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Abstract

Restricted versions of the cointegrated VAR are usually estimated using switching algorithms. These algorithms alternate
between two sets of variables but can be slow to converge. Acceleration methods are proposed that combine simplicity and
effectiveness. These methods also outperform existing proposals in some applications of the EM method and PARAFAC.

1 Introduction

Estimation of models with cointegration involves nonlinear optimization, except in the basic case. Following
Johansen and Juselius (1994), the standard approach is to alternate between sets of coefficients. They called
this a ‘switching’ algorithm and that terminology is now common in this literature. The numerical literature
tends to refer to ‘alternating variables’ algorithms. Subsequently, there have been many examples of switching
algorithms in related settings.

The advantage of switching is that each step is easy to implement and no derivatives are required. Fur-
thermore, the partitioning circumvents the lack of identification that can otherwise occur in these models, and
which makes it harder to use Newton-type methods. The drawback is that progress is often slow, taking many
iterations to converge, and occasionally results in premature convergence. This paper proposes a modification
that accelerates estimation. It amounts to adding a line search, which is both simple and not problem specific.
A minimal extra effort results in a substantial speed-up, as well as better quality of convergence.

The focus at first is on the cointegrated VAR with I(1) cointegration. This is introduced in §2, together
with the basic estimation algorithms. Then §3 considers several line search procedures, which are evaluated in
§4. While we limit ourselves to I(1) models, we note that the proposed line search works in all cointegration
models with switching, including our recently developed algorithms for I(2) models (Doornik, 2017).

The EM algorithm has a similar structure to switching in cointegration models, and can also be very slow
to converge. Acceleration procedures have been proposed for EM, and we compare some of them with our
approach in §6. The paper finishes with an application to parallel factor models and low-rank matrix application.

2 The I(1) model

The starting point is the vector autoregression (VAR) with p dependent variables and m ≥ 1 lags:

yt = A1yt−1 + ...+Amyt−m + Φxt + εt, εt ∼ IINp[0p,Ω], (1)

0Financial support from the Robertson Foundation (Award 9907422) and the Institute for New Economic Thinking (Grant
20029822) is gratefully acknowledged.
All calculations where performed by the author in Ox 7.1, see Doornik (2013). The code to replicate the experiments can be downloaded
from www.doornik.com/research.
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for p × 1 vector yt, t = 1, ..., T , with yj , j = −m + 1, ..., 0 fixed and given; xt is a k-vector of additional
regressors, and Ω is a p × p positive definite matrix. This model can be re written in equilibrium correction
form without imposing any restrictions as

∆yt = yt − yt−1 = Πyt−1 + Γ1∆yt−1 + ...+ Γm−1∆yt−m+1 + Φxt + εt. (2)

The cointegrated VAR (CVAR) restricts the rank of Π to at most r by writing Π = αβ′y, where α, βy are both
p× r matrices. The implicit rank reduction of the I(2) model is ruled out.

More generally, we allow for variables that are restricted to lie in the cointegrating space, xRt , and those
that enter unrestrictedly, xUt ; these can be deterministic or stochastic. The CVAR is then formulated as:

∆yt = αβ′
(
yt−1
xRt−1

)
+ Γ1∆yt−1 + ...+ Γm−1∆yt−m+1 + ΦxUt + εt,

= αβ′w1t + Ψw2t + εt, (3)

where β has extended dimension p1×r: β′ = (β′y, β
′
c). A specific case is the VAR with a restricted linear trend,

where xRt = t and xUt = 1, so p1 = p+ 1. This is the specification used below. Gaussian maximum likelihood
estimation is via a reduced-rank regression after partialling out the unrestricted coefficients Ψ, see, e.g., Jo-
hansen and Juselius (1990), Johansen (1995b). The maximum can be determined by solving an eigen problem.
This is no longer the case when imposing restrictions on the columns of β, requiring iterative maximization
instead.

Writing z0t for the residuals from regressing ∆yt on w2t, and z1t for the residuals from regressing w1t on
w2t, the concentrated model becomes:

z0t = αβ′z1t + εt, εt ∼ IINp[0p,Ω], (4)

with moment matrices

Sij =
1

T

T∑
t=1

zitz
′
jt, i, j = 0, 1.

The concentrated log-likelihood:

lc(α, β) = c− T

2
log |Ω(α, β)|, (5)

based on

Ω(α, β) =
1

T

T∑
t=1

ete
′
t where et = z0t − αβ′z1t,

is maximized by β̂ = (v̂1, . . . , v̂r), where v̂i are the eigenvalues corresponding to the eigenvalues λ̂i, in de-
scending order, of the generalized eigenvalue problem∣∣λS11 − S10S−100 S01

∣∣ = 0.

Then α̂ = S01β̂. We write RRR(z0t, z1t|z2t) for the reduced-rank regression (RRR) of z0t on z1t corrected for
z2t. Note that the second moment matrices can be avoided when computing the eigenvalues, see Doornik and
O’Brien (2002).

Testing the rank involves non-standard distributions consisting of functionals of Brownian motions, see
Johansen (1995b), Juselius (2006) and the references therein. Convenient approximations are provided by
Doornik (1998).

Only the cointegrating space is estimated, because αV −1V β′ = αβ′, for any non-singular r× r matrix V .
Identification of the cointegrating vectors β is usually guided by suggestions from economic theory about long-
run relations. Exact identification imposes no restrictions, but over-identification can be tested with standard
χ2 inference provided the rank of Π is kept fixed. Normalization of each column of β may be kept separate
from identification: it will be helpful to avoid normalizing on a coefficient that is close to zero.
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2.1 The restricted I(1) model

Johansen and Juselius (1994) consider the case where the cointegrating vectors, i.e. the columns of β, are split
in two sets, each with a common linear restriction. This is estimated by alternating between the two sets of
vectors, keeping the other fixed in turn. The procedure was subsequently generalized by Johansen (1995a)
to the case where each column is restricted independently. This is called the ‘beta-switching’ algorithm and
described in §2.3.

Boswijk and Doornik (2004) provide an overview of the different types of restrictions that have been studied
by Johansen and Juselius. They also introduce more general specifications of restrictions, which are estimated
by alternating between the coefficients θ in α = α(θ) given φ, and φ in β = β(φ) given θ, provided the rank of
α(θ)β(φ)′ remains r. The concentrated model becomes:

z0t = α(θ)β(φ)′z1t + εt, εt ∼ IINp[0p,Ω], (6)

collecting the parameters in two vectors, φ′ = (φ′1, ..., φ
′
r) and θ′ = (θ′1, ..., θ

′
r). The Gaussian likelihood must

again be maximized numerically. We prefer to use twice the ‘average’ log-likelihood, f(θ, φ) = − log |Ω(θ, φ)|,
as the objective function.

2.2 Alpha-beta switching

Boswijk and Doornik (2004, §4.4) present the αβ-switching algorithm for linear restrictions on α and β when
the rank of αβ′ is r. Homogenous linear restrictions between elements of α can be expressed as vecα = Gφ,
and similarly for β as vecβ = Hφ, but our implementation is limited to separate restrictions within columns:

H : α = (G1θ1, ..., Grθr), β = (H1φ1, ...,Hrφr), (7)

where the Hi are known p1 × mi matrices and φi vectors of length mi. Similarly the Gi are known p × si
matrices and θi vectors of length si; when Gi = Ip the correponding vector in α is unrestricted. The Hi need
not identify the cointegrating space, but the column rank of α and β must remain r. Now H = dg(H1, ...,Hr)
is block-diagonal and of dimension rp1 ×

∑
mi and φ′ = (φ′1, ..., φ

′
r), with G, θ defined analogously.

For numerical reasons, we keep the two steps in a GLS form that can be estimated by least squares (using
a precomputed QR decomposition results in more efficient computations, see the appendix of Doornik, 2017).
First, with φ fixed at φF , so αF = α(φF ) = (G1φ

F
1 , ..., Grφ

F
r ), and ΩF , writing vecβ = Hφ:

z0t = vec
(
z′1tβα

F ′)+ εt =
(
αF ⊗ z′1t

)
Hφ+ εt. (8)

This can be estimated by GLS using ΩF = PP ′.
Next, if α is unrestricted, it can be estimated by OLS given βF = β(φF ). Otherwise, given βF and ΩF :

z0t = vec
(
αβF ′z1t

)
+ εt =

(
I ⊗ β′z1t

)
Gθ + εt, (9)

which can again be estimated by GLS.
We now present the algorithm more formally.

Algorithm 1: αβ-switching To start set k = 0 and choose φ(−1), θ(−1), ε1, and the maximum number of
iterations. Compute Ω(−1) = Ω(θ(−1), φ(−1)) and f (−1).

1. Use (8) given Ω(k−1) and θ(k−1) to obtain φ(k)c = argmaxφf(θ(k−1), φ) and so the updated β(k)c =

(H1φ
(k)
c,1 , ...,Hrφ

(k)
c,r ).

Use (9) given φ(k)c and Ω(θ(k−1), φ
(k)
c ) to obtain θ(k)c = argmaxθf(θ, φ

(k)
c ) and so α(k)

c .

θ
(k)
c and φ(k)c are the new candidate parameters values.

2. Compute the average log-likelihood at the candidate parameters:

f (k)c = − log |Ω(θ(k)c , φ(k)c )|.

3
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3. Accept the candidates as the new actual values: θ(k) = θ
(k)
c , φ(k) = φ

(k)
c , f (k) = f

(k)
c .

T. Terminate with θ(k), φ(k) if

|c(k)| =

∣∣∣∣∣f (k) − f (k−1)1 +
∣∣f (k−1)∣∣

∣∣∣∣∣ ≤ ε1 and p(k) = max
i,j

∣∣∣Π(k)
ij −Π

(k−1)
ij

∣∣∣
1 +

∣∣∣Π(k−1)
ij

∣∣∣ ≤ ε1/21 , (10)

using elements i, j of the matrix Π(k) = α(k)β(k)′ and c(0) = 1.
Else set increment k and return to step 1. �

Step 1 of Algorithm 1 updates the parameters, providing new candidate values. Step 2 evaluates the function
at the updated parameters. Step 3, which just accepts the candidates as the new values, will be improved by a
line search below, resulting in a significant acceleration. Finally, step T is the convergence decision, based on
the relative change in the function value as well as the parameters. The latter, p(k), is based on the long-run
coefficients Π, which are always identified. This is a stronger criterion than the change in the log-likelihood,
and the square root of ε1 is used. Basing the convergence decision on the change in the objective function only
is more likely to result in premature convergence.

2.3 Beta switching

The β-switching algorithm of Johansen (1995a) fixes all columns of β except one, which is estimated by
reduced rank regression. One iteration then cycles over all columns freeing one in turn, and this process is
repeated until convergence.

Beta switching can handle restrictions of the form:

H : α = Cϑ, β = (H1φ1, ...,Hrφr), (11)

for a known matrix C(p × s) and coefficients ϑ(s × r), p > s ≥ r, and Hi as in (7). The restriction on α can
be removed (given Ω) through multiplication of (4) by C = Ω−1C(C ′Ω−1C)−1:

C
′
z0t = ϑβ′z1t + C

′
εt, εt ∼ IINp[0p, C

′
ΩC]. (12)

The full system is transformed by (C
′

: C ′⊥), which splits it in two independent systems: (12) and C ′⊥z0t =
C ′⊥εt. If Ω is known, we can work with (12) instead of the full system. During iteration, we use the Ω that
corresponds to the most recent estimates of α and β. It is also possible to remove C exactly, see e.g. Juselius
(2006, §11.1). However, the current approach resulted in faster convergence in our experiments, in addition to
being more convenient in our implementation.

For the main part of the algorithm, assume that α is unrestricted and partition β = (Hiφi : β\i) keeping
β\i, which has r − 1 columns, fixed. Then:

z0t = αiφ
′
iH
′
iz1t + α\iβ

′
\iz1t + εt, (13)

and φ̂i can be obtained from RRR(z0t, H
′
iz1t|β′\iz1t).

Algorithm 2: β-switching algorithm To start set k = 0 and choose φ(−1), ε1, and the maximum number of
iterations.

1. Solve (13) for i = 1, ..., r to give φ(k)c and so β(k)c . Obtain α(k)
c by regressing z0t on β(k)′c z1t.

2,3,T. Same as Algorithm 1. �

Normalization has been omitted from this implementation. Very occasionally, it can help to include an
intermittent check on the scale to prevent some coefficients running away, while their product stays unchanged.
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Figure 1: Illustration of line-search algorithms from actual values π(k) (left), and candidate values π(k)
c (right).

3 Accelerated estimation

Newton and quasi-Newton type maximization algorithms that iterate over all parameters use a line search to
protect against a downwards step that oversteps the maximum in the current upward direction. The line search
can also ensure that there is sufficient progress to prove convergence to a stationary point, see, e.g. Nocedal and
Wright (2006, Ch.3). In practice, the added line search results in much better performance, but there is no need
to spend too much effort in trying to achieve high accuracy in these intermediate stages.

An alternating variables maximization algorithm uses no derivative information, although the steps can
generally be shown to be in a non-downward direction. In practice, progress is often slow, and occasionally
so slow that it results in premature convergence. Lack of orthogonality of the sets of parameters over which
the algorithm alternates exacerbates this problem. By splitting the parameter space in different directions, the
actual step has a tendency to be overly conservative. These algorithms can be accelerated by a line search that
allows for an expansion (in contrast to the Newton-type line searches that are usually contracting).

To formalize the line search algorithm, we first write π for the parameter vector (θ′ : φ′)′. At the start of
iteration k, when only the iteration counter has been incremented, we possess current parameter values π(k−1).
One update of the switching algorithm gives candidate values π(k)c . Next, a line search gives new values π(k),
where a step length of unity implies that π(k) = π

(k)
c . The standard line search uses ∆ = π

(k)
c −π(k−1) together

with scalar µ in
π(k)(µ) = π(k−1) + µ∆. (14)

The proposal here is to define instead:

∇π = π(k)c − π(k−1)c ,

and run the line search over λ using:
π(k)(λ) = π(k−1)c + λ∇π. (15)

This differs from the standard approach (14) because it is based on the previous candidate values. The parameter
λ is the objective of a scalar maximization:

max
λ

f (k)(λ) = max
λ

{
− log |Ω(π(k)(λ)|

}
. (16)

Denoting the approximate solution as λ∗, the new parameter values are π(k) = π
(k−1)
c + λ∗∇π.

The principle of the algorithm is visualized in Figure 1, where triangles denote candidate values, and circles
actual values. In the left graph the change is expressed relative to the previous actual value. On the right it is
relative to the previous candidate value, which is the proposed method (15). The start in Figure 1b is at π(2),
the alternating steps move first along the horizontal axis, then the vertical axis to the next candidate point π(3)c ,
indicated by the solid triangle in the center. This takes us to π(3) from which the process repeats.
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For the αβ-switching algorithm, the new candidate values θ(k)c , φ
(k)
c are defined in step 1 of Algorithm 1.

The acceleration scheme is:

θ(k)(λ) = θ(k−1)c + λ∇θ, φ(k)(λ) = φ(k−1)c + λ∇φ, (17)

with ∇θ = θ
(k)
c − θ

(k−1)
c and ∇φ = φ

(k)
c − φ

(k−1)
c . The new parameter values are θ(k) = θ(k)(λ∗) and

φ(k) = φ(k)(λ∗), both using the same λ∗. Some care is needed if the cointegrating vectors are normalized in an
iteration: if the normalization changes, then∇φ will be meaningless.

An unusual aspect of (15) and (17) is that it is defined in terms of the previous candidate parameter values,
rather than the previous actual values. This is based on practical experience, and the benefit may come from
the fact that it offers some protection against actual steps becoming prematurely too small. We will compare
several schemes to estimate the step length of the line search.

3.1 Simple line search

In alternating variables algorithms the emphasis should be on expanding searches, and a simple solution is just
to try a few values for λ. We found {1.2, 2, 4, 8} to be effective, resulting in the following simple stepwise
procedure:

Algorithm 3: Line search L1Step Using (17) and (16), evaluate f (k)(λi), for λ1, ..., λ4 = 1.2, 2, 4, 8, as long
as f (k)(λi) > max{f (k)(λ0), ..., f (k)(λi−1)} for i = 1, ..., 4 with λ0 = 1. The step size is λ∗ = λi−1 ∈
{1, 1.2, 2, 4, 8}. �

A parallel implementation could evaluate f (k)(λi) simultaneously for all λi, and then choose the best.

3.2 Concentrated line search

The loadings α and cointegrating vectors β have different properties in the CVAR, with the latter converging at a
faster rate. This suggests a line search that is only over the parameters in the cointegrating vectors, re-evaluating
the loadings each time. Now each function evaluation in the line search requires an additional regression:

Algorithm 4: Line search L1Beta Use ∇φ from (17) and define θ as θ(φ(λ)) based on (9). Then follow the
recipe of line search L1Step. �

3.3 Least-squares line search

Because the restrictions are linear, we can write:

α(λ) = α0 + λ∇α, β(λ) = β0 + λ∇β,

with residuals

et(λ) = z0t − α(λ)β(λ)′z1t = et(0)−
(
λ
[
α0∇′β +∇αβ′0

]
+ λ2∇α∇′β

)
z1t.

In matrix form:
E(λ) = E0 − λZa − λ2Zb,

where all matrices are T ×p and Za = Z1[∇βα′0 +β0∇′α], Zb = Z1∇β∇′α, Z ′i = (zi1...ziT ). The least squares
solution involves minimizing the trace trΩ−1E(λ)′E(λ). This leads to a cubic equation

tr
[
Ω−1Z ′aE0

]
+ λtr

[
Ω−1

(
2Z ′bE0 − Z ′aZa

)]
− 3λ2tr

[
Ω−1Z ′bZa

]
− 2λ3tr

[
Ω−1Z ′bZb

]
= 0, (18)

which has either one or three real solutions. In the former case, which we very rarely observed, the real value
closest to unity is used. The least squares line search is:

Algorithm 5: Line search LLsq Find λ∗ by solving (18) using Ω(θ
(k)
c , φ

(k)
c ) and the change based on candi-

date values as in (17). Do not accept λ∗ if it leads to a worse function value. �
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Restrictions on α = (G1θ1, G2θ2, G3θ3), with G1, G2, G3 =
A unrestricted: I5, I5, I5
B I5;1:4, I5;1:4, I5;1:4
C I5;2:5, I5;2:5, I5;2:5
D G,G,G

Restrictions on β = (H1φ1, H2φ2, H3φ3), with H1, H2, H3 =
a I6;1:3, I6;1,6, I6;3:6
b I6;1:3, I6;1,6, Hb

c Hc, Hd, He

Table 1: Restrictions on models for Danish data with rank 3. Ip is the p × p identity matrix; Ip;a:b selects all
columns from a to b from this, while Ip;a,b selects only columns a and b. TheG,Hb, ...,He matrices are defined
in the text.

Specification of imposed restrictions, see Table 1
Aa Ab Bb Cb Ac Dc

beta switching algorithm
no line search 77320 3573 268 18 4017 6200
L1Beta 369 23 19 12 46 69

alpha-beta switching algorithm
no line search 123 10548 1337 480 104 122
L1Step 28 220 74 45 24 34
LLsq 38 231 75 43 25 42
L1Beta 27 213 206 26 43 35

Table 2: Impact of acceleration schemes on the performance of switching algorithms for I(1) models of Danish
data with restricted trend. Total number of iterations (updates) to convergence for ε1 = 10−12.

4 Performance of accelerated switching algorithms

To illustrate the impact of the proposed additions on the various switching algorithms, we look at a model
for the Danish data based on Juselius (2006, §4.1.1). The model has five dependent variables: real money,
real GDP, GDP deflator, and two interest rates. There are two lags in the VAR, with unrestricted constant and
restricted trend for the deterministic terms. The estimation period is 1973(3) − 2003(1), so 119 observations,
and cointegrating rank r = 3. Note that the aim is not to find a good model, or to test valid restrictions, but
rather to stress the algorithms.

Table 1 lists the range of restrictions under which we estimate the models. Restrictions on the columns of α
are indicated by an uppercase letter, those on β in lower case. Restrictions Aa, e.g., refers to the model where α
is unrestricted, and β = (I6;1:3φ1, I6;1,6φ2, I6;3:6φ3). Matrices that are subsets of the identity matrix are written
as, e.g., I6;1,6 to select the first and last column of I6, while I6;2:5 keeps columns two to five. Further matrices
used in Table 1 are:

Hb =


1
0
1
0
1
0

, G =


−1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 1 0 0

, Hc =


1 0
0 1
0 −1
0 0
0 0
0 0

, Hd =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 1
0 0 1

, He =


0 0
0 0
0 −500
1 0
1 0
0 1

 .

Table 2 shows the number of iterations required by the two switching algorithms using ε1 = 10−12 when
estimating the model under a range of restrictions. Note that, in our implementation, the number of iterations
equals the number of parameter updates. In each case, the unrestricted estimates for r = 3 are used as starting

7
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Restrictions Ab Restrictions Dc

Iters Logliks CPU(s) Iters Logliks CPU(s)

beta switching algorithm
no line search 4580 4581 244.0 50 51 5.9
L1Beta 26 101 2.3 11 47 1.1

alpha-beta switching algorithm
no line search 4385 4386 199.3 198 199 11.6
LStd 3019 12329 186.1 152 639 12.4
L1Step 586 2344 35.8 40 168 2.9
LLsq 684 1369 47.8 50 102 4.1
L1Beta 135 597 13.1 28 125 2.8

Table 3: Performance of switching algorithms for I(1) models under restrictions Ab and Dc with different line
search algorithms. Mean iteration count (Iters), mean loglikelihood evaluation count (Logliks), and total CPU
time in seconds to convergence for ε1 = 10−12 in 1000 replications.

values. A better starting value routine should be used in practice. However, here we focus on algorithm
performance, and wish to keep the iteration counts comparable.

When there is no line search, the algorithm is occasionally slow to reach the specified precision ε1. Much
faster convergence is achieved with the line searches; one case shows an almost two hundred fold reduction in
the iteration count. For αβ switching we have also implemented the least-squares line search. However, LLsq
does not offer any advantage here over L1Step, while requiring more effort to derive and implement.

L1Beta involves a line search over the coefficients in β only, otherwise it behaves as L1Step. Beta switch-
ing estimates the model in terms of β only, so here we only use L1Beta. This is not the case for αβ switching,
but there is no clear advantage of L1Beta over L1Step. For restrictions Bb it requires 206 iterations where
L1Step uses 74.

4.1 A more comprehensive comparison

A Monte Carlo experiment is used to show the impact of the line search in more detail for three choices of
restrictions. Data is generated from (2) without further lags:

yt = (Ip + αβ′y)yt−1 + αβ′ct+ εt, εt ∼ IINp[0p,Ω].

The DGP parameters α, β′ = (β′y, β
′
c),Ω are the estimates of the I(1) model for the Danish data with 2 lags

and rank 3 (but no further restrictions). The generated sample size is the same, and y−1, y0 are taken from the
actual data. The estimated models using the generated data are the same, except for the additional restrictions
on α and β.

M = 1000 random samples are drawn in this way. The maximum number of iterations was set to 10 000,
ε1 = 10−12, and all replications are counted. Table 3 gives the average number of iterations required to achieve
convergence as well as the total CPU time for each experiment (in seconds running on all cores of an Intel i7 at
2.3Ghz).

Comparing the L1Step and LLsq line searches first, we see that L1Step has the better performance: it
requires more function evaluations, but this is offset by the reduction in updates. This is surprising, because
L1Step is ad hoc in comparison, using a limited {1.2, 2, 4, 8} line-search grid.

LStd is the ‘standard’ line search (14), using the same four-point grid, but based on the previous actual
values:

∆θ = θ(k)c − θ(k−1), ∆φ = φ(k)c − φ(k−1),

instead of the previous candidate variables as in L1Step, L1Beta, and LLsq. Indeed, between LStd and L1Step
this is the only difference; L1Step is substantially faster.

8
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Figure 2: Beta-switching algorithm with and without line search: histogram of iteration counts to convergence (top row),
difference between log-likelihoods lc upon convergence for each replication. Restrictions Aa.
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Figure 3: Alpha-beta switching algorithm with and without line search: histogram of iteration counts to convergence
(top row), difference between log-likelihoods l̂ upon convergence for each replication. Restrictions Aa.

The best performance is with L1Beta: for Aa it is more than twice as fast, although for Dc there is almost no
difference. The reduction in iteration count is more pronounced than the gain in speed, because of the overhead
of evaluating the concentrated α parameters.

The quality of convergence is just as important as the speed. More detailed statistics are reported for the
restrictions denoted by Aa, starting with Figure 2 presenting results for β switching. The first two histograms
show the number of iterations (i.e. parameter updates) needed to get convergence (or reach the upper limit of
10 000). The L1Beta line search is about 50 times faster, reducing updates by two orders of magnitude.

The bottom graph of Figure 2 shows the difference in the loglikelihoods for the 1000 replications consecu-
tively. In the experiments l̂ = lc(π̂) = −T/2 log |Ω(θ̂, φ̂)| is around 3000, and adding the used line search as an
argument, the graph plots l̂(no line search)− l̂(L1Beta). A negative number indicates that the L1Beta version
converged to a better value. That this happens regularly with small differences is an indication of premature
convergence when using no line search. In practice, we should use a better initial value procedure, which is
likely to reduce this effect.

The same statistics are shown for αβ switching in Figure 3 for three different line searches and none. The
histograms along the top show the reductions in iteration count. The remaining graphs compare the achieved
maxima, always in such a way that a negative number corresponds to L1Step having found a higher maximum.
With αβ switching, discrepancies occur less frequently.

Finally, we compare the rates of convergence. For each experiment this is measured as the change from
the first log-likelihood (i.e. from the first update, not the initial values), set to zero, to the final value upon
termination, set to one. Figure 4 plots the 50%, 90% and 99% quantiles, both without line search, and using
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Figure 4: Speed of convergence of switching algorithms for restrictions Aa: β-switching (left) and αβ-switching (right).
The dashed line is without line search, the dotted line with L1Beta. Shown are the median, 90% and 99% quantiles of the
number of iterations to convergence.

L1Beta. In this case, the line search has little impact in the first few iterations of β switching, but does result
in cutting down the tail. With αβ switching the 90% and 99% quantiles are clearly shifted to the left from the
early stage onwards.

5 Quadratic line search

Generic procedures that maximize a scalar function, such as Brent (1973, Ch.5) or Powell (1964, §8) could be
used, but make the overall maximization significantly slower. It may be possible, as suggested by an anonymous
referee, to specialize the quadratic procedure of Powell (1964) for the line search. To be competitive with the
simple approach of L1Step and L1Beta, the number of function calls must be kept small. We will provide an
implementation, and compare it to the approaches so far.

5.1 Implementation

Already available are function values (16) at λ = 0, 1, to which we add λ = 2. Then, if the values accelerate
upwards, the upper boundary of the specified interval is taken as the predicted value λq. Otherwise we use the
quadratic approximation to predict λq, unless the quadratic function is flat or leads to a minimum. Finally, if
the prediction is close to a value that has already been evaluated (i.e. at 0,1,2), it is accepted. Otherwise the
function is evaluated at the prediction, and the best value returned.

The resulting algorithm remains relative to the previous candidate point, and is formalized as:

Algorithm 6: Line search LQStep f0 = f (k)(0) and f1 = f (k)(1), bounds a ≤ 0, b ≥ 2 using a = −1, b = 8
here. Machine precision εm. Set ε1 = 10−4, εx = 0.3, εf = εmε1(|f0|+ |f1|)/2.

1. Evaluate f2 = f (k)(2), q = −f0 + 2f1 − f2.
(a) If f1 − f0 > εf and f2 − f1 > f1 − f0 + εf set λq = b.
(b) Else if q ≤ εf set λq = b/2 if f1 − f0 > −εf , λq = a/2 otherwise.
(c) Else set λq = (−3f0 + 4f1 − f2)/(2q), λq = max(λq, a), λq = min(λq, b/2 + 1).

2. λx = argmax(f0, f1, f2), so λx ∈ {0, 1, 2}; fx = max(f0, f1, f2).

3. If |λq − λx| > εx and f(λq) > fx then fx = λq, λx = λq.

4. Return fx, λx. �

Steps 1a, 1b, 1c are the upwards acceleration, flatness or wrong curvature, and quadratic approximation
reflectively. Step 3 is only effective when the prediction is not close, in which case an additional function eval-
uation is required to check if we have a better point. So LQStep requires only one or two function evaluations.

10
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Restrictions Ab Restrictions Dc

Iters Logliks CPU(s) Iters Logliks CPU(s)
LBrentStd 3440 14407 217.5 162 687 14.3
LBrent 677 3031 49.3 46 193 3.6
L1Step 586 2344 35.8 40 168 2.9
LQStep 550 1507 34.2 41 110 3.2
L1Beta 135 597 13.1 28 125 2.8
LQBeta 288 831 24.1 27 73 2.5

Table 4: Performance of alpha-beta switching algorithm for I(1) models under restrictions Ab and Dc with
different line search algorithms.Mean iteration count (Iters), loglikelihood evaluations (Logliks) and total CPU
time in seconds to convergence for ε1 = 10−12 in 1000 replications.

5.2 Results

Table 4 extends Table 3 with the new procedure. To illustrate our claims, we have also added a line search
based on the algorithm of Brent (1973, Ch.5). The first version, LBrentStd, maximizes the line search relative
to the previous actual values (14). This is the analogue to LStd, see Table 3, but now maximizing the scalar
function, rather than evaluating it at a few points. LStd is the faster (and simpler) of the two. LBrent uses
Brent’s maximization on the line search based on previous candidate values, the approach advocated in this
paper, leading to a five-fold improvement. As expected, LBrent is very similar to LLsq.

There are two versions of the quadratic line search: LQStep, which can be directly compared to the simple
grid style of L1Step, and LQBeta, which is the quadratic version of L1Beta. In three out of four cases, the
quadratic line search has a reduced number of likelihood calls. This has limited impact here, but can help in
other settings were they are more costly.

6 Applications in other settings

It is somewhat surprising that this simple approach to the line search provides such an acceleration of the
algorithm. To illustrate the applicability more generally, we consider several different settings. The first two
cases are models estimated by the EM algorithm, while the remaining are two instances of alternating least
squares (ALS).

6.1 The general maximization algorithm

All algorithms considered here, including the switching procedures considered above, fit in the framework of
Algorithm 7:

Algorithm 7: Structure of alternating variables maximization algorithms:
Maximize(π(0),Eval,Update):
1. πc = π0 = π = π(0)

2. f = Eval(π)
3. Repeat (iteration loop):
4. π(−1) = π, π−1 = π0, π0 = πc, f (−1) = f
5. πc = π = Update(π)
6. fc = f = Eval(π)
7. [π, f ] = Linesearch
8. CheckConvergence
9. return: π, f . �

Writing π for the full parameter vector, the user must specify vectorized initial values π(0), a function Eval
that evaluates the average log-likelihood or other objective, and an update function. Other choices will have
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default values: the convergence tolerance ε1 in (10), the maximum number of iterations, and the type of line
search. The relative change in the parameters in (10) may not be on π, but on a derived set of parameters. E.g.
in cointegration it is based on αβ′, which is always identified.

Just before entering the line search, the previous candidate parameter values are πc, while π(−1) are the pre-
vious actual values. The main point of the L1Step line search is that it uses π0, which equals Update(π(−2)).
This is different from π(−1) if a line search was entered previously.

The iteration count denotes the number of times the loop is executed. Without line search, this equals
the number of updates and function evaluations (with one more at the start). With line search there are more
function evaluations. E.g., a line search that is always entered but never successful doubles the number of
calls to Eval. More generally, the reduction in updates of a line search will outweigh the increase in function
evaluations. Some line search procedures look further ahead and involve additional calls to Update.

6.2 EM algorithm

The switching algorithms for restricted cointegration estimation exhibit occasional very slow convergence.
They have this in common with EM algorithms, see e.g., Jamshidian and Jennrich (1997). Many proposals
have been made in the literature to improve the EM algorithm by a line search, or step adjustment based
on recent iteration history (e.g. Varadhan and Roland, 2008, Berlinet and Roland, 2012). In some cases the
proposed line search comes with sophisticated heuristics.

The two test problems are taken from Varadhan and Roland (2008, §§7.1,7.2), who provide a clear descrip-
tion of the data, loglikelihoods and the expectation (E) and maximization (M) steps for the EM algorithm. The
Update function for maximization consists of one application of the E and M steps, while Eval returns the
average log-likelihood.

The first model is a two-component mixture of the Poisson distribution, applied to mortality of women
80 years and older, as reported in The Times during 1910-1912. The Poisson model has three parameters π =
(p, µ1, µ2)

′, and the model is repeatedly estimated starting from random initial values (0.05+0.9u0, 100u1, 100u2),
where ui is drawn from the uniform(0, 1) distribution.

Two accelerations of the EM algorithm are included in the comparison. The first, labelled LSqS3g, is the
global S3 variant of the SQUAREM line search as preferred by Varadhan and Roland (2008). We found that
the reported convergence failures could be avoided by forcing the initial step of the SQUAREM line search to
stay inside the parameter space. The second is the parabolic line search of Berlinet and Roland (2012), called
LParabolic here.

The second EM test case is for the multivariate t-distribution. The estimated model assumes one degree of
freedom (Cauchy), but the generated data is IIN(0, 1). We only report the variant that Varadhan and Roland
(2008) call PX-EM. The dimension is 50 with 100 observations. The parameters are the mean µ and the
Choleski factor P of the scale Σ = PP ′. So there are 1325 parameters to estimate. The data is repeatedly
drawn, and the model estimated with initial values based on the sample mean and variance of the generated
data.

Both cases use ε1 = 10−12 and a warm-up of three iterations in which the line search is not entered (this is
included when counting function calls).

6.3 PARAFAC

Parallel factor analysis, or PARAFAC, refers to a type of models that is used in food applications (Bro, 1998),
chemometrics (Sanches and Kowalski, 1990) and psychometrics. PARAFAC has the folowing tensor structure:

yijk =
F∑
f=1

aifbjfckf + eijk, i = 1, ..., I, j = 1, ..., J, k = 1, ...,K,

where eijk is an error term. The data yijk can be represented by a three dimensional matrix, which can be
visualized as a sequence of I ×J matrices stacked behind each other. If, instead, these K matrices are lined up
next to each other, the three-dimensional matrix has been flattened to a normal matrix of dimension I × JK.

12
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This is written as Y (I×JK). This flattening can be done in different ways, e.g. Y (K×IJ). The PARAFAC model
can now be written as a trilinear model:

Y (I×JK) = A(C ? B)′ + E(I×JK), (19)

with objective function

max
A,B,C

−1

(IJK)1/2
||Y (I×JK) −A(C ? B)′||F .

This uses the column kronecker, or Khatri–Rao product (see, e.g., Liu and Trenkler, 2008): C ? B = (c1 ⊗
b1, ..., cF ⊗ bF ), which is a KJ × F matrix constructed from the columns cf of C(K × F ) and columns bf of
B(J × F ). The norm is the Frobenius norm, i.e. the square root of the sum of the squared elements. A,B,C
are unique up to column scale.

The PARAFAC model is commonly estimated by ALS, Bro (1998, §4.3), because when fixing B and C,
the model can be estimated by least squares. The update function involves three least squares steps:

Update(A,B,C) :
fix B,C : A1 = Y (I×JK)Z(Z ′Z)+ where Z = C ? B;
fix A1, C : B1 = Y (J×IK)Z(Z ′Z)+ where Z = C ? A1;
fix A1, B1 : C1 = Y (K×IJ)Z(Z ′Z)+ where Z = B1 ? A1;
return: Normalize(A1, B1, C1).

Superscript + denotes the Moore–Penrose inverse; Z ′Z can be computed using a Hadamard product. The
normalization is recommended by Uschmajew (2012), and takes the following form:

(af , bf , cf )→
(
sfaf
||af ||

,
sfbf
||bf ||

,
sfcf
||cf ||

)
, sf = (||af || ||bf || ||cf ||)1/3, f = 1, ..., F.

Rajih, Comon, and Harshman (2008) propose using an exact line search, labelled ELS, which can be com-
pared to LLsq above, except that is formulated in terms of the previous actual values. The trilinear structure of
PARAFAC means that now the roots of a fifth order polynomial must be found. This may require five function
evaluations to choose the best. We have not implemented ELS.

The experiment takes the following form: data is repeatedly generated using (19), with A = 3 + IIF , B =
2 + IJF , C = 1 + IKF and eijk ∼ 0.1IIN[0, 1]. IIF is the I ×F identity matric, so A has the value four on the
diagonal and three elsewhere. For each replication, starting values are chosen as a(0)if = aif+(U(0, 1)−0.5)/10
with U(0, 1) representing a uniform random number. Starting values for B and C are chosen in the same way.

6.4 Matrix approximation

The final test case is taken from the literature on low-rank matrix approximations; our test case is for an
unstructured matrix. A line search is not commonly used in the proposed procedures, and we shall show the
benefits of using L1Step. The algorithm is as in Zachariah, Sundin, Jansson, and Chatterjee (2012) for:

max
A,B
−n−1/2||y −Xvec(AB′)||F ,

where y (n × 1) and X (n × qs) are known. The parameters to estimate are A (q × r) and B (s × r). The
update function involves two regressions:

Update(A,B) :
fix A: regress y on X(Is ⊗A) giving B1;
fix B1: regress y on X(B ⊗ Iq) giving A1;
return: A1, B1.

To test the algorithms we generate X as a draw from IIN[0, 1], keeping it fixed between replications. A and
B are taken as the first r columns of the appropriate identity matrix. In each replication y = Xvec(AB′) +
ε, εi ∼ IIN[0, 1]. Starting values are derived from the SVD of the full rank Ĉ = ÂB̂′. The product AB′ is used
for the parameter change in the convergence check.
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avg calls avg calls Failures CPU(s)
Update Eval

Poisson mixture, 5000 random starts
No line search 2081 2082 2 172.0
L1Step 52 200 0 9.6
LStep* 75 142 0 7.7
LgSqS3 252 171 0 15.0
LParabolic 70 258 0 10.0
LQStep 51 135 0 8.0

Multivariate t-distribution, 1000 data samples
No line search 102 103 0 84.8
L1Step 31 105 0 48.2
LStep* 44 72 0 43.0
LgSqS3 45 34 0 33.5
LParabolic 41 109 0 55.3
LQStep 32 80 0 41.0

PARAFAC, 100 random starts
No line search 38736 38737 0 973.5
L1Step 245 989 0 12.0
LQStep 282 779 0 11.2

Low rank approximation, 100 random samples
No line search 178 179 0 59.1
L1Step 39 149 0 14.0
LQStep 41 108 0 14.1

Table 5: Impact of line search algorithms on estimation performance in various model classes. Average number
of calls to update and evaluate; total number of failures and total CPU time (in seconds, single core).

6.5 Results

Table 5 shows the impact of adding a line search to the maximization algorithms. It reports the average number
of calls to the Update function and to the objective function (Eval). CPU is the total CPU time for the
experiment, on a single core of an Intel Xeon E5 at 2.9 Ghz.

The results show that L1Step provides better acceleration of the EM algorithm than the other line searches,
with the lower number of function calls reflected in the reduced total time of each experiment. Note that the
parabolic line search gets its speed from using the previous candidate, just as L1Step. The parabolic aspect
does not yield any further improvement. There is a small additional advantage from using the quadratic version
LQStep.

The parabolic line search uses a double update. We can also do this for L1Step: line 5 in Algorithm 7
becomes πc = π = Update(Update(π)). This makes it a bit faster still, trading an increase in updates for a
reduction in objective evaluations, see Table 5 under LStep*.

As noted by Varadhan and Roland (2008), the PX variant of the multivariate-t model is already very good.
Adding the line searches now only provides a limited improvement

The speed-up of the PARAFAC algorithm from L1Step is 80-fold, almost two orders of magnitude. The
reduction in the number of updates is larger still. In contrasts Rajih, Comon, and Harshman (2008) report that,
while ELS reduces the number of iterations, it is not really faster than no line search, and slower in some cases.
L1Step performs extremely well, with the added benefit that it is not problem specific, and extremely easy to
implement, both unlike ELS.

Finally, there is a useful improvement of adding L1Step to the low-rank matrix approximation.
The only reported failures are in two replications of the Poisson mixture model. These happen because the

the algorithm makes so little progress in the first ten iterations that it reports convergence. In the low rank case
there are five replications that converge to different values. This is not counted as a failure because they appear
to be different local modes: different line searches converge to one of two modes. In all other test cases in
Table 5 the different accelerations (or absence thereof) converge to the same maximum within the convergence
tolerance.
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7 Conclusions

We presented a line search to accelerate switching and alternating variables algorithms. The approach is ex-
ceedingly simple, but, nonetheless, provides some useful insights in the requirements for good acceleration.
First, partitioning the parameter space results in default steps that are too small, and expanding searches are
needed. Secondly, it is much more effective to use the previous candidate parameter values than the previous
actual values. Our results illustrate this in many different settings. Finally, there is a penalty for expending too
much effort in the line search. In some models it is possible to explicitly optimize the step length, but even this
results in slower algorithms than the proposed simple approximation of L1Step. Similarly, the parabolic line
search proposed for EM algorithms spends a bit too much time in a more sophisticated search.

However, while there is limited return in trying to derive a slightly more optimal curve from updates along
the iterative path of the algorithm, it may be possible to exploit statistical knowledge of the model that is
estimated. The main focus of this paper is on models for cointegration, because these have lacked acceleration
so far. Our results show that L1Step works very well in the I(1) cointegrated vector autoregressive models with
linear restrictions. Although not reported here, this also holds for nonlinear restrictions, different ranks and
lag lengths, as well as I(2) models. In the I(1) model it helps that the α and β coefficients are asymptotically
independent. We used the fact that β converges at a faster rate than α to implement the simple stepwise line
search in terms of β only. This did provide a further improvement.

Faster convergence facilitates bootstrapping and Monte Carlo experiments. It is also useful when multi-
modality is suspected and the model is re-estimated from many randomized initial values.

Appendix: Summary analysis

We have recorded CPU time, update count (number of iterations) and function evaluation count for 40 experi-
ments.

Consider first the number of function evaluations. In all cases without linesearch this is one more than the
update count. In cases with linesearch each iteration takes about four function evaluations, with three notable
exceptions. The first two are LQStep and LQBeta for which the ratio is just under three to one, and LLsq
with a ratio of two to one. LSqS3g is fundamentally different in that it always uses more updates than function
evaluations in the line search.

The total CPU time will depend on the adopted hardware and software environment. The cointegration
experiments for case Dc are all quite fast, so given a separate indicator variable. Similarly, the multivariate-t
cases are all for large models and relatively slow. The results of modelling CPU are as follows:

With linesearch without linesearch
Coeff. t-value Coeff. t-value

Update 0.049 {4.13} 0.023 {25.2}
Eval 0.003 {1.08} –
IsNotDc 3.06 {1.41} 93.2 {3.62}
Constant 1.48 {0.92} 5.93 {0.28}
IsMultiT 37.5 {14.5} –

σ 4.85 30.3
R2 0.991 0.994
n 32 8
mean(CPU) 30.6 218.8

Test p-value Test p-value

Normality test: 3.80 [0.15] 2.50 [0.29]
Hetero test: 1.52 [0.21] 0.72 [0.59]
RESET23 test: 0.16 [0.86] 3.18 [0.18]

Without linesearch, Update and Eval are the same, so cannot both be included. With linesearch, after
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correcting for the fact that the multivariate-t cases are slower, we do about 20 updates per second. The effect
of the linesearch is dramatic: mean CPU time is seven times faster. Interestingly, the residual standard error
is reduced by almost the same factor. So acceleration also reduces variability between experiments, removing
extremely costly optimizations. The function evaluation count provides limited additional value in accounting
for CPU time.
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