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This paper investigates the impact of climate change on the

productivity of crop production using U.S. county-level yield

and weather data between 1950 and 2015. It finds that the

pooled estimators used in previous studies underestimate the

sensitivity of crops to high temperatures by ignoring slope het-

erogeneity, and underestimate the damage of future climate

change on yield. Furthermore, explicitly modelling this het-

erogeneity provides a natural approach to measuring the de-

gree of adaptation to climate change in the data. It concludes

with evidence that further adaptation may mitigate up to half

of the substantial losses to crop productivity forecast by 2050.
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Many scientific and environmental agencies are warning of the extreme

impacts that future climate change may have on the world, including the

productivity of agriculture and global food supply. In contrast, studies that

have attempted to estimate the sensitivity of agriculture to the climate in

hopes of obtaining insight into the effects of future climate change have

obtained very mixed results. The forecast impact of climate change on

U.S. agriculture in particular ranges from extreme damage to crop produc-
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tivity (e.g. Schlenker and Roberts 2009) and crop quality (Kawasaki and

Shinsuke 2016) to very minor damage or even net benefits to agriculture

(e.g. Deschenes and Greenstone 2007 and Mendelsohn, Nordhaus and Shaw

1994). Resolving this disagreement and uncertainty concerning the relation-

ship between crop yield and the climate has been viewed as one of the top

priorities for the improvement of future climate change impact assessments

(Lobell and Burke 2008).

Critical to the discussion is the degree of adaptation to climate change

that has occurred in the past and can be expected from agricultural pro-

ducers in the future. Adaptation to climate change may involve switching

crop cultivars to ones that are more tolerant of heat, increasing water re-

tention in fields, irrigation, fertilizers, altering the planting and harvesting

dates, shifting the spatial distribution of agricultural production to cooler

areas, or switching to more heat-resistant crops entirely. The very existence

of adaptation between regions and over time implies that there is slope het-

erogeneity in the relationship between crop yield and high temperatures.

This heterogeneity could be modelled as occurring between counties or over

time, or indeed in both dimensions.

In this article we investigate these issues using temperature and crop yield

data for U.S. counties between 1950 and 2015 (thereby including the extreme

drought experienced by the Midwest in 2012-13). We focus on estimating

the climate sensitivity of corn (maize) and soybeans. These crops are by far

the two largest in the United States in terms of tonnage, and accordingly are

important for national food security and global food supply. Understanding

their sensitivity to the climate is important as temperatures in excess of a

certain threshold can significantly decrease crop yield by directly damaging
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the plant tissue or enzymes through heat stress. Several recent studies inves-

tigate this topic using panel data regressions of crop yields on temperature

(see, e.g., Schlenker and Roberts 2009, Butler and Huybers 2013, and Burke

and Emerick 2016).

Our first key finding relevant to this literature is that ignoring the slope

heterogeneity in the relationship between yield and the climate leads to sig-

nificant underestimation of crop sensitivity to temperature, and hence to

forecasts of future damage from climate change. This is because the het-

erogeneity, representing adaptation or lack thereof, is positively correlated

with the amount of time a crop is exposed to harmful temperatures over a

growing season, which is the regressor of interest in crop yield regressions.

This correlation arises because counties or time periods that experience con-

sistently high levels of heat (meaning high values of the regressor) have a

strong financial incentive to adopt adaptation techniques resulting in the

crop being less sensitive to heat (meaning a slope coefficient less negative

and closer to zero). After comparing the results from a series of regressions

using a pooled panel estimator verses an estimator that accounts for slope

heterogeneity between counties and over time, the empirical results suggest

that pooled panel regressions underestimate the sensitivity of crop yields by

around 35 percent.

Analysing the distribution of heterogeneity in the temperature coefficient

also provides a natural and direct approach to measuring the degree of his-

torical adaptation to climate in the data. Results from an estimator that

accounts for heterogeneity provides strong evidence for significant amounts

of adaptation occurring between counties, yet no evidence that average lev-

els of adaptation have increased over time since the 1980s. They also provide
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useful insights into the extent to which adaptation can be expected to mit-

igate future damage from climate change.

This approach to measuring adaptation is one of the main contributions

of our work. There is no established method to measure adaptation in the

literature, and previous attempts have used a variety of techniques. Butler

and Huybers (2013), Schlenker and Roberts (2009), and Burke and Emerick

(2016) all use different approaches to measuring adaptation (see Section

I.A for details). The first paper argues that adaptation could cut future

yield losses from climate change in half, while the latter two conclude that

adaptation has been rather limited. The diversity of results highlights the

need for further work in this area.

Lastly, we combine our model estimates with forecasts from a range of

climate models that project temperature and precipitation forward to 2050

under the A1B emissions scenario. Using the simple fixed effects estima-

tor, the mean forecast (across climate models) for crop yield damage in this

emissions scenario is 29 percent for corn and 35 percent for soybeans. The

mean forecast damage increases to 44 percent for corn and 55 percent for

soybeans when using an estimator that accounts for slope parameter hetero-

geneity between counties and over time. These increases of 50 to 60 percent

are significant and reflect the bias of the econometric estimates that ignore

heterogeneity.

We also consider more optimistic scenarios that contain further adaptation

and are obtained by allowing poorly adapted counties to become one half

or one standard deviation more adapted by the forecast year of 2050. This

exercise suggests that the predicted damage to corn yield could be reduced

to somewhere in the range of 21-34 percent, depending on the degree of
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further adaptation that is assumed to be reasonable over the next three

decades. The results are much less optimistic for soybean yield, however, as

there is significantly less heterogeneity in the estimates of climate sensitivity

for soybeans. Of course, it is important to note that forecasting decades into

the future using these techniques involves a number of strong assumptions

relating to future technological improvement and also excludes more drastic

adaptation techniques (such as switching crops or land use).

The rest of this paper is structured as follows. The first section outlines

the previous approaches to this topic found in the literature, why pooled

estimates of climate sensitivity are biased, the econometric methodology

that we adopt, and finally the sources for the data used in this article. The

second section details the results of regressions for both pooled estimators

as well as estimators that incorporate two-dimensional slope heterogeneity.

The third section conducts a forecasting exercise to 2050 using the results

of the second section, while the fourth section concludes.

I. Empirical Approach

A. Previous Approaches

Several recent papers attempt to estimate the impact of climate change on

agriculture using what we will call the ‘GDD’ approach. It relates climate

to the production or yield (yield meaning production per acre of land) of

specific crops. A GDD, or growing degree day, refers to the amount of time

that a crop in its growing season is exposed to temperatures within a specific

band of temperature. Temperature can be either beneficial or harmful to

a crop depending on its value, motivating a separation of temperature into

bands based on a threshold value.
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Examples of the GDD approach include Schlenker and Roberts (2009),

Burke and Emerick (2016), Kawasaki and Shinsuke (2016), and Lobell et al.

(2011). These studies typically estimate an equation similar to the following:

(1) yit = αi + αt + β1GDDit + β2KDDit + β3PRECit + β4PREC
2
it + εit

where yit is the log of a particular crop yield for county i at year t, GDDit

is the number of days that the crop was exposed to beneficial temperatures,

KDDit or ‘killing degree days’ refers to the number of days that the crop

was exposed to harmful temperatures, and PRECit is the sum measure

of precipitation that the crop experienced during the growing season. αi

absorbs all unobserved time-invariant intercept heterogeneity that is related

to county i (such as soil quality), while αt absorbs all unobserved intercept

heterogeneity that is constant across U.S. counties but varies between years t

(such as farming technology). The threshold temperature used to distinguish

harmful from beneficial temperature is typically 29 degrees Celsius for both

corn and soybeans. The key parameter of interest is β2 which determines

the extent to which high temperatures reduce crop yield.1

1An alternative approach to estimating the impact of climate change on agricultural
productivity is the hedonic (or ‘Ricardian’) approach (e.g. Mendelsohn, Nordhaus and
Shaw 1994 and Deschenes and Greenstone 2007). It relies on estimating the relationship
between climatic variables and agricultural land values. By linking climate to land values,
as opposed to crop yield, these studies are able to examine the entire agricultural sector.
Furthermore, they are able to account for a broad range of adaptations and shifts in
farmer behaviour, such as switching crops or changes in land use.

The limitation of the hedonic approach is that its validity relies on some strong assump-
tions. For instance, it assumes output and input prices remain constant, which is prob-
lematic if there are climate-induced price changes (see Darwin 1999a). Cross-sectional
estimates also suffer from omitted variable bias, due to variables that are related to both
climate and land values, such as irrigation and soil quality. Indeed, pooling irrigated and
non-irrigated farms has been shown to lead to underestimation of damage from future
climate change (Schlenker, Hanemann and Fisher 1994 and Darwin 1999b).
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Several studies also use the GDD approach to determine the extent to

which adaptation to higher temperatures has occurred. Adaptation can

include a wide range of activities, including switching corn cultivars to one

that has a higher heat tolerance (usually by producing more heat-resistant

proteins, as well as several other properties that provide drought resistance),

improving water retention in the field, the use of fertilisers, switching crops

entirely, and even relocating agricultural production to cooler areas. The

main motivation for understanding the extent of historical adaptation is

that it may substantially alter the forecast damage to crop productivity

from climate change.

Schlenker and Roberts (2009) tested for evidence of historical adaptation

to extreme heat by running regressions after splitting the sample into north-

ern and southern U.S. states and also by 1950-1977 and 1978-2005 periods.

They argued that since the coefficients did not change significantly after

splitting the sample either by region or time, there is evidence that his-

torical adaptation has been very limited. In contrast, Butler and Huybers

(2013) ran regressions on each county separately using data from 1981 to

2008 and concluded from the collection of coefficients that there was adap-

tation occurring between counties. When forecasting the future damage of

climate change on crop yields they argued that yield losses could be halved

with further adaptation.

Finally, Burke and Emerick (2016) adopt what they call a ‘long differences’

approach to measuring the extent of historical adaptation. They estimate

(1) using a U.S. county panel dataset from 1980 to 2000, and then calculate

the 1978-1982 and 1998-2002 averages of climate and yield and estimate the
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following long difference regression:

∆yis =αs + β1∆GDDis + β2∆KDDis + β3∆PRECis

+ β4∆PREC
2
is + ∆εis

(2)

where ∆GDDis is the difference between the 1998-2002 average and the

1978-1982 average for GDD in county i and state s, and similarly for the

other variables. The extent of adaptation is then calculated as 1 − β̂LD
2

β̂FE
2

,

where β̂LD2 is the point estimate from the long difference model and β̂FE2 is

the point estimate from the panel fixed effects model. They conclude from

this exercise that adaptation has been fairly minor in magnitude.

A key point is that both the GDD and long difference methods rely on the

panel fixed effects model in (1) providing a consistent and unbiased estimate

of the sensitivity of crop yield to yearly variations in temperature. The next

subsection will demonstrate why this is unlikely to be true.

B. Bias in Previous Approaches

The very existence of adaptation techniques implies the presence of hetero-

geneity in the sensitivity parameter to high temperatures, β2. This hetero-

geneity may occur between counties, because some counties invest in adap-

tation techniques more than others, or over time, as better cultivars become

available or the availability of irrigated water increases or decreases. This

multidimensional heterogeneity can be represented in the following equation:

(3) yit = αi + αt + β1itGDDit + β2itKDDit + β3PRECit + β4PREC
2
it + εit

where β1it = λ1 + λ1i + λ1t and β2it = λ2 + λ2i + λ2t. This specification
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allows for additive random or fixed effects in the sensitivity of crop yield to

temperature.

To see the bias of pooled estimators in a model containing adaptation

through slope heterogeneity, first simplify (3) by excluding precipitation

and stacking the variables:

(4) yit = αi + αt + z′itθit + εit

where z′it = (GDDit, KDDit) and θit = (β1it, β2it)
′ = (λ1 + λ1i + λ1t, λ2 +

λ2i + λ2t)
′. Consider a two-way fixed effects pooled OLS regression of (4)

to remove the fixed effects and obtain an estimate of the average slope

coefficients:

(5) ỹit = z̃′itθ + vit

where ỹit = yit − N−1
∑N

i=1 yit − T−1
∑T

t=1 yit + NT−1
∑N

i=1

∑T
t=1 yit and

similarly for z̃it, θ = (λ1, λ2)
′, and vit is defined as:

(6) vit = z̃′itθi + z̃′itθt + εit

where θi = (λ1i, λ2i)
′ and θt = (λ1t, λ2t)

′.

The OLS estimate of θ will be:

(7) θ̂ =

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

z̃itỹit

)
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Expanding on ỹit and simplifying yields:

θ̂ =θ +Q−1zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃
′
itθi

)

+Q−1zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃
′
itθt

)
+Q−1zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itεit

)(8)

whereQ−1zz,NT =
(

1
NT

∑N
i=1

∑T
t=1 z̃itz̃

′
it

)−1
. If z̃it, θi, and θt are independent

this will simplify to:

θ̂ =θ +
1

N

N∑
i=1

θi +
1

T

T∑
t=1

θt +Q−1zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itεit

)
(9)

and the pooled estimate of the average slope will be unbiased and asymptot-

ically consistent as (N, T )
j→∞ (provided the usual assumptions are valid).

However, if z̃it, θi, and θt are not independent then this will not hold and

there will be bias in the pooled estimates.

Moreover, there is every reason to believe that λ2i and λ2t, the heterogene-

ity components in the slope coefficient for harmful temperatures, are posi-

tively related to the amount of harmful temperatures KDDit. In counties

and years that feature hotter temperatures than average there is a financial

incentive to use adaptation techniques that alleviate the damage of heat to

the crop yield. Accordingly there will be a positive relation between KDDit

and the heterogeneity components of its slope coefficient.

Indeed, Butler and Huybers (2013) provided evidence that the slope coef-

ficient for a county is significantly and positively correlated with its relative

experience of heat. Since the correlation is positive, pooled regressions will

likely overestimate this parameter (i.e. underestimate the sensitivity of crop
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yield to high temperatures), and therefore underestimate the forecast dam-

age due to climate change.

C. Econometric Methodology

We will begin by estimating a suite of pooled models in order to verify

that they are biased and as a point of comparison in the forecasting exercise.

In this preliminary exercise, the following equation will be estimated using

a variety of assumptions on the fixed effects term αit:

(10) yit = αit + β1GDDit + β2KDDit + β3PRECit + β4PREC
2
it + εit

Following the literature, states west of the 100th Meridian that are more

reliant on widespread irrigation are excluded from the sample (although we

found it did not meaningfully affect parameter estimates in this dataset).2

Regression weights are based on the average area in the county used to

produce the specific crop, and the standard errors are also clustered at the

state level. The temperature threshold used to split GDD and KDD is 29

degrees Celsius for both corn and soybeans, again following the literature.

Butler and Huybers (2013) noted that although 29 degrees may appear

low as a threshold for damaging temperatures, the temperature experienced

by the corn plant itself is higher than the air temperature above the crop

canopy.

We consider models where the intercept αit includes year fixed effects,

county and year fixed effects, and county fixed effects with state quadratic

time trends. If the model includes both county and year fixed effects, pa-

2Note: The 100th Meridian separates the Great Plains to the east from the semi-arid
lands to the west.
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rameters are identified from deviations in county weather from the county

average after removing any annual weather shocks that are common to all

counties.

The next step will be to introduce slope heterogeneity into the model.

This allows us to determine whether the average coefficient changes once

the heterogeneity bias is removed. It also allows us to determine if there

is evidence of adaptation by looking at the distribution of the coefficients.

First consider a model containing heterogeneity only between counties:

(11) yit = αi + β1iGDDit + β2iKDDit + β3iPRECit + β4iPREC
2
it + εit

This can be estimated using mean-group OLS (or ‘MG-OLS’) which was

proposed in Pesaran and Smith (1995). It involves simply running regres-

sions for each county across the entire sample period of 1950-2015, collecting

all of the beta coefficients, and then averaging them. The strong limitation

of this approach in our context is its neglect of time effects in the intercept

or the slope coefficients, features which are of central importance for the

questions we address.

Accordingly, we estimate a model that allows the intercept and slope co-

efficients to vary between counties and over time:

yit =αi + αt + β1itGDDit + β2itKDDit + β3itPRECit

+ β4itPREC
2
it + εit

(12)

This can be estimated using mean-observation OLS (or ‘MO-OLS’) which

was proposed in Neal (2016). Crucially, the estimator allows the regressors

to be correlated with the heterogeneity, and also allows county and year fixed
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effects to be included in the model. It assumes that the multidimensional

heterogeneity is additive as in (3). Very briefly, the rationale behind the

estimator is to obtain a pooled estimate, say generically β, then run a series

of regressions for each individual to collect βi, then a series of regressions for

each time period to collect βt, and then construct βit = βi+βt−β.3 The MO-

OLS estimate is then a simple or weighted average of these bias-corrected

βit estimates. The distribution of the coefficients provides an account of

the degree of adaptation that can be found between counties and over time

simultaneously.

It is important to be clear about the types of adaptation that will be

captured by these approaches and those that will not. Heterogeneity be-

tween counties will pick up all forms of adaptations related to the individual

crop, whether short or long term in nature. This includes irrigation, cul-

tivar adoption, fertilisers, improving water retention, and other techniques.

Time-based heterogeneity will capture adaptation techniques that are geo-

graphically widespread but were not available throughout the sample. This

will include any technological advancement or adaptation in response to a

changing climate. But the methods we discuss here will not capture cer-

tain other forms of adaptation such as changing the planting and harvest

date for the crop, closing down farms no longer viable due to warming tem-

peratures, crop switching, or land use changes. These forms of adaptation

may prove to be important, especially when climate change becomes more

severe. Future work can attempt to investigate whether there is evidence of

3While this procedure will remove most of the heterogeneity bias, there is a resid-
ual bias which the estimator corrects by repeatedly using sample approximations of the
residual bias until it becomes sufficiently small (in practice usually zero to several deci-
mal places). For more details on the bias correction procedure and proofs of asymptotic
consistency and normality, please see Neal (2016).
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planting and harvest date changes, and also whether the spatial distribution

of agricultural production is also changing in line with the climate.

D. Data Sources

The temperature and precipitation data used in this study were obtained

from Schlenker and Roberts (2009), they contain daily observations on mini-

mum temperature, maximum temperature, and precipitation in a grid across

the continental United States from 1950 to 2015.4 They also provided the

code to parse this grid-based weather data into counties, weighting the grid

locations according to where the agricultural production is located in each

county. From the daily maximum and minimum observations it is possi-

ble to approximate the amount of time each day that a crop is exposed to

one-degree Celsius temperature intervals, and that is easily extended to the

amount of time in the entire growing season by summing across all days.

The growing seasons for both corn and soybeans are assumed to be between

the 1st of May and the 30th of September, in line with the literature. Us-

ing these single-degree temperature intervals across the growing season, the

variables GDDit and KDDit can be aggregated by summing across the rel-

evant intervals. The former is summed across 0 to 29 degrees Celsius, while

the latter is summed across the degree days of all temperatures above 29

degrees Celsius.

Data on crop yield was obtained from the United States Department of

Agriculture’s National Agricultural Statistics Service. Information is pro-

vided at the county-level and covers the same annual sample period of 1950

4The raw data comes from the PRISM Climate Group. Temperature observations
prior to 1950 are available, but the further back in time the observations go the harder
it is to convert them into a grid as fewer weather stations are operational.
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to 2015, although not all counties contain crop yield data across all years

(creating an unbalanced panel). While data is reported across a range of

agricultural produce, we focus on corn and soybeans, the two largest crops.

These data also provide the average crop area of each county, which we use

for regression weights.

II. Results

A. Pooled Regressions

Table 1 presents the results for corn yield from a number of pooled regres-

sions that provide a basis of comparison for our subsequent models contain-

ing slope heterogeneity. The table lists four specifications where the first

features no fixed effects, the second contains year fixed effects, the third

has county and year fixed effects, and finally the fourth has county fixed

effects and state-specific quadratic time trends. Each model includes pre-

cipitation in levels as well as in squares, although the results do not change

meaningfully when these are removed from the model.

The estimated sensitivity of corn to high temperatures when the model

contains no fixed effects is -0.0073, indicating that exposure to an additional

degree-day of heat above 29◦C will lead to a decrease in overall corn yield

of 0.73 percent. Including county and time fixed effects, or county fixed

effects with a state-specific quadratic time trend, decreases this sensitivity

to be a 0.63 percent reduction in corn yield for each additional degree-day

over 29◦C. These results are similar to those reported in Burke and Emerick

(2016). Although unreported, we also found that this sensitivity does not

change significantly when states west of the 100th Meridian line are included

or whether the regression results are weighted by harvest area or not.
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Table 1—Pooled Panel Estimates of the Impacts of Temperature on Corn

Yields

Specification (1) (2) (3) (4)

GDD 0.0004 0.0002 0.0003 0.0003
(0.0001) (0.0001) (0.0001) (0.0001)

KDD -0.0073 -0.0053 -0.0063 -0.0063
(0.0016) (0.0012) (0.0007) (0.0005)

Precipitation 0.0009 0.0013 0.0010 0.0013
(0.0009) (0.0009) (0.0002) (0.0003)

Precipitation2 -6.9e-07 -1.2e-06 -9.2e-07 -1.11e-06
(6.4e-07) (6.2e-07) (2.3e-07) (2.5e-07)

Constant 3.1497 2.7941 2.7188 2.4767
(0.6528) (0.6460) (0.2661) (0.2123)

Fixed Effects No Yr Cty, Yr Cty, State-Yr

Obs. 126,043
R2 0.1576 0.6993 0.8245 0.8354

Notes: Results exclude states west of the 100th Meridian line. Sample range is 1950-
2015, with specifications (1) - (4) differing by type of fixed effects as outlined in the
table. Regressions are weighted by average county harvest area for each crop. Standard
errors are reported in parentheses, and are clustered at the state level.

The results for soybean yield are presented in Table 2 and are similar in

that including fixed effects for counties and time decreases the estimated

sensitivity parameter relative to the baseline specification. The sensitiv-

ity for soybeans is lower than it is for corn, except in the model that only

contains year fixed effects. Overall, the pooled results are broadly consis-

tent with previous studies and are not particularly sensitive to changes in

modelling assumptions.

B. Heterogeneity across Counties and Time

Estimating a model with both dimensions of heterogeneity will provide a

complete overview of the extent of adaptation both between counties and
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Table 2—Pooled Panel Estimates of the Impacts of Temperature on Soy-

bean Yields

Specification (1) (2) (3) (4)

GDD 0.0003 0.0003 0.0005 0.0004
(0.0001) (0.0001) (0.0001) (0.0000)

KDD -0.0058 -0.0057 -0.0048 -0.0043
(0.0008) (0.0008) (0.0003) (0.0003)

Precipitation 0.0016 0.0017 0.0012 0.0012
(0.0004) (0.0004) (0.0001) (0.0002)

Precipitation2 -1.2e-06 -1.3e-06 -9.1e-07 -9.2e-07
(2.8e-07) (3.1e-07) (1.1e-07) (1.4e-07)

Constant 1.9542 1.6434 0.9127 1.2853
(0.3711) (0.4169) (0.2702) (0.1461)

Fixed Effects No Yr Cty, Yr Cty, State-Yr

Obs. 87,767
R2 0.2213 0.6237 0.7523 0.7509

Notes: Results exclude states west of the 100th Meridian line. Sample range is 1950-
2015, with specifications (1) - (4) differing by type of fixed effects as outlined in the
table. Regressions are weighted by average county harvest area for each crop. Standard
errors are reported in parentheses, and are clustered at the state level.

over the sample period. The Mean-Observation OLS estimator is used to

model both dimensions of heterogeneity, and the results for corn are pre-

sented in Table 3. The table outlines the unweighted and weighted mean of

the distribution of slope coefficients, as well as other statistics concerning the

distribution. The mean coefficient for KDD is significantly more negative

than the pooled model estimates in Table 1, reflecting the heterogeneity bias

in the pooled estimates that was outlined in section I.B. The unweighted

mean is -0.0096, meaning that one extra degree day of temperatures over

29◦ will lead to a 0.96 percent reduction in crop yield in that county. This

coefficient represents a 35 percent increase in sensitivity compared to the
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pooled model that also featured county and time fixed effects. Weighting

the mean by the harvested area of corn in each county reduces it slightly to

-0.0089.

Meanwhile, there is a significant degree of heterogeneity in the distribution

of the coefficients. The standard deviation of the slope coefficients for KDD

is 0.0068, with the 10th to 90th percentile range being -0.0161 to -0.0034.

Using the Spearman correlation coefficient the correlation between β̂2it and

KDDit is estimated to be 0.43, supporting the argument made in Section

I.B that the heterogeneity will be correlated with this regressor (leading to

bias which we also observe), and that the correlation will be positive leading

to overestimation in particular.

Table 3—Mean-Observation Estimates of the Impacts of Temperature on

U.S. Corn Yields

Mean Weighted Median Standard 10th 90th
Mean Deviation Percentile Percentile

GDD 0.0005 0.0005 0.0005 0.0005 -0.0001 0.0011
(0.0000)

KDD -0.0096 -0.0089 -0.0085 0.0068 -0.0161 -0.0034
(0.0003)

Precipitation 0.0011 0.0015 0.0010 0.0028 -0.0020 0.0044
(0.0002)

Precipitation2 -1.1e-06 -1.4e-06 -8.5e-07 2.5e-06 -3.8e-06 1.4e-06
(1.4e-07)

Constant 2.7080 2.8947 2.8225 2.1363 0.1713 4.8419
(0.1208)

Obs. 126,043

Notes: Results exclude states west of the 100th Meridian line. The sample range is
1950-2015, and standard errors are reported in parentheses.

Figure 1 plots the distribution of the KDD slope coefficients between coun-

ties and over time. We observe that there is significant heterogeneity be-
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tween counties in the estimates. The 10th to 90th percentiles of coefficients

at each year span slightly over -0.01 of space, which is a significant amount.

Due to the fact that the lower light grey area, representing the 10th to

25th percentile of coefficients, is significantly wider than the 75th to 90th

percentile it is clear that the left tail of the distribution is fat. It is also

reassuring that almost all estimated coefficients below the 90th percentile

are well below zero.

The trend of the median coefficient also offers an interesting account of

aggregate adaptation over time. Table 4 presents a regression of the median

coefficient for each year on a linear time trend. While the estimated trend is

positive over the sample, an inspection of the graph suggests that it flattens

following the late 1980s. A test for a structural break in the parameters

of this model is also presented in Table 4, following the methodology of

Andrews (1993). The results show that a significant structural break oc-

curred in 1989, which coincides with an extreme drought that occurred in

the Midwest of the United States during 1988-89.

Table 4 also presents a regression that accounts for this structural break

by incorporating a post-1988 dummy as well as an interaction term between

this dummy and the time trend. The fitted line incorporating the structural

break is illustrated in Figure 2. Following the structural break the trend

of aggregate adaptation is negative. Indeed, the median coefficient in 2015

is similar to that found in the 1970s, suggesting that no progress has been

made in adaptation on aggregate over the last four decades.

The results for soy yields are presented in Table 5. This time, the mean

coefficient for KDD, whether unweighted or weighted, is very similar to

the pooled model estimates in Table 2. Moreover, there is significantly
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Figure 1. Distribution of KDD Slope Coefficients across Time and Counties

for U.S. Corn
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Note: The black line plots the median coefficient of the KDD variable that is reported
in Table 3, while the dark grey area represents the 25th to 75th percentile of coefficients,
and the light grey area represents the 10th to 90th percentile of coefficients.

less heterogeneity in the distribution. This can be seen in Figure 3, where

the 10th to 90th percentiles of the distribution of KDD slope coefficients

comprise a much tighter range than they did with corn.5 This is evidence

for comparatively little historical adaptation between counties. Using the

Spearman correlation coefficient the correlation between β̂2it and KDDit is

estimated to be 0.25, which is weaker than we observed for corn.

The time trend of aggregate adaptation is somewhat difficult to interpret

due to the significant degree of random fluctuation in the median coefficient

5The relatively small amount of heterogeneity for soybeans presumably explains why
the MO-OLS and pooled results are not very different. This is in sharp contrast to the
situation we observed for corn.
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Table 4—Analysing the Median Coefficients to KDD for Corn and Soy

Regression Results Corn Soybeans

t 8.1e-05 0.0002 4.6e-05 1.0e-05
(1.3e-05) (2.0e-05) (1.3e-05) (6.9e-05)

Constant -0.0112 -0.0133 -0.0066 -0.0066
(0.0005) (0.0006) (0.0011) (0.0006)

dt>break 0.0070 0.0023
(0.0020) (0.0014)

t*dt>break -0.0002 -9.6e-06
(4.1e-05) (7.2e-05)

Structural Break Test Statistic p-value Statistic p-value

Supremum Wald 49.32 0.00 7.52 0.24

Average Wald 31.58 0.00 2.96 0.18

Supremum LR 38.63 0.00 7.55 0.24

Average LR 26.83 0.00 3.07 0.17

Notes: HC3 standard errors are reported in parenthesis. The estimated structural break
date in the trend and constant is 1989 for corn and 1972 for soybeans.

between years. Table 4 presents a regression of the median KDD coefficient

on a linear trend term. The estimated trend is only very slightly positive,

suggesting there has been very little improvement over the last four decades

in the aggregate adaptation of soy yield to high temperatures. A structural

break test could not reject the null hypothesis that there is no structural

break in the parameters of this regression.

In summary, this section has examined the extent of historical adaptation

to high temperatures found in the data both between counties and over time.

Accounting for heterogeneity was found to be very important in obtaining

unbiased estimates of the average sensitivity in the case of corn, especially

heterogeneity between counties, as that is where the vast majority of adap-
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Figure 2. Median Sensitivity to KDD Over Time for Corn
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Note: The grey line plots the median coefficient of the KDD variable that is reported
in Table 3, while the black fitted line is from the regression reported in Table 4.

tation could be found. Furthermore, after accounting for heterogeneity over

time it is possible to conclude that there is little evidence to support the

hypothesis that the extent of adaptation has notably improved over the last

four decades, potentially reflecting a lack of improvements in adaptation

technology or a lack of financial incentives to implement them. These re-

sults will be used in the next section to better inform forecasts of future

damage to crop productivity from severe climate change.

III. Projecting Future Crop Yields

The chief motivation for correctly estimating the sensitivity of crop yield

to high temperatures, as well as for measuring the degree of adaptation that
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Table 5—Mean-Observation Estimates of the Impacts of Temperature on

U.S. Soy Yields

Mean Weighted Median Standard 10th 90th
Mean Deviation Percentile Percentile

GDD 0.0004 0.0004 0.0004 0.0005 -0.0001 0.0010
(0.0000)

KDD -0.0053 -0.0048 -0.0049 0.0037 -0.0096 -0.0014
(0.0002)

Precipitation 0.0018 0.0017 0.0015 0.0025 -0.0009 0.0048
(0.0001)

Precipitation2 -1.5e-06 -1.4e-06 1.2e-06 2.1e-06 -3.8e-06 6.2e-07
(1.5e-07)

Constant 1.5328 1.6671 1.6375 1.9314 -0.8738 3.6623
(0.1440)

Obs. 92,373

Notes: Results exclude states west of the 100th Meridian line. The sample range is
1950-2015, and standard errors are reported in parentheses.

has occurred in the past between regions and over time, is to understand

the effect that future climate change will have on crop productivity. Even if

national governments embrace the emission abatement targets of the recent

Paris Agreement, the world will still undergo up to a further one degree of

warming and climate change. Crucial in any forecast is an acknowledge-

ment of the role that future adaptation to high temperatures may have in

mitigating the damage of climatic change.

This article presents projections of the impact of further climate change

on crop yield in 2050. To do this, temperature and precipitation projections

for 2050 are collected for each U.S. county under a range of climate models

working under the A1B emissions scenario. The A1B scenario projects a

future of rapid economic and technological growth, population that peaks

in 2050, and an approach to energy generation that is balanced between



24

Figure 3. Distribution of KDD Slope Coefficients across Time and Counties

for U.S. Soy
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Note: The black line plots the median coefficient of the KDD variable that is reported
in Table 3, while the dark grey area represents the 25th to 75th percentile of coefficients,
and the light grey area represents the 10th to 90th percentile of coefficients.

fossil intensive and non-fossil energy sources. Among the range of scenar-

ios used by the IPCC, the A1B scenario falls somewhere in the middle in

terms of global emission levels at 2050. Using this information, each climate

model (or global circulation model) forecasts temperatures on a global grid

according to their assumptions on the sensitivity of the climate to these

emissions. Importantly, the distribution of temperature changes do vary

by climate model, highlighting the need to account for between-county het-

erogeneity in the temperature sensitivity parameters. For more details on

these climate models see Burke and Emerick (2016), who also provided the
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climate projections used to conduct this exercise.6 Reporting results from a

range of climate models enables us to account for model uncertainty in the

forecasts.

Projected temperature (using the same GDD/KDD form with a 29◦C

threshold) and precipitation are plugged into one of the models presented

above, and the estimate of future crop yield is compared with the same

model’s estimated crop yield in 2005.7 The base year was selected to balance

the two principles of a year that is as recent as possible, but also a year that

provided maximum coverage among the U.S. counties.

More formally, we first calculate a 2050 forecast using the pooled panel

estimator:

(13) ŷmit′ = α̂+α̂t+β̂1GDDmit′ +β̂2KDDmit′ +β̂3PRECmit′ +β̂4PREC
2
mit′

where m is the climate model, i is the county, t = 2005, and t′ = 2050. αt

is the estimated fixed effect for the year 2005. All parameter estimates are

obtained from specification (3) in Table 1, for corn, or Table 2 for soybeans.

These forecasts are then compared with the estimated 2005 yield values:

(14) ŷit = α̂ + α̂t + β̂1GDDit + β̂2KDDit + β̂3PRECit + β̂4PREC
2
it

where t = 2005. The results of this exercise can be seen under the ‘Pooled’

column in Table 6 for corn and Table 7 for soybeans. The rows of the tables

6To avoid potential aggregation bias by comparing the forecasts of the climate models
with actual weather station observations (which are interpolated at different resolutions),
Burke and Emerick (2016) first calculated the change in temperatures for each county
according to the climate model and then added that difference to the actual observations.

7The estimate of 2050 crop yield could also be compared to the actual crop yield in
2005, but the results are very similar since the models considered in this section very
closely estimate the actual 2005 county average crop yield.
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give the names of different climate models, while the forecasted damage to

crop productivity is listed in the column labelled ‘Pooled’.

A 2050 forecast of crop yield using MO-OLS is then calculated:

ŷmit′ =α̂it + β̂1itGDDmit′ + β̂2itKDDmit′ + β̂3itPRECmit′

+ β̂4itPREC
2
mit′

(15)

and compared to the estimated 2005 yield value:

ŷit = α̂it + β̂1itGDDit + β̂2itKDDit + β̂3itPRECit + β̂4itPREC
2
it

(16)

where t = 2005 and t′ = 2050. Note that the 2005 coefficients are used

for each county when forecasting forward to 2050. This model allows for

heterogeneity yet assumes that no adaptation beyond current levels occur

in the future, consistent with our findings in Figures 1 and 3. Since adapta-

tion at the aggregate level was not estimated to have changed significantly

between 1988 and 2015, changing base years has very little impact on the

results. The results of this exercise can be found in Table 6 for corn and

Table 7 for soybeans under the ‘MO-OLS’ column.

Comparing the ‘MO-OLS’ column with the ‘Pooled’ column reveals the

degree to which accounting for heterogeneity and adaptation in the model

affects the forecast of damage from climate change. It is important to note

that the percentage changes listed in the table are not the predicted change

in crop yield in the future relative to today’s crop yield, as further im-

provements in farming technology may increase yield in spite of a changing

climate, but rather the percentage change of yield with climate change rel-

ative to a world without climate change.
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The results in Table 6 and Table 7 contain some important insights. First

of all, there is a significant amount of variation in the forecast damage to

crop productivity between climate models, which is to be expected since

the climate models contain significant variation in projected average tem-

perature increase as well as the distribution of that increase across counties.

Thus, to better summarise the information, the mean, maximum, and min-

imum forecast for each column are also provided at the bottom of the table.

Second, removing the heterogeneity bias by using MO-OLS significantly

increases the average amount of forecast damage to productivity. The fore-

cast damage to crop yield increases from 29 percent to 44 percent for corn

and increases from 35 percent to 55 percent for soybeans relative to the

pooled estimates. This increase of more than 50 percent in the damage

forecast of both crops is due to the bias found in the pooled estimates, as

well as the impact of properly accounting for heterogeneity and adaptation

across counties in the forecast.

Finally, we consider two more optimistic scenarios that allow for further

adaptation to high temperatures in 2050 relative to 2005. We call these

the low adaptation and high adaptation scenarios. These experiments are

motivated by the idea that counties with a current high degree of sensitivity

to high temperatures could potentially pay a cost to possess a lower sen-

sitivity through adaptation. Specifically, taking the standard deviation of

the distribution of slope coefficients on the KDD variable across counties

in 2005, we postulate that counties could plausibly move half of one (low

adaptation) or one (high adaptation) standard deviation towards zero by

2050. In order to reflect exponentially increasing costs and biological limits

to adaptation for counties already highly adapted, we weight the movement
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Table 6—The Effects of Climate Change in 2050 on Corn Productivity

Climate Model Pooled MO-OLS
Low High

Adaptation Adaptation

CCCMAT63 -27 -48 -42 -36
CNRM -26 -42 -34 -24
CSIRO -45 -70 -68 -65
GFDL0 -28 -25 08 57
GFDL1 -29 -35 -15 13
GISSAOM -40 -62 -59 -55
GISSEH -34 -57 -53 -49
GISSER -42 -66 -63 -61
IAP -32 -52 -47 -41
INMCM -20 -30 -12 10
IPSL -04 -08 09 29
UNIF1C -46 -71 -69 -68
MIROCHIRES -09 -09 11 36
MIROCMEDRES -17 -17 06 36
ECHAM -29 -49 -42 -35
MRI -36 -60 -57 -53
CCSM -21 -36 -26 -16
PCM -39 -63 -61 -58
HADCM3 -27 -40 -27 -13

Mean -29 -44 -34 -21

Min -46 -71 -69 -68
Max -04 -08 11 57

Notes: Results are presented in percentage terms. 2050 temperature forecasts based
on the A1B emissions scenario are compared to a base year of 2005.

of the slope coefficient by its proximity to zero.

More formally, consider a forecast of 2050 allowing for further adaptation:

ŷmit′ =α̂it + β̂1itGDDmit′ +

(
1 +

st
γ(−0.01)

)
β̂2itKDDmit′

+ β̂3itPRECmit′ + β̂4itPREC
2
mit′

(17)

where t = 2005, t′ = 2050, st is the standard deviation of β̂2it, and γ = 2 in
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the low adaptation scenario or γ = 1 in the high adaptation scenario.

The results for the low and high adaptation scenarios are presented in

the last two columns of Tables 6 and 7. The results for corn imply that a

noteworthy portion of the damage due to climate change could potentially

be mitigated by further adaptation. The mean damage to productivity de-

creases from 44 percent to 34 percent under the low adaptation scenario,

and decreases further still to 21 percent under the high adaptation scenario.

The same cannot be said for soybeans, however, and this is to be expected

given the small amount of historical adaptation found in the data. Fur-

ther adaptation may only decrease the amount of damage to productivity

very modestly, from 55 percent under current amounts of adaptation to 52

percent under high adaptation.

It is important to list the limitations of this forecasting exercise before

summarising the results. The model estimates do not consider future im-

provements to farming technology, and accordingly the projected damages

to productivity hold constant the productivity of farming that is not related

to the climate. Also, the results do not account for changes in planting and

harvest dates that may further mitigate damage from climate change. Nor

does it account for changes in geographical location of agriculture away from

counties that will become too hot to be viable and towards areas that may

previously have been too cold. And our forecasts do not consider any major

technological innovation in corn seeds and soybeans between now and 2050,

as the forecast is relying on the existing trend in time varying heterogeneity

to base the projected damage to yield.

It is possible to calculate the damage to yield under a whole suite of

assumptions about these sources of adaptation, but until further work is
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Table 7—The Effects of Climate Change in 2050 on Soybean Productivity

Climate Model Pooled MO-OLS
Low High

Adaptation Adaptation

CCCMAT63 -45 -54 -53 -51
CNRM -37 -54 -52 -50
CSIRO -70 -58 -57 -56
GFDL0 17 -60 -55 -51
GFDL1 -09 -58 -54 -50
GISSAOM -63 -56 -55 -54
GISSEH -58 -55 -54 -53
GISSER -68 -57 -56 -56
IAP -52 -55 -54 -53
INMCM -08 -55 -53 -50
IPSL 08 -51 -49 -46
UNIF1C -73 -58 -58 -57
MIROCHIRES 12 -51 -49 -46
MIROCMEDRES 09 -54 -50 -47
ECHAM -45 -55 -53 -52
MRI -59 -56 -55 -54
CCSM -31 -53 -51 -50
PCM -64 -56 -55 -54
HADCM3 -29 -55 -53 -50

Mean -35 -55 -53 -52

Min -73 -60 -58 -57
Max 17 -51 -49 -46

Notes: Results are presented in percentage terms. 2050 temperature forecasts based
on the A1B emissions scenario are compared to a base year of 2005.

done these would be merely speculative. The adaptation scenarios that are

presented in our scenarios at least have a foundation in the amount of adap-

tation that already exists between counties. Furthermore, it is important to

note that these adaptations, or any others beyond the scope of this paper,

may not be financially viable on the part of the farmer or the government.

Some forms of adaptation can be very expensive and environmentally costly,

such as widespread use of irrigation, and as such it would be unrealistic to
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assume that they are possible by 2050, particularly as this would depend

on the degree to which prices of agricultural goods increase in the future.

Accordingly, there is a large amount of uncertainty attached to any estimate

of damage to productivity decades into the future.

In summary, this section has shown the significant degree to which ac-

counting for heterogeneity in the econometric model heightens the expected

damage to crop yield from worsening climate change. This occurs for both

corn and soybean crops. Positing scenarios of further adaptation indicate

that with corn there is potential for further adaptation to mitigate some

damage to crop yield at least in the United States. However, the same

exercise showed that for soybeans there is much less potential for further

adaptation to mitigate damage, unless major improvements in technology

were to occur. Regardless, the expected damage to corn and soybeans yields

from climate change is substantial.

IV. Conclusion

This paper has attempted to make two contributions to the literature

concerned with correctly forecasting the damage to crop yield from climate

change. The first contribution was to demonstrate that previous papers

that rely on pooled panel estimators are underestimating the true average

climate sensitivity of crops due to the presence of heterogeneity bias. In-

deed, properly accounting for heterogeneity between counties increases the

estimated average sensitivity to high temperatures by around 35 percent,

and also meaningfully worsens the expected impact of climate change on

yields.

The second contribution was to directly measure the extent of historical
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adaptation to climate changes found in the data, both between counties and

over time. We argued that a natural way to do this is to represent adapta-

tion as slope coefficient heterogeneity in the econometric model. Estimating

these two dimensions of heterogeneity reveals strong evidence for the exis-

tence of significant adaptation between counties, but no evidence to suggest

that the average amount of adaptation has increased since the 1980s. This

may be due to a lack of awareness or the lack of technological progress in

the area of adaptation over the last four decades. The extent of adaptation

found in the data does suggest that it may be possible to mitigate part of the

forecast damage to corn productivity through further adaptation, although

it is not clear from the analysis in this paper how costly or feasible such

widespread use of adaptation methods would be. The results for soybeans,

in contrast, suggest that further adaptation may only marginally mitigate

the damage to yield from climate change.

Even with further adaptation, climate change is expected to affect crop

yield significantly by 2050. Developing countries with less resources to invest

in adaptation are likely to be even more exposed to climatic changes. It is

also clear that if runaway climate change were to occur the effects on crop

yield by the end of this century would be even more severe. Accordingly,

it remains important for governments to also pursue other forms of damage

mitigation, particularly emissions reductions, and more drastic adaptation

methods such as changing the spatial distribution of agricultural production

and further development in cultivars to increase a crop’s tolerance to high

temperatures.
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