
SUPPLEMENTARY MATERIAL FOR:
A UNIFORM LAW FOR CONVERGENCE TO THE LOCAL

TIMES OF LINEAR FRACTIONAL STABLE MOTIONS

A. Verifications for examples from Section 3.

Verification of Example 3.2. Let ε > 0 be given, and {θk}Kk=1 be
the centres of a collection of ε1/τ -balls that cover Θ. Then for every θ ∈
B(θk, ε

1/τ ),

lk(x) := g(x, θk)− εġ(x) ≤ g(x, θ) ≤ g(x, θk) + εġ(x) =: uk(x)

whence the continuous brackets {lk, uk}Kk=1 have size 2ε‖ġ‖1, and cover F .
A suitable envelope for F is given by

F (x) := |g(x, θ1)|+ (diam Θ)1/τ ġ(x).

Verification of Example 3.3. Let ε > 0 be given, andM <∞ chosen
such that

sup
|x|≥M

F (x) < ε

ˆ
[−M,M ]c

F (x) dx < ε,

which is possible by Lemma B.1. Let F|M denote the set formed by restricting
each f ∈ F to the domain [−M,M ]. In view of the proof of Theorem 2.7.1 in
van der Vaart and Wellner (1996), for any given δ > 0, there exist continuous
functions {fk}Kk=1 such that the balls

B(fk, δ) := {g : [−M,M ]→ R | ‖g − fk‖∞ < δ}

cover F|M . Thence the brackets formed by

lk(x) = {[fk(x)− δ] ∨ [−F (x)]}1{x ∈ [−M,M} − F (x)1{x /∈ [−M,M ]}
uk(x) = {[fk(x) + δ] ∧ F (x)}1{x ∈ [−M,M}+ F (x)1{x /∈ [−M,M ]}

cover F , and have size ‖uk − lk‖1 ≤ 2Mδ + ε = 2ε, where the final equality
follows by taking δ = ε/2M . Since uk is piecewise continuous (with possible
discontinuities at −M and M), and agrees with F (x) for all |x| > M , there
clearly exists a ũk ∈ BILβ with ũk ≥ uk and ‖ũk − uk‖1 < ε. Constructing
l̃k from lk in an analogous manner, we thus obtain a collection of continuous
brackets {l̃k, ũk}Kk=1 of size 4ε, which cover F .
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B. Modifications required for the proof Theorem 3.1(ii). We
must first strengthen (6.1) to weak convergence in `∞(R). To that end, define

Un :=
1

dn
max
t≤n
|xt| U := sup

r∈[0,1]
|X(r)|,

so that Un  U under (2.7). Noting that the supports of Lϕn and Lϕ are
contained in [−Un − 1,Un + 1] and [−U,U] respectively – in the first case,
because ϕ is compactly supported – we may chooseM <∞ sufficiently large
such that

lim sup
n→∞

P

{
sup

a∈[−M,M ]c
Lϕn(a) > 0

}
+ P

{
sup

a∈[−M,M ]c
L(a) > 0

}
<
ε

2

for any given ε > 0. By the result of part (i) and Theorem 1.10.3 in van der
Vaart and Wellner (1996), there exists a distributionally equivalent sequence
L∗n =d Lϕn such that L∗n

a.s.→ L∗ =d L in `ucc(R). Hence

P
{

sup
a∈R
|L∗n(a)− L∗(a)| > ε

}
≤ P

{
sup

a∈[−M,M ]
|L∗n(a)− L∗(a)| > ε

}

+ P

{
sup

a∈[−M,M ]c
L∗n(a) > 0

}
+ P

{
sup

a∈[−M,M ]c
L∗(a) > 0

}
< ε

for all n sufficiently large. Deduce that L∗n
p→ L∗ in `∞(R), whence (6.1)

holds in `∞(R).
To extend (6.4) to weak convergence on `∞(R), it suffices to show that

sup
(a,b)∈[−Mn,Mn]×Bn

|Lfn(a, b−1)− Lϕn(a)µf | = op(1)(B.1)

sup
(a,b)∈[−Mn,Mn]c×Bn

|Lfn(a, b−1)| = op(1).(B.2)

where µf :=
´
R f , and Mn := nτ for some τ > 0. In view of Lemma 6.1,

(B.1) may be proved via precisely the same arguments as which established
the asymptotic negligibility of (6.2) above – albeit with a different choice of
γ and δ (depending on τ). Regarding (B.2), we have the following (see the
end of this section for the proof).
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Lemma B.1. Suppose f ∈ BILγ for some γ > 0. Then |f(x)| = o(|x|−γ/2)
as x→ ±∞.

Since maxt≤n|xt| .p dn, we have w.p.a.1 that

inf
t≤n

inf
|a|≥Mn

|xt − dna| ≥ dnnτ
(

1− n−τd−1
n max

t≤n
|xt|
)

= dnn
τ (1 + op(1)).

In view of Lemma B.1, we may choose β > 0 such that |f(x)| = o(|x|−β) as
x→ ±∞. Then

max
t≤n

sup
(a,b)∈[−Mn,Mn]c×Bn

bf [b(xt − dna)]

. max
t≤n

sup
(a,b)∈[−Mn,Mn]c×Bn

b1−β|xt − dna|−β

.p en(end
−1
n n−τ )β = o(ne−1

n )

if τ is chosen sufficiently large. Thus (B.2) holds, whence (6.4) obtains in
`∞(R). An identical bracketing argument to that given above now establishes
that (6.5) holds with R in place of [−M,M ].

Proof of Lemma B.1. For simplicity, suppose f has Lipschitz constant
Cf = 1. Suppose for a contradiction that the claim is false (for x → +∞).
Then

[A] there exists a δ ∈ (0, 1), and a positive, increasing sequence xk → ∞
with xk − xk−1 ≥ 2, such that f(xk)x

γ/2
k ≥ δ for all k ∈ N.

Since f is Lipschitz (with Cf = 1) and f(xk) ≥ δx
−γ/2
k , we can bound the

integral ˆ xk+1

xk−1
|f(x)| dx

from below by the area of a triangle having height δx−γ/2k and base 2δx
−γ/2
k .

Hence
ˆ
|f(x)||x|γ dx ≥

∞∑
k=1

ˆ xk+1

xk−1
|f(x)||x|γ dx

≥ 1

2

∞∑
k=2

xγk

ˆ xk+1

xk−1
|f(x)|dx ≥ δ2

2

∞∑
k=2

1.

But the RHS diverges, contradicting that
´
|f(x)||x|γ dx < ∞. Hence [A] is

false, and thus the claim must be true.
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C. Proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. By the Lipschitz continuity of f , straightforward
calculations yield that

|f(a1,b1)(x)− f(a2,b2)(x)| ≤ |b1 − b2|[1 + b2(|x|+ dn|a2|)] + b1b2dn|a1 − a2|.

In particular, taking (a1, b1) = (a, b) ∈ Cn and (a2, b2) = pn(a, b), and noting
that b . en . n and dn . n, we have

|f(a,b)(x)− fpn(a,b)(x)| ≤ n−δ[1 + n(|x|+ dnn
γ)] + dnn

2−δ

. n2+γ−δ + n1−δ|x|

whence

(C.1) sup
(a,b)∈Cn

1

en

n∑
t=1

|f(a,b)(xt)− fpn(a,b)(xt)| ≤ n3+γ−δ + n1−δ
n∑
t=1

|xt|.

To control the final term, note that by Chebyshev’s inequality,

P

{
n1−δ

n∑
t=1

|xt| ≥M

}
≤ n2P

{
|v0| ≥

M

n3−δ

}
≤ n2+(3−δ)p

Mp
E|v0|p,

for any p > 0 such that E|v0|p < ∞. Thus, we need only to show that such
a p > 0 always exists, in order to deduce that δ may be chosen sufficiently
large such that the right side of (C.1) is op(1).

To that end, we note that for every p ∈ (0, 2],

(C.2) E|v0|p .
∞∑
k=0

|φk|pE|ε0|p,

using Theorem 3 in von Bahr and Esseen (1965) when p ∈ (1, 2], and the
elementary inequality |x+ y|p ≤ |x|p + |y|p when p ∈ (0, 1]. Now E|ε0|p <∞
for every p ∈ (0, α), by Theorem 2.6.4 in Ibragimov and Linnik (1971), while
when H 6= 1/α,

∑∞
k=0|φk|p <∞ for any p such that

p(H − 1− 1/α) < −1 ⇐⇒ p >
1

1− (H − 1/α)
=: p.

Importantly,

α− p =
α(1−H)

1− (H − 1/α)
> 0

since H − 1/α < 1. Thus when H 6= 1/α, we may take a p ∈ (p, α) such that
the right side of (C.2) is finite; when H = 1/α – in which case α ∈ (1, 2] –
it suffices to take p = 1.
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Proof of Lemma 6.2. Let {lk, uk}Kk=1 denote a collection of continuous
ε-brackets for F ; we may certainly take

−F (x) ≤ lk(x) ≤ uk(x) ≤ F (x)

without loss of generality. Indeed, since F is integrable and continuous, we
may choose brackets having the property that, for some M <∞

lk(x) = −F (x) uk(x) = F (x)

for all |x| > M , where M is chosen to be sufficiently large that

(C.3)
ˆ

[−M,M ]c
F (x) < ε.

Let δ > 0. Since lk is continuous on [−M,M ], there exists a polynomial
l′k on [−M,M ] such that l′k(−M) = F (−M), l′k(M) = F (M) and

sup
x∈[−M,M ]

|lk(x)− l′k(x)| < δ.

Thus, setting

l̃k(x) :=

{
[l′k(x)− δ] ∨ [−F (x)] if x ∈ [−M,M ],

−F (x) otherwise,

ensures that l̃k(x) ≤ lk(x) for all x ∈ R, l̃k ∈ BILβ , and – in view of (C.3) –
ˆ
R

[lk(x)− l̃k(x)] dx ≤ 4Mδ + ε = 2ε

where the final equality follows by taking δ = ε/4M .
Constructing ũk in an analogous manner from uk, we thus obtain a col-

lection {l̃k, ũk}Kk=1 ⊂ BILβ of 5ε-brackets for F .

D. Proofs of Lemmas 7.1, 7.2 and 7.5.

Proof of Lemma 7.1. Let Sn(θ) :=
∑Kn

k=1Mnk(θ) and Ωn :=
∑Kn

k=1 ωnk.
It is easily verified that

(D.1)
{

max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
⊆
⋃
k,θ

{|Mnk(θ)| ≥ xωnk}
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for every x ∈ R+, where
⋃
k,θ :=

⋃Kn
k=1

⋃
θ∈Θn

. Define

En(x) :=
⋃
k,θ

{[Mnk(θ)] ∨ 〈Mnk(θ)〉 ≤ xω2
nk},

and note that by (7.2) and Lemma 2.2.2 in van der Vaart and Wellner (1996),∥∥∥∥max
k,θ

ω−2
nk {[Mnk(θ)] ∨ 〈Mnk(θ)〉}

∥∥∥∥
1

. log(Kn ·#Θn) . log n

where maxk,θ := max1≤k≤Kn maxθ∈Θn , whence by Chebyshev’s inequality

(D.2) PEcn(x) = P
{

max
k,θ

ω−2
nk {[Mnk(θ)] ∨ 〈Mnk(θ)〉} > x

}
.

log n

x
.

It follows from (D.1) that{
max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
∩ En(x)

⊆
⋃
k,θ

{|Mnk(θ)| ≥ xωnk, [Mnk(θ)] ∨ 〈Mnk(θ)〉 ≤ xω2
nk},

and so by Theorem 2.1 in Bercu and Touati (2008),

(D.3) P
{

max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
∩ En(x)

. (Kn ·#Θn) exp

(
−(xωnk)

2

4xω2
nk

)
. nC exp

(
−x

4

)
.

Together, (D.2) and (D.3) yield

P
{

max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
≤ P

{
max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
∩ En(x) + PEcn(x)

. nC exp
(
−x

4

)
+

log n

x
.

Setting x = a log n for a > 0 sufficiently large, we thus have

P
{

max
θ∈Θn
|Sn(θ)| ≥ xΩn

}
. nC−a/4 + a−1 → 0

as n→∞ and then a→∞.
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Proof of Lemma 7.2. In both cases, the reverse implication is trivial.
Regarding the forward implication, in case (i) this follows immediately from
the fact that

Eτ1

(
|X|
qσ

)
= E

∞∑
p=1

|X|p

p! · (qσ)p
=
∞∑
p=1

E|X|p

p! · (qσ)p
≤
∞∑
p=1

(
C

q

)p
≤ 1

for q > 0 sufficiently large. In order to prove (ii), note that by Hölder’s
inequality, for any p ∈ N,

E|X|2p/3 ≤ (E|X|2p)1/3

and that by Stirling’s formula (Rudin, 1976, 8.22),

(3p)!

(p!)3
� 33p (6πp)1/2

(2πp)3/2
. 33p.

Hence

Eτ2/3

(
|X|
qσ

)
≤ E|X|

qσ
+

∞∑
p=1

E|X|2p/3

p! · (qσ)2p/3

≤ (E|X|2)1/2

qσ
+

∞∑
p=1

(E|X|2p)1/3

p! · (qσ)2p/3

.
1

q
+

∞∑
p=1

(
C

q2/3

)p
≤ 1

for q > 0 sufficiently large.

Proof of Lemma 7.5. Recalling the definitions given at the start of
Section 7.2, it is clear that

sup
f∈G

ςn(β, f) +

n−1∑
k=0

sup
f∈G

σnk(β, f)

may be bounded by

‖G ‖∞+e1/2
n (‖G ‖1 +‖G ‖2)+‖G ‖[β]

[
n∑
k=1

d
−(1+β)
k + e1/2

n

n−1∑
k=1

k−1/2d
−(1+2β)/2
k

]
.
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The claimed bound follows since, for some C <∞ depending on β,

n∑
k=1

d
−(1+β)
k + e1/2

n

n−1∑
k=1

k−1/2d
−(1+2β)/2
k ≤ C(end

−β
n + e1/2

n n1/2d−(1+2β)/2
n )

≤ Cend−βn

by Karamata’s theorem, noting in particular that {k−1/2d
−(1+2β)/2
k } is reg-

ularly varying with index

−1

2
−
(

1

2
+ β

)
H = −1 +H

(
1−H

2H
− β

)
> −1,

since β < βH ≤ 1−H
2H .

E. Proof of (8.1). For −∞ < a < b < ∞, the same argument as
appears in the proof of Lemma 8 in Jeganathan (2008) yields

µn(b)− µn(a) =
1

n

n∑
t=1

1{a < d−1
n xt ≤ b}

 
ˆ 1

0
1{a < X(r) ≤ b} dr

=

ˆ b

a
L(x) dx

= µ(b)− µ(a)

where the penultimate equality follows by (2.8). In consequence, for any
a > 0,

µn(−a) + [1− µn(a)] = 1− [µn(a)− µn(−a)] 1− [µ(a)− µ(−a)]
a.s.→ 0

as n→∞ and then a→∞. Hence µn(−a)
p→ 0 as n→∞ and then a→∞.

Similarly,
µn(b)− µn(−a) µ(b)− µ(−a)

a.s.→ µ(b)

as n→∞ and then a→∞. Since weak convergence is metrisable, it follows
that we may choose a = an →∞ sufficiently slowly such that

µn(b) = [µ(b)− µ(−an)] + µ(−an) µ(b)

as n → ∞. Thus µn  fdd µ; because µ and µn are monotone and continu-
ous, with a uniformly bounded range, weak convergence on `∞(R) follows
automatically (see the proof of Lemma 2.11 in van der Vaart, 1998).
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F. Proofs of results from Section 9.

Verification of (9.1). It suffices to prove the result when y0 = 0.
Since the Fourier transform is an isometry on L2 (Stein and Weiss, 1971,
Thm. I.2.3), fk → f on L2, where

fk(x) :=
1

2π

ˆ k

−k
e−iλxf̂(λ) dλ.

Since 1[−k,k](λ)f̂(λ) ∈ L1, it follows that for every k ∈ N

(F.1) Efk(Y ) =
1

2π

ˆ k

−k
f̂(λ)E

[
e−iλ′Y

]
dλ.

By assumption, Y has an integrable characteristic function, and thus a
bounded density πY , by the inversion formula (Feller, 1971, Thm XV.3.3).
Hence, by the Cauchy-Schwarz inequality,

|Efk(Y )− Ef(Y )| ≤
(
E|fk(Y )− f(Y )|2

)1/2
≤ ‖πY ‖1/2∞

(ˆ
R
|fk(y)− f(y)|2 dy

)1/2

→ 0,

as k → ∞. A further application of the Cauchy-Schwarz inequality (noting
f̂ ∈ L2) yields∣∣∣∣∣
ˆ
{|λ|>k}

f̂(λ)E[e−iλ′Y ] dλ

∣∣∣∣∣
≤

(ˆ
{|λ|>k}

|f̂(λ)|2 dλ

)1/2(ˆ
{|λ|>k}

|ψY (λ)|2 dλ

)1/2

→ 0

as k →∞. Letting k →∞ on both sides of (F.1) then gives the result.

Proof of Lemma 9.1. (i) is immediate from |f̂(λ)| ≤ ‖f‖1 and the
definition of ‖·‖[β]. Regarding (ii), in this case f̂(0) =

´
f = 0. Therefore,

using the elementary inequality |eiz − 1| ≤ 21−β|z|β (for z ∈ R), we find that

|f̂(λ)| = |f̂(λ)− f̂(0)e−iλy|

≤
ˆ
R
|f(x)||eiλ(x+y) − 1| dx ≤ 21−β|λ|β

ˆ
R
|f(x− y)||x|β dx.
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for every y ∈ R. Finally, for f as in (iii)

|f̂(λ)| = |g(λ̂)||eiλa1 − eiλa2 |
= |g(λ̂)||1− eiλ(a1−a2)| ≤ 21−β‖g‖1|λ|β|a1 − a2|β.

Verification of (9.4). When H = 1/α, the result follows from argu-
ments given in Wang and Phillips (2009): see their (7.14), in particular.
Otherwise, first note that by Karamata’s theorem,

ak =

k∑
l=0

φl ∼
k∑
l=1

lH−1−1/απl � kH−1/απk = ck

when H > 1/α, and

ak =

k∑
l=0

φl = −
∞∑

l=k+1

φl ∼
∞∑

l=k+1

lH−1−1/απl � kH−1/απk = ck

when H < 1/α, since
∑∞

l=0 φl = 0. In the first case, setting δ := 1
2(H−1/α),

it follows from Potter’s inequality that we may choose k0 sufficiently large
that

2−3δ .

(
l

k

)3δ

.
cl
ck
.

(
l

k

)δ
≤ 1

for all k ≥ k0 and bk/2c ≤ l ≤ k. Since ak � ck, this yields the stated result,
which follows also when H < 1/α by a strictly analogous argument.

The proof of Lemma 9.2 requires the following two results. The first is
an immediate consequence of (9.4), and the fact that ε0 is in the domain of
attraction of a stable distribution, with ψ ∈ Lp0 .

Lemma F.1. There exist η0, γ0 ∈ (0,∞) such that

sup
k≥k0+1

sup
bk/2c≤l≤k

|ψ(c−1
k alλ)| ≤

{
e−γ0|λ|

αG(λ) if |λ| ≤ η0,

e−γ0 if |λ| > η0.

Lemma F.2. Let k ≥ k0 + 1, p ∈ [0, 5], q ∈ (0, 2] and z1, z2 ∈ R+. Then
there exists a γ1 > 0 such that

ˆ
R

(z1|λ|p ∧ z2)
∏
l∈K
|ψ(alλ)|dλ . z1d

−(p+1)
k + z2e−γ1k(F.2)
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and if F (u) � Gp/α(u) as u→ 0,

(F.3)
ˆ
R

(z1|ak|p|λ|p+qF (akλ) ∧ z2)
∏
l∈K
|ψ(alλ)|dλ

. z1k
−p/αd

−(1+q)
k + z2e−γ1k

uniformly over all K ⊆ {bk/2c+ 1, . . . , k} with #K ≥ dk/4e.

Proof of Lemma F.1. As noted in (9.5) above, there exist η, γ ∈ (0,∞)
such that

|ψ(λ)| ≤ e−γ|λ|
αG(λ)

whenever |λ| ≤ η. Defining

I := {(k, l) | k ≥ k0 + 1, bk/2c ≤ l ≤ k}

it follows from (9.4) that

|λ| ≤ a−1η =⇒ sup
(k,l)∈I

|c−1
k alλ| ≤ η.

Let η0 := a−1η and r(λ) := |λ|αG(λ). Then whenever |λ| ≤ η0,

sup
(k,l)∈I

|ψ(c−1
k alλ)| ≤ exp

(
− inf

(k,l)∈I
r(c−1

k alλ)

)
≤ exp

(
− inf
a∈[a,a]

r(aλ)

)
,

using (9.4) again. Since r is regularly varying at zero,

inf
a∈[a,a]

r(aλ) = r(λ) inf
a∈[a,a]

r(aλ)

r(λ)
≤ C0r(λ)

for some C0 ∈ (0,∞), for all |λ| ≤ η0. Hence

sup
(k,l)∈I

|ψ(c−1
k alλ)| ≤ exp(−γC0|λ|αG(λ))

for all |λ| ≤ η0.
Next, note that since ψ ∈ Lp0 and ‖ψ‖∞ ≤ 1, we have ϕ := |ψ|2k ∈ L1 for

a k ∈ N chosen such that 2k ≥ p0. Thus ϕ is the characteristic function of a
random variable having bounded continuous density (Feller, 1971, corollaries
to Lem. XV.1.2 and Thm XV.3.3), and so by the Riemann-Lebesgue lemma

lim sup
|λ|→∞

|ψ(λ)| =

(
lim sup
|λ|→∞

|ϕ(λ)|

)2−k

= 0
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(Feller, 1971, Lem. XV.3.3). Further, ϕ ∈ L1 cannot be periodic, and so
|ϕ(λ)| < 1 for all λ 6= 0 (Feller, 1971, Lem. XV.1.4). Since ϕ is necessarily
continuous, it follows that

sup
|λ|>δ
|ψ(λ)| =

(
sup
|λ|>δ
|ϕ(λ)|

)2−k

< 1

for every δ > 0. Noting that

|λ| > η0 =⇒ inf
(k,l)∈I

|c−1
k alλ| > aη0

it follows that

sup
|λ|>η0

sup
(k,l)∈I

|ψ(c−1
k alλ)| ≤ sup

|λ|>aη0
|ψ(λ)| ≤ e−C1

for some C1 ∈ (0,∞). Setting γ0 := γC0 ∧ C1 thus yields the result.

Proof of Lemma F.2. We shall only give the proof of (F.3): the proof
of (F.2) is strictly analogous, albeit somewhat simpler. Letting K := #K
and hk(λ) := (z1|ak|p|λ|p+qF (akλ) ∧ z2), we first note that by repeated ap-
plications of Hölder’s inequality (see Jeganathan, 2008, Lem. 7) and then a
change of variables,

ˆ
R
hk(λ)

∏
l∈K
|ψ(alλ)| dλ ≤

∏
l∈K

(ˆ
R
hk(λ)|ψ(alλ)|K dλ

)1/K

(F.4)

≤ max
l∈K

ˆ
R
hk(λ)|ψ(alλ)|K dλ

= c−1
k max

l∈K

ˆ
R
hk(c

−1
k λ)|ψ(c−1

k alλ)|K dλ.(F.5)

We proceed by handling this integral separately on the domains [−η0, η0]
and [−η0, η0]c. In the first case, we use hk(λ) ≤ z1|ak|p|λ|p+qF (akλ), and are
thus led to consider

(F.6) c−1
k max

l∈K

ˆ
[−η0,η0]

hk(c
−1
k λ)|ψ(c−1

k alλ)|K dλ

= c
−(1+p+q)
k |ak|p

ˆ
[−η0,η0]

|λ|p+qF (c−1
k akλ)|ψ(c−1

k alλ)|K dλ

. c−(1+q)
k

ˆ
[−η0,η0]

|λ|p+qF (c−1
k akλ)e−γ0K|λ|

αG(λ) dλ,
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using (9.4) and Lemma F.1. Now let r(λ) := |λ|αG(λ); as noted in Jegan-
athan (2004, p. 1774), the sequence bn := n1/α%n satisfies

(F.7) r(b−1
n ) = b−αn G(b−1

n ) ∼ n−1

as n→∞. Therefore, setting µ = λbK , we obtain

K · r(λ) = K · r(µb−1
K ) &

r(µb−1
K )

r(b−1
K )

& |µ|α/2

since r is regularly varying at zero, with index α. Further, recalling (9.4), we
have

F (c−1
k akb

−1
K µ) = F (c−1

k akb
−1
K )

F (c−1
k akb

−1
K µ)

F (c−1
k akb

−1
K )

. Gp/α(b−1
K )|µ|−ε

. K−p/αbpK |µ|
−ε

for any ε > 0, using the fact that F is slowly varying, F (u) � Gp/α(u) as
u → 0, and (F.7). Hence, by a change of variables, the right side of (F.6)
may be bounded by

c
−(1+q)
k b

−(1+p+q)
K

ˆ
[−η0bK ,η0bK ]

|µ|p+qF (c−1
k akb

−1
K µ)e−γ0K·r(µb

−1
K ) dµ

. c−(1+q)
k K−p/αb

−(1+q)
K

ˆ
R
|µ|p+q−εe−C|µ|α/2 dµ

. c−(1+q)
k k−p/αb

−(1+q)
k

= k−p/αd
−(1+q)
k(F.8)

since dk/4e ≤ K ≤ k, and bkck = n1/αck%k = dk.
Since hk(λ) ≤ z2, to complete the proof we need only to consider

c−1
k

ˆ
[−η0,η0]c

|ψ(c−1
k alλ)|K dλ.

Thence, taking a K′ ⊆ K with #K′ = dk/8e,

c−1
k

ˆ
[−η0,η0]c

|ψ(c−1
k alλ)|K dλ ≤ c−1

k e−γ0(K−dk/8e)
ˆ
R
|ψ(c−1

k alλ)|dk/8e dλ

. e−γ1k(F.9)
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for any γ1 ∈ (0, γ0/8); note that the right hand integral is finite because
ψ ∈ Lp0 , and dk/8e ≥ k0/8 ≥ p0, and again the uniform boundedness of
c−1
k al follows from (9.4). Thus (F.5), (F.8) and the preceding yield

ˆ
R
hk(λ)

∏
l∈K
|ψ(alλ)| dλ . z1k

−p/αd
−(1+q)
k + z2e−γ1k.(F.10)

Proof of Lemma 9.2. Recall from (9.3) the decompositions

x′t+1,t+k,t+k =
k−1∑
l=0

alεt+k−l x′t−s+1,t−1,t+k =
k+s−1∑
l=k+1

alεt+k−l.

Thence

|Ee−iλx′t+1,t+k,t+k | ≤
k−1∏

l=bk/2c+1

|ψ(−λal)|

whereupon (i) follows immediately from Lemma F.2. The proof of (ii) re-
quires a slight modification of the arguments used to prove Lemma F.2.
Since

|Ee−iλx′t−s+1,t−1,t+k | ≤
k+s−1∏

l=k+bs/2c

|ψ(−λal)|,

the problem reduces to one of controlling

c−1
k+s max

l∈K

ˆ
R
|ψ(c−1

k+salλ)|K dλ,

as per (F.5) above, where K := #K for

K := {l ∈ N | k + bs/2c ≤ l ≤ k + s− 1}.

Thus in this case, the same arguments as which led to (F.8) and (F.9) now
yield

c−1
k+s max

l∈K

ˆ
R
|ψ(c−1

k+salλ)|K dλ . c−1
k+s(b

−1
K + e−γ1K) .

cK
ck+s

d−1
K .

cs
ck+s

d−1
s ,

since {ck} and {dk} are regularly varying, and s/3 ≤ K ≤ 2s/3.
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Proof of Lemma 9.3.
(i). Recall from (9.2) the decomposition

xt+k = x∗t,t+k + x′t+1,t+k,t+k.(F.11)

Let f̃ denote the Fourier transform of x 7→ |f(x)|, noting that |f̃(λ)| ≤ ‖f‖1.
Thence by Fourier inversion and Lemma 9.2(i),

Et|f(xt+k)| =
∣∣∣∣ 1

2π

ˆ
R
f̃(λ)e−iλx∗t,t+kE[e−iλx′t+1,t+k,t+k ] dλ

∣∣∣∣
. ‖f‖1

ˆ
R
|Ee−iλx′t+1,t+k,t+k |dλ

. ‖f‖1d−1
k .

(ii). By (F.11), Fourier inversion, Lemma 9.1(i) and then Lemma 9.2(i),

|Etf(xt+k)| .
ˆ
R
|f̂(λ)||Ee−iλx′t+1,t+k,t+k | dλ

≤
ˆ
R

(‖f‖[β]|λ|β ∧ ‖f‖1)|Ee−iλx′t+1,t+k,t+k | dλ

. ‖f‖[β]d
−(1+β)
k + ‖f‖1e−γ1k.

Proof of Lemma 9.4. Using Jensen’s inequality and |eix− 1| . |x| ∧ 1,
we obtain that for any λ ∈ R,

E|e−iλε0 − Ee−iλε0 |2 = E|(e−iλε0 − 1)− E(e−iλε0 − 1)|2(F.12)

≤ 2E
[
|e−iλε0 − 1|2 + (E|e−iλε0 − 1|)2

]
≤ 2E|e−iλε0 − 1|2

. E[|λε0|2 ∧ 1].

To obtain a bound for the final term, let F denote the distribution function
of ε0; following Ibragimov and Linnik (1971, Sec. 2.6), we define

χ(x) := 1− F (x) + F (−x) ∼ xαl(x)

for x > 0, where l is slowly varying at infinity, and

L(x) := −
ˆ x

0
u2 dχ(u).
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Then

E[(λε0)2 ∧ 1] =

[ˆ
[−λ−1,λ−1]

+

ˆ
[−λ−1,λ−1]c

]
((λε0)2 ∧ 1) dF (ε)

= λ2

ˆ
[−λ−1,λ−1]

ε2 dF (ε) +

ˆ
[−λ−1,λ−1]c

dF (ε)

= −λ2

ˆ λ−1

0
ε2 dχ(ε) + 1− F (λ−1) + F (−λ−1)

= λ2L(λ−1) + χ(λ−1).

Now by Theorem 2.6.3 and (2.6.24) in Ibragimov and Linnik (1971), we have

(F.13) χ(λ−1) = λ2 · λ−2χ(λ−1) � λ2L(λ−1)

when α ∈ (0, 2), and
χ(λ−1) . λ2L(λ−1)

when α = 2, for λ in a neighbourhood of zero. Thus, defining

G̃(λ) := |λ|2−αL(λ−1)

it follows that
E[(λε0)2 ∧ 1] . |λ|αG̃(λ).

That G̃(λ) � G(λ) as λ → 0 is evident from (F.13) and the proof of The-
orem 2.6.5 in Ibragimov and Linnik (1971): see their (2.6.38) and (2.6.39),
in particular.

Since the left side of (F.12) is also bounded by 4, we thus have

E|e−iλε0 − Ee−iλε0 |2 . |λ|αG̃(λ) ∧ 1.

Hence, by the Cauchy-Schwarz inequality,

ϑ(z1, z2) ≤
(
E|e−iz1ε0 − Ee−iz1ε0 |2

)1/2(E|e−iz2ε0 − Ee−iz2ε0 |2
)1/2

. [|z1|αG̃(z1) ∧ 1]1/2[|z2|αG̃(z2) ∧ 1]1/2.
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G. Proof of (10.1). Note first that

E|Vnkf |p = E

(
n−k∑
t=1

Et−1ξ
2
ktf

)p

≤ p! ·
n−k∑
t1=1

· · ·
n−k∑

tp−1=tp−2

n−k∑
tp=tp−1

E
[
Et1−1(ξ2

kt1f) · · ·Etp−1−1(ξ2
ktp−1

f) · Etp−1(ξ2
ktpf)

]
and that by the law of iterated expectations, when tp−1 < tp,

E
[
Et1−1(ξ2

kt1f) · · ·Etp−1−1(ξ2
ktp−1

f) · Etp−1(ξ2
ktpf)

]
= E

[
Et1−1(ξ2

kt1f) · · ·Etp−1−1(ξ2
ktp−1

f) · Etp−1−1(ξ2
ktpf)

]
≤ ‖Etp−1−1ξ

2
ktpf‖∞E

[
Et1−1(ξ2

kt1f) · · ·Etp−1−1(ξ2
ktp−1

f)
]
.

When tp = tp−1, we may instead use

(Etp−1ξ
2
ktf)2 ≤ ‖Etp−1−1ξ

2
ktp−1

f‖∞Etp−1−1ξ
2
ktp−1

f

≤ ‖ξ2
ktp−1

f‖∞Etp−1−1ξ
2
ktp−1

f.

Thus E|Vnkf |p is bounded by

p! ·
n−k∑
t1=1

· · ·
n−k∑

tp−1=tp−2

E
[
Et1−1(ξ2

kt1f) · · ·Etp−1−1(ξ2
ktp−1

f)
]

·

‖ξ2
ktp−1

f‖∞ +

n−k−tp−1∑
s=1

‖Etp−1−1ξ
2
k,tp−1+sf‖∞

.
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H. List of notation.

Greek and Roman symbols. Listed in (Roman) alphabetical order. Greek
symbols are listed according to their English names: thus Ω, as ‘omega’,
appears before ξ, as ‘xi’.

ai partial sum of {φi}, ai :=
∑i

j=0 φj . . . . . . . . . . . . . . . . Sec. 9
α index of domain of attraction of ε0 . . . . . . . . . . . . . . . . Ass. 1(i)
βH upper bound for β, depends on H . . . . . . . . . . . . . . . . . (4.6)
BI bounded and integrable functions on R . . . . . . . . . . . . Sec. 1.1
BIβ f ∈ BI with

´
|f(x)||x|β dx <∞ . . . . . . . . . . . . . . . . . . . (3.2)

BI[β] f ∈ BI with ‖f‖[β] <∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 4.2
BILβ Lipschitz functions in BIβ . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3
cn norming sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.3)
C generic constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 1.1
dn norming sequence used to define Xn . . . . . . . . . . . . . . . (2.4)
δn(β,F ) appears in Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . (4.8)
en norming sequence used to define Lfn . . . . . . . . . . . . . . . (2.4)
εt i.i.d. sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ass. 1(i)
Et expectation conditional on F t−∞ . . . . . . . . . . . . . . . . . . Sec. 7.1
F ts σ-field generated by {εr}tr=s . . . . . . . . . . . . . . . . . . . . . . . Sec. 7.1
F subset of BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ass. 3
G specific slowly varying function. . . . . . . . . . . . . . . . . . . . (9.5)
h, hn bandwidth parameter (or sequence) . . . . . . . . . . . . . . . (3.1), (5.1)
hn, hn lower and upper bounds defining Hn . . . . . . . . . . . . . . Ass. 2
H sets the decay rate of φk as k →∞ . . . . . . . . . . . . . . . Ass. 1(ii)
Hn set of allowable bandwidths . . . . . . . . . . . . . . . . . . . . . . . Ass. 2
`ucc(Q) bounded functions on Q, with ucc topology . . . . . . . Sec. 1.1
`∞(Q) bounded functions on Q, with uniform topology . . . Sec. 1.1
L local time of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rem. 2.5
Lfn sample estimate of local time . . . . . . . . . . . . . . . . . . . . . (3.1)
Mnkf martingale components in decomposition of Snf . . (7.4)
Nnf remainder from decomposition of Snf . . . . . . . . . . . . . (7.4)
N∗[ ](ε,F ) number of continuous ε-brackets to cover F . . . . . . . Sec. 3
Ω sample space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 8
φk coefficients defining the linear process vt . . . . . . . . . . Ass. 1(ii)
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ϕ triangular kernel function . . . . . . . . . . . . . . . . . . . . . . . . . (4.2)
ψ characteristic function of ε0 . . . . . . . . . . . . . . . . . . . . . . . Ass. 1(i)
%n norming sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.2)
Sn summation operator, Snf :=

∑n
t=1 f(xt) . . . . . . . . . . (4.4)

τ2/3 specific convex and increasing function . . . . . . . . . . . . (4.7)
τ1 function x 7→ ex − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 7
vt linear process built from {εt} . . . . . . . . . . . . . . . . . . . . . . (2.1)
xt partial sum of {vt} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.1)
x∗s,t Fs−∞-measurable component of xt . . . . . . . . . . . . . . . . . (9.2)
x′s,r,t Frs -measurable component of xt . . . . . . . . . . . . . . . . . . . (9.3)
X finite-dimensional limit of Xn, an LFSM . . . . . . . . . . (2.6)
Xn process constructed from {xt} . . . . . . . . . . . . . . . . . . . . . (2.5)
ξktf martingale difference components ofMnkf . . . . . . . . (7.3)
Zα α-stable Lévy motion Rem. 2.1

Symbols not connected to Greek or Roman letters. Ordered alphabetically
by their description.

=d both sides have the same distribution . . . . . . . . . . . . . Rem. 3.2
d·e ceiling function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 1.1
p→ converges in probability to . . . . . . . . . . . . . . . . . . . . . . . . Sec. 7.1
 fdd finite-dimensional convergence . . . . . . . . . . . . . . . . . . . . Sec. 4.2
b·c floor function (integer part) . . . . . . . . . . . . . . . . . . . . . . . Sec. 1.1
‖·‖[β] fourier transform modulus (at origin) norm . . . . . . . (4.5)
f̂ fourier transform of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 4.2
. left side bounded by a constant times the right side Sec. 1.1
.p left side bounded in probability by the right side . . Sec. 4.2

(an .p bn if an = Op(bn))
‖f‖p Lp norm, (

´
|f |p)1/p, for function f . . . . . . . . . . . . . . . . Sec. 1.1

denotes supx∈R|f(x)| when p =∞
‖X‖p Lp norm, (E|X|p)1/p, for random variable X . . . . . . Sec. 1.1
〈M〉 martingale conditional variance . . . . . . . . . . . . . . . . . . . (7.1)
[M ] martingale sum of squares . . . . . . . . . . . . . . . . . . . . . . . . (7.1)
‖X‖τ Orlicz norm associated to function τ . . . . . . . . . . . . . . Sec. 4.2
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∼ strong asymptotic equivalence . . . . . . . . . . . . . . . . . . . . . Sec. 4.2
(an ∼ bn if limn→∞ an/bn = 1)

‖F‖ supremum of norm ‖·‖ over F : supf∈F‖f‖ . . . . . . . Sec. 4.2
� weak asymptotic equivalence . . . . . . . . . . . . . . . . . . . . . . Sec. 4.2

(an � bn if limn→∞ an/bn ∈ (−∞,∞)\{0})
 weak convergence (van der Vaart and Wellner, 1996) Sec. 1.1
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