Note our definition does not consider the weights on facets; see Baldwin and Klemperer
(2012, note 25, and 2014, note 42).

33For example, the valuations of Figs. 1 and 8a-c are also of demand type
±{(1, 0), (0, 1), (−1, 1), (−2, 1)} which is the minimal demand type of the valuations of Figs.
2–3.
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Recalling Lemma 2.8, we can equivalently classify valuations according to the vectors
in the directions of their SNPs’ edges.34 Recall also, however, that all THs correspond
to valuations of the demand type that their facet normals’ vectors define, but not all
subdivisions of Newton polytopes whose edges are among the vectors of a demand type
correspond to (any) valuations.

3.2 Comparative Statics, and Substitutes, Complements, etc.

Since the vectors defining a demand type are the set of all the possible directions of
the TH’s facet normals, and since these in turn specify the possible directions of demand
changes as we cross the facets between UDRs, combinations of these vectors specify all
the possible changes in demand between prices in UDRs. Since the UDRs are dense in
price space, these are the possible changes in demands that can generically result from
a small change in prices.35

It follows straightforwardly that demand types provide simple characterisations of
concepts such as substitutes and complements. (This characterisation is not symmetric,
as we will explain.)

For substitutes, an increase in a good’s price, between prices at which demand is
unique, might decrease but cannot increase the demand for that good, and cannot
result in the agent decreasing its demand for other goods. (See, for example, Figs. 1
and 3b-3c, for this property holding, and Fig. 4 for it failing.) So the vectors that are
normal to a facet may have two non-zero entries of opposite signs, but cannot have two
non-zero entries of the same sign (see Appendix A.2.1 for details).

Definition 3.2. A valuation u is ordinary substitutes36 if, for any prices in UDRs such
that p′ ≥ p, if Du(p) = {x} and Du(p

′) = {x′}, we have x′k ≥ xk for all k such that
pk = p′k.

37

Proposition 3.3. A valuation is of a demand type whose vectors each have at most
one positive and at most one negative coordinate entry iff it is an ordinary substitutes
valuation.

34Danilov, Koshevoy and their co-authors examine these vectors in quantity space in the course of
their impressive body of work that, we will see in Section 4.1, has close connections to ours (see Danilov
et al., 2001, and Danilov et al., 2003, 2008, 2013). However, they do not use them to create a taxonomy
of demand–we, by contrast, develop a general framework to understand them in economic terms (see
also Baldwin and Klemperer, 2012, 2014 and in preparation-b). In particular, as Danilov et al. work
almost exclusively in quantity space, they do not see these vectors as giving changes in demand as we
move around in price space.

35See Baldwin and Klemperer (2014, in preparation-b) for full discussion of possible demand changes
to and from prices at which demand is non-unique.

36We call “ordinary substitutes” what most others (e.g., Ausubel and Milgrom, 2002) simply call
“substitutes”. We do this for clarity, since some have defined “substitutes” in other ways. In partic-
ular, although Kelso and Crawford’s (1982) definition is equivalent in their model, it is not generally
equivalent if it is extended to multiple units of three or more goods (see Danilov et al., 2003, Ex. 6 and
Thm 1). Our definition (3.2) seems the most natural one in the general case. It is also equivalent to
several properties that seem to naturally characterise “substitutes”, and to the indirect utility function
(maxx∈A{u(x)− p.x}) being submodular–see Baldwin, Klemperer and Milgrom (in preparation). See
also Baldwin and Klemperer (2014). Hatfield et al. (2013, see Section 6.1) and Danilov et al. (2003) use
definitions equivalent to 3.2, and the latter authors make a similar observation to our next proposition
(3.3) when they say “each cell of a valuation’s parquet is a polymatroid”.

37Here we write, as is standard, p′ ≥ p when the inequality holds component-wise.
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(0, 1, 0) demanded (in front of the facet)

(1, 0, 1) demanded (behind the facet)

p1

p2

p3
facet normal

 1
−1

1



increase p1

Figure 4: A facet (shaded) with its normal (the arrow shown in bold). Increasing either
p1 (as shown with a dotted arrow), or p3, demonstrates complementarities between goods
1 and 3, as the bundle demanded switches from (1,0,1) to (0,1,0).

We can thus refer to the set of all primitive integer vectors satisfying this description
as the “ordinary substitutes vectors”.

Similarly, for complements, if any good’s price increases, then the agent may reduce,
but cannot increase, her demand for other goods, so there is no facet whose normal
vector has two non-zero entries of different signs:

Definition 3.4. A valuation u is ordinary complements if, for any prices in UDRs such
that p′ ≥ p, if Du(p) = {x} and Du(p

′) = {x′}, we have x′k ≤ xk for all k such that
pk = p′k.

Proposition 3.5. A valuation is of a demand type whose vectors’ non-zero coordinate
entries are all of the same sign iff it is an ordinary complements valuation.

So we can similarly refer to the set of all primitive integer vectors whose entries are
all of the same sign as the “ordinary complements vectors”.

Note that, by contrast with standard definitions such as 3.2 and 3.4, our way of
classifying valuations using “demand types” clearly reveals both the lack of symmetry
between substitutes and complements, and the reason for it: the substitutes demand
type includes only vectors for which each pair of non-zero entries are of opposite signs,
while the complements demand type includes only vectors for which each pair of non-
zero entries have the same signs–but this implies that in more than two dimensions
complements permits vectors with any number of non-zero entries, whereas substitutes
permits at most two non-zero entries.

The reason for the asymmetry is that, if any one good can trade-off against both
of two other goods simultaneously across a single facet, the two other goods must be
complementary. Consider, for example, Fig. 4, which illustrates a facet with normal
(1,-1,1), defined by {p ∈ R3 | p1 + p3 = p2; p1,p2, p3 ≥ 0}. Moving from the UDR with
p1 + p3 < p2 (“behind” the facet) to the UDR with p1 + p3 > p2 (“in front of” the
facet), by increasing the price of either good 1 or good 3, changes the bundle demanded
from (1,0,1) to (0,1,0) and so reduces demand for both goods 1 and 3. So even when
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all goods are mutual substitutes there can never be trade-offs between more than two
of them across the whole of a facet.38

It is easy to find the demand types that correspond to other standard classes of
valuations. For example (see Baldwin and Klemperer, 2014, Corollary 5.20, and in
preparation-b):

Proposition 3.6. A valuation is strong substitutes39 iff it is concave and is of a demand
type whose vectors each have at most one +1 entry, at most one -1 entry, and no other
non-zero entries.

We can thus refer to this set of vectors as the “strong substitutes vectors”. Note that
with n goods, there are just n(n+ 1)/2 strong substitutes vectors (and their negations).

We discuss some other demand types of interest in Sections 6.3-6.4.

3.3 Aggregate Demand, and the “Demand Type” of an Aggre-
gate Valuation of Multiple Agents

An important feature of our “demand types” classification–that, in particular, greatly
facilitates the study of equilibrium–is that the demand type of the aggregate valuation
of multiple agents is just the union of the sets of vectors that form the individual agents’
demand types.

We now consider a finite set of agents, j = 1, . . . ,m: agent j has valuation uj for
integer bundles in a finite set, Aj. It is obvious that the agents’ aggregate demand, DU(p),
at any price p is simply the Minkowski sum of their individual demands at that price,

that is, DU(p) =
{∑

j xj | xj ∈ Duj(p)
}

. So it is also clear that the superimposition of

the individual agents’ THs is the TH of an “aggregate valuation” that corresponds to the
aggregate demand.40 More precisely, let TU be the union of the individual THs, Tuj , with
facet weights given by adding the weights of facets that coincide. TU is clearly balanced
since the individual THs are, and so we can apply Theorem 2.3 to see that there exist

38One mutual substitute might trade-off against two others at prices where more than one facet meets,
if at least one of those facets has weight greater than 1. For example, an agent might switch 2 units of
A for 1 each of two other goods, B and C, which it treats as indistinguishable, in the intersection of all
three weight-2 facets where the agent switches between two of the three goods.

To illustrate why the conditions for indivisible goods to be substitutes are so restrictive, consider
a consumer who regularly makes three kinds of trips: journey A can be made only by bus or train;
journey B can be made only by car or train; journey C can be made only by car or bus. Thought of as
divisible goods, the three modes of transport are all mutual substitutes. But if the price of either bus
tickets or train tickets is slightly raised, a consumer might buy a car and reduce her use of both forms
of public transport. which are therefore locally complements–that is, the car takes the role of good 2
in the situation pictured in Fig. 4.

39Milgrom and Strulovici (2009) define valuations to be “strong substitutes” if every unit of every
good is a substitute for every other unit of every good, in the sense of Kelso and Crawford (1982).
For other equivalent definitions see Milgrom and Strulovici (2009), Baldwin and Klemperer (2014) and
Baldwin, Klemperer and Milgrom (in preparation). In particular, Danilov et al. (2003, Proposition 7)
show valuations are their “step-wise gross substitutes” if they are both concave and (in our language)
the edges of all their SNP faces are strong substitutes vectors. (We use Milgrom and Strulovici’s later
terminology because it seems to have become more standard). Figs. 1, 5a, and 8a-c show examples of
THs of strong substitutes valuations.

40Mathematically, finding aggregate demand corresponds to tropically multiplying tropical polyno-
mials.
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quasilinear valuations corresponding to TU . And we can confirm our interpretation by
observing that TU implies aggregate demand at a price is unique iff all the individual
demands are, and the change in aggregate demand between any prices is just the sum
of the changes in the individual demands as we cross facets of the individual THs. (We
cannot in general uniquely identify the aggregate valuation U from TU as U need not
be concave, even when individual valuations are. We give the precise form of U below,
but it is cumbersome to work with and we seldom do so).

Fig. 5 illustrates this by showing the THs of two simple valuations, with domain
{0, 1}2: a substitutes valuation, us(x1, x2) = 1 if x1 ≥ 1 or x2 ≥ 1, us(x1, x2) = 0
otherwise (Fig. 5a); a complements valuation, uc(x1, x2) = 1 if x1 ≥ 1 and x2 ≥ 1,
uc(x1, x2) = 0 otherwise (Fig. 5b); and of the aggregate of these two valuations (Fig.
5c).

p1

p2

1

1

(a) Tus

1

1

p2

p1
(b) Tuc

1

1

p2

p1

(
1
2
, 1
2

)

(c) TU
1

1

p2

p1
(d) TU ′

Figure 5: The THs of (a) a simple substitutes valuation; (b) a simple complements
valuation; (c) the aggregate of the simple substitutes and simple complements valuations
shown; (d) the aggregate of the simple complements valuation shown and a simple
substitutes valuation with lower values for each unit.

(a) SNP of Tus (b) SNP of Tuc (c) The SNP of TU (d) The SNP of TU ′

Figure 6: SNPs corresponding to the THs shown in Fig. 5.

Note that when cell interiors from different agents intersect, the cells are split up
into new, smaller cells in the aggregate TH, with a new, lower-dimensional, cell at their
intersection. For example, in Fig. 5c, the point

(
1
2
, 1
2

)
is a 0-cell, on the boundary of

four distinct 1-cells.
It is now immediate that demand “type” is preserved under aggregation:
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Proposition 3.7. Valuations uj are of demand type D for j = 1, . . . ,m iff the aggregate
TH, TU , is of demand type D.

The ability to “add” THs straightforwardly is a merit of working in price space for these
purposes.

Working in quantity space would be possible, using the standard result–see Ap-
pendix A.2.2–that, since agents’ preferences are quasilinear, DU(p) is just what would
be demanded by a single agent whose valuation, U(y), is the greatest sum of the val-
uations, uj, that can be attained by dividing the bundle, y, between the agents, that

is, U(y) = max
{∑

j u
j(xj) | xj ∈ Aj,

∑m
j=1 xj = y

}
. But, because finding any value of

U(y) requires considering all possible partitions of y among the agents, which is both
time-consuming and unintuitive, doing this in quantity space is harder.

We also cannot find the SNP of an aggregate valuation from the individual SNPs,
in quantity space, since neither the aggregate valuation, nor its combinatorial type, is
uniquely defined by the combinatorial types of the individual valuations (that is, by
the individual SNPs). However, working in price space, starting with specific THs, we
can easily find the aggregate TH, and hence the aggregate SNP (and other information
about aggregate demand) for the specific case.

For example, it is easy to see that if we alter the substitutes valuation of Fig. 5a
above, to us∗(x1, x2) = 1/4 if x1 ≥ 1 or x2 ≥ 1, us(x1, x2) = 0 otherwise, its TH is of the
same combinatorial type as before. However, the 0-cell that was at (1, 1) has moved to(
1
4
, 1
4

)
, so the TH of the aggregate, U ′, of it with the complements valuation, uc, of Fig.

5b is that shown in Fig. 5d. And it is also straightforward that the SNP of both us and
us∗ is that of Fig. 6a, and that the SNP of uc is that of Fig. 6b. However, the SNP of
the aggregate valuation U of us and uc is that of Fig. 6c, while the SNP of the aggregate
valuation U ′ of us∗ and uc is that of Fig. 6d. Clearly, there is no unique aggregate SNP
corresponding to the SNPs of Fig. 6a and Fig. 6b.

4 The Existence of Competitive Equilibrium for a

Demand Type

A beautiful aspect of our “demand types” classification is that it leads us naturally
to a very broad characterisation of the individual trade-offs for which equilibrium is and
is not guaranteed (under our assumption of quasilinear preferences).

This theorem requires much weaker assumptions about agents’ preferences than used
in the existing leading economics literature, so our condition for equilibrium is corre-
spondingly much more general. It immediately generalises, for example, the equilibrium
results of Kelso and Crawford (1982), Hatfield and Milgrom (2005), Sun and Yang
(2006), Milgrom and Strulovici (2009), Hatfield et al. (2013), and Teytelboym (2014).
In particular it is not necessary for all agents to have “strong substitutes” valuations
(or some basis change thereof) for equilibrium to always exist; complements valuations
guaranteeing equilibrium are easy to find. Instead, concavity and a “unimodularity”
condition explained below are all that are required.

Concavity The crucial role of concavity is that, since concave functions are precisely
those for which every possible bundle is demanded at some price (Lemma 2.5), there ex-
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ists a competitive equilibrium price vector for every possible market supply iff the agents’
aggregate valuation is everywhere concave. And, although each individual agent’s val-
uation being concave is not sufficient for their aggregate valuation to be concave, our
geometric approach shows us a simple condition that is sufficient.

Unimodularity

Definition 4.1. A set of vectors in Zn is unimodular if every linearly independent subset
can be extended to a basis for Rn, of integer vectors, with determinant ±1.

By “the determinant” of n vectors we mean the determinant of the n× n matrix which
has them as its columns.41 Alternative equivalent conditions for unimodularity are given
in Remark A.15.

To understand the geometric importance of unimodularity, note that a set of n
linearly independent integer vectors are the edges of an n-dimensional parallelepiped.
This shape contains no integer point (either in its boundary or in its interior) aside
from its vertices, iff its volume is 1. But this volume is just the absolute value of the
determinant of the vectors along its edges.

Moreover, if this volume is 1 then it follows that any lower-dimensional parallelepiped
spanned by a subset of these vectors also contains no integer point other than its vertices.
So if unimodularity is satisfied, this critical property must hold. Unimodularity is also
necessary for this property (see Remark A.15). And this property implies that we can
move between any integer bundles in the linear span of this parallelepiped by taking
integer combinations of these vectors: the “integer lattice” in this linear span is made
up of repeated copies of the parallelepiped. That is, the vectors are an “integer basis”
for this subspace.

If the set of vectors spans Rn, then there exist sets of n of them that are linearly
independent; it is therefore, of course, sufficient to check that all n-element sets have
determinant ±1 or 0.

Importantly, therefore, unimodularity of a set D defining a demand type is not too
hard to check, and we refer to “unimodular demand types” in the obvious way.

4.1 Necessary and Sufficient Condition for Equilibrium to al-
ways Exist for a Demand Type

Since, of course, an individual agent with a non-concave valuation function fails
to always have a competitive equilibrium, we now only consider concave individual
valuations. Similarly, we only consider bundles in the domain of the aggregate valuation,
since a bundle clearly cannot be demanded if it is outside the set considered by the
agents. For brevity, we will refer to the domain of aggregate valuation as “the domain”:

Theorem 4.2. A competitive equilibrium exists for every set of agents with concave
valuations of demand type D and any supply bundle in the domain iff D is unimodular.42

41We ignore the order of the vectors since we are only ever interested in the absolute values of
determinants.

42Tran and Yu (2015) call this result the Unimodularity Theorem in their recent exposition of our
work. They also provide an additional proof, via integer programming.
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In particular, it is immediate from the discussion in the previous subsection that

Corollary 4.3. With n goods, if the vectors of D span Rn, then a competitive equilibrium
exists for every set of agents with concave valuations of demand type D and any supply
bundle in the domain iff every subset of n vectors from D has determinant 0 or ±1.

We sketch the proof and intuition for these results in the next subsection (4.2). Full
details are in the Appendix.

A remarkable series of papers by Danilov, Koshevoy and their co-authors, has devel-
oped results that are very closely related to ours. In particular, Theorems 1, 3 and 4
of Danilov et al. (2001) together provide a sufficient condition for equilibrium, which is
analogous to our condition on demand types.43 However, the interpretation or useful-
ness of their result is not made clear; by contrast, our theorem both demonstrates the
applicability of the result, and clarifies the connections to existing economic results.44

Danilov et al. also prove no necessity result. Because they have not developed their
definition as a taxonomy of demand, in the way we do with demand types, they do not
show the necessity of unimodularity for the existence of competitive equilibrium. Once
our concept of demand types is introduced, however, a necessity result can easily be
developed.45

Danilov et al. moreover state their results under different assumptions from ours.
They assume the domain, A, of every agent’s valuation is Zn≥0, which precludes, for
example, the application to agents who both buy and sell which our more general
assumption permits.46

43Their sufficient condition for a class of valuations to have equilibrium for any supply is that the
valuations be “D-concave” for some “class of discrete convexity” D . Here, “D-concave”valuations are
concave valuations such that every demand set Du(p) belongs to the set “D” of subsets of Zn. A “class
of discrete convexity” is a collection of sets such that every set is discrete convex, and every Minkowski
sum and every Minkowski difference of the sets is discrete convex. They also show that D is a class of
discrete convexity if the edges of the convex hulls of the sets in D form a unimodular set of vectors. The
proof of this, their Theorem 4, is given by Danilov and Koshevoy (2004, Thm. 2). Note that Danilov
et al.’s use of the notation D is not connected with our use of D to represent demand types.

44We will see that Theorem 4.2 generalises the results on equilibrium in work subsequent to Danilov
et al.’s, including in Hatfield and Milgrom (2005), Sun and Yang (2006), Milgrom and Strulovici (2009),
Hatfield et al. (2013), and Teytelboym (2014). The absence in Danilov et. al’s work of our notion of
demand types or of any economic interpretation of their concept of “D-concavity”, and the presentation
of their work in relatively unfamiliar terms (namely the relationships between sets of primitive integer
vectors which are parallel to edges of specific collections of integral pointed polyhedra and the “classes
of discrete convexity” that they define) seems to have resulted in leading economists being unaware of
their work or of its implications. (We were also unaware of their work until after we had developed our
own results.)

45The sufficiency part of our theorem follows from combining Theorems 1, 3 and 4 of Danilov et al.
(2001). To understand the relationship between these theorems and our Theorem 4.2, observe that
in their Theorem 4 certain sets of “primitive integer vectors, which are parallel to edges of” a certain
“collection of integral pointed polyhedra” are analogous to our demand types; furthermore, the “classes
of discrete convexity” they define are analogous to a set of demand sets Du(p) which are all discrete-
convex and such that this property is preserved under aggregation. It is not hard to also show, using our
Lemma 2.9, the necessity of a demand type giving rise to a “class of discrete convexity” for competitive
equilibrium to always exist, and in this way we can also derive our necessity result from their work.

46For example, our model, unlike theirs, applies to (and extends) Hatfield et al. (2013)–see Section
6.1. In fact Danilov et al.’s assumption seems unnecessary for them, so we could develop our full
theorem by extending their work. See our Note 45, above. See also our discussion about the distinction
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Finally, although the techniques we use to prove our results are novel, they seem
simpler and more accessible to economists than Danilov et al.’s very advanced mathe-
matical techniques. So we will prove the theorem using our alternative method, which
understands the result as an application of “intersection multiplicities” in tropical ge-
ometry.47

4.2 Intuition and Sketch of Proof for Theorem 4.2

4.2.1 The Role of Intersections

The first insight is that we can determine whether equilibrium exists by focusing on
the intersection of individual THs: we know equilibrium always exists, that is, every
bundle is demanded at some price, iff the aggregate valuation is concave iff the aggre-
gate demand set is discrete-convex at every price (Lemma 2.5). But if all but one of
the agents have unique demand at some price, the aggregate demand set is simply the
shift of the remaining agent’s demand set by the other agents’ (unique) demands. And
this set must be discrete-convex, since we assumed that every individual valuation is
concave. So we only need to check prices at which two or more agents have non-unique
demand. That is:

Lemma 4.4. Equilibrium exists for every supply bundle in the domain iff the aggregate
demand set is discrete-convex at the intersection of agents’ THs.

4.2.2 Necessity

Consider, therefore, a price at which two or more agents’ TH facets of weight 1 inter-
sect (and other agents have unique demand).48 The corresponding cell in the aggregate
SNP is then a parallelepiped whose edges are the normals to those intersecting facets.
So these edges are vectors of the demand type of the agents’ valuations.

If the demand type is not unimodular then, as discussed earlier in Section 4, we can
find a set of its vectors for which such a parallelepiped contains integer point(s) that
are not its vertices.49 And we saw in Section 2.4 that bundles that are not SNP vertices
are “hidden” inside the corresponding cells of the corresponding TH, and may not be
demanded at the corresponding prices. Indeed, in this case, each of the relevant agents
has just two bundles in its demand set, so with s agents there are only 2s different possible
aggregate demands, and these must correspond to the parallelepiped’s 2s different integer
vertices. The non-vertex bundle(s) therefore cannot be demanded at the corresponding
price.50 So the aggregate demand set is not discrete-convex at this price, and competitive

between their approach and ours in Note 34. Their work also covers some of the examples in Sections
4.3.3, 4.3.4 and 6.3, as we note in those sections.

47It was this theory that inspired our (independent) development of our results. Full details of our
proof are in Appendix A.3.2.

48We assume that only facets (and no lower-dimensional cells in the individual THs) intersect at this
price. This scenario is generic when n = 2 but not for n ≥ 3.

49Unimodularity is equivalent to the tropical intersection multiplicity being equal to one in such a
case (see Section 5 and Appendix A.4).

50Because we specified the facets all had weight 1, there are necessarily just 2 bundles in each demand
set. If any facet had a greater weight, integer points that are not vertices will be “weakly-demanded”
(i.e., demanded, but never uniquely demanded), like the “grey” bundle, (1,0) of Fig. 3, that we discussed
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equilibrium therefore fails if the supply is such a non-vertex bundle (see Lemma 2.9).
This logic shows necessity (see Proposition A.16 in Appendix A.3.2). It also demon-

strates how to easily construct examples of failure of equilibrium for any non-unimodular
demand type.

4.2.3 Sufficiency for Simple Cases

If THs intersect only in the simple form just discussed, a parallel argument to the
one above demonstrates sufficiency: if the demand type is unimodular, then no paral-
lelepiped corresponding to an intersection price contains a non-vertex integer point, so
no bundles are “hidden” in the intersection and the aggregate demand set is discrete-
convex at every price, implying our sufficiency result.

The importance of unimodularity will carry over to general intersections. The
broader intuition is that unimodularity of the set of facet normals means we can reach
all bundles by taking integer combinations of this set of vectors. That is, all the bundles
are connected by edges in quantity space and, correspondingly, all aggregate demands
can be achieved by crossing appropriate facets in price space.

4.2.4 Sufficiency when the TH Intersection is “transverse”

To develop a general proof for sufficiency, we begin by focusing on “transverse” TH
intersections:

Definition 4.5. THs Tu1 and Tu2 intersect transversally at p if dim(C1 + C2) = n, in
which Ci is the minimal cell of Tui containing p, for i = 1, 2, and C1 +C2 is the set-wise
(Minkowski) sum of these cells.

The intersection of THs Tu1 and Tu2 is transverse if they intersect transversally at
every point of their intersection.

THs Tu1 , . . . , Tuk intersect transversally at p if Tuj+1 intersects the TH of the aggre-
gate of the valuations u1, . . . , uj transversally at p, for all j = 1, . . . , k − 1.51

Thus transverse intersections are generic intersections, as we make precise below (see
Proposition 4.6). For example, in two dimensions, two lines crossing at a single point
are intersecting transversally, but two coincident lines are not, and nor are three lines
crossing at a single point. (To understand the last case, observe that if there are just two
intersecting THs, the one that contains two of the lines has a 0-cell at this point; and if
we are considering three THs, the aggregate of the first two has a 0-cell at this point.
Either way, aggregating with the remaining TH then involves aggregating a line with
the 0-cell.) In three dimensions, a line meeting a plane in a single point is a transverse
intersection (point), as is two planes meeting in a line, or three planes meeting in a
single point.

The important point about prices at transverse intersections is that the changes in
bundles considered by different agents at any such price are linearly independent–that is,
the spaces of the possible changes in the individual agents’ bundles have zero intersection

at the end of Section 2.4; the SNP cell will consist of consecutive copies of the parallelepiped described
here.

51It is straightforward that this definition is independent of the order in which the THs are taken.
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(Lemma A.25 makes this point precise). This means that there is only one possible way
to apportion a change in the aggregate supply bundle among the different agents.

To show that a supply bundle, which would be demanded at a transverse intersection
price if it were demanded anywhere, is in fact demanded, we start from any supply bundle
that is demanded in a UDR adjacent to the intersection. We then consider two different
ways of thinking about dividing up the change between the two supply bundles among
the agents; the fact that these two divisions must be the same will show that the supply
bundle in question is also demanded.

The first way we think about dividing up the change in aggregate supply observes
that the SNP cell in the aggregate SNP is the Minkowski sum of the individual SNP cells.
So any change in total supply within the aggregate SNP cell must be decomposable as a
sum of individual changes, each of which is within an individual SNP cell and therefore
within the convex hull of an individual’s demand set. So we have assigned each agent
a bundle in the convex hull of its demand set at this price, although we have not yet
demonstrated that these new bundles are integer bundles.

For example, when two agent’s THs intersect transversally in two dimensions, the
corresponding cells in the aggregate SNP are just parallelograms of the kind discussed
above, so in each case the aggregate change can be broken down into parts along the
edges of this parallelogram, and each agent can be allocated the additional supply corre-
sponding to “its” edge of the parallelogram. (In more than two dimensions, the geometry
is a little more complicated, because the cells in the aggregate SNP that correspond to
transverse intersection prices need not be parallelepipeds.)

The second way we think about dividing up the change in aggregate supply uses the
unimodularity of D: we can fix a basis for each individual’s change in demand at the
intersection price, made up of edges of that individual’s SNP cell (equivalently, its facet
normals at the price). Transversality means that taking all these bases together creates
a basis for the space of aggregate changes in demand. And, because the set of all edge
vectors is unimodular, this is an “integer basis”. So any integer change in aggregate
supply can be presented as an integer combination of these basis vectors, thus assigning
an integer change in bundle to each agent, although we have not yet demonstrated that
each agent’s new bundle is in the convex hull of its demand set.

However, since we assumed the intersection was transverse at this price, the alloca-
tion of bundles to agents is unique. So the two allocations are the same. Thus both
assign each individual agent an integer bundle in the convex hull of its demand, which
the agent therefore demands, since its individual valuation is concave.

4.2.5 Sufficiency for the General Case

The full proof of sufficiency can be completed using the standard convex-geometric
methods used thus far (see the Appendix of Baldwin and Klemperer, 2014). However,
it is quickest to appeal to the tropical-geometric result that generically all THs intersect
transversally:

Proposition 4.6 (Maclagan and Sturmfels, 2015, Proposition 3.6.12). For any THs Tu1
and Tu2 , and generic v ∈ Rn, the intersection of Tu1 and εv + Tu2 is transverse, for all
sufficiently small ε > 0.
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So there always exist small perturbations of agents’ valuations that make their THs’
intersection transverse, so for which, by the previous argument, every bundle is de-
manded on aggregate at some price. But the aggregate value of any bundle that was
not demanded before the perturbation must be a finite amount beneath the value that
would be required for it to be demanded, which contradicts the bundle being demanded
after an arbitrarily small perturbation of valuations.

Full details of the proof are in Appendix A.3.2.

4.3 Examples

4.3.1 Simple Illustration of Necessity of Theorem 4.2

We can illustrate our result on necessity of unimodularity for equilibrium by con-
sidering individual agents with the simple two-goods substitutes and complements val-
uations shown in Figs. 5a and 5b, respectively, and their aggregate valuation, shown
in Fig. 5c. Note that both the individual valuations are concave. However, their ag-
gregate valuation, given in Fig. 7a, is not, as can easily be seen by observing that
(U(1, 0) +U(0, 1) +U(2, 1) +U(1, 2))/4 > U(1, 1). The failure of aggregate concavity is
also clear in Fig. 7b, which shows the aggregate valuation together with the cell of its
roof that corresponds to the price vector

(
1
2
, 1
2

)
.

x1
2 1 0 U(x)
1 1 0 0
2 1 1 1 x2
2 2 1 2

(a) The aggregate val-
uation corresponding to
Fig. 5c.

value

x1

x2

(b) The aggregate valuation corre-
sponding to Fig 5c, showing the
cell of its roof that corresponds to
the price vector

(
1
2 ,

1
2

)
.

Figure 7: The aggregate valuation of Fig. 5c.

It is apparent that all the bundles (1, 0), (0, 1), (2, 1), and (1, 2) are demanded at
this price, but the bundle (1, 1) is not, and so also is never demanded at any price. So
there is no equilibrium if the supply is (1, 1).

Theorem 4.2 (and Corollary 4.3) warned of this possibility, since they imply equilib-
rium may fail for some supplies when the demand type is not unimodular. The reason
is that the minimal demand type containing both individual valuations contains both
(1,−1) (from the substitutes individual valuation) and (1, 1) (required for the comple-
ments individual valuation), and no set of vectors containing both (1,−1) and (1, 1) can
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be unimodular: the matrix formed by (1,−1) and (1, 1) has determinant 2. Moreover,
the discussion in Section 4.2.2 told us that there would be an example of equilibrium
failure of exactly this kind.

Working in quantity space, we can understand the failure of equilibrium by looking at
the SNP of the aggregate valuation, in particular at the cell corresponding to price

(
1
2
, 1
2

)
.

This diamond, with edges in the directions parallel to (1,−1) and (1, 1), has area 2 (the
determinant of its edges)–see Fig. 6c. So there is a bundle inside the diamond, namely
the quantity (1, 1), which is not a vertex of the aggregate SNP; it is correspondingly
“hidden” at the intersection of the diagonals at the price

(
1
2
, 1
2

)
in the aggregate TH (in

Fig. 5c), and it is indeed not demanded in this case.
The equivalent price-space perspective is to observe that we cannot start from, for

example, the UDR in which in the quantity (0, 1) is demanded, and then move across
TH facets normal to (1,−1) and (1, 1), to arrive any price at which the bundle (1, 1) is
demanded, because aggregate demand cannot change by (1, 0) (= (1, 1) − (0, 1)). The
reason, as above, is that the demand type is not unimodular and so, in particular, it is
impossible to write (1, 0) as a sum of integer multiples of (1,−1) and (1, 1).52

4.3.2 Basis Changes

A benefit of our method of categorising valuations into “demand types” is that it is
straightforward (see Appendix A.3.3) that:

Proposition 4.7. “Having equilibrium for every set of agents with concave valuations
and any supply bundle in the domain” is a property of a demand type that is preserved
under unimodular basis changes.53

Making such a basis change is equivalent to re-packaging the goods so that any
integer bundle can still be obtained by buying and selling an integer selection of the new
packages (and, conversely, any integer selection of the new packages can be obtained as
an integer combination of the original goods).

To illustrate, consider the previous subsection’s example. Create a new good, 3,
from two units of good 1 plus one unit of good 2, and consider the economy in which
the goods traded are 1 and 3. Note that we can recreate one unit of good 2 by buying
one unit of good 3 and selling two units of good 1, and we can convert any bundle
expressed in terms of goods 1 and 2 (as a column vector) to a bundle of goods 1 and 3

by pre-multiplying by

(
1 −2
0 1

)
.54 So the fact that there are no prices at which the

bundle (1, 1) is aggregate demand when (only) goods 1 and 2 are traded implies that

52When the set of vectors is not unimodular, the number of non-vertex bundles in such a paral-
lelepiped is equal to one less then the determinant (see Fact A.45). Thus, using the determinants, we
should be able to derive bounds on the extent to which we need to relax supply constraints in order to
achieve competitive equilibrium. For explorations of this idea in the related field of matching without
transfers, see Nguyen and Vohra (2014) and Nguyen et al. (2015).

53A unimodular matrix G is an integer matrix with integer inverse, i.e., an integer matrix of deter-
minant 1. Premultiplying bundles of goods by G is equivalent to premultiplying the prices at which
bundles are demanded by GT . This transforms the facet normals of the TH, and hence the vectors of
any corresponding demand type, by G−1. Details are in Appendix A.3.3.

54This matrix plays the role of “G−1” in Note 53.
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there are also no prices at which the bundle (−1, 1), is demanded in an economy in
which (only) goods 1 and 3 are traded.

Observe that the “substitutes” agent of the original economy (who bought either
(1, 0) or (0, 1) at price

(
1
2
, 1
2

)
) corresponds to an agent in the new economy who would

“buy” either (1, 0) or (−2, 1). We can interpret this as an agent with an endowment of
−2 units of good 1 (a contract to sell), and who buys either three units of good 1 or one
unit of good 3. Thus this agent treats goods 1 and 3 as 3:1 substitutes. Similarly, the
“complements” agent of the original economy (who bought neither or both of goods 1
and 2) corresponds to an agent in the new economy with an endowment of −1 unit of
good 1, who buys one unit of either good 1 or good 3 (so is indifferent between bundles
(0, 0) and (−1, 1)) that is, an agent who treats goods 1 and 3 as 1:1 substitutes. So this
is a pure substitutes economy in which equilibrium fails. Since the demand type of the

original economy was defined by the columns of

(
−1 1

1 1

)
, which have determinant 2,

the demand type in the new economy is defined by the columns of

(
−3 −1

1 1

)
, that

is, by

(
1 −2
0 1

)(
−1 1

1 1

)
, which also have determinant 2.

We illustrate below (Section 6.3) the usefulness of unimodular basis changes in find-
ing new demand types for which equilibrium is guaranteed.

More generally a unimodular basis change simply distorts the TH by a linear trans-
formation which leaves its important structure unaffected (see Proposition A.21 in the
Appendix).55 So other important properties of demand are also unaffected–see Baldwin
and Klemperer (2014, and in preparation-b).

4.3.3 Equilibrium with Complements

Mathematical results from Grishukhin et al. (2010) imply that every unimodular
demand type is a unimodular basis change of a demand type that contains only vectors
in ±{0, 1}n (and so contains only complements valuations). So from Proposition 4.7:

Proposition 4.8. Every demand type for which equilibrium is guaranteed (i.e., exists
for every set of agents with concave valuations and any supply bundle in the domain) is a
unimodular basis change of a demand type which contains only complements valuations
and for which equilibrium is guaranteed.

Furthermore, the corresponding statement cannot be made about substitutes: see
Proposition 4.11.56 This is in stark contrast to much conventional wisdom about the
“necessity” of substitutes for competitive equilibrium.57

55We lay out the general behaviour in Appendix A.3.3. Analogous results about “basis changes”
of valuations for divisible goods were developed by Gorman, 1976, pp. 219–220. Related results for
specific cases of indivisible goods are in, e.g., Sun and Yang 2006, Sun and Yang 2008, and Hatfield et
al., 2013.

56For two goods (but not more–see Section 3.2), substitutes are a unimodular basis change of comple-

ments via the matrix

(
1 0
0 −1

)
(see Section 4.3.2) so for two goods (but only this case), competitive

equilibrium fails “as often” for substitutes as for complements .
57See, for example, Kelso and Crawford (1982). Also Gul and Stacchetti’s (1999, p. 96) state “in a
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4.3.4 The Relationship between Equilibrium and Strong Substitutes

It has been known for over 100 years (Poincaré, 1900) that what we call the “strong
substitutes vectors” (see Proposition 3.6) form a unimodular set. So Theorem 4.2 im-
mediately implies the results of Danilov et al. (2001, 2003) and Milgrom and Strulovici
(2009) that

Proposition 4.9. Equilibrium exists for every set of agents with strong substitutes
valuations and any supply bundle in the domain.58

Furthermore, in any dimension, the set of (all) strong substitutes vectors form a
maximal unimodular set. That is, adding any other vector, w, that is not a strong
substitutes vector, contradicts unimodularity: the determinant of w = ei + ej together
with ei − ej, and all ek such that k 6= i, j, has absolute value 2; and the determinant of
any w with |wj| > 1 for some j with all ei such that i 6= j is wj. So we also have Gul
and Stacchetti’s (1999, Thm. 2), Hatfield and Milgrom’s (2005, Thm. 2), and Milgrom
and Strulovici’s (2009, Thm. 16), result that:

Proposition 4.10. Given any one agent who does not have a strong substitutes valua-
tion, there exist strong substitutes valuations for other agents such that equilibrium fails
to exist for some supply in the domain.59

Danilov and Grishukhin (1999) provided a characterisation of all maximal unimod-
ular sets of vectors, including a list giving, up to unimodular basis change, all such sets
up to dimension 6. This shows that for n ≤ 3 equilibrium is guaranteed iff the demand
type is a unimodular basis change of strong substitutes, or a subset thereof.

However, we now demonstrate that with more goods there are demand types for
which equilibrium always exists, and which are not basis changes, even of ordinary
substitutes:

Proposition 4.11. With n > 3, there exist demand types which are not a unimod-
ular basis change of ordinary substitutes, or a subset thereof, for which equilibrium is
guaranteed.

To see this, consider the demand type whose vectors are the columns of:

D :=


1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1

 .

sense, the GS [gross substitutes] condition is necessary to ensure existence of a Walrasian equilibrium”,
and the specificity of their model in which such claims are valid often seems to be forgotten. (Azevedo et
al’s (2013, p.286) remark that “adding a continuum of consumers . . . eliminates the existence problems
created by complementarities” can also be misinterpreted.) And applying our results to matching (see
Section 6.5, and Baldwin and Klemperer, 2014) shows that stable allocations arise for a broader class of
preferences than many people assume from Hatfield and Milgrom’s (2005, p.915) statement “preferences
that do not satisfy the substitutes condition cannot be guaranteed always to select a stable allocation”,
though the Proposition (p.921) that their introductory remark loosely summarises is, of course, correct
in its context.

58We show in Sections 6.1 and 6.3 that equilibrium existence results of Kelso and Crawford (1982),
Hatfield and Milgrom (2005), Sun and Yang (2006, 2009), and Hatfield et al. (2013), are easy corollaries.

59It also follows from Section 6.1 that Hatfield et al. (2013, Thm. 7) is an easy corollary.
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It is routine to check that D is unimodular. A mathematical argument that it is not a
basis change of strong substitutes is given in Baldwin and Klemperer (2014); that it is
not a basis change of ordinary substitutes can be demonstrated by a machine proof.60

Now n > 4 is straightforward: extend the vectors of D by zeros and append the
coordinate vectors ei for i ≥ 5. It is clear that any basis change taking such a demand
type to a purely substitutes demand type would restrict to a basis change taking D to
ordinary substitutes, contradicting the above.

5 Existence of Equilibrium for Specific Valuations

Theorem 4.2 shows which demand types always have a competitive equilibrium,
and for which demand types equilibrium fails for some valuations. For example, we saw
equilibrium does not always exist for the demand type of Section 4.3.1, and indeed it did
not exist for the valuations given there. But we will see below that if, for example, the
“substitutes” agent of that example has a low enough valuation (e.g., the valuation us∗

discussed in Section 3.3), then the demand type would be unchanged, but equilibrium
would exist.

So we now show that tropical intersection theory also provides results about for
which valuations equilibrium exists, for demand types for which equilibrium does not
always exist. As in our development of Theorem 4.2 (see Section 4.2), the key is that we
can show that only certain isolated TH intersection points need be analysed. Moreover,
tropical intersection theory provides bounds on the number of such points and, remark-
ably, tells us that a simple count of them may suffice to demonstrate the existence or
failure of equilibrium.

5.1 The Tropical Bézout-Kouchnirenko-Bernshtein theorem

The crucial point is that the celebrated Bézout theorem extends to tropical geometry:
Bézout’s (1779) theorem tells us that in two dimensions the number of intersection

points of two (ordinary) geometric curves equals the product of their degrees, except in
degenerate cases when the curves have a component in common. In counting “intersec-
tion points”, we include those with complex coordinates and those at infinity (where,
e.g., parallel lines “meet”) and we assign an appropriate “multiplicity” to each intersec-
tion point. For example, a tangency which is a “double” root (as, e.g., between a line
and a parabola) has multiplicity 2 and so counts twice. So, for example, a quadratic
(degree 2) and a line (degree 1) always intersect twice; a quadratic and a cubic (degree
3) intersect 3 × 2 = 6 times. More recent (Bernshtein, 1975 and Kouchnirenko, 1976,
see e.g. Gelfand et al. 1994) versions of the theorem have extended it, including to
geometric objects in higher dimensions.61

60We are very grateful to Tim O’Connor for helping us with this. The Matlab code, with notes, is
available at elizabeth-baldwin.me.uk/papers/BasesCompilation.m

and www.nuff.ox.ac.uk/users/klemperer/BasesCompilation.m .
61The classical forms of these theorems also have applications in economics: McKelvey and McLennan

(1997), McLennan (2002, 2005) and McLennan and Berg (2005) use them, among other techniques, to
bound various characterisations of Nash equilibria.
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A deep insight of tropical geometry is that THs can be obtained as particular trans-
formations of “ordinary” geometric objects, and intersection properties are preserved
under these transformations.62 Thus similar intersection theorems hold: once we have
defined “multiplicity” correctly, the TH provides exactly the right intersection counts.
Furthermore, a TH is in real (not complex) space so we can “see them”.

Our contribution is to observe that a “too-high” multiplicity at a transverse TH
intersection price corresponds to a failure of discrete-convexity of the demand set there,
that is, a “hidden” bundle, and so a failure of equilibrium when the supply is that
bundle. So, if the intersection is transverse, a sufficient total number of intersection
0-cells guarantees equilibrium, and too few means that equilibrium may fail.

So, for example, Fig. 8 shows the TH of a “strong substitutes” valuation for up to

p2

p1

(a) TH of a strong substitute val-
uation for up to 3 units.

p2

p1

(b) The TH from (a), and a TH
of a valuation for 1 unit

p2

p1

(c) The TH from (a), and a TH of
another valuation for 1 unit

Figure 8: The THs of two generic valuations, one for up to 3 units, and one for a single
unit, intersect exactly 3× 1 = 3 times if equilibrium exists for any supply (as it does for
strong substitutes valuations, illustrated).

3 units in total, of 2 goods. All its facets have weight 1. Figs. 8b and 8c show the
intersection of this TH with the THs of two different “strong substitutes” valuations
for up to just 1 unit in total of the 2 goods. Notice that although the intersection
prices are all in the same cell of the “1 unit” TH in Fig. 8b, and all in different cells
of that TH in Fig. 8c, both TH intersections contain three points: it should be clear
from these figures that any “1-unit strong substitutes” TH will intersect the first TH
exactly three times if the intersection is transverse. (Recall from Propn. 3.6 that all
“strong substitutes” facet normals for two goods are in ±{(1,0), (0,1), (-1,1)}.) And
this is precisely because the TH of any valuation for up to 3 units in total is the tropical
transformation of an “ordinary” cubic, and the TH of any valuation for up to 1 unit in
total is the tropical transformation of an “ordinary” line, and–as we already know from
Proposition 4.9–“strong substitutes” valuations always give rise to equilibrium, so these
THs must intersect exactly 3× 1 = 3 times if their intersection is transverse.

By contrast, recall Figs. 5c and 5d giving the intersection between a single “comple-
ments” agent with one of two possible “substitutes” agents. In Fig. 5d, there are two
intersections; in Fig. 5c there is only one. This corresponds precisely to the facts that
competitive equilibrium exists for every supply in the former case, but–as we saw in
Section 4.3.1–fails for some supply in the latter case.

62THs are particular limits of logarithmic transformations of hypersurfaces (in complex projective
space) in algebraic geometry. See, e.g., Maclagan and Sturmfels (2015) for a full discussion.
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5.2 Condition for Equilibrium to Exist for Every Supply, For
a Given Set of Valuations

Bézout’s theorem was extended by Kouchnirenko and Bernshtein by use of “mixed
volumes”. Taking the sum of sets to be their Minkowski sum, define:

Definition 5.1. The n-dimensional mixed volume of n convex sets X1, . . . , Xn ⊂ Rn is

MVn(X1, . . . , Xn) =
∑n

k=1(−1)n−k
[∑

I⊂{1,...,n}|I|=k Voln
(∑

i∈I Xi

)]
.

Write MVn(X, Y, (k, n− k)) for the mixed volume of k copies of X and n− k copies
of Y , for any 0 ≤ k ≤ n.

Here, Voln(Xi) is the n-dimensional volume of Xi (so Voln(Xi) = 0 if dim(Xi) < n).
So, in two dimensions, MV2(X, Y ) = Vol2(X+Y )−Vol2(X)−Vol2(Y ) (in which Vol2(.)
is, of course, just the two-dimensional area), and in three dimensions, MV3(X, Y, Z) =
Vol3(X+Y +Z)−Vol3(X+Y )−Vol3(Y +Z)−Vol3(Z+X)+Vol3(X)+Vol3(Y )+Vol3(Z),
etc. Thus the “mixed volume” is a linear combination of ordinary volumes.

An important special case is that it can be shown that MVn(X, . . . , X) = n!Voln(X).
See Appendix A.4.3 for further discussion.

We also generalise the concept of “weight”, that we previously defined for TH facets,
so that it applies to any TH cell. We do this by letting the weight of a (n − k)-cell
of a TH be the (k-dimensional) volume of the corresponding SNP cell divided by the
(k-dimensional) volume of its fundamental simplex.63 We will give examples of use of
mixed volumes, and weights, below.

Finally, we define the “näıve weighting”of any 0-cell at which two THs, Tu1 and Tu2 ,
intersect transversally, as w1w2, in which wi is the weight of the minimal cell of Tui that
contains the 0-cell.64

As prefigured in the previous subsection (5.1) the tropical Bézout-Kouchnirenko-
Bernshtein theorem, as presented by by Bertrand and Bihan (2007, 2013), now leads
to a straightforward way to determine whether equilibrium exists for valuations whose
THs’ intersection is transverse. We first give the important theorem, and then explain
it in more detail in Section 5.3 (full details are in Appendix A.4).

The key geometric result requires (only) that for some fixed k, the intersection of
two THs is transverse at all 0-cells which are an intersection of a k-cell of the first TH,
and an (n− k)-cell of the second:

Lemma 5.2. Let u1 and u2 be any concave valuations on domains whose convex hulls
are Ã1 and Ã2, and such that the domain of the aggregate valuation has dimension n,
and such that for some k ∈ {1, . . . , n− 1}, any intersection between a k-cell of Tu1 and
a (n− k)-cell of Tu2 is transverse.

The näıvely-weighted count of 0-cells at such cell intersections is bounded above by
MVn(Ã1, Ã2, (n−k, k)). If this count equals this upper bound, then equilibrium exists for
u1 and u2 and any supply in the convex hull of demand at any price at such intersections.

63A “simplex” on r vectors is the convex hull of those vectors together with 0. For the fundamental
simplex, the relevant vectors are any integer basis of the minimal linear space parallel to the SNP cell.
Its volume is 1/(k!) of that of the fundamental parallelepiped, namely the parallelepiped whose edges
are this basis. See Definition A.31.

64Note this weight is not the “multiplicity” of the tropical Bézout-Kouchnirenko-Bernshtein theorem;
indeed it is the distinction between them that yields our results.
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If the bound is not met with equality and n ≤ 3, then equilibrium fails for some supply
in the convex hull of demand at some price at such an intersection.

It follows immediately from summing over k (and since a TH has no n-cells) that:

Theorem 5.3. Let u1 and u2 be any concave valuations on domains whose convex hulls
are Ã1 and Ã2, and such that the domain of aggregate demand has dimension n, and
whose TH intersection is transverse.

The näıvely-weighted count of 0-cells in their TH intersection is bounded above by∑n−1
k=1 MVn(Ã1, Ã2, (n − k, k)). If this count equals this upper bound, then equilibrium

exists for u1 and u2 and any supply in the domain. If the bound is not met with equality
and n ≤ 3, then equilibrium fails for some supply in the domain.

To test whether equilibrium is guaranteed to exist for m > 2 valuations, we can
sequentially check whether it always exists for the (l+ 1)th valuation and the aggregate
of the first l valuations, for l = 1, . . . ,m − 1. Of course, if the aggregate domain is of
dimension less than n, we can just make a basis change to reduce the dimension of the
goods-space so that the aggregate domain is of full dimension, and Theorem 5.3 (and
Lemma 5.2) apply.

For example, consider n = 2, so that the cell weights are just the facet weights.
Suppose Ãi contains all non-negative bundles of up to a total of di units, i = 1, 2.
Then it is straightforward that Vol2(Ãi) = (di)

2/2. Also, Ã1 + Ã2 is the convex hull of
all bundles of up to a total of d1 + d2 units so Vol2(Ã1 + Ã2) = (d1 + d2)

2/2. Thus,∑n−1
k=1 MVn(Ã1, Ã2, (n − k, k)) = MV2(Ã1, Ã2) = d1d2.

65 So consider two valuations on
these goods for up to a total of d1 units, and d2 units, respectively. Assume their THs
intersect transversally (as is generic). Then the number of points in their intersection,
each weighted by the product of the weights of the facets that intersect at that point,
equals d1d2 if equilibrium exists for these valuations for every supply, and is lower than
d1d2 otherwise. The simple example illustrated in Figs. 8b-c in the previous subsection
(5.1) is a special case.

5.3 Explanation and Illustration of Theorem 5.3

Theorem 5.3 is an application of the tropical Bézout-Kouchnirenko-Bernshtein theo-
rem, which tells us that if the intersection of two THs is transverse, then the “multiplic-
ity”-weighted count of 0-cells in the intersection equals the relevant mixed volume. Our
contribution is demonstrating that the multiplicity-weighting is equal to the “näıve”
weighting precisely when equilibrium is guaranteed (or, when n ≤ 3, precisely when it
exists).

It is easiest to illustrate it in the two good case. Then a transverse intersection
of two THs consist only of 0-cells, the “multiplicity” of such a cell is just the area of
the corresponding aggregate SNP cell, and these SNP cells are all parallelograms with
integer area. Furthermore, the minimal (indeed only) cells of the individual THs that
contain these intersection points are the corresponding facets, so the relevant cell weights
are just the facet weights.

65More generally, if Ãi contains all bundles of n > 2 goods up to a total of di units, i = 1, 2, then∑n−1
k=1 MVn(Ã1, Ã2, (n− k, k)) =

∑n−1
k=1 d

n−k
1 dk2 .
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Begin with the case in which all the facet weights are 1, so the näıvely-weighted
count of Theorem 5.3 is just the unweighted count. It follows from the tropical Bézout-
Kouchnirenko-Bernshtein theorem that if count of Theorem 5.3 equals the upper bound,
the areas of the SNP cells corresponding to the intersection prices must all be 1 (since
they must all be positive integers). So, as argued in Section 4.2 above, the aggregate
demands are discrete-convex at all these points so, by Lemma 4.4, equilibrium exists for
every supply.

But if the equality of Theorem 5.3 fails, then some multiplicity, and hence the area
of some SNP cell at an intersection price, must exceed 1. So there is a “hidden bundle”
at this price, and equilibrium must fail for this supply bundle. The reason is exactly as
explained at Section 4.2.2: both agents have just two bundles in their demand set at this
price, these can create only the 2 × 2 = 4 possible aggregate demands that correspond
to the four vertices of the aggregate SNP cell, and so the “hidden bundle” cannot be an
aggregate demand.

We described such an example in the introduction (hotel rooms). Here we give more
details, using the simple two-good substitutes and complements valuations, us and uc,
whose individual THs and aggregate TH are shown in Figs. 5a-5c, and whose individual
SNPs and aggregate SNP are shown in Figs. 6a-6c. The domain of each individual
valuation is {0, 1}2, so the domain of the aggregate is {0, 2}2, and the relevant mixed
volume is therefore 4− 1− 1 = 2. The individual THs intersect only at the price

(
1
2
, 1
2

)
,

and this is transverse (so Theorem 5.3 applies). So, since the two facets containing it
both have weight 1, the näıvely-weighted count is just 1, and equilibrium therefore fails
for some supply. Indeed, since the relevant mixed volume is 2, we know that the area of
the (aggregate) SNP cell at the single intersection point must be 2, as we can see in Fig.
5c; the relevant cell is the central diamond, and contains the “hidden” bundle (1, 1) at
which equilibrium fails, as we saw in Section 4.3.1.

On the other hand, us∗ (see Section 3.3) is a valuation of the same demand type
(indeed same combinatorial type), and on the same domain as us, so the mixed volume
relevant to testing for equilibrium of us∗ and uc is still 2, but the individual THs now
intersect at two prices,

(
1
4
, 3
4

)
and

(
3
4
, 1
4

)
–see Fig. 5d. Both these intersection points are

transverse, so Theorem 5.3 still applies, and the total näıvely-weighted count is now 2.
Equilibrium therefore exists for every supply, as can be seen in Fig. 6d: the two SNP
cells corresponding to the intersection points are the two parallelograms which both
have area 1, and every supply bundle is a vertex of the SNP, and so is demanded for
some price.

It is not hard to generalise to the case in which the intersecting facets’ weights, w1

and w2, may exceed 1. Because we assumed that the individual agents have concave
valuations, each agent, j, is indifferent, at prices on its facet, among the (wj+1) bundles
on the corresponding edge in its individual SNP.66 Agent, j’s SNP edge is, of course,
of “length” wj (that is, it is wj times its primitive integer vector), and the SNP cell of
the aggregate valuation is now a “large” parallelogram, which can be divided by a grid
into w1w2 copies of a small parallelogram whose edges are the minimal (i.e., primitive)
integer vectors in the same directions.

It is clear that all the bundles on the vertices of this grid are demanded at the

66The reason is the same as for the “grey” bundles, not “black” ones, in our discussion in Section
2.4: j’s valuation is linear along the SNP edge.
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intersection price; they correspond to the different ways in which we can give either agent
one of the bundles between which it is indifferent. (Again, these bundles correspond to
“grey” bundles, not “black” ones, in our discussion in Section 2.4.) Furthermore, there
are no other bundles in the “large” parallelogram if and only if each of the (identical)
small parallelograms has area 1. So there is no problem bundle at the intersection price
if and only if the area of the large parallelogram (that is, its multiplicity) equals w1w2

(that is, the näıve weighting of the corresponding 0-cell). It follows again, therefore,
that equilibrium holds for every supply in the domain of the aggregate valuation iff the
näıvely-weighted count of all the intersection 0-cells equals the multiplicity-weighted
count, and the tropical Bézout-Kouchnirenko-Bernshtein theorem tells us the latter
equals the relevant mixed volume.

For more than two goods, the logic is similar in spirit, but more complicated in
detail:

First, the definition of cell weight is more intricate, and so is that of “multiplicity”.
Next, the intersection does not consist only of 0-cells, but (in the transverse case)

will be a “rational polyhedral complex” (that is, have a similar structure to a lower-
dimensional TH) of dimension (n− 2). So we first simplify the situation. To do this, we
recall (Lemma 4.4) that we are focussing on intersection prices because, if equilibrium
fails for any supply, there must be a failure of discrete-convexity of the aggregate demand
at some price in the intersection. Any such price lies in some k-cell of the aggregate
TH. It follows easily from the duality construction of Section 2.4 (see Corollary A.11)
that because we assume the domain of the aggregate valuation is n-dimensional, this
k-cell has some 0-cell(s) in its boundary. So these 0-cell(s) also lie in the individual
THs’ intersection. And it also follows that the bundle demonstrating failure of discrete-
convexity at the original price also demonstrates failure of discrete-convexity at the
0-cell price. So we can restrict attention to just the 0-cells of the intersection, that is, a
finite number of points.

Finally, a transverse intersection 0-cell in more than two dimensions need not cor-
respond to a parallelepiped in the SNP. However, we can draw a parallelepiped which
contains the right information. Start with a vertex at some bundle which is demanded,
on aggregate, at this 0-cell price. Identify what each individual agent will receive when
this bundle is the aggregate demand, and then, for each agent, choose a basis for pos-
sible changes in demand at this price. We use the collection of these basis vectors as
the edges of our parallelepiped. Some subset of this parallelepiped is contained in the
aggregate SNP cell corresponding to the 0-cell of the TH at the intersection.

The parallelepiped contains additional bundle(s) to those that are either on its ver-
tices or on the vertices of a grid of “small” parallelepipeds (in the case that any of its
edges’ weights exceed 1) iff its volume exceeds the product of its edges’ weights. One can
show that, if the parallelepiped does not contain such a potentially-problematic bundle,
then there are no problems in the SNP cell itself. However, if the parallelepiped does
contain such a bundle, these bundle(s) may or may not lie in the SNP cell itself.

In three dimensions this creates no ambiguity: the TH cell at the intersection is
at least half a parallelepiped (and its vertices are vertices of the parallelepiped). By
symmetry, if there is any additional bundle in a parallelepiped then there is one in both
halves. But, in four or more dimensions, the equality of the Theorem 5.3’s condition is
sufficient, but no longer necessary, for equilibrium, as we illustrate in Example A.29 in
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the Appendix. However, we can then use Lemma 5.2 for each individual k separately, to
narrow down where, if anywhere, equilibrium might fail; we make use of this in the next
subsection, where we create a general recipe for checking the existence of equilibrium.

5.4 Checking Equilibrium in the General Case

It might be conjectured that we could apply Theorem 5.3 when intersections are
not transverse. Recall from our analysis in Section 4.2.5 that, if equilibrium fails at
an intersection price, then it also fails after a small perturbation in valuations to make
the intersection transverse. However, it is not true that if equilibrium exists, it also
exists after a small generic perturbation: there are “fragile” equilibria which only arise
at a non-transverse intersection (see Appendix Example A.36). To determine whether
equilibrium exists for such cases, we first need a little more tropical-intersection theory:67

Definition 5.4. The stable intersection, Tu1 ∩st Tu2 , of THs Tu1 and Tu2 consists of all
cell intersections C1 ∩ C2 where Ci is a cell of Tui and dim(C1 + C2) = n.

Recall that two THs intersect transversally at p if Cj is the minimal cell of Tuj
containing price p and dim(C1 + C2) = n. So the stable intersection of two THs
contains all cells at which the THs intersect transversally, and may contain some or all
of any additional cells where they intersect.

For example, in Fig. 5c, if the (downward-sloping) “complements” TH were trans-
lated by a parallel shift to pass through (1,1)–the vertex where three line-segments of
the “substitutes” TH meet–then the THs would not intersect transversally anywhere
(the intersection at (1,1) is non-transverse since the substitutes TH has a 0-cell there).
However, the point (1,1) would be the stable intersection, since it is the intersection of
the “complements” facet with any one of the three facets of the “substitutes” TH. Two
identical substitutes THs, both of the kind shown in Fig. 5a, also have no transverse
intersection, while the 0-cells (0,0) and (1,1) would then form the stable intersection.
Note that the coincident line segments of the intersection are not in the stable inter-
section. More generally, a stable intersection of two THs in n dimensions has the same
“cell structure” as a TH (that is, it is a rational polyhedral complex) and is of dimension
n− 2.68

An alternative way to define the “stable intersection” both gives additional insight
into the relationship with transverse intersections, and yields an important result. The
“stable intersection” is the limit-set of any series of “perturbed” TH intersections that

67We conjecture that there are other “counting” methods of determining whether equilibrium exists
when the intersection is transverse. For example, we could perturb each agent’s original valuation by
a small amount to make it “strictly concave”, that is, so that all the cells of the individual TH where
“hidden” bundles just touch the roof are “opened up” (so, for example, all the facet weights of the
individual THs are then 1, and all bundles that correspond to “grey” ones in our earlier discussion of
Section 2.4 turn “white”). And we could make the perturbation small enough that no new facet that
has been created (or moved) in either individual TH is far enough from the location of the original
facet from which it was derived to otherwise disturb the structure of the aggregate TH. We could then
check whether the number of UDRs in the new aggregate TH equals the number of bundles in the
aggregate domain. However, this would both be cumbersome, and also require detailed knowledge of
the aggregate TH to ensure the perturbation was small enough. Moreover, there is no obvious way to
extend such an approach to analyse the general case which we now discuss.

68See Maclagan and Sturmfels, 2015, Thm. 3.6.10. If n = 1 then the stable intersection is empty.
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can be created by fixing one of the THs, and imposing on the other a series of arbitrarily
small (and decreasing to zero) translations such that in every case the intersection
between the THs is transverse. It is a standard result of tropical geometry that this
limit is well-defined.69

Now recall that we showed (in our proof of Theorem 4.2) that equilibrium can fail at
an intersection only if it also fails for arbitrarily close valuations that intersect transver-
sally. So if equilibrium fails at an intersection, we can take a series of infinitesimally
small and decreasing perturbations that yield transverse intersections at which it also
fails. It follows that equilibrium must also fail in the limit of these transverse intersec-
tion prices, that is, at the stable intersection. So any failure of equilibrium must show
up at prices in the stable intersection (since, from Lemma 4.4, we only need to check
intersections of THs). That is:

Theorem 5.5. If the domain of the aggregate valuation of two concave valuations has
dimension n, then equilibrium exists for every supply bundle in the domain iff the ag-
gregate demand set is discrete-convex at every 0-cell of the stable intersection of agents’
THs.

In particular, if equilibrium fails for a supply x, then this supply must exhibit failure
of discrete-convexity (that is, x ∈ ConvDU(p), but x /∈ DU(p)) at some price p in such
a 0-cell. As usual, if the aggregate domain is of dimension less than n, we can just make
a basis change to reduce the dimension of the goods-space so that the aggregate domain
is of full dimension, and Theorem 5.5 then applies.

So even if the intersection of two THs contains a continuum of points, we only need
to check a finite number of points to find out whether equilibrium always exists.70 And,
as before, to test whether competitive equilibrium always exists for m > 2 valuations,
we can sequentially check, for l = 1, . . . ,m−1, whether equilibrium always exists for the
aggregate of the (l+ 1)th valuation and the aggregate valuation of the first l valuations.

Furthermore, the Tropical Bézout theorem now gives us a bound on the number of
the points that we have to check:

Theorem 5.6 (cf. Bertrand and Bihan, 2007, 2013). The number of 0-cells in the stable
intersection of THs Tu1 and Tu2 of valuations on domains whose convex hulls are Ã1 and
Ã2, respectively, which are inside a k-cell of Tu1 and a (n − k)-cell of Tu2, is bounded
above by MVn(Ã1, Ã2, (n− k, k)). The total number of 0-cells in the stable intersection
of the THs is bounded above by

∑n−1
k=1 MVn(Ã1, Ã2, (n− k, k)).

The second part of this result is obvious from the fact that any 0-cell in the stable
intersection of two THs is contained in a k-cell of one TH and an (n − k)-cell of the
other TH for some 1 ≤ k ≤ n − 1 (see Definition 5.4; a TH has no n-cells, of course),
although k need not be uniquely defined.

Observe that the two-dimensional case (n = 2) is particularly straightforward; the
bound on the total number of 0-cells is then just MV2(Ã1, Ã2).

In sum, therefore:

69Maclagan and Sturmfels’ 2015 Prop. 3.6.12, stated as our Appendix Proposition A.37. Note this
definition gives us another easy way to see, in the examples just above, that the 0-cell at price (1,1) is
in the stable intersection, but is not transverse.

70But if equilibrium does fail at such a point, it might then also fail at a continuum of prices.
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Corollary 5.7. For any concave valuations, we can check whether or not equilibrium
exists at every supply in the domain by checking only a finite set of prices, the number
of which we have bounded.

Moreover, combining Theorems 5.3, 5.5 and 5.6 and Lemma 5.2 yields a recipe to test
whether equilibrium exists for every supply in the domain, for the aggregate of any two
concave valuations:71

Recipe 5.8.

(1) If the domain of the aggregate valuation is in less than full dimension, make a
basis change so that it is in full dimension.

(2) If the intersection is not transverse, go to (5).
(3) If the näıvely-weighted count of 0-cells in the intersection equals∑n−1

k=1 MVn(Ã1, Ã2, (n− k, k)), equilibrium exists for all supplies.
(4) If not, and n ≤ 3, equilibrium fails for some supply.
(5) Equilibrium exists for all supplies iff for each k, one of the following holds:

(i) every 0-cell in both a k-cell of Tu1 and a (n − k)-cell of Tu2 is a trans-
verse intersection point, and the näıvely-weighted count of these 0-cells equals
MVn(Ã1, Ã2, (n− k, k))

or (ii) for every 0-cell in both a k-cell of Tu1 and a (n− k)-cell of Tu2, the aggregate
demand set (found from the two agents’ individual demand sets) can be seen
directly to be discrete-convex.

6 Applications

6.1 Interpreting Classic Models in a Unified Framework

Our model encompasses some classic studies as special cases, so clarifies connections
between them. It also facilitates our understanding of these papers. In particular, it
makes many of their equilibrium-existence results straightforward. And Baldwin and
Klemperer (2014, in preparation-b) use our framework to study the implications of their
assumptions on preferences.

Kelso and Crawford’s (1982) seminal analysis of n1 firms, each of which is interested
in hiring some of n2 workers, can be understood as a model with n1n2 distinct “goods”,
each of which is the “transfer of labour” by a specified worker (a “seller”) to a specified
firm (a “buyer”); the “price” of a good is the salary to be paid. So the full set of bundles
we consider is {−1, 0, 1}n, in which n = n1n2, but each agent’s valuation is defined only
on the subset of this domain that is relevant to it.

Specifically, each worker has preferences only over a subset of the domain of the
form {−1, 0}n1 (that is, it has preferences only over the n1 goods that correspond to its
own labour), and only over the subset of these vectors that have at most one non-zero
entry (it can work for at most one firm). Obviously, their only possible SNP edges
are the strong substitute vectors (non-zero vectors with at most one +1 entry, at most

71Of course, if 5(i) holds, then so does 5(ii). Also, if n ≤ 3, then if 5(i) fails for any k (for which
every 0-cell in a k-cell of Tu1 and a (n − k)-cell of Tu2 is a transverse intersection point), then so will
5(ii), so there is no need to proceed further.
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one -1 entry, and no other non-zero entries, see Proposition 3.6). Furthermore, each
firm only has preferences over a subset of the aggregate domain of the form {0, 1}n2

(that is, it has preferences only over the n2 goods that correspond to workers it can
employ). Kelso and Crawford assume firms have ordinary substitutes preferences over
workers, but with only one unit of each good, the only substitute changes of demand are
the strong substitutes vectors, so all valuations are of this type.72 Individual concavity
always holds when individual domains have this form.

It is perhaps less obvious that Hatfield et al.’s (2013) model of networks of trading
agents, each of whom can both buy and sell, both fits into our framework, and is also
closely related to Kelso and Crawford’s model. To show this is so, we (again) treat each
transfer of a product from a specified seller to a specified buyer as a separate good, so
each agent again has preferences over a subset of {−1, 0, 1}n, where n is now the number
of “separate goods”.

Since Hatfield et al. restrict each agent to be either a seller or a buyer (or neither)
on any one good, an agent i which is the specified seller in ni1 potential trades and is
the specified buyer in ni2 potential trades simply has preferences over a subset of the
domain which, after an appropriate re-ordering of the goods for that agent, is of the
form {−1, 0}ni1 × {0, 1}ni2 . (As in Hatfield et al., we can restrict an agent’s domain of
preferences further so that, e.g., it cannot sell good 1 unless it also buys one of goods 2
or 3.) Furthermore, although Hatfield et al. describe goods to be sold as complements
of goods to be bought, this is because they measure both buying and selling as non-
negative quantities. So, since in our framework selling is just “negative buying”, the
“complementarities” disappear and it is clear that the condition they impose is exactly
ordinary substitutes.73 Just as for Kelso and Crawford’s model, the only SNP edges of
such a domain that are vectors of the ordinary substitutes demand type are also vectors
of the strong substitutes demand type.

Trivially, any valuation over any subset of {−1, 0}n1 or {0, 1}n2 or {−1, 0}ni1×{0, 1}ni2
is concave so, in both Kelso and Crawford’s and Hatfield et al.’s models, the existence
of equilibrium follows immediately from Proposition 4.9.

Reformulating models in our framework also shows clearly how we can generalise
them. It is immediate, for example, that as long as we retain concavity and the strong
substitutes demand type, we can remove Hatfield et al.’s restriction that an agent cannot
be both a buyer and a seller on any one good (by simply extending their domain to be
any subset of {−1, 0, 1}n) and can also permit their agents to trade multiple units of
the same products (by enlarging the domain to any subset of Zn).

Other models that fit into our framework are Bikhchandani and Mamer (1997) (this
is just the restriction of our model to A = {0, 1}n), and Hatfield and Milgrom’s (2005)
famous model of “contracts” (since this can be embedded in Kelso and Crawford’s
model–see Echenique, 2012).74

72Kelso and Crawford actually make a more restrictive assumption than this for their substitute
preferences, but in fact the characterisation follows from the weaker assumption mentioned here. See
Danilov et al. (2003), Baldwin and Klemperer (2014), and Baldwin, Klemperer and Milgrom (in
preparation).

73Their “choice language” definition differs superficially from Definition 3.2, but Hatfield et al., 2015,
Thm B.1 confirms the equivalence.

74Hatfield and Kojima (2010) does not fit into our framework, since it is inconsistent with quasi-linear
preferences.
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6.2 Analysing when Equilibrium Exists

As an example, consider “complements” consumers, each of whom is only interested
in a single, specific, pair of goods, and that these pairs form a cycle. Thus there are n
kinds of consumers and n goods, and we can number both goods and consumers 1, . . . , n,
such that every consumer of kind i < n demands goods i and i + 1, which it sees as
perfect complements, while consumers of kind n demand goods n and 1. It is easy to
check that:

det



1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
· 0 1 · · ·
· · · · · · ·
0 0 0 · 1 0
0 0 0 1 1


=

{
0 if n is even
2 if n is odd.

So if n is odd, Corollary 4.3 tells us equilibrium does not always exist. Furthermore,
our proof of Theorem 4.2 shows that we can find an example of equilibrium failure by
simply selecting a single consumer of each type, each of which values its desired pair at
v, so that they are all indifferent between purchase and no purchase (and hence their
facets all intersect) if every good’s price is v/2.75 But the tropical-Bézout methods of
Section 5 can determine, for any given set of agents’ valuations, whether equilibrium
exists for every supply in the domain.

If n is even, the columns of this matrix are not linearly independent. However, if we
exclude the ith column, for any i, the remaining n−1 columns are then linearly indepen-
dent, and can trivially be extended to n linearly independent vectors with determinant
1 by adding the column ei. So using Theorem 4.2, equilibrium always exists if n is even,
since the valuations are, trivially, concave.76,77

6.3 Basis Changes to find new Demand Types that always have
Equilibrium

We can use the fact (Section 4.3.2) that equilibrium existence, and other properties,78

are unaffected by basis changes, together with knowledge of these properties for any one

75So equilibrium fails if aggregate supply is exactly 1 unit of each good (the “middle of the paral-
lelepiped”) since the minimum and maximum aggregate demands are zero, and 2 units of each good,
respectively, at this price. (It is easy to check failure of equilibrium for xi = 1, for all i, by contradiction.
At least one good, w.l.o.g. good 1, would not be part of a pair being allocated together. So good 1
has value 0 to whoever receives it, hence p1 ≤ 0. Therefore p2 ≥ v, since otherwise consumer 1 would
demand both goods 1 and 2. Therefore p3 ≤ 0, since otherwise good 2 would not be demanded, and
consumer 2 therefore buys goods 2 and 3. Therefore p4 ≥ v, etc., so pj ≤ 0 if j is odd. But consumer
n then wishes to buy goods n and 1, which is a contradiction.)

76For example, the aggregate demand of 1 unit of each good is supported by price v/2 for every good,
when there is exactly one consumer of each kind, each of which values its preferred pair at v.

77Sun and Yang (2011) and Teytelboym (2014) have independently used alternative methods to show
these results for a version of this model; the even n case is also a special case of the “generalised gross
substitutes and complements” demand type that we discuss in Section 6.3. Once one understands the
relationship with matching – see Section 6.5 – the n = 3 case is given by Pycia (2008).

78See Baldwin and Klemperer (2014, especially Section 5) and Baldwin and Klemperer (in prepn-c).

40



demand type, to obtain useful results about other demand types.79

For example, a number of transformations of strong substitutes are of interest:

Interval Package Valuations80 Premultiplying the strong substitutes vectors ei

and (ei − ej), by the upper triangular matrix of 1s (of the appropriate dimension)
yields the vectors

∑i
k=1 ek and

∑i
k=j+1 ek for i > j, respectively (and their negations).

This is the “interval package valuations” demand type for goods which have a natural
fixed order, and for which any contiguous collection of goods may be considered as
complements by any agent. For example, valuations for bands of radio spectrum, or for
“lots” of sea bed to be developed for offshore wind (see Ausubel and Cramton, 2011)
may be of this form.

So this is an important purely-complements demand type for which equilibrium
always exists when valuations are concave.

Generalised Gross Substitutes and Complements Premultiplying the strong
substitutes vectors by a matrix formed of {ei| i ≤ k}∪{−ei| i > k}, for some k, yields the
demand type whose valuations are those satisfying Sun and Yang’s (2006, see also 2009)
definition of “gross substitutes and complements”extended to permit multiple units of
goods, and sellers as well as buyers.81 These are valuations such that goods can be
separated into two groups, with goods within the same group being strong substitutes,
and each good also may exhibit 1:1 complementarities with any good in the other group.
As above, it is immediate that equilibrium always exists for concave “generalised gross
substitutes and complements” valuations.82

6.4 Other new Demand Types

Our proof of Proposition 4.11 exhibited a matrix D defining a unimodular demand
type containing only complements demands that has not previously been studied. This
might, for example, model a firm’s demand for “bundles of” four kinds of workers–three
sorts of specialist (the first three goods) and a supervisor (the fourth good). The first
three columns of D show that any one of the three kinds of specialist has value on
his own; a supervisor on her own is worthless83; but the middle three columns of D
show that a supervisor increases the value of any specialist (that is, there are pairwise
complementarities between any one of the first three “goods” together with the fourth);
and the last three columns of D show that there are also complementarities between
any pair of different specialists if (but only if) a supervisor is also present.84

79We implicitly gave an example above, when we observed that Hatfield et al’s (2013) model of
complements could be understood as being restricted to strong substitutes by relabelling the good
“purchase of a unit” as −1 units of a good “sale of a unit”.

80These valuations were introduced by Danilov et al. (2008, 2013).
81The demand type’s vectors are {ei, ej , ei − ei

′
, ei + ej , ej − ej

′ | i, i′ ∈ {1, . . . , k}, j, j′ ∈ {k +
1, . . . , n}}.

82Shioura and Yang (2013) have independently made the same extension of gross substitutes and
complements, and shown that equilibrium always exists for it.

83The reason is that e4 /∈ D; perhaps each firm’s owner is a supervisor herself, and an additional
supervisor without any workers would merely “spoil the broth”.

84There is an infinite family of related unimodular demand types in higher than four dimensions.
There are, of course, many basis changes of D (and of any unimodular demand type) that include all
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6.5 Matching

The example in the previous subsection can be interpreted as a multi-player match-
ing problem in which the columns of D are the coalitions of workers that create value:
Baldwin and Klemperer (2014, in preparation-a) show that, assuming perfectly transfer-
able utility, a stable matching in which no subset of workers can gain from re-matching
(that is, an allocation in the core of the game among the workers) corresponds exactly
to a competitive-equilibrium allocation of workers in our model (in which every worker
receives its competitive wage, and no further gains from trade are possible). So, since
the demand type is unimodular, it describes a class of multi-player matching problems
for which a stable match always exists.

More generally, Baldwin and Klemperer (2014, in preparation-a) show any matching
problem with perfectly transferable utility corresponds to a demand type containing
only vectors in ±{0, 1}n. If, as in the “workers” example above, the demand type is
unimodular, a stable match always exists. If it is not unimodular, the tropical-Bézout
methods of Section 5 tell us for what coalitions’ valuations there are stable matchings.85

6.6 Understanding Individual Demand

Our techniques are powerful tools for understanding individual demand. In partic-
ular, Mikhalkin’s important observation (our Theorem 2.3) tells us that any balanced
rational polyhedral complex is the TH of some quasilinear valuation and conversely.
This allows us to explore properties of valuations by drawing and analysing appropriate
geometric diagrams without needing to undertake the typically much more challenging
task of constructing valuations that generate these diagrams.

Baldwin and Klemperer (2014, in preparation-b) further explores the comparative
statics of individual demand, in order to better understand demand changes at non-
UDR prices. Unimodularity turns out to have important implications for the structure of
individual demand, as well as (as we saw in our discussion of the existence of equilibrium)
for aggregate demand. This work also leads to a generalisation of Gul and Stacchetti’s
(1999) “Single Improvement Property”.

Related work (joint with Paul Milgrom) uses our framework to help understand
implications of different notions of substitutability for indivisible goods that have been
suggested in the literature.86

the coordinate vectors.
Another intriguing example of a unimodular demand type that is not a member of this family, but

which is also not a unimodular basis change of strong substitutes, contains all vectors in Z6 with three
+1 entries and three -1 entries, thus incorporating (all) valuations for six distinct goods in which all
changes in an agent’s demand involve swapping three of the goods for the other three goods as prices
move between UDRs. Danilov and Grishukhin’s (1999) characterisation of maximal unimodular sets of
vectors provides many more examples (including a basis change of D, but not a pure-complements one
with this interpretation).

85Baldwin and Klemperer (in preparation-a) develops the application to matching in detail; prelim-
inary work is in Baldwin and Klemperer (2014). Since our framework allows us to consider multiple
players of each kind, it easily yields results along the lines of Chiappori, Galichon, and Salanié (2014,
see also Balinski, 1970).

86Baldwin, Klemperer, and Milgrom (in preparation). This paper also develops the relationship
between the existence of equilibrium for substitutes and properties of the Vickrey auction and the core.
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6.7 Auction Design

Practical auctions need to restrict the kinds of bids that can be made, thus restricting
the preferences that bidders can express. Restricting to a demand type is often natural,
since the economic context often suggests appropriate trade-offs between goods. For
example, the Bank of England expected bidders to have £1:£1 trade-offs between any
pair of the several different “kinds” of money it loaned in the financial crisis.87 Since
such trade-offs can be represented by strong substitutes preferences, if we permit ra-
tioning, the Bank chose auction rules that made it easy for bidders to communicate
such preferences, and the Bank was also unconcerned about ruling out the expression
of other preferences.88

Knowing that the bids in an auction must all express preferences of a demand type
also clarifies the meaning, and the implications, of the restrictions that have been im-
posed on the bidders.89 In particular, the motivation of the Product-Mix Auction is
to find competitive equilibrium, given bidders’ and the bid-taker’s reported preferences.
Since the Bank of England’s implementation of the Product-Mix auction allows rationing
(which makes “goods” divisible) ensuring the existence of equilibrium is not too hard.90

But in many contexts rationing is less sensible. For example, a too-small piece of radio
spectrum may not be useful. Similarly, a government may be interested in offers to build
gas-fired plants, nuclear-power stations, wind farms, etc., and these may be indivisible.
So results about equilibrium with indivisibilities tell us when Product-Mix Auctions can
easily be used.91

Our techniques also facilitate the analysis of Product-Mix Auctions. Individuals’ bids
in these auctions are aggregated in exactly the same simple way that THs are combined
to find aggregate demand. This also makes the auctions more “user-friendly”, and is
critical for getting them implemented in practice. Moreover, geometric analysis can
develop methods for finding equilibrium in new versions of the Product-Mix Auction;
this may help resolve problems currently facing regulators such as the U.S. Federal
Communications Commission, the U.K.’s Ofcom and the U.K. Department for Energy
and Climate Change.92

87The different “goods” were long-term loans (repos) against different qualities of collateral.
88Any strong substitutes preference could be expressed if the Bank’s “Product-Mix” Auctions (de-

scribed in Klemperer, 2008, 2010, and Baldwin and Klemperer, in preparation-c) were augmented by
permitting “negative” bids (see Klemperer, 2010, and Baldwin and Klemperer, in preparation-c).

89Restricting to a demand type also permits relatively complex “bids” while still checking that they
satisfy the restrictions, since there are easy software solutions to calculate the normal vectors of the
TH for any valuation and so reveal the demand “type”.

90So the updated (2014) implementation of the Bank’s auction also permitted some complements
preferences while maintaining the existence of equilibrium.

91Baldwin and Klemperer (in preparation-c) shows when equilibrium existence is guaranteed in new
forms of the Product-Mix Auction.

92Product-mix auctions are “one-shot” auctions for allocating heterogeneous goods. Their equilibrium
allocations and prices are similar to those of clock or Simultaneous Multiple-Round Auctions in private
value contexts, but they permit the bid-taker to express richer preferences; they are more robust against
collusive and/or predatory behaviour; and they are, of course, much faster. (They can also resolve clock
auctions’ problem of failing to find the exact equilibrium when it is unique, or the correct equilibrium
when it is not–see Harbord et al., 2011.)

For other work in auction development, using these and other geometric techniques, see Candogan
et al. (2015) and Lee (2015).
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7 Conclusion

An agent’s demand is completely described by its choices at all possible price vectors.
So it can also be described by the divisions between the regions of price space in which
the agent demands different bundles, and hence by the vectors that define these divisions.
This suggests a natural way of classifying valuations into “demand types”.

Using this classification, together with the duality between the geometric represen-
tations of valuations in price space and in quantity space, yields significant new insights
into when competitive equilibrium exists.

A demand type’s vectors also encode the possible comparative statics of demand,
and we expect many other results can be understood more readily, and developed more
efficiently, using our geometric perspective.

Companion papers93 use our framework and tools to obtain new results about the
existence of stable matchings in multiple-agent matching models; about individual de-
mand; and further develop the Product-Mix Auction implemented by the Bank of Eng-
land in response to the 2007 Northern Rock bank run and the subsequent financial
crisis.
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A Additional formal definitions, and proofs of re-

sults in the text

A.1 More details for Section 2

A.1.1 The mathematics and economics of tropical hypersurfaces

Recall we defined the underlying set of a tropical hypersurface associated to valuation
u to be

Tu := {p ∈ Rn | #Du(p) > 1}.

As stated in the text, a tropical hypersurface has the structure of a weighted rational
polyhedral complex. Here we build up that structure by understanding the economic
interpretation of its components. Throughout we work with the Euclidean topology.

Definition A.1.

(1) The cell interior of the TH Tu at a price p consists of points p′ such that Du(p) =
Du(p

′).94 A subset of Tu is a cell interior if it is the cell interior at some point in
Tu.

(2) A subset of Tu is a cell if it the closure of a cell interior of Tu.
(3) The affine span of a cell of Tu is the smallest affine space containing the cell.95

94Note that cells are subsets of the TH Tu, and not, as one might intuitively guess from looking at
Fig. 1, the open areas around the sides of the TH; those are the “unique demand regions”.

95Recall that an affine space in Rn is a parallel shift of a linear subspace, that is, a set {v+c | v ∈ U}
for some linear subspace U ≤ Rn and some fixed vector c.
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(4) The dimension of a cell is the dimension of its affine span. A cell of dimension k
is referred to as a k-cell. An (n − 1)-cell is referred to as a facet (where n is the
number of goods, and so the dimension of Euclidean space in which the TH lives).

(5) The boundary of a cell of Tu consists of those points in the cell that are not in its
cell interior.

(6) A unique demand region (UDR) is a connected component of the complement of
the TH.

Note that the cell interior is the largest set that is both contained in the cell and open in
the affine span of the cell.96 Naturally, “unique demand regions” are so-called because
the demand set contains only one element for such prices.

A TH has the structure of an abstract “polyhedral complex”:

Definition A.2.

(1) A set Π ( Rn is a polyhedral complex if:

(i) Π is the union of finitely many cells.
(ii) Each cell is a closed convex polyhedral set in Rn. That is, each cell may be

represented as an intersection of half-spaces {p ∈ Rn | p.w ≥ α} for some
vector w and scalar α.

(iii) The interiors of the cells do not intersect.
(iv) The boundary of a k-cell is the union of a finite number of (k − 1)-cells.

(2) Π is a rational polyhedral complex if the slope of the affine span of each cell is
rational. That is, in 1(ii), the vectors w may be taken to have integer coefficients.97

(3) Π is k-dimensional if it is contained in the union of its k-cells.

It is easy to see that any TH is an (n− 1)-dimensional rational polyhedral complex.
Properties 1(i) and 1(iii) follow by definition of the cells. Cell interiors are defined by a
collection of equalities p.(x−x′) = u(x)−u(x′) and inequalities p.(x−x′) > u(x)−u(x′),
and that a cell is defined by weakening these strict inequalities to weak inequalities. So
properties 1(ii) and (2) follow. The boundary of a cell is where at least one of the
weak inequalities holds with equality; when this is the case the price must lie in a lower
dimensional cell, so property 1(iv) is satisfied. Finally, we note that it is generic for only
one bundle to be demanded, and hence the UDRs are n-dimensional; moreover, they
are also polyhedral sets. As the TH is the complement in Rn of the UDRs, it follows
that the TH is (n− 1)-dimensional.

It is useful to note the economic meaning of cells versus cell interiors:

Lemma A.3. Let C be a cell, let C◦ be its (relative) interior, and fix p◦ ∈ C◦. Then
Du(p

◦) ⊆ Du(p) iff p ∈ C, with equality holding iff p ∈ C◦.
96See the equations for the three objects, given below. One might strictly refer to the “cell interior”

as the relative interior of the cell.
97We follow the convention of Mikhalkin (2004) in not restricting α in 1(ii) to be rational for ratio-

nality of the complex. This is because our u takes values in R. One can alternatively specify u : A→ Q
and α ∈ Q to obtain an analogous version of Theorem 2.3–see Maclagan and Sturmfels (2015, Definition
2.3.2 and Proposition 3.1.1), in whose terms our polyhedral complexes are R-rational.
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In particular, if C is a 0-cell then C◦ = C.

Proof of Lemma A.3. Identify the set of bundles Du(p
◦). As seen above, the cell

interior prices are identified by a collection of strict inequalities, stating that each of the
bundles which are in Du(p

◦) is strictly preferred to each of those that are not, together
with a set of equalities, stating that the agent is indifferent between the bundles in
Du(p

◦). The cell itself, being the closure of the “cell interior”, is defined algebraically
by replacing all the strict inequalities by their weak counterpart. But this now identifies
the set of prices at which the agent is indifferent between the bundles in Du(p

◦), and
weakly prefers them to all others. That is, for a price p ∈ C, the demand set contains
these bundles but may also contain others.

The equality when p ∈ C◦ follows immediately from Definition A.1(1). �

For completeness we re-iterate here Definition 2.1 from the text (see there for further
discussion of the interpretation of weights):

Definition A.4 (Mikhalkin, 2004, Example 2). The tropical hypersurface Tu associated
with any valuation u is the weighted rational polyhedral complex such that:

(1) its underlying set is {p ∈ Rn| #Du(p) > 1};
(2) the weight wu(F ) of the facet F is the integer defined by wu(F )vF = x′ − x, in

which x′ is demanded in the UDR on one side of F ; x is demanded in the UDR
on the other side; and vF is the primitive integer normal vector pointing from the
former to the latter.

A.1.2 Concavity of valuation functions: Proofs for Section 2.3

Proof of Lemma 2.5. Suppose that A is discrete-convex. It is a standard application
of the supporting hyperplane theorem that a function u : A → R is concave iff, for
all x ∈ A, there exists p ∈ Rn such that x ∈ Du(p). As we have defined concavity
to require discrete-convexity of domain, this provides the first equivalence. Moreover,
since the intersection between a supporting hyperplane and a convex set is always itself
convex, discrete-convexity of Du(p) also follows.

Conversely, suppose Du(p) is discrete-convex for all p. Let u′ : A′ → R be the
minimal weakly-concave function everywhere weakly greater than u, where A′ is the
minimal discrete-convex set containing A. Consider any x ∈ A′. By the previous
equivalence, there exists p such that x ∈ Du′(p). As the minimal weakly-concave
function on Rn extending u and u′ on Rn must coincide, it follows that ConvDu(p) =
ConvRDu′(p). But by assumption it follows that x ∈ Du(p). So the second property
holds (and in particular A is discrete-convex). �

Proof of Lemma 2.6. First see that, for any bundle x, we have Du(p) = {x} iff
Du′(p) = {x}, by minimality of u′. So Du(p) is single valued iff Du′(p) is, and at such
points the demand sets coincide. Hence both the underlying sets and the weights of the
THs coincide. �
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A.1.3 Duality: proofs for Section 2.4

Here we build up the key results for duality in more detail.
Given u : A → R with finite A ( Zn, we let fu : ConvRA → R be the minimal

weakly-concave function on ConvA which is everywhere weakly greater than u. Recall
that we defined the “roof” of u to be the graph of fu.

Lemma A.5. The “roof” is a polyhedral complex.

Proof. It is clear that the roof is the upper (with respect to the final coordinate)
boundary of the convex hull of the points (x, u(x)). It is standard (see e.g. Grünbaum
and Shephard, 1969) that this has the structure of a polyhedral complex. �

We also now formally define the SNP:

Definition A.6. The subdivided Newton Polytope (SNP) associated to a valuation u :
A → R is the set ConvA with the structure of a rational polyhedral complex whose
cells are the projections to the first n coordinates of the cells of the roof.

Again, the dimension of an SNP cell is the dimension of its affine span, and we
refer to k-cells of the SNP in the same way as the TH. However, a TH only has cells in
dimensions 0 to n− 1, whereas an SNP may have cells in dimensions 0 to n.

To understand the SNP further we first show:

Lemma A.7. For every p ∈ Rn, we have ConvDu(p) = Dfu(p). Moreover, Du(p) is
the intersection of Dfu(p) with those x ∈ A such that u(x) = fu(x).

Proof. We assume fu is weakly concave, so the set bounded above by its graph is convex.
By the supporting hyperplane theorem, for every x ∈ ConvA there exists a supporting
hyperplane to this graph at x. That ConvDu(p) = Dfu(p) now follows by minimality
of fu. Clearly, this supporting hyperplane also passes through (x, u(x)) if and only if
u(x) = fu(x). �

We can now see clearly the economic meaning of the SNP, giving an alternative route
to defining it:

Corollary A.8. A subset σ ⊆ ConvA is a cell of the SNP iff it has the form ConvDu(p)
for some p ∈ Rn.

Proof. Follows from Lemma A.7. �

As in Corollary A.8, we will always use Greek letters to refer to the cells of an SNP, to
distinguish them from the cells of a TH.

Now we show, if a bundle is demanded for any price, then whenever it is in the
convex hull of a demand set, it is actually demanded at that price:

Lemma A.9. If x ∈ ConvDu(p) and x ∈ Du(p
′) for some p,p′ ∈ Rn, then x ∈ Du(p).

Proof. Since x ∈ Du(p
′), by Lemma A.7, we know u(x) = fu(x). But since also

x ∈ ConvDu(p) = Dfu(p), we conclude from A.7 again that x ∈ Du(p). �

The duality between the SNP and the TH is stated in full as follows:
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Proposition A.10 (this extends Lemma 2.8 from the body text). There is a bijective
correspondence between cells σ of the SNP and the set encompassing both all cells and
all unique demand regions of the TH, Cσ, such that:

(1) σ = ConvDu(p) for all p ∈ C◦σ;
(2) Cσ = {p ∈ Rn | σ ⊆ ConvDu(p)};
(3) inclusions reverse: σ ( σ′ ⇔ Cσ′ ( Cσ;
(4) dimensions are dual: dimσ + dimCσ = n;
(5) cells are orthogonal: (p′ − p).(x′ − x) = 0 for all p,p′ ∈ Cσ, x,x′ ∈ σ.

Proof. By Definition A.1(1) the demand set is constant in a cell interior, and by Corollary
A.8 every SNP cell σ can be associated to some price p such that σ = ConvDu(p).
So (1) gives a well-defined correspondence between an SNP cell σ on the one hand,
and a set C◦σ which is either a cell interior or a unique demand region. Next, recall
from Lemma A.3 that a price p is in the cell Cσ iff Du(p

◦) ⊆ Du(p), where p◦ is
some representative element of C◦σ. Moreover, the latter holds iff σ = ConvDu(p

◦) ⊆
ConvDu(p). Necessity is obvious, and sufficiency follows from Lemma A.9: if we assume
ConvDu(p

◦) ⊆ ConvDu(p), then any x ∈ Du(p
◦) ⊆ ConvDu(p) must satisfy x ∈

Du(p). So p ∈ Cσ iff σ ⊂ ConvDu(p), i.e. (2) holds. Now (3) follows from the
combination of (1) and (2).

For (4) note that the affine span of Cσ is given by the set of prices p′ such that
u(x) − p.x = u(x′) − p.x′ for all x,x′ ∈ Du(p), i.e. all prices such that p′.(x − x′) =
u(x) − u(x′) for all such x,x′. If σ = ConvDu(p) is k-dimensional, these equations
impose k linearly independent constraints on such p′, so dimCσ = n− k.

Moreover, it follows now that (p′′ − p′).(x′ − x) = 0 for all x,x′ ∈ Du(p) and all
p′,p′′ ∈ Cσ. Thus this equality holds for any x,x′ ∈ ConvDu(p) = σ, proving (5). �

Note that ConvDu(p) 6= σ for p which are in the boundary of Cσ but not in its
interior. Lemma 2.9 now follows:

Proof of Lemma 2.9. Let σ be an SNP cell, and let the corresponding TH cell be
Cσ. From Proposition A.10(1) and (2), we know x ∈ σ holds iff x ∈ ConvDu(p) for all
p ∈ Cσ. Now, by Lemma A.9, either x is demanded for no price, or the latter holds iff
x ∈ Du(p) for all p ∈ Cσ. �

In Section 5 we will be particularly interested in 0-cells of the TH. We will show
there that we can check for certain properties by only studying those isolated points.
We will need to know, as is now simple:

Corollary A.11. Given u : A → R, if ConvA is n-dimensional, then every k-cell Cσ
of Tu has some 0-cell Cτ in its boundary, with σ ⊆ τ . Moreover if x ∈ σ but x /∈ Du(p

◦
σ)

for p◦σ ∈ C◦σ, then also x /∈ Du(p
◦
τ ) for p◦τ ∈ C◦τ .

Proof. This is easy to see using the SNP: σ is an (n − k)-cell, and by assumption the
SNP itself is n-dimensional, which means that σ is contained in an n-cell τ of the SNP.
So there exists a 0-cell Cτ of the TH with σ ⊆ τ by construction and with Cτ ⊆ Cσ by
Proposition A.10(3). That such x /∈ Du(p

◦
τ ) follows from Lemma A.9. �
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A.1.4 Examples for Section 2.5

Example A.12. For a fixed A, it is easy to draw every possible SNP and so obtain every
possible combinatorial type of TH, thus enumerating all possible “essentially-different”
structures of demand. We do this for A = {0, 1}2 in Fig. 9.

(a) (b) (c)

Figure 9: All the possible SNPs, and examples of their corresponding combinatorial
types of TH when A = {0, 1}2.

It is not hard to see that Fig. 9a applies when u(0, 0) + u(1, 1) < u(1, 0) + u(0, 1),
so represents substitutes; Fig. 9b applies when u(0, 0) + u(1, 1) = u(1, 0) + u(0, 1), so is
additively separable demand; and Fig. 9c applies when u(0, 0)+u(1, 1) > u(1, 0)+u(0, 1),
so is complements. (See Section 3.2 for these distinctions). Importantly, it is clear that
these are the only possibilities.

Observe that Fig. 9b can be seen as a limit of Fig. 9a (or, equivalently, Fig. 9c).
In the TH, the two 0-cells become arbitrarily close and then coincide in the limit; in
quantity space, the faces of the “roof” tilt until they are coplanar, meaning that the
SNP edge distinguishing them disappears.

Likewise, any SNP in which the subdivision is not maximal (that is, additional valid
(n− 1)-faces could be added) can be recovered by deleting (n− 1)-faces from some SNP
whose subdivision is maximal; the corresponding TH is a limit (or “degeneration”).
Even for larger domains than A = {0, 1}2, we can go on to enumerate all those combi-
natorial types of demand for which the SNP subdivision is maximal, knowing we can
recover the remainder as their limits, as in the following example.

Example A.13. For A = {0, 1, 2} × {0, 1}, we list the maximal subdivisions which
correspond to THs in Fig. 10.

A.2 Proofs for Section 3: demand types

A.2.1 Proofs for Section 3.2: comparative statics

Proof of Proposition 3.3. If a valuation u is not of such a demand type, it must have a
facet F with normal v where vi, vj < 0 for some i 6= j. Then ei.v 6= 0, i.e., this coordinate
vector is not parallel to the facet. So we may choose UDR prices p,p′ = p+εei which lie
on either side of the facet. We know demand change from p to p′ is an integer multiple
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(a) (b) (c) (d) (e) (f)

Figure 10: All the possible SNPs with maximal subdivision, and examples of their
corresponding combinatorial types of TH, when A = {0, 1} × {0, 1, 2}.

w of v. The price for good i has gone up, so by the law of demand, demand for good i
must have gone down: w > 0. Hence demand for good j also decreases: goods i and j
are not substitutes.

Conversely, suppose the valuation is of such a demand type. Choose prices p′ ≥ p
which both lie in unique demand regions. The straight line [p,p′] from the first price
to the second need not cross only facets, but because the UDRs are open we can choose
a small translation vector w such that p + w, and p′ + w are both respectively in the
same unique demand regions as p,p′ and such that [p + w,p′ + w] does only cross
facets. Let x0, . . . ,xl be demanded in each UDR that this line meets (so in particular
{x0} = Du(p) and {xl} = Du(p

′)). Now, in every case, xi − xi−1 is an integer multiple
of one of our allowed facet normals, and so has at most one positive and at most one
negative coordinate entry. By the law of demand, demand must weakly decrease at each
step for any good whose price is increasing, and hence demand must weakly increase at
each step for any other good. As the overall change in demand is just the composition
of such changes, this holds for the change in demand from x0 to xl. �

Proof of Proposition 3.5 This proof is completely analogous to that of Proposition
3.3. In the first step, we need only suppose that there exists a facet whose normal
has one positive and one negative coordinate entry, and find that these goods are not
complements. In the second step, we see that because demand weakly decreases at each
step for any good whose price is increasing, it must also weakly decrease for all other
goods (since facet normals have the same sign). �

The pattern of proof for these two propositions signals that there is potential for
generalisation here. In Baldwin and Klemperer (2014 and in preparation-b) we de-
velop these ideas much more broadly, defining “D-steps” and showing how they greatly
facilitate study of the comparative statics of demand.

A.2.2 Proofs for Section 3.3: aggregate demand

Suppose we have agents j = 1, . . . ,m with valuations uj : Aj → Rn. Define their
aggregate domain to be A :=

∑m
j=1Aj, that is, y ∈ A iff y =

∑m
j=1 xj where xj ∈ Aj. De-
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fine their aggregate valuation to be U(y) := max
{∑m

j=1 u
j(xj) | xj ∈ Aj,

∑m
j=1 xj = y

}
.

Proposition A.14. With agents and aggregate demand as above,

(1) DU(p) =
∑m

j=1Duj(p) for all p ∈ Rn.
(2) TU has underlying set equal to

⋃m
j=1 Tuj , and the weight on any facet of TU is equal

to the sum of weights of individual TH facets that contain it.

Proof. (1) For any p ∈ Rn, note that

m∑
j=1

Duj(p) =
m∑
j=1

max
xj∈A
{uj(xj)− p.xj} = max

{
m∑
j=1

uj(xj)− p.

(
m∑
j=1

xj

)
| xj ∈ Aj

}
,

and on the other hand, by definition of A, that

max
y∈A
{U(y)− p.y}

= max

{
max

{
m∑
j=1

uj(xj) | xj ∈ Aj,
m∑
j=1

xj = y

}
− p.y | y =

m∑
j=1

xj,xj ∈ Aj

}

= max

{
m∑
j=1

uj(xj)− p.

(
m∑
j=1

xj

)
| xj ∈ Aj

}
,

and that the same arguments xj ∈ A, with y =
∑m

j=1 xj, are maximising in either case.
(2) By (1), DU(p) is single-valued iff

∑m
j=1Duj(p) is single-valued, and hence iff

Duj(p) is single-valued for all j. Thus the underlying sets given coincide. Suppose F
is a facet of TU with adjacent UDRs R and R′; let vF be a primitive integer vector
pointing from R to R′. For j = 1, . . . ,m, write the demand of agent j in R as xj and
in R′ as xj′ (for some agent these will be distinct, but not necessarily for all). Then
wuj(F )vF = xj′ − xj for all j, and so∑

j

wuj(F )vF =
∑
j

xj′ −
∑
j

xj = wU(F )vF ,

as required. �

A.3 Proofs for Section 4: Equilibrium

A.3.1 Equivalent characterisations of unimodularity

Remark A.15. The following are equivalent, for a set of s linearly independent vectors
in Zn:

(1) they are an integer basis for the subspace they span;98

(2) an s-dimensional parallelepiped in Rn with vertices in Zn and these vectors as
edges contains no point in Zn except its vertices;

98This is made completely precise in Fact A.40 below.
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(3) they can be extended to a basis for Rn, of integer vectors, with determinant ±1;
(4) among the determinants of all the s× s matrices consisting of s rows of the n× s

matrix whose columns are these s vectors, the greatest common factor is 1.99

Proofs of these facts may be found in Cassels (1971).100 We refer to a set of vectors in
Zn as unimodular if every linearly independent subset has these properties.

A.3.2 Proof of Theorem 4.2

As described in Section 4.2, we first prove necessity and sufficiency for transverse
intersections, and then show that the general case follows. We start with necessity:

Proposition A.16. Consider s ≤ n agents each of whose demand set includes precisely
2 bundles at price p, i.e., #Dui(p) = 2, for i = 1, . . . , s. Write vi for the difference
between the two bundles demanded by agent i (so vi is normal to i’s facet of demand at
p). Suppose the s vectors v1, . . . ,vs are linearly independent. Write U for the aggregate
valuation. There exists an integer bundle in ConvDU(p) which is not demanded at any
price iff vectors v1, . . . ,vs do not form a unimodular set.

Proof. By Lemma 2.9, an integer bundle in ConvDU(p) is not demanded at any price iff
it is not in DU(p). Now, each individual agent i’s demand at p has the form Dui(p) =
{yi + δiv

i | δi ∈ {0, 1}} , where yi is the bundle demanded on the appropriate side of
the TH facet. So the set of bundles demanded on aggregate at p is

DU(p) =
{
y + δ1v

1 + · · ·+ δsv
s | δi ∈ {0, 1}; i = 1, . . . , s

}
,

where y =
∑

i y
i. These points are precisely the vertices of an s-dimensional par-

allelepiped in Zn (since its edges, the vi, are linearly independent). There exists an
integer bundle in ConvDU(p) which is not in DU(p) iff this parallelepiped contains an
integer bundle which is not a vertex, and, by Remark A.15(2) and (3), this holds iff the
set {v1, . . . ,vs} is not unimodular. �

Next, sufficiency:

Proposition A.17. Suppose price p is in the interior of an (n− ki)-cell Ci of the TH
Tui of each of s agents i = 1, . . . , s, who have concave valuations ui, and together have
aggregate valuation U . Then every integer bundle in ConvDU(p) is demanded at p if
each Ci is a subset of the intersection of a set of facets F i

1, . . . , F
i
ki

of Tui (not necessarily
comprising all facets of Tui that pass through Ci) with primitive integer normal vectors
vi1, . . . ,v

i
ki

and {vij | i = 1, . . . , s; j = 1, . . . , ki} are unimodular.

99This fact is especially helpful when developing examples.
100(1)⇔ (3) follows from Cassels (1971) Lemma I.1 and Corollary I.3. (1)⇔(4) is Cassels (1971)

Lemma I.2. For (1)⇔(2) consider a parallelepiped P whose vertices are y +
∑s

i=1 aiw
i for ai ∈ {0, 1}.

If z is a non-vertex integer point in P , then z−y exhibits the failure of (1). Conversely, if failure of (1)
is exhibited by an integer

∑s
i=1 biw

i where bi are not all integers, then y +
∑s

i=1 aiw
i exhibits failure

of (2), where ai is the non-integer part of bi in each case.
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Proof. All bundles demanded by agent i at p are demanded throughout the (n−ki)-cell
Ci, which corresponds to a ki-dimensional polytope σi in the SNP of agent i. Moreover,
σi possesses an edge in direction vij for j = 1, . . . , ki; each corresponds to the facet F i

j .
Thus, if yi is some integer bundle in Dui(p), then (by a dimension count) the affine span

of σi is precisely
{

yi +
∑ki

j=1 β
i
jv

i
j | βij ∈ R for j = 1, . . . , ki

}
, and in particular, Dui(p)

is contained in this set.
Thus, since aggregate demand is the Minkowski sum of individual demand, we may

express aggregate demand among these agents as

DU(p) =
{

y +
∑s

i=1

∑ki
j=1 a

i
jv

i
j | yi +

∑ki
j=1 a

i
jv

i
j ∈ Dui(p) for i = 1, . . . , s

}
, where y :=∑s

i=1 yi.
Now, suppose x is an integer bundle in ConvDU(p). Then x − y is in the span

of the vij. But since they are an integer basis for their span, we can write x − y =∑s
i=1

∑ki
j=1 b

i
jv

i
j, for some bij ∈ Z. So we can define xi := yi +

∑ki
j=1 b

i
jv

i
j, and know that

xi ∈ Zn.
But we also know xi ∈ ConvDui(p). To see this, observe that since x ∈ ConvDU(p),

we can write x − y =
∑

β

∑s
i=1

∑ki
j=1 λβa

i
j,βv

i
j for some finite set of weights λβ ∈ [0, 1]

such that
∑

β λβ = 1 and such that yi +
∑ki

j=1 a
i
j,βv

i
j ∈ Dui(p) for each agent i and

for each β. But since the vij are linearly independent, there is an unique way to write

x − y as a weighted sum of the vij, so bij =
∑

β λβa
i
j,β , and so xi = yi +

∑ki
j=1 b

i
jv

i
j =

yi +
∑ki

j=1

∑
β λβa

i
j,βv

i
j ∈ ConvDui(p).

So xi is an integer vector in ConvDui(p). By concavity of ui there exists some
price at which xi is demanded by agent i (Lemma 2.5), and so by Lemma 2.9 we know
xi ∈ Dui(p). Thus x =

∑s
i=1 xi ∈ DU(p). That is, x is demanded at p, as required. �

Finally we deal with the non-transverse case. Start by recalling Proposition 4.6:
given valuations u1 and u2, for generic v ∈ Rn and small enough ε, the intersection
(Tu1) ∩ (εv + Tu2) is transverse.

Strictly speaking, we should have noted that εv+Tu2 is also a TH to state this result,
although it is obviously a balanced weighted rational polyhedral complex of dimension
n − 1, so we can apply Theorem 2.3. However, in the following we will need to know
explicitly the corresponding valuation:

Lemma A.18. Let u : A → R be a valuation and let ε > 0 and v ∈ Rn. Define
uε : A→ R by uε(x) = u(x) + εv.x. Then:

(1) Duε(p) = Du(p− εv) for all p ∈ Rn;
(2) Tuε = εv + Tu;
(3) |uε(x)− u(x)| ≤ Rε‖v‖, where R satisfies R > ‖x‖ for all x ∈ A.

Proof. First see

Duε(p) = arg max
x∈A

{u(x) + εx.v − x.p} = arg max
x∈A

{u(x)− x.(p− εv)} = Du(p− εv).

The remainder of the lemma follows by definition of Tu, and the Cauchy-Schwarz in-
equality. �

Now we relate this material to the question of competitive equilibrium:
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Lemma A.19. Suppose we have agents 1, 2 with valuations u1, u2 and supply x ∈ A1 +
A2 for which competitive equilibrium does not exist: there does not exist p such that
x ∈ DU(p). Then for any v ∈ Rn, competitive equilibrium also fails when the agent’s
valuations are u1 and u2ε , for all sufficiently small ε.

Proof. Let p be a price such that x ∈ ConvDU(p), x /∈ DU(p). (Such a price exists
since the “SNP” subdivision subdivides the whole of ConvA).

Use indices β to label the elements of DU(p). By assumption there exist λβ ∈ [0, 1]
with

∑
β λβ = 1 such that x =

∑
β λβy

β. Following the logic of Section 2.4 it must be

that U(x) <
∑

β λβU(yβ). So pick η > 0 such that

U(x) <
∑
β

λβU(yβ)− η. (1)

Now, fix any v ∈ Rn. Let ε > 0 be any real satisfying ε ≤ η
2R‖v‖ where R > ‖x‖ for

all x ∈ A2, the domain of u2. Let Uε be the aggregate valuation of u1 and u2ε . Now,
there exist x1 ∈ A1, x2 ∈ A2 such that

Uε(x) = u1(x1) + u2ε(x
2) = u1(x1) + u2(x2) + εv.x2 ≤ U(x) + εv.x2 ≤ U(x) +

1

2
η

by Lemma A.18 and definition of ε. Since we can apply Lemma A.18 again, reversing
the roles of u2 and u2ε (and reversing the sign of v), it follows that |Uε(x)−U(x)| ≤ 1

2
η.

Moreover, we can apply the same argument for every yβ ∈ DU(p), so |Uε(yβ)−U(yβ)| ≤
1
2
η for all β. It follows from Equation (1) that Uε(x) <

∑
β λβUε(y

β). But recall that

x =
∑

β λβy
β, so this illustrates the failure of Uε to be concave at x, and, by Lemma

2.5, the impossibility of x being aggregate demand when the aggregate valuation is Uε,
which completes the proof. �

Proposition A.20. If competitive equilibrium fails for a set of agents, then there exists
a small perturbation of their valuations such that equilibrium still fails and such that all
intersections are transverse.

Proof. This follows from repeated application of Proposition 4.6 and Lemma A.19. �

Thus, to analyse when competitive equilibrium exists for all agents of a given type,
we need only be concerned with those whose THs meet transversally wherever they
intersect. Hence:

Proof of Theorem 4.2. For necessity of unimodularity of the demand type we use
Proposition A.16: if D is not unimodular, we can (Remark A.15) choose a linearly
independent subset of D which is also not unimodular, and then apply Proposition A.16
using this set of vectors. Sufficiency is given by Proposition A.17 and the contrapositive
of Proposition A.20. �
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A.3.3 Proofs for Section 4.3.2: Basis changes

Proposition A.21 (cf. Gorman, 1976, p. 219-20). For A ( Zn and u : A → R and
a unimodular n × n matrix G, define the (“pullback”) basis change of u by G to be
G∗u : G−1A→ R via G∗u(y) := u(Gy). Then

(1) G∗u is concave iff u is concave.
(2) A bundle is demanded under the original demand at a certain price iff an asso-

ciated bundle is demanded under the transformed demand at an associated price;
specifically: x ∈ Du(p) ⇐⇒ G−1x ∈ DG∗u(G

Tp).
(3) The TH of the transformed demand is given by a linear transformation of the

original demand: TG∗u = {GTp | p ∈ Tu};
(4) The inverse transformation to G applies to demand types: u(·) is of demand type
D iff G∗u(·) is of demand type G−1D = {G−1v | v ∈ D}.

Proof. (1) is trivial. (2): by definition, x ∈ Du(p) if pT (x − x′) ≤ u(x) − u(x′) for all
x′ ∈ A, with equality iff x′ ∈ Du(p) also. For any invertible matrix G, we may re-write

pT (x− x′) = pTGG−1(x− x′) = (GTp)T (G−1x−G−1x′).

If G is additionally unimodular, then G−1x and G−1x′ ∈ Zn. If we write y = G−1x and
y′ = G−1x′ then (GTp)T (y−y′) ≤ G∗u(y)−G∗u(y′) holds iff pT (x−x′) ≤ u(x)−u(x′).
So we have

x ∈ Du(p) ⇔ y = G−1x ∈ DG∗u(G
Tp),

as required.
(3): since the underlying set of Tu is those p for which #Du(p) > 1 it follows

immediately from (2) that TG∗u = {GTp | p ∈ Tu}, as required.
(4): suppose v is normal to a facet F of Tu. It follows from (3) that the facet

corresponding to F in TG∗u has the form GTF = {GTp | p ∈ F}. We know pTv is
constant for p ∈ F , from which it follows that (GTp)TG−1v = pTGG−1v is constant
for GTp ∈ GTF : we see G−1v is normal to a facet of TG∗u. As G has an integer inverse,
the converse is also true. �

Proof of Proposition 4.7. Suppose there is always an equilibrium for every finite set
of agents with concave valuations of type G−1D, and any supply bundle in the domain
of their aggregate valuation.

Let u1, . . . , uk be concave valuations of type D and let x be in the domain of their ag-
gregate valuation. Then, by Proposition A.21(1) and (4), the valuations G∗u1, . . . , G∗uk

are concave and have type G−1D. By definition of pullback, y := G−1x is in the do-
main of their aggregate valuation. By assumption competitive equilibrium exists in the
latter case: there exists a price p at which the agent with valuation G∗ui demands yi

and
∑

i y
i = y. But then in each case we may define xi := Gyi ∈ Dui(G

−Tp) (see
Proposition A.21(2)). So at price G−Tp the market clears for x :=

∑
i x

i: we have a
competitive equilibrium for our agents with concave valuations of type D.

As G is invertible, the converse is shown similarly. �
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A.4 Proofs for Section 5: Application of the tropical Bézout-
Kouchnirenko-Bernshtein theorem

To provide proofs for the material in Section 5, we need to associate additional
mathematical structure to the TH and SNP. In particular, it is possible to re-interpret
our previous results on equilibrium (Propositions A.16 and A.17) in terms of subgroup
indices of lattices associated with SNPs (see Proposition A.28 below). These subgroup
indices are used in the definition of intersection multiplicity in tropical geometry, and
thus allow us to apply results from tropical intersection theory to the question of com-
petitive equilibrium.

In Appendices A.4.1 and A.4.2 we consider intersections of more than two THs,
which is greater generality than we require. (We will not use this generality when
applying Theorems 5.3, 5.5 and 5.6 to multiple agents; we will instead first consider the
intersection of the first two agents, then the intersection of the third with the aggregation
of the first two, etc.) It is easy to state the results in full generality, and the relationships
between subgroup indices, TH intersections and equilibrium go beyond Theorems 5.3,
5.5 and 5.6. In particular Proposition A.28 provides the key link between economics
and geometry, in this general case.

This appendix section is followed by Appendix A.5, which explains mathematical
ideas that may be unfamiliar to some readers, on lattices, volumes and and subgroup
indices.101

We use the following notation throughout this appendix:

Notation We suppose that the THs of r agents intersect at some price p (although
there may be additional agents in the economy). Label these r agents as 1, . . . , r and
let TU be the aggregate TH of Tu1 , . . . , Tur . Label as C a cell of TU in the intersection of
these individual THs at p. Label the smallest cells containing C of Tuj as Cj, and let
σ, σj be the respective corresponding SNP cells, for j = 1, . . . , r. Set dj := dimσj and
d := dimσ. Note that dj ≥ 1 for all j because Cj is a cell of the TH (see Proposition
A.10(4)).

A.4.1 Parallel linear spaces for an SNP

To define the relevant lattices, we first provide definitions and results on their asso-
ciated linear (vector) spaces.

Definition A.22. Given an SNP cell ρ, the parallel linear space Lρ is the vector space
parallel to the affine span of ρ: Lρ consists of all linear combinations of the vectors
{x− y | x,y ∈ ρ}.

Clearly, the dimension of ρ is equal to the dimension of Lρ.

Lemma A.23. In the notation of Appendix A.4, σ = σ1 + · · ·+ σr.

101Note that our use of “lattice” is in its group-theoretic meaning; see Appendix A.5 below. “Lattices”
are also used economics in their order-theoretic sense, particularly in work on comparative statics (see
e.g. Milgrom and Shannon, 1994). We emphasise that mathematics has unfortunately used the same
word with two entirely different meanings.
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Proof. By definition, for any p in the relative interior of C (and hence of Cj for relevant
j) we have DU(p) = Du1(p) + · · · + Dur(p). So by the properties of polytopes102 we
know σ = σ1 + · · ·+ σr. �

Corollary A.24. In the notation introduced at the beginning of Appendix A.4, Lσ =
Lσ1 + · · ·+ Lσr .

Proof. Follows from Definition A.22 and Lemma A.23. �

Lemma A.25. In the notation introduced at the beginning of Appendix A.4:

(1) If r = 2, the intersection of Tu1 and Tu2 is transverse at C iff Lσ1 ∩ Lσ2 = {0}.
(2) For any r ≥ 1, the intersection of Tu1 , . . . , Tur is transverse at C iff Lσ = Lσ1 ⊕
· · · ⊕ Lσr , which holds iff d1 + · · ·+ dr = d.103

Proof. (1) By definition of transversality (Definition 4.5),

n = dim(C1 + C2) = dimC1 + dimC2 − dimC

= (n− d1) + (n− d2)− (n− d)

⇐⇒ d1 + d2 = d

On the other hand, we know from Lemma A.24 that Lσ = Lσ1 + Lσ2 and so dimLσ =
dimLσ1 + dimLσ2 − dim(Lσ1 ∩ Lσ2). Since the dimension of a polytope is defined to
be the dimension of its affine span, which is naturally equal to the dimension of the
parallel linear space, we conclude that Lσ1 ∩Lσ2 = {0} iff dim(C1 +C2) = n, i.e. iff the
intersection is transverse at C.

(2) Suppose r = 2. Then, by part (1), we know Lσ1 ∩ Lσ2 = {0}; we also know
that Lσ = Lσ1 + Lσ2 by Corollary A.24. So Lσ = Lσ1 ⊕ Lσ2 . For r ≥ 3, recall
from Definition 4.5 that we check transversality incrementally, taking the aggregate
THs of agents 1, . . . , j and checking transversality of the intersection of this with the
(j + 1)th TH. Applying the r = 2 case each time yields us the first result, from which
d = d1 + · · ·+ dr follows. �

A.4.2 Lattices associated with an SNP

Here we give the definitions and results we will need to prove Theorems 5.3, 5.5 and
5.6. Basic material on lattices in this context is presented in Appendix A.5.

Definition A.26. Given an SNP cell ρ, the parallel lattice Nρ is the set of integer
vectors parallel to the cell: Nρ = Lρ ∩ Zn.

Lemma A.27. In the notation introduced at the beginning of Appendix A.4, the lattice
Nσ1 + · · ·+Nσr is a sublattice of Nσ, and the linear spans coincide.

102See e.g. Cox et al 2005, Section 7.4, Exercise 3.
103In linear algebra, “L = L1⊕L2” is shorthand for saying that the (Minkowski) sum of vector spaces
L1 + L2 = L and also that L1 ∩ L2 = {0}. It extends naturally across several vector spaces.
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Proof. By Corollary A.24, for j = 1, . . . , r, we know Lσj ⊆ Lσ. Take intersections with
Zn to see Nσj ⊆ Nσ. Thus, as Nσ is additively closed, Nσ1 + · · · + Nσr ⊆ Nσ. It is a
sublattice as it is a lattice.

We know Lσ = Lσ1 + · · ·+ Lσr , so, to show the linear spans coincide, it is sufficient
to show that Lσ1 + · · ·+ Lσr is the linear span of Nσ1 + · · ·+Nσr . But the latter must
certainly contain Lσj for j = 1, . . . , r and so it contains their sum; on the other hand
Nσ1 + · · · + Nσr ⊆ Lσ1 + · · ·+ Lσr and the latter is linear; so Lσ1 + · · ·+ Lσr is indeed
the minimal linear vector subspace of Rn containing Nσ1 + · · ·+Nσr . �

Importantly, we thus have a well-defined subgroup index [Nσ : Nσ1 + · · · + Nσr ] (see
Appendix A.5.2). Note from Fact A.45 that this is greater than 1 precisely when the
parallelepiped we have discussed before contains a non-vertex point.

Having understood this definition, we now re-write and slightly generalise Proposi-
tions A.16 and A.17:

Proposition A.28. Use the notation introduced at the beginning of Appendix A.4. Sup-
pose p is in the relative interior of C.

(1) If [Nσ : Nσ1 + · · ·+Nσr ] = 1 then DU(p) is discrete-convex.
(2) If [Nσ : Nσ1 + · · · + Nσr ] > 1 and if dimσ1 ≤ 2 and dimσj = 1 for j = 2, . . . , r

then DU(p) is not discrete-convex.

Proof. Part (1) slightly extends Proposition A.17, to cover cases in which there is no
basis for Nσj consisting of edges of σj. However, in the proof of that proposition, we
only used the fact that the set of vectors we assigned to agent j was a set of integer
vectors and was a basis for the linear span for that agent’s demand set. Thus we need
only make the weaker assumption that some integer basis exists for each agent’s parallel
lattice so that the combination of the bases is unimodular, to obtain the result in the
same way.

Part (2) is follows easily from Proposition A.16 when dimσ1 = 1. It may also be
understood in more detail by following the argument for dim σ1 = 2 below, ignoring the
role of σ1.

So suppose dimσ1 = 2. Without loss of generality we may assume that 0 ∈ σj for
j = 1 . . . , r (otherwise the following arguments are simply augmented by a fixed shift).
For j = 2, . . . , r, fix an minimal integer non-zero vector vj ∈ σj. In each case this vector
then forms a basis for the corresponding lattice Nσj .

For j = 1 we will need find a basis for Nσ1 consisting of vectors v0,v1 which are
actually contained inside σ1 (note that this is not immediate). Start by taking w0,w1 ∈
σ1 which are linearly independent integer vectors. If these are a basis for Nσ1 , we are
done. If not, they span a sublattice M1 of Nσ1 , such that [Nσ1 : M1] > 1, and so there
must exist w ∈ Zn which is a non-vertex point of the parallelepiped they span. Then
w = α0w0+α1w1 with α0, α1 ∈ [0, 1]. If α0+α1 ≤ 1 then we fix w2 := w; if α0+α1 > 1
then let w2 = w0 + w1 −w. In either case now w2 = β0w0 + β1w1 with β0 + β1 ≤ 1.
As σ1 is convex we conclude that w2 ∈ σ.

Recalling that w was a non-vertex point of the parallelepiped spanned by w0,w1,
we know w2 is distinct from w0,w1,0. So w2 is a non-vertex point of the convex hull
∆0 of 0,w0,w1. Hence the convex hull ∆1 of 0,w1,w2 has strictly smaller area than
∆0. Moreover, the parallelepipeds spanned by w0,w1 and by w1,w2 have areas equal
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to twice the areas of ∆0, ∆1, respectively. So, if M2 is the sublattice of Nσ1 spanned by
w1,w2, then [Nσ1 : M2] < [Nσ1 : M1].

As all subgroup indices are positive-integer-valued, after a finite number of repeti-
tions of this process, the subgroup index will be 1, and hence (by Fact A.45(3)) we will
have obtained vectors v0,v1 ∈ σ1 which are a basis of Nσ1 , as required.

Now, by Fact A.45(3), there exists a bundle x ∈ Nσ, x /∈ Nσ1 + · · · + Nσr . Our
identified vectors v0,v1, . . . ,vr are an integer basis for this sublattice of Nσ. Because
the linear spans coincide (by Lemma A.27), they are thus a basis for Lσ, so we can write
x as a (real-valued) linear combination of these vectors. Moreover, since subtracting
integer multiples of the vj from x yields a new element of Nσ, we can assume that x
is in the fundamental parallelepiped of the sublattice with respect to this basis. So
we can write x =

∑r
j=0 α

jvj with αj ∈ [0, 1] for j = 0, . . . , r. Additionally, we can

assume that α0 + α1 ≤ 1: if α0 + α1 > 1 then replace x with
∑r

j=0 vj − x ∈ Nσ.

Now α0v0 + α1v1 ∈ σ1 and, for all j, also αjvj ∈ σj. So, x ∈ σ1 + · · · + σr = σ =
ConvDU(p). Moreover, x ∈ Nσ ⊆ Zn. But, by assumption, x /∈ Nσ1 + · · · + Nσr , and
so x /∈ Du1(p) + · · ·+Dur(p) = DU(p). �

To show the tightness of this result, we now give an example where [Nσ : Nσ1+Nσ2 ] >
1, where dim σ1 = dimσ2 = 2 and where DU(p) is discrete-convex. Although there will
be a non-vertex lattice point in the fundamental parallelepiped of Nσ1 + Nσ2 , the key
question for us is whether that lattice point is actually in σ1+σ2. If both these SNP cells
are small enough, for example if they are both simplices, the answer can be “no”. But
the answer can also be “yes”, without any change in the volumes or subgroup indices,
and so it seems that our method of analysis reaches its limit here.

Example A.29. In this example n = 4.
Agent 1 has valuation u1(0, 0, 0, 0) = 0, u1(1, 1, 0, 0) = 6, u1(0, 0, 1, 1) = 6. So Agent

1 is indifferent between these three bundles at prices p such that p1+p2 = 6, p3+p4 = 6.
There are three facets emanating from this 2-cell. Facets are 3-dimensional; recall that
on each the agent is indifferent between a pair of these bundles.

Agent 2 has valuation u2(0, 0, 0, 0) = 0, u2(0, 1, 1, 0) = 9, u2(4, 0, 0, 1) = 6, and so is
indifferent between these bundles at prices p such that p2 + p3 = 9 and 4p1 + p4 = 6.
Again, there are three facets, on which the agent is indifferent between pairs of these
bundles, emanating from this 2-cell.

These conditions for indifference are all satisfied iff p = (1, 5, 4, 2). At this price, we
have σ1 = Conv((0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1)) and σ2 = Conv((0, 0, 0, 0), (0, 1, 1, 0), (4, 0, 0, 1)).
The aggregate SNP cell σ is the Minkowski sum of all these; it is of course 4-dimensional
and so Nσ = Z4. Meanwhile Nσ1 and Nσ2 are 2-dimensional lattices, and we check that
the non-zero vectors we already know in each lattice do give a basis in each case, by
checking that the sets {(1, 1, 0, 0), (0, 0, 1, 1)} and {(0, 1, 1, 0), (4, 0, 0, 1)} are unimodular
(use Remark A.15(4)).

Thus, [Nσ : Nσ1 + Nσ2 ] is given by the absolute value of the determinant of these
four vectors; it is clearest to see the value of this determinant by re-ordering them:

det


1 0 0 4
1 1 0 0
0 1 1 0
0 0 1 1

 = −3
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Using Fact A.45(1) we now know that there are exactly 2 interior points to the funda-
mental parallelepiped of Nσ1 + Nσ2 . We express them explicitly in terms of the basis
vectors:

2

3


1
1
0
0

+
2

3


0
0
1
1

+
1

3


0
1
1
0

+
1

3


4
0
0
1

 =


2
1
1
1

 (2)

and

1

3


1
1
0
0

+
1

3


0
0
1
1

+
2

3


0
1
1
0

+
2

3


4
0
0
1

 =


3
1
1
1

 (3)

These expressions show clearly that (2, 1, 1, 1) can be decomposed to give a part in σ2

and a part not in σ1, whereas (3, 1, 1, 1) can be decomposed to give a part in σ1 and a
part not in σ2. Moreover, by linear independence of this set of four vectors, these are
the only possible decompositions into sums of bundles in the affine spans of σ1, σ2. So
neither is in σ1 + σ2 = σ = ConvDU(1, 5, 4, 2). But this means that the only integer
vectors in ConvDU(1, 5, 4, 2) are in fact in DU(1, 5, 4, 2) itself: it is discrete-convex.

However, by changing which combinations of these four vectors pertain to each agent,
we change the situation:

Example A.30. Now suppose Agent 1 has valuation u1(0, 0, 0, 0) = 0, u1(1, 1, 0, 0) =
6, u1(0, 1, 1, 0) = 9 and Agent 2 has valuation u2(0, 0, 0, 0) = 0, u1(0, 0, 1, 1) = 6,
u2(4, 0, 0, 1) = 6. Now σ1 = Conv((0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0)) and
σ2 = Conv((0, 0, 0, 0), (0, 0, 1, 1), (4, 0, 0, 1)). The analysis proceeds very similarly to be-
fore, but in this case the decompositions (2) and (3) show clearly that both (2, 1, 1, 1) and
(3, 1, 1, 1) are in σ1 + σ2. Thus they are in ConvDU(1, 5, 4, 2) but not in DU(1, 5, 4, 2):
this set is in this case not discrete-convex.

In both Example A.29 and A.30 we can calculate the mixed volume relevant at the
intersection.104 In both cases MV4(σ

1, σ2, (2, 2)) = 3. In both cases, the weights of the
individual’s 2-cells that meet at (1, 5, 4, 2) are both 1. There appears to be no way to
distinguish Examples A.29 and A.30 using the tools developed here, and so we reiterate:
the condition of Theorem 5.3 is sufficient, but not necessary, for existence of equilibrium
when n ≥ 4.

A.4.3 Full Statement of the Tropical Bézout-Kouchnirenko-Bernshtein the-
orem

The classical theorems of Bézout, Kouchnirenko and Bernshtein count intersections
of curves defined by polynomials, weighting these counts with the “multiplicities” of the
intersections. Bézout’s (1779) theorem counts intersections of polynomial curves of “pure
degree” in complex “projective” space, as being the product of their degrees. In practice

104This is not too hard, using Definition 5.1, as we only need consider combinations involving both
σ1 and σ2 (the 4-dimensional volume of an object of fewer than 4 dimensions is 0) and as σ1 and σ2

lie in linearly independent subspaces of R4.
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this means that one must put polynomials into a particular form and potentially count
many intersections “at infinity”. Bernshtein’s (1975) theorem (see also Kouchnirenko,
1976) extended this by showing that the number of intersections of general curves in
affine complex space is given by the mixed volume of their Newton polytopes.

Many authors have developed how one should think about tropical intersection mul-
tiplicities in order to translate such results in classical algebraic geometry across to
the tropical world (see e.g. Sturmfels, 2002, Mikhalkin, 2005, Gathmann and Markwig,
2008, Osserman and Payne, 2013). A 2-dimensional tropical Bézout-Bernshtein theorem
dates back to Sturmfels (2002) at the very beginning of the discipline of tropical geom-
etry. But indeed, Bézout-Bernshtein theorems for polytopes, working in n-dimensional
space, were already well known in one form or another: see McMullen (1993), Huber
and Sturmfels (1995) and Fulton and Sturmfels (1996). In this paper, we appeal to the
conventions and definitions of Bertrand and Bihan, who provide a nice tropical exposi-
tion in their 2007 preprint, the relevant parts of which are published in their (otherwise
different) 2013 book chapter.

Recall that we defined the mixed volume in the text (Definition 5.1) as being a linear
combination of volumes of sums of convex sets. We use this definition because it re-
quires the least additional background in geometry. However, there are many equivalent
definitions, and ours is not the most intuitive for those with more familiarity with the
subject. Cox et al (2005, Section 7.4) give much more explanation.105

Also note that n-dimensional mixed volume takes n arguments and calculates the
volume in dimension n–which is zero on any object which has fewer than n dimensions
itself.

We define the weight of a general TH cell using the lattice-volume VolNσ(σ) of the
corresponding SNP face; see Definition A.43 in Appendix A.5.2.

Definition A.31. The weight wu of a k-cell Cσ of a TH, associated to the (n− k)-cell
σ of the SNP, is given by

wu(Cσ) = (n− k)!VolNσ(σ)

We use again the notation introduced at the beginning of Appendix A.4. Now we
can define the tropical intersection multiplicity:

Definition A.32 (Bertrand and Bihan, 2013, Definition 5.2). Using the notation intro-
duced at the beginning of Appendix A.4, the multiplicity of cell C in the intersection of
THs Tu1 , . . . , Tur is defined as follows:

(1) If the intersection is transverse at p then
mult(C) := [Nσ : Nσ1 + · · ·+Nσr ] ·

∏r
j=1wuj(C

j)
(2) If the intersection is not transverse at p, translate the THs by small generic vectors

(as in Lemma 4.6) so that all intersections emerging from C are transverse. Define
mult(C) as the sum of the multiplicities of the transverse intersections emerging
from C which are cells of dimension n− d.

105Note that there are two competing conventions for the mixed volume; some writers divide the form
given here by n!. We use the same convention as Cox et al (2005) and Bertrand and Bihan (2007,
2013).

66



It is useful to recall from Lemma A.25 that, in our notation, an intersection is
transverse iff d1 + · · ·+ dr = d.

Theorem A.33 (Bertrand and Bihan, 2013, Thm. 6.1). Use the notation of Appendix
A.4.

(1) If the intersection of Tu1 , . . . , Tur is transverse at C, then

mult(C) = MVd(σ
1, . . . , σr; (d1, . . . , dr)).

(2) In general, when d ≤ d1 + · · ·+ dr, we have

mult(C) =
∑

t1+···+tr=d; tj≥1

MVd(σ
1, . . . , σr; (t1, . . . , tr)),

where the sum is over all r-tuples (t1, . . . , tr) such that t1 + · · ·+ tr = d and tj ≥ 1
for all j. In particular, if d = r, then mult(C) = MVd(σ

1, . . . , σr).

We state the following result in less generality than do Bertrand and Bihan, and in
different language, so that its use for our purposes is clearer.

Lemma A.34 (Bertrand and Bihan, 2013, Lemma 6.7). Suppose the intersection of
Tu1, Tu2 is transverse.106

MVn(Ã1, Ã2, (d1, d2)) =
∑

dimσj=dj

MVn(σ1, σ2, (d1, d2))

where the sum is taken over all cells σ = σ1 + σ2 of the SNP of U , such that dimσj =
dj for j = 1, 2, and such that σ1, σ2 correspond to TH cells which intersect along an
aggregate TH cell corresponding to σ.

A.4.4 Proofs of results in Appendix 5.2

We can finally prove the results stated in the text.

Lemma A.35. Suppose Tu1 and Tu2 intersect transversally at the respective cells C1, C2.
Then wu1(C

1)wu2(C
2) ≤ MVn(σ1, σ2; (d1, d2)), with equality holding iff [Nσ : Nσ1 +

Nσ2 ] = 1.

Proof. By Theorem A.33(1) we know that mult(C) = wu1(C
1)wu2(C

2)[Nσ : Nσ1 +Nσ2 ] =
MVn(σ1, σ2; (d1, d2)), from which the result follows. �

Proof of Lemma 5.2. We have THs Tu1 and Tu2 . Let C be a 0-cell of their intersection,
and use the notation of Appendix A.4. In particular, the d from that notation is equal
to n and, since the intersection is transverse, we know n = d1 + d2 (recalling that
dj = dimσj = n− dimCj).

Now we take the sum over all 0-cells of the intersection which are the intersection
of a (n− d1)-cell of Tu1 and an (n− d2)-cell of Tu2 , and apply Lemmas A.34 and A.35,

106The assumption of transversality here is equivalent to the condition, in the language of Bertrand
and Bihan, 2013, Lemma 6.7, that the “convex mixed subdivision” is “pure”.
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to see that the sum of such 0-cells, weighted only by the products of weights of the
intersecting cells, is bounded above by MVn(Ã1, Ã2, (d1, d2)). Moreover, equality holds
iff [Nσ : Nσ1 + Nσ2 ] = 1 in every case. The result now follows by Proposition A.28.
In particular, if n = 2 then every transverse intersection of cells is an intersection of
two facets, and if n = 3 then every transverse intersection of cells is an intersection of
two facets or a facet and a 1-cell. So in these cases there is at most one corresponding
SNP cell with dimension > 1, and hence (by Proposition A.28) [Nσ : Nσ1 + Nσ2 ] > 1
demonstrates failure of equilibrium. �

Proof of Theorem 5.3. That the upper bound holds is obvious from Lemma 5.2.
If the näıvely-weighted count is equal to the upper bound, then by Lemma 5.2,

the demand set is discrete-convex for every 0-cell in the intersection of the THs. Now
suppose that equilibrium fails for some supply. By Lemma 4.4, the demand set is not
discrete-convex at some price in the intersection, and hence it is not discrete-convex
for any price in the interior of the corresponding cell in the TH of aggregate demand.
But by Corollary A.11, because we assume the domain of aggregate demand to be in n
dimensions, there is a 0-cell in the boundary of this cell, at which price the demand set
is also not discrete-convex. Since a TH intersection is closed, this 0-cell is also in the
intersection of the individual THs: we have a contradiction. So in this case, equilibrium
exists for every supply.

If the näıvely-weighted count is strictly below the upper bound, and if n ≤ 3, then
it is immediate by Lemma 5.2 that equilibrium must fail for some supply. �

A.4.5 Proofs for Section 5.4: results when the intersection is not transverse

First, an interesting example of a non-transverse intersection, such that competitive
equilibrium does exist for all supplies in the domain of aggregate demand, only if we do
not make any small shift of the valuations.

Example A.36. Consider two identical agents whose demand sets at price (2, 2) are the
bundles (0, 0), (1, 2), (2, 1) and (1, 1). (For example, this is consistent with a valuation
u(x, 0) = x;u(0, y) = y;u(1, 1) = 4;u(1, 2) = u(2, 1) = 6;u(2, 2) = 7). Then the
bundle (2, 2) is in the aggregate demand set at this price: we assign bundle (1, 1) to
both agents. But observe that bundle (1, 1) is an interior point of each agent’s SNP cell
with the vertices (0, 0), (1, 2), and (2, 1), so if we make a small perturbation to either
agent’s valuation so their THs intersect transversally, then for any prices close to (2, 2)
the perturbed agent’s demand must be some subset of these vertices, and it is easy to
see that (2, 2) cannot be an aggregate demand.

We now state the full version of Maclagan and Sturmfels (2015) Proposition 3.6.12.

Proposition A.37 (Maclagan and Sturmfels, 2015, Proposition 3.6.12). For any THs
Tu1 and Tu2, and generic v ∈ Rn, the limit limε→0 Tu1 ∩ (εv + Tu2) exists and equals the
stable intersection of Tu1 and Tu2.107

Additionally, the proof of the following is clear from the proof of Proposition 3.6.12
of Maclagan and Sturmfels, 2015.

107The limit is taken in the Hausdorff metric.
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Corollary A.38. For sufficiently small ε > 0 the combinatorial type of TUε is indepen-
dent of ε. �

This enables us to prove Theorem 5.5

Proof of Theorem 5.5. For first necessity and then sufficiency, we prove the result
by contradiction.

If there exists any price at which the aggregate demand set is not discrete-convex,
then clearly equilibrium fails for supply bundles exhibiting failure of discrete-convexity
(see Lemma 2.9). In particular this holds if the price is at a 0-cell of the stable inter-
section.

Conversely, suppose equilibrium does not exist for x in the domain of aggregate val-
uation. Then, combining Proposition 4.6 with Lemmas A.18 and A.19, there exists w
such that, for all ε > 0 and beneath some upper bound, the THs Tu1 and εw +Tu2 meet
transversally everywhere, and equilibrium fails for supply x when the agents have the
corresponding valuations. Fix suitable ε, and write the corresponding aggregate valua-
tion as Uε. Note by Corollary A.38 that the combinatorial type of TUε is independent of
ε for such ε.

As x is in the domain of the aggregate valuation, we have x ∈ σε for some SNP cell
σε of the SNP corresponding to Uε. Moreover, we assumed that the domain of U has
dimension n, from which it follows that σε has dimension n, and corresponds to a 0-cell
of TUε . Let pε be the price at this 0-cell. Then x ∈ ConvDUε(pε). However, we know
that x /∈ DUε(p) for any p ∈ Rn. We conclude, as argued at Lemma 4.4, that pε is at
the intersection of the individual tropical hypersurfaces, that is, pε ∈ Tu1 ∩ (εw + Tu2).

Identify minimal cells C1 of Tu1 and C2
ε of εw + Tu2(= Tu2ε ) such that pε ∈ C1 ∩ C2

ε .
Since pε is at a 0-cell of Uε, by minimality of C1 and C2

ε , this intersection must be at
only one point: {pε} = C1 ∩ C2

ε .
Now note that C2

ε = εv + C2, where C2 is a cell of Tu2 , by Lemma A.18. So
pε ∈ C1 ∩ (εv + C2), and hence in particular the latter is non-empty. As we chose
sufficiently small ε that the combinatorial type of TUε is independent of ε, it follows that
C1 ∩ (ε′v + C2) contains one point, pε′ , for all ε′ with 0 < ε′ < ε. Hence, since cells are
closed, the limit as ε→ 0 is a 0-cell of the stable intersection. Let p be the price at this
0-cell. Obviously p ∈ C1 ∩ C2.

Now let σ1 and σ2 be the SNP cells of the individual valuations corresponding to C1

and C2. Of course σ2 is also the SNP cell for agent 2′ corresponding to cell C2
ε = εv+C2.

So σε = σ1 + σ2. Since p ∈ C1 ∩ C2 we know σ1 ⊆ Du1(p) and σ2 ⊆ Du2(p). Hence
x ∈ σε = σ1 + σ2 ⊆ ConvDu1(p) + ConvDu1(p) = ConvDU(p). �

Our remaining theorem is also easy to prove from Bertrand and Bihan’s results and
definitions.

Proof of Theorem 5.6. Take a small translation of Tu2 so that the intersections are
all transverse. By Definition A.31(2), the weight of any 0-cell in the stable intersection
(before this translation) is given by the sum of the weights of the 0-cells that emerged
from it (after this translation); by Proposition A.37, such 0-cells will indeed emerge.
As these weights are all positive integers, then, the number of 0-cells in the stable
intersection is bounded above by the weighted sum of 0-cells after the translation, which,
by Lemma A.34, is the number stated. �
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A.5 Mathematical background for the proofs in Appendix A.4:
Lattices and subgroup indices

The following material is intended as a companion to Appendix A.4.

A.5.1 Lattices

The key to the question of equilibrium with indivisible goods, is that available bun-
dles form a subset of a lattice, and individual agents’ demands aggregate as lattices. So,
before considering the parallel lattice associated with an SNP cell, we cover some pre-
liminary material on lattices. We will only be interested in lattices within Zn. Readers
familiar with group theory will recognise them as additive subgroups of Zn. Famil-
iarity with group theory is not essential to understand this section, but may deepen
understanding a little.

Definition A.39.

(1) A lattice is a set N ⊆ Zn such that 0 ∈ N and if n,n′ ∈ N then n− n′ ∈ N .
(2) M is a sublattice of N if M ⊆ N and M has the structure of a lattice.
(3) The linear span of a lattice is the minimal vector subspace of Rn containing N .
(4) The rank of a lattice is the dimension of its linear span.
(5) An integer basis for a lattice N is a set {n1, . . . ,nr} such that any n ∈ N can be

uniquely presented as n =
∑

i αin
i for αi ∈ Z.

We refer to integer bases rather than just bases for lattices to retain clarity that these
are bases for lattices and not just the linear space they span. We will be particularly
interested in sublattices of equal rank.

We now group some important results.

Fact A.40.

(1) If N,M ⊆ Zn are lattices, then the Minkowski sum N +M is a lattice.
(2) Any lattice has an integer basis.108

(3) If M , N are lattices whose linear spans have zero intersection and if {m1, . . .mr},
{n1, . . . ,ns} are integer bases for them respectively, then {m1, . . .mr,n1, . . . ,ns}
is an integer basis for M +N .

(4) Suppose the rank k lattice N is equal to Zn ∩ LN where LN is its linear span. A
set {n1, . . . ,nk} of linearly independent vectors in N is a basis iff it is unimodular.

We emphasise in particular Fact A.40(4), an important result which was also men-
tioned in Remark A.15.

We can therefore define:

Definition A.41. A fundamental parallelepiped of a lattice N is the set {
∑

i λin
i | 0 ≤

λi ≤ 1}, where {n1, . . . ,nr} are a basis for N .

Note that a different basis will give a different parallelepiped, but they will always be
related by a unimodular basis change.

108This is the “fundamental theorem on discrete subgroups of Euclidean spaces”, see Cox et al., 2005,
p334.
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A.5.2 Volumes of Lattice Polytopes, and subgroup indices

Definition A.42. The n-dimensional volume of a convex set X in Rn is:

Voln(X) :=

∫
· · ·
∫
X

1dp1 . . . dpn.

If the dimension k of X is less than n then this will always be zero. We need, however,
some measure of the k-dimensional volume of a k-dimensional polytope which lives in
Rn.109 Moreover, we wish to normalise so that, for example, an SNP edge comprising
only one copy of a primitive integer vector has “length 1”. Similarly, will consider
the fundamental parallelepiped of a rank k sublattice N ⊆ Zn to have k-dimensional
volume equal to 1 with respect to this lattice. Thus the appropriate change of basis is
not orthogonal, but defined by a basis for the lattice in question.

Specifically, take such a basis {n1, . . . ,nk} for N and extend it to a basis for Rn, for
example by appending suitable coordinate vectors (the choice of these vectors will not
be relevant).110 Let GN be the inverse of the matrix with these vectors as its columns,
so GNni = ei for i = 1, . . . , k. Then GN restricts to an isomorphism between N and Zk:
any polytope X with vertices in N is mapped under GN to a polytope in Rk ⊆ Rn with
vertices in Zk ⊆ Zn. With these conventions:

Definition A.43. The lattice-volume of a polytope X with vertices in a lattice N ⊆ Zn
is VolN(X) := Volk(GNX).

It is easy to see that this is independent of the choice of basis for N (and its extension
to Rn) and that the volume of the fundamental parallelepiped in N is 1.

Now the sublattice index easy to define.

Definition A.44. Let M ⊆ N be a sublattice of equal rank, and let ∆M be a funda-
mental parallelepiped of M . The subgroup index [N : M ] is VolN(∆M).

The following points are standard:111

Fact A.45. Using the notation defined above, and in particular using the same vectors
in Rn to extend a basis for either N or M to Rn, we have

(1) [N : M ]− 1 is equal to the number points of N in ∆M which are not vertices.
(2) [N : M ] = | det(GNG

−1
M )|.

(3) [N : M ] = 1 iff N = M .

109One would usually determine the k-dimensional volume of a k-dimensional subset X of Rn by using
an orthonormal change of basis matrix so that X ⊆ Rk for some fixed subset of coordinates of Rn.
Then the volume as defined above can be taken.
110Those familiar with abstract linear transformations will see that choosing such vectors is unneces-

sary; we include this step so readers unfamiliar with such material can think entirely in terms of square
matrices.
111Those familiar with group theory will recognise that [N : M ] is the subgroup index in the ordinary

sense: it is the number of cosets of M in N , that is, the number of disjoint sets n + M where n ∈ N .
It is standard group theory that each such coset may be represented by some n in the fundamental
parallelepiped of M , and if n+M 6= M then such n is not a vertex of this parallelepiped, and is unique;
these points both follow from the simple observation that n+M = n′+M ⇔ n−n′ ∈M . This shows
part 1. In part 2, the fundamental point is that [N : M ] is the determinant of the (k × k) change of
basis from M to N , but again we present an explicit n×n matrix with the requisite property so readers
need not concern themselves unnecessarily with unfamiliar material.
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