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Summary We consider inference and forecasting for aggregate data organised in a two-
way table with age and cohort as indices, but without measures of exposure. This is
modelled using a Poisson likelihood with an age-period-cohort structure for the mean
while allowing for over-dispersion. We propose a repetitive structure that keeps the
dimension of table fixed while increasing the latent exposure. For this we use a class
of infinitely divisible distributions which include a variety of compound Poisson models
and Poisson mixture models. This results in asymptotic F inference and t forecast
distributions.

Keywords Chain-ladder model; Forecasting; Generalized linear model; Inference; In-
finitely divisible, Two-way table.

1 Introduction

Over-dispersion is often a serious complication in the analysis of two-way tables. We
consider the case of a two-way table with two features. First, the indices of the table
are two time scales, cohort and age, so that we may be interested in forecasting for
combinations of age and cohort that are not observed. Second, there is no information
about the exposure. Examples include data with a reporting delay such as AIDS diag-
nosis (Davison & Hinkley 1997, pages 342–346), asbestos caused mesothelioma deaths
(Mart́ınez Miranda et al. 2015), and reserving in non-life insurance (England & Verrall
2002). Closely related examples are mortality data with observed exposure (Alai &
Sherris 2014) and reserving with continuous time information (Lee et al. 2015). A basic
model is a Poisson model with an age-period-cohort predictor. When faced with over-
dispersion there are two strategies: either to change the distribution or to work with a
correction factor. The second route is attractive in this case where it is hard to choose
an alternative distribution with confidence due to a high parameter to observation ra-
tio. Even so, a model is needed to justify such a correction. We suggest a sampling
scheme based on infinitely divisible distributions which include Poisson mixtures such
as the negative binomial distribution as well as compound Poisson distributions. This
leads to asymptotic inference and distribution forecasts based on standard quasi-Poisson
statistics combined with F and t asymptotics. The results apply to data arrays of the
generalized trapezoid type, see equation (2) below. These include rectangular arrays in
age-cohort, age-period and period-cohort space as well as triangular age-cohort arrays
called run-off triangles.

When there is no over-dispersion we can apply a multinomial sampling scheme,
since conditioning on the totals in a Poisson table gives a multinomial distribution, see
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Fisher (1922), Agresti (2013, §1.2.5, 9.6.8). Recently, Mart́ınez Miranda et al. (2015)
have exploited this idea to solve the inference and forecasting problem for a Poisson
age-period-cohort model. The conditioning solution relies on the very particular link
between the Poisson and multinomial distributions. This falls away in the over-dispersed
case, so we need another solution.

The more principled way to address the over-dispersion problem is to formulate
an alternative to the Poisson distribution. A classic solution is a negative binomial
model as explored by Bliss & Fisher (1953), Cox (1983), Agresti (2013, §14). This
works well in situations with many repetitions and relatively few parameters unlike
the present scenario with a high parameter to observation ratio. Another solution is
to use an exponential dispersion model. Jørgensen (1987) shows that F-type inference
applies under small-dispersion asymptotics. The class of exponential dispersion models is
restrictive, however, since no exponential dispersion model with support on the integers
exists (Jørgensen 1986).

An alternative way to address the over-dispersion problem is to work with correction
factors. There are many warnings against this approach as opposed to modelling of the
distribution, for example Venables & Ripley (2002, §7.5). The attraction is, however,
that we use the Poisson likelihood as a quasi-likelihood (Wedderburn 1974). Much ap-
plied work is carried out this way. Indeed, the quasi-Poisson approach is fundamental
to reserving in non-life insurance where it is known as the chain ladder method (Eng-
land & Verrall 2002). Widely used bootstrap solutions have been developed for the
quasi-likelihood by Davison & Hinkley (1997, pages 342–346) and England (2002); see
also Pinheiro et al. (2003). These bootstrap solutions are, however, not based in a for-
mal model of the over-dispersion. We therefore formulate a class of infinite divisible
distributions where the log mean has an age-period-cohort structure and the variance-
to-mean ratio is constant across cell while the skewness vanishes as the sum of the data
increases. This setup includes the Poisson distribution as well as classic over-dispersion
distributions, such as the negative binomial distributions that is useful for heterogeneous
populations and the compound Poisson distribution that is relevant for reserving data.
Within this framework we can formally derive F-type inference as well as t-type forecast
distributions. A simulation study indicates that the bootstrap solutions perform well
within this framework, indicating that the model framework might be amenable to a
theory for the bootstrap.

A feature of the proposed class of infinite divisible distributions is that the variance-
to-mean ratio is constant across the cells in the table, which is the defining feature of
over-dispersed Poisson distribution. In cases with severe over-dispersion an alternative
would be to apply a log-normal distribution, in which case the standard deviation-to-
mean ratio would be held constant. It would be useful to develop tests to distinguish
between these situations for two-way data. In reserving it is common to apply a com-
pound Poisson interpretation for the data (Beard et al. 1984, §3.2) hence the relevance
of over-dispersed Poisson distributions. Log-normal age-period-cohort models are, how-
ever, also in used to some extent in insurance (Barnett & Zehnwirth 2000, Kuang et al.
2011).

We focus on an age-period-cohort structure for the log-mean of the data, but note
that the results also extend to more standard contingency tables. The age-period-
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cohort model provides an interesting focal point due to time series interpretation of the
parameters and the wide use of this model in demography, economics, epidemiology,
sociology and actuarial science. Recent statistical developments of the model include
an asymptotic analysis of a class of constrained estimators when the dimension of the
array increases (Fu 2016), non-parametric, continuous time variation (Lee et al. 2015)
and Bayesian estimation (Smith & Wakefield 2016). The age-period-cohort specification
of the log mean or linear predictor is

µik = αi + βj + γk + δ, (1)

where i, k are age and cohort indices while j = i + k − 1 is the period. The effects
αi, βj, γk and δ are not identified. We reparametrise the log mean in terms of freely
varying parameters as suggested by Kuang et al. (2008b). A Poisson model becomes a
regular exponential family in this way where the freely varying parameters are canonical.
One of the parameters measures the level of the data. This is taken to be large in the
asymptotic analysis so that the expectations of the data grow proportionally. The other
parameters measure contrasts. These are invariant to recursive analysis and are assumed
fixed in the limiting experiment. This relates to a mixed parametrization in the sense of
Barndorff-Nielsen (1978, Theorem 8.4). Other features of the parametrization are dis-
cussed in Nielsen & Nielsen (2014). Different parametrizations would give the same fit,
but asymptotic analysis is naturally formulated in terms of the mixed parametrization
with freely varying parameters.

We illustrate the results on an insurance run-off triangle. Insurers use these to
forecast incurred but not fully reported liabilities. Typically contracts run for a year
but liabilities may not be settled for several years. Publicly available triangles are
provided by for instance Casualty Actuarial Society (2016). We apply the triangle of
Taylor & Ashe (1983) as shown in Table 1. The entries are aggregate paid amounts
for cohort (accident year) k in age (development year) i with period (calendar year) j
along the diagonals. The two-way table results from the delay between accident and
payment. The insurance problem is to forecast the incurred but not yet paid amounts
in the empty lower triangle. Row-sums in the lower triangle are payments related to
particular accident years and commonly called reserves. Diagonal-sums correspond to
payments in specific calendar years and thus represent the future cash-flow. The sum
over all cells in the lower triangle is called the total reserve.

In §2 we derive a limit theorem for infinitely divisible distributions. In §3 we set up
the model: we describe the data structure, state the assumptions, consider identification,
estimation, and the sampling scheme. We derive the distribution of estimators and test
statistics in §4 and results for forecasts that do not require parameter extrapolation in
§5. We apply the results in a data-example in §6. The simulation study in §7 shows
that the asymptotic results give good approximations in finite samples. Finally, we
discuss directions for future research in §8 where we also briefly consider forecasting
with parameter extrapolation.
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k, i 1 2 3 4 5 6 7 8 9 10

1 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
2 352118 884021 933894 1183289 445745 320996 527804 266172 425046
3 290507 1001799 926219 1016654 750816 146923 495992 280405
4 310608 1108250 776189 1562400 272482 352053 206286
5 443160 693190 991983 769488 504851 470639
6 396132 937085 847498 805037 705960
7 440832 847631 1131398 1063269
8 359480 1061648 1443370
9 376686 986608

10 344014

Table 1: Insurance run-off triangle. The entries are aggregate paid amounts at age
(development year) i for claims of cohort (accident year) k. Periods (calendar years) are
on the diagonals increasing from the top left.

2 Infinite divisibility

Mart́ınez Miranda et al. (2015) proposed an age-period-cohort model for mesothelioma
mortality. In their model, the cells Yik are independent Poisson distributed. They
condition on the data sum Y.. and use a multinomial sampling scheme. This approach
does not extend easily to over-dispersed data. Instead, we work with non-negative
infinitely divisible distributions.

Recall that a distribution D is infinitely divisible if for any m ∈ N there are in-
dependent identically distributed random variables X1, . . . , Xm such that

∑m
`=1X` has

distributionD. For the present applications, non-negativity seems reasonable. Examples
of such distributions include Poisson, compound Poisson, negative binomial (Johnson
et al. 2005, pages 164, 388, 218), log normal (Thorin 1977), gamma and generalized
gamma convolutions (Thorin 1977, Bondesson 2015). Infinitely divisible distributions
are linked to Lévy processes (Sato 1999, Theorem 7.10). Non-negative Lévy processes
are known as subordinators. The following results lie at the heart of our asymptotic
theory.

Theorem 1 Let {Y`} be a sequence of random variables with non-degenerate, non-
negative infinitely divisible distributions with at least three moments. If the skewness
vanishes, skew(Y`) = E[{Y` − E(Y`)}/

√
var(Y`)]

3 → 0, then, in distribution,

Y` − E(Y`)√
var(Y`)

→ N(0, 1).

Theorem 2 If the conclusion of Theorem 1 is met and the ratio of mean to standard
deviation increases, E(Y`)/

√
var(Y`)→∞, then Y`/E(Y`)→ 1 in probability.

For some distributions, such as the Poisson or negative binomial, the skewness vanishes
if and only if the mean increases. This is not a necessary condition. For a log normal
variable, the skewness vanishes if and only if the variance of the associated normal
distribution vanishes; similarly, the gamma requires the shape to increase. Neither
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requires the mean to grow. For all these examples, the ratio of mean to standard
deviation grows if and only if the skewness vanishes.

A more complicated example is the compound Poisson distribution
∑Z`

m=1Xm,` where
Z` is Poisson distributed and, for each `, the jumps Xm,` are non-negative independent
identically distributed across m with at least three moments, independent of Z`. A
special case arises when the jump distribution does not depend on `. Then, a necessary
and sufficient condition for the skewness to vanish and the mean to standard deviation
ratio to grow is that E(Z`) becomes large.

3 Model

3.1 Data

Due to the wide range of applicability, age-period-cohort data arrays take different
forms. In a mortality setting, Keiding (1990) summarizes the three principle sets of
dead related to Lexis diagrams. These are data organized as rectangles in an age-cohort
array, a cohort-period array or an age-period array. The latter two form trapezoids in
an age-cohort array. Insurance reserving data known as run-off triangles are triangular
age-cohort arrays. The three principle sets of dead and insurance run-off triangles are
special cases of generalized trapezoid data arrays

I = (i, k : 1 ≤ i ≤ I, 1 ≤ k ≤ K,L+ 1 ≤ j ≤ L+ J), (2)

where I, J and K indicate the numbers of age, period and cohort indices available while
L + 1 is the lower period index (Kuang et al. 2008b). The number of elements of I is
the number of observations, n. Table 1 is a generalized trapezoid with I = K = J = 10,
L = 0 and n = 55.

3.2 Assumptions

We define the over-dispersed Poisson model with age-period-cohort structure. Consider
observations Yik for (i, k) ∈ I where I is a generalized trapezoid as in (2). We assume
that the Yik are independent with non-degenerate and non-negative infinitely divisible
distribution with at least three moments. Moreover, suppose E(Yik) = exp(µik) where
µik satisfies the age-period-cohort structure (1) while variance and mean are proportional
so var(Yik)/E(Yik) = σ2 > 0. A Poisson model satisfies this with σ2 = 1.

The model has no explicit assumptions to the unobserved exposure. However, as
we consider aggregates, the data need to be on the same scale. That is, we either
need population data or a representative sample; this would be violated if some age-
cohort groups are over-represented in the sample. When modelling vital data one will
sometimes be interested in mortality rates. This would be modelled by conditioning
on exposure. The present model does not give information about the rates unless the
exposure and the rates have a separable structure; see Mart́ınez Miranda et al. (2015)
for further discussion.
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3.3 Identification

It is well known that the age, period and cohort effects αi, βj, γk and the δ are not
identified. Kuang et al. (2008b) proposed an identified parametrization in terms of
three initial points and three sets of double differences. The parameter vector is ξ =
{ξ(1), (ξ(2))T}T where ξ(1) = µ`m and, with νa = µ`†m − µ`m and νc = µ`m† − µ`m for
distinct (`,m), (`†,m), (`,m†) in I,

ξ(2) = (νa, νc,∆
2α3, . . . ,∆

2αI ,∆
2βL+3, . . . ,∆

2βL+J ,∆
2γ3, . . . ,∆

2γK)T ,

so ξ has length p = I + J + K − 3. Thus, p grows with n. Generally, µik is a linear
function of ξ of the form

µik = x
(1)
ik ξ

(1) + (x
(2)
ik )T ξ(2),

where x
(1)
ik = 1 while the p − 1 vector x

(2)
ik depends on the choice of the data array I.

Kuang et al. (2008b, Corollary 2) show that if ξ 6= ξ† then µik(ξ) 6= µik(ξ
†). They also

note that µik is identified. Mart́ınez Miranda et al. (2015) point out that the double
differences have log-odds ratio interpretation.

As an example, for rectangular or triangular age-cohort data arrays so L = 0 in (2),
Kuang et al. (2008b) suggest to represent µik as

µik = µ11 + (i− 1)(µ21 − µ11) + (k − 1)(µ12 − µ11) (3)

+
i∑
t=3

t∑
s=3

∆2αs +
i+k−1∑
t=3

t∑
s=3

∆2βs +
k∑
t=3

t∑
s=3

∆2γs.

Then, the initial points can be taken as a point ξ(1) = µ11 while the slopes in the age
and cohort directions are νa = µ21− µ11 and νc = µ12− µ11. Taken together these three
terms determine a linear plane. The three double sums of double differences represent
time effects constrained to zero for their first two values. The key to this representation
is that the three time scales age, period and cohort all increase from the coordinate
i = k = j = 1. For other data arrays the presentation has a more tedious appearance.
Two different solutions are proposed in Mart́ınez Miranda et al. (2015) and in Nielsen
(2015).

Ad-hoc identification of the time effects αi, βj, γk, can be done in three ways. We
discuss an example for each. First, Nielsen (2015) suggests a representation of µik in
terms of a linear plane and time effects that are detrended to start and end in zero. This
decouples the time effects that can be interpreted individually. There is a bijective map
from ξ(2) to the linear slopes and the detrended time effects. Second, one may employ
a restriction such as

∑
i αi =

∑
j βj =

∑
k γk = β2 = 0. Now, the linear slopes are

distributed onto the time effects in a particular way and the three time effects cannot
be interpreted individually. There is now an injective map from ξ(2) to the three time
effects and the exponential family is no longer regular; see Nielsen & Nielsen (2014).
The presented asymptotic theory covers these two cases. Third, if the identification
restricts the intercept, for example δ = 0, the time effects are functions of both ξ(1)

and ξ(2); this is outside the scope of the asymptotic theory. None of these identification
schemes is amenable to recursive analysis: for example expanding the data array and
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adding observations for a newly observed period changes the constraints and thus the
parameters.

3.4 Estimation in a Poisson model

A Poisson model satisfies the assumptions in §3.2 without over-dispersion so σ2 = 1.
The model is a regular exponential family with canonical parameter ξ, log likelihood

`Y (ξ) = Y..ξ
(1) + (T (2))T ξ(2) − exp(ξ(1))

∑
ik∈I

exp{(x(2)ik )T ξ(2)}

and minimal sufficient statistic given by Y.. and T (2) =
∑

ik∈I Yikx
(2)
ik . The information

is

iξ = − ∂2

∂ξ∂ξT
`Y (ξ) =

∑
ik∈I

exp(µik)

(
1

x
(2)
ik

)(
1

x
(2)
ik

)T
. (4)

The maximum likelihood estimator is unique if and only if (Y.., T
(2)) takes a value in the

interior of its convex support (Barndorff-Nielsen 1978, Theorem 9.13).
Kuang et al. (2009) analyze this condition when I is triangular and the period

parameter absent, ∆2βs = 0. In this special case, the estimators have closed form
expressions.

3.5 Mixed parametrization of the Poisson model

Mart́ınez Miranda et al. (2015) consider a Poisson age-period-cohort model. They condi-
tion on the data sum and base asymptotics on a multinomial sampling scheme, keeping
the array dimension and consequently the number of parameters fixed. The cost is that
asymptotic inference on the overall mean is not possible.

The link between Poisson and multinomial model can be made explicit. The Poisson
model has mixed parametrization given by ψ = {τ, (ξ(2))T}T , where

τ = E(Y..) = exp(ξ(1))
∑
ik∈I

exp{(x(2)ik )T ξ(2)} (5)

is the aggregate mean. The mapping from ξ to ψ is homeomorph and the parame-
ters τ and ξ(2) are variation independent (Barndorff-Nielsen 1978, Theorem 8.4). The
reparametrized log likelihood is

`Y (ψ) = `Y..(τ) + `T (2)|Y..(ξ
(2)) (6)

where

`Y..(τ) = Y.. log(τ)− τ, `T (2)|Y..(ξ
(2)) = (T (2))T ξ(2) − Y.. log[

∑
ik∈I

exp{(x(2)ik )T ξ(2)}].

Here, `Y.. is a Poisson likelihood for τ based on Y.. and `T (2)|Y.. a multinomial likelihood for

ξ(2) based on T (2) and conditional on Y... An implication is that Poisson and multinomial
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log likelihood ratios coincide for unrestricted τ . The maximum likelihood estimator for τ
is τ̂ = Y... The estimator for ξ(2) can be obtained either from the multinomial likelihood
or by dropping the first element from the Poisson regression estimator for ξ. The model
by Mart́ınez Miranda et al. (2015) does not allow inference on τ which goes to infinity,
but inference on ξ(2) is feasible.

The corresponding observed information is closely linked to the expected information
iξ in (4). To see this, introduce the frequencies

πik =
E(Yik)

τ
=

exp{(x(2)ik )T ξ(2)}∑
ik∈I exp{(x(2)ik )T ξ(2)}

, (7)

which are functions of ξ(2). The average information about ξ(2) is

ı̄ξ(2) = −τ̂−1 ∂2

∂ξ(2)∂(ξ(2))T
`Y (ψ) =

∑
ik∈I

πikHikH
T
ik, Hik = x

(2)
ik −

∑
lm∈I

πlmx
(2)
lm ,

so that the inverse information (τ ı̄ξ(2))
−1 equals the bottom right element of i−1ξ . The

observed information on the mixed parameter can now be written as

jψ = − ∂2

∂ψ∂ψT
`Y (ψ) = τ̂

(
τ−2 0
0 ı̄ξ(2)

)
. (8)

3.6 Estimation in an over-dispersed Poisson model

In an over-dispersed model σ2 is left unrestricted. Then, the scaled log likelihood σ2`Y
is a quasi-likelihood in the sense of Wedderburn (1974) with the Poisson likelihood as
objective function. Thus, properties resulting from the functional form of the Poisson
likelihood such as the variation independence in the mixed parametrization are still
valid. The Poisson estimators for τ and ξ(2) coincide with the quasi-likelihood estima-
tors. The mixed parametrization makes the derivation of the asymptotic theory below
easier and more insightful due to the diagonal structure of the information. For ap-
plications, however, there is no need to estimate a multinomial model: as we showed
above multinomial estimates for ξ(2) are simply the last p− 1 parameters of the Poisson
estimate, the estimate for τ is the data sum, Poisson and multinomial log-likelihood
ratios coincide, and the inverse average multinomial information (̄ıξ(2))

−1, playing a role
in the results below, does not require extra computation, being the bottom right block
of i−1ξ /τ .

3.7 Sampling scheme in an over-dispersed Poisson model

Consider the over-dispersed Poisson model described in §3.2. Unlike the Poisson model,
the over-dispersed Poisson model does not allow for conditioning. Our sampling scheme
stipulates that the index set I and the frequencies πik are fixed, while τ increases in
such a way that skew(Yik) vanishes. Then, Theorems 1 and 2 apply and we can make
asymptotic inference about ξ(2) but neither about τ nor ξ(1); the latter follows from
(5) since ξ(1) is increasing in τ for fixed ξ(2). An example is a compound Poisson
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distributed array Yik =
∑Zik

m=1Xikm where the means of the Poisson counts Zik grow
proportionally. The advantage of this sampling scheme, compared to one with increasing
array dimension, is that the number of parameters is fixed.

We note that in the Poisson model, which is a special case of the over-dispersed
model, we have from (8) that the expected information about τ is τ−1 while that for
ξ(2) is τ ı̄ξ(2) . Hence, they move in opposite directions as τ increases. Thus, decompose
the expected information so

E(jψ) = τ ı̄ψ = τMτ ı̃ψMτ , Mτ =

(
τ−1 0
0 I

)
, ı̃ψ =

(
1 0
0 ı̄ξ(2)

)
.

Mτ is a normalization matrix and ı̃ψ the normalized average information that is invariant
to τ .

4 Inference

We derive asymptotic distributions for quasi-likelihood estimators and test statistics for
hypotheses about ξ(2). For ξ(2) ∈ Rp−1, ζ(2) ∈ Rq−1 and ϕ(2) ∈ Rr−1 with r ≤ q ≤ p we
consider nested smooth hypotheses (Johansen 1979, page 39)

Hapc : µik = ξ(1) + (x
(2)
ik )T ξ(2), H1 : ξ(2) = ξ(2)(ζ(2)), H2 : ζ(2) = ζ(2)(ϕ(2)).

Hapc is the age-period-cohort model. H1 restricts to a sub-model such as an age-cohort
model µik = αi + γk + δ in which ζ(2) is ξ(2) with ∆2β = 0. H2 restricts to another
nested sub-model such as an age model µik = αi so ϕ(2) is ζ(2) with ∆2γ = νc = 0. An
overview of linear sub-models is given in Nielsen (2015).

Since τ is unrestricted for the hypothesis considered, Poisson and multinomial log
likelihood ratio statistics and deviances coincide, irrespective of the identification method
for the time trends since the deviances are functions of the identified µik. Let LRst be
the log likelihood ratio statistic for Hs against Ht and Ds be the deviance for Hs, that is
the log likelihood ratio against the saturated model where µik is completely unrestricted.
The asymptotic distribution of the estimators and test statistics in the over-dispersed
model is as follows.

Lemma 1 In the over-dispersed Poisson model of §3.2 and §3.7, in distribution,

τ̂ 1/2Mτ̂ (ψ̂ − ψ) =

{
τ̂−1/2(τ̂ − τ)

τ̂ 1/2(ξ̂(2) − ξ(2))

}
→ N{0, σ2(̃ıψ)−1}.

Dapc, LR1,apc and LR2,1 are asymptotically independent σ2χ2 with n− p, p− q and q− r
degrees of freedom, respectively. τ̂ 1/2Mτ̂ (ψ̂−ψ) and Dapc are asymptotically independent.

We note that no consistent estimator for τ is available under the sampling scheme; in
the Poisson special case this is reflected by the vanishing information about τ prior to
normalization by Mτ̂ . With σ2 = 1, the distributions match those in a Poisson model
as well as, leaving τ̂−1/2(τ̂ − τ) aside, a multinomial model conditional on Y... We can
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exploit the asymptotic distribution of Dapc/(n−p) with expectation σ2 to find statistics
that are asymptotically invariant to σ2.

Theorem 3 In the over-dispersed Poisson model of §3.2 and §3.7, in distribution,

τ̂ 1/2
vT (ξ̂(2) − ξ(2))
{Dapc/(n− p)}1/2

→ {vT (̄ıξ(2))
−1v}1/2tn−p, for all v ∈ Rp−1.

In particular, the distribution of elements of the estimator is approximately propor-
tional to a tn−p distribution. Theorem 3 applies to many, but not all, ad-hoc identified
parametrizations. If the identification does not constrain the intercept δ and the iden-
tified time effects α, β, γ are linear injective functions of ξ(2), then Theorem 3 applies.

The next theorem allows independent successive testing of H1 and H2.

Theorem 4 In the over-dispersed Poisson model of §3.2 and §3.7, in distribution,

F1 =
LR1,apc/(p− q)
Dapc/(n− p)

→ Fp−q,n−p, F2 =
LR2,1/(q − r)
D1/(n− q)

→ Fq−r,n−q.

F1 and F2 are asymptotically independent.

The models we consider typically have a high parameter to observation ratio. One
could wonder how much the degree of over-dispersion depends on the specific hypothesis.
Theorem 4 gives some insight to this. Given a valid restriction E(F1) is close to one
as the Fv1,v2 distribution has mean v2/(v2 − 2). In particular, F1 = 1 is equivalent to
D1/(n−q) = Dapc/(n−p), noting that LR1,apc = D1−Dapc, so the over-dispersion should
not change much by imposing valid restrictions. Imposing invalid restrictions would by
the same argument lead to an increase in over-dispersion. In applications, one would
first compare Dapc with a χ2

n−p, effectively asking if a Poisson model is appropriate. If
this is large, for instance if Dapc/(n−p) = 2, for sufficiently large degrees of freedom, say
ten, we would reject a Poisson model and switch to an over-dispersed model. Confidence
bands are then about 50% wider compared to a Poisson model. With ten degrees of
freedom for Dapc/(n − p) = 1.5 we would not reject the Poisson model; here the over-
dispersed confidence bands would have been some 25% wider.

5 Forecasting

5.1 Assumptions

We consider a forecasting array that is triangular in age-cohort space:

J = (i, k : 1 ≤ i ≤ I, 1 ≤ k ≤ K,L+ J + 1 ≤ j ≤ I +K − 1).

In Table 1, the forecasting array J is the empty lower triangle. Forecasting arrays of this
type are not only of interest for run-off triangles, but also arise naturally for data that
is rectangular in age-period or period-cohort space. We assume that the over-dispersed
Poisson model in §3.2 is satisfied out of sample for (i, k) ∈ J . We consider an age-cohort
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model µik = αi + γk + δ and denote the restricted parameter vector by ζ. With this,
any parameters in the forecasting array J also appear in the data array I so parameter
extrapolation is not necessary. Lee et al. (2015) refer to this as in-sample forecasting.
Models with period effect or forecasting arrays that are not triangular in age-cohort
space generally require parameter extrapolation; see the discussion in §8.

5.2 Point forecasting

We may be interested in forecasting individual cells as well as sums of cells over any
subset A ⊆ J . Summations over (i, k) ∈ A are indicated by the subscript A. Point

forecasts for E(YA) = τπA(ζ(2)) are ỸA = τ̂πA(ζ̂(2)). The point forecasts are not consis-

tent under the sampling scheme but ỸA/E(YA) → 1. We note that πA does not have
interpretation as a frequency outside the index set I.

5.3 Distribution forecasting

The aim is to predict the distribution of the difference between the point forecast ỸA
and the realisation YA. Defining π̂A =

∑
ik∈A πik(ζ̂

(2)) with πik as in (7) we find three
contributions for the forecast error:

YA − ỸA = YA − E(YA)− τ̂(π̂A − πA)− (τ̂ − τ)πA. (9)

The first contribution is the process error which, extending Theorems 1 and 2, satisfies

τ̂−1/2{YA − E(YA)} → N(0, σ2πA).

The second contribution is the estimation error for ζ(2). By Lemma 1 and the δ-method,

τ̂ 1/2(π̂A − πA)→ N(0, σ2s2A)

where
s2A = (

∑
ik∈A

πikHik)
T (̄ıζ(2))

−1(
∑
ik∈A

πikHik). (10)

The third contribution pertains the estimation uncertainty for τ . By Lemma 1,

τ̂−1/2(τ̂ − τ)πA → N{0, σ2(πA)2}.

Using Lemma 1 again to combine, we arrive at the following theorem.

Theorem 5 In the over-dispersed Poisson model of §3.7 and §5.1, in distribution,

τ̂−1/2
YA − ỸA

{D1/(n− q)}1/2
→ {πA + s2A + (πA)2}1/2tn−q.

Mart́ınez Miranda et al. (2015) investigate forecasting in a Poisson model conditional
on Y... Then there is no estimation uncertainty for τ̂ so the third contribution, (πA)2, is
switched off.
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sub dfsub Dsub pχ2 Dsub/dfsub Fsub,apc pF Fsub,ac pF Fsub,ad pF

apc 28 1395518 0 49840
ap 36 1780577 0 49460 0.97 0.48
ac 36 1903014 0 52862 1.27 0.30
ad 44 2269756 0 51585 1.10 0.40 0.87 0.55
a 45 2474053 0 54979 1.27 0.28 1.20 0.32 3.96 0.05

Table 2: Deviance analysis of insurance data. Dsub/dfsub are estimates for σ2.

6 Data example

We apply the theory to the insurance run-off triangle shown in Table 1. All R (R Core
Team 2016) code is given in the supplementary material. We use the R package apc

(Nielsen 2015).
Table 2 shows a deviance analysis based on Theorem 4. First, we can consider

whether a Poisson model with σ2 = 1 is appropriate. Under this hypothesis, the deviance
of the age-period-cohort (apc) model is χ2

28. This is clearly rejected.
We proceed with the over-dispersed Poisson model. As discussed in §8, for future

work it would be of interest to develop specification tests for this model. Given it is
correct, the reported F tests show that the model can be reduced to the age-period
(ap, ∆2γ = 0), age-cohort (ac, ∆2β = 0), age-drift (ad, ∆2β = ∆2γ = 0) and age (a,
∆2β = ∆2γ = νc = 0) model. In this actuarial context, the age-cohort model is our
preferred model for forecasting; it is known as the chain ladder model and widely used.
The estimates for the over-dispersion parameter Dsub/dfsub do not vary much among
models as expected in light of the discussion after Theorem 4.

Table 3 show the estimated parameters for the age-period-cohort and age-cohort
models with n − p = 28 and n − q = 36 degrees of freedom, respectively. We report
standard errors seN for a Poisson and set for an over-dispersed Poisson model. For the
age-period-cohort model, seN are the diagonal elements of (τ̂ ı̄ξ(2))

−1 evaluated at ξ̂(2)

while set = seN{Dapc/(n − p)}1/2 and similarly for the age-cohort model. Studentized
estimators are asymptotically standard normal distributed in the Poisson and asymp-
totically t distributed in the over-dispersed model. 95% critical values for the normal,
tn−p and tn−q are 1.96, 2.05 and 2.03, respectively. Estimates for the two models are
similar. The Poisson and over-dispersed Poisson models give very different indications
of the parameter uncertainty due to the proportionality factors (D/df)1/2 that are close
to 230.

Figure 1 shows plots of the the age-period-cohort estimates along with point-wise
t-standard errors. The plots for the double difference (a-c) show the estimates presented
in Table 3. Plots of the detrended time-effects (d-i) follow from a linear transformation
of ξ(2). In these, the detrended time effects have interpretation as deviations from a
linear plane and can be interpreted separately. Nielsen (2015) offers a more in depth
discussion for interpretation of this representation. We notice that standard errors are
increasing with age and cohort, and decreasing with period. This is because larger age
and cohort indices, and lower period indices are associated with the corners of the data

12



apc model ac model

ξ̂ seN set ζ̂ seN set
µ11 12.79 12.51
µ21 − µ11 0.70 0.001 0.22 0.91 0.001 0.12
µ12 − µ11 0.11 0.001 0.25 0.33 0.001 0.13
∆2α3 -0.90 0.001 0.22 -0.87 0.001 0.20
∆2α4 0.01 0.001 0.20 0.02 0.001 0.21
∆2α5 -0.64 0.001 0.23 -0.66 0.001 0.23
∆2α6 0.26 0.001 0.31 0.24 0.001 0.32
∆2α7 0.26 0.002 0.40 0.27 0.002 0.41
∆2α8 -0.29 0.002 0.50 -0.30 0.002 0.51
∆2α9 0.71 0.003 0.64 0.79 0.003 0.66
∆2α10 -1.76 0.005 1.06 -1.79 0.005 1.09
∆2β3 0.05 0.002 0.46
∆2β4 0.21 0.002 0.42
∆2β5 0.21 0.002 0.34
∆2β6 -0.41 0.001 0.28
∆2β7 0.35 0.001 0.27
∆2β8 -0.56 0.001 0.26
∆2β9 0.56 0.001 0.27
∆2β10 -0.08 0.001 0.25
∆2γ3 -0.37 0.001 0.25 -0.34 0.001 0.24
∆2γ4 -0.03 0.001 0.25 -0.01 0.001 0.26
∆2γ5 -0.01 0.001 0.26 -0.07 0.001 0.27
∆2γ6 0.11 0.001 0.28 0.14 0.001 0.28
∆2γ7 0.05 0.001 0.29 0.05 0.001 0.29
∆2γ8 0.05 0.001 0.30 0.08 0.001 0.31
∆2γ9 -0.41 0.002 0.35 -0.37 0.002 0.36
∆2γ10 0.10 0.003 0.57 0.06 0.003 0.58

Table 3: Estimates for insurance data. The data sum is τ̂ = 34, 358, 090.

triangle so these estimates are based on fewer observations.
Table 4 shows forecasts for the empty lower triangle from an age-cohort model based

on Theorem 5. That is, forecasts of future payments for liabilities of incurred but not
fully reported claims. The forecasts are aggregated diagonally and row-wise, thus by
period and cohort, respectively. Period aggregates indicate the cash-flow period by
period wheres cohort aggregates are the necessary reserves for particular accident years.
The total reserve is the aggregate over the full lower triangle. We report point forecasts
and the 95% quantile of the forecast distribution

ỸA + [τ̂{D1/(n− q)}{π̂A + ŝ2A + (π̂A)2}]1/2tn−q (11)

where π̂A and ŝ2A are (7) and (10) evaluated at ζ̂(2), respectively. The quantile has
interpretation as the 95% value at risk.

We also report results based on the bootstrap by England (2002) implemented using
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Figure 1: Plot of double differences and detrended parameter estimates. Dashed and
dotted lines are one and two standard errors set around zero, respectively.

the R package ChainLadder (Gesmann et al. 2015). We draw a bootstrap sample of

B = 999 point forecasts ỸA,b and then add process error variation by drawing Y bs
A,b

from a gamma distribution centred at ỸA,b. The distribution of −(Y bs
A,b − ỸA) should

then approximate that of YA − ỸA and its 95th quantile added to the point forecast
approximates the 95% value at risk. We note that there is no formal theory for the
validity of the bootstrap in the present situation. The t forecast is usually larger than
the bootstrap, but not always. The two methods are closer for larger values at risk, that
is, for earlier periods and later cohorts.
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Period Cash-flow 95% value at risk Cohort Reserve 95% value at risk
t bootstrap t bootstrap

11 523 643 639 2 9 28 22
12 418 532 524 3 47 83 77
13 313 417 419 4 71 115 111
14 213 291 287 5 98 149 144
15 156 222 217 6 142 205 197
16 118 177 170 7 218 301 292
17 74 123 117 8 392 523 513
18 45 86 79 9 428 602 591
19 9 27 19 10 463 786 772

Total 1868 2330 2337

Table 4: Age-cohort forecasts for insurance data. Results in ten thousands.

Size under Hac Power under Hapc

Target 1.00% 5.00% 10.00% 1.00% 5.00% 10.00%

s = 0.5 1.24% 5.81% 11.32% 9.78% 26.68% 39.41%
s = 1 1.12% 5.41% 10.66% 23.57% 48.92% 63.06%
s = 2 1.03% 5.16% 10.31% 58.30% 82.62% 90.58%

Table 5: Simulation performance of F test. Monte Carlo standard error less than 0.05.

7 Simulation study

7.1 Test statistic

We assess the finite sample performance of the asymptotically F distributed specification
test F1 proposed in Theorem 4. We simulate under the age-cohort hypothesis Hac so
∆2βj = 0 for all j, as well as under Hapc, the age-period-cohort hypothesis.

The Yik are simulated as independent compound Poisson gamma variables so Yik =∑Zik

`=1Xl where Zik is Poisson with mean exp(µik) and independent of the independent
gamma distributed X` with scale σ2−1 and shape (σ2−1)−1. We choose the data array
I and parameters to match the insurance data, and estimates in Table 2 and Table 3,
respectively, except µ11 is chosen as log(s) + µ̂11 for s = 0·5, 1, 2 so τ = sτ̂ . We draw
106 repetitions.

Table 5 shows the simulated rejection frequencies under the age-cohort hypothesis
Hac and the age-period-cohort unrestricted model Hapc. The size control is good for
all values of s. The power is increasing in s. For s = 1 we get a 50% power for a 5%
test which indicates that one should perhaps be cautious not to reduce the model too
far for the insurance data. However, a parsimonious model can be advantageous for
forecasting.
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Moments Quantiles
s First Second 1% 5% 50% 95% 99%

0.5 true -2 22 -63 -40 1 30 40
boot -2 (1) 22 (6) -61 (20) -40 (12) 0 (1) 30 (7) 40 (10)
t 0 (2) 20 (5) -47 (20) -32 (11) 0 (1) 32 (8) 47 (13)

1 true -2 30 -82 -55 1 44 59
boot -2 (1) 30 (6) -79 (20) -54 (12) 0 (1) 44 (8) 59 (11)
t 0 (2) 28 (6) -66 (21) -46 (12) 0 (1) 46 (9) 66 (14)

2 true -2 42 -110 -74 1 64 87
boot -2 (1) 42 (7) -107 (21) -73 (13) 0 (2) 64 (10) 87 (14)
t 0 (2) 40 (7) -94 (22) -65 (14) 0 (1) 65 (10) 94 (16)

Table 6: Simulation performance of t and bootstrap forecasts. Results in hundred
thousands. Shown are averages across simulations and, in parentheses, root mean square
errors.

7.2 Forecasting

We first simulate the true distribution of the forecast error YA− ỸA. Then, we evaluate
the quality of the t forecast in Theorem 5 and the bootstrap method by England (2002).
We consider forecast errors for the sum of all entries in the lower triangle so A = J ,
known in insurance as the chain ladder reserve. Results are reported in Table 6.

We consider the data generating process described in §7.1 for the age-cohort model
and simulate for s = 0.5, 1, 2. Due to the age-cohort structure, this defines the distribu-
tion in both the data array I and the forecast array J .

We approximate the first two moments and α quantiles of YA − ỸA by Monte Carlo
with 106 draws. The moments have interpretation as bias and prediction error of ỸA.
The distribution is left skew since the distribution of the point forecasts is more right
skew than that of the realisations.

For the forecast approximations we draw R = 5, 000 data triangles Ir. We report
averages across r and, in parentheses, root mean square errors. For the t forecast, for
every Ir, we compute approximations to moments and quantiles based on (11) minus
the point forecast. For the bootstrap, we proceed as described in §6 and draw for every
Ir a bootstrap sample of B = 999 realisations of −(Y bs

A,r,b − ỸA,r). For each r, moments
and quantiles are computed as sample averages across b and αB order statistics.

The bootstrap clearly performs better on average. Root mean square errors of the
t forecast are mostly close to those of the bootstrap and sometimes smaller, indicating
that the bootstrap produces more outliers than the t.

8 Discussion

The presented sampling scheme provides a framework for developing specification tests
for the over-dispersed Poisson model. We are currently working on a test for the as-
sumption of common over-dispersion across the full sample. Such a test might also
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be a starting point for model selection between over-dispersed Poisson and log-normal
model. Rather than a fixed variance to mean ratio, the log-normal model implies a fixed
standard deviation to mean ratio.

In §5 we referred to forecasting scenarios that require parameter extrapolation. If ad-
hoc identification is used in this case, care is needed to prevent an impact of the ad-hoc
decision on the forecasts (Kuang et al. 2008a). Kuang et al. (2011) and Mart́ınez Mi-
randa et al. (2015) discuss forecasting with period-effect extrapolation in a log-normal
model and a Poisson model, respectively. Extrapolation would add additional terms to
the forecast error decomposition (9). A formal analysis of this would be of interest.

This paper considers a model for responses only. In other scenarios there is additional
information available about exposure. It would be interesting to derive a theory for such
a setting.
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Appendix

Proof of Theorem 1

From Sato (1999, pages 37–39 and Theorem 21.5) we have a general form for the the
logarithm of the characteristic function of Y`. Since Y` is non-negative infinitely divisible
with E(|Y`|) <∞, then

φ`(t) = log[E{exp(itY`)}] = iγ`t+

∫ ∞
0

{exp(ity)− 1− ity}ν`(dy) (12)

with Lévy measure ν`. Since E(|Y 3
` |) < ∞, we can find the first three cumulants by

differentiating φ`(t) (Lukacs 1960, pages 33–34) and get

γ` = E(Y`),

∫ ∞
0

y2ν`(dy) = var(Y`),

∫ ∞
0

y3ν`(dy) = E[{Y` − E(Y`)}3] (13)

From Billingsley (1995, page 343) we get

exp(ity) = 1 + ity − (ty)2

2
+ r(y, t), |r(y, t)| ≤ min

{
|yt|3

6
, (yt)2

}
. (14)
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The remainder r(y, t) is ν`-integrable for any t ∈ R since it is dominated by (yt)2 and
y2 is ν`-integrable due to (13). Inserting (13) and (14) in (12),

φ`(t) = itE(Y`)−
t2

2
var(Y`) +

∫ ∞
0

r(y, t)ν`(dy). (15)

Let U` = {Y` − E(Y`)}/
√

var(Y`) with log characteristic function

ρ`(s) = log[E{exp(isU`)}] = φ`

(
s√

var(Y`)

)
− isE(Y`)√

var(Y`)
.

Inserting the expression (15) gives

ρ`(s) = −s
2

2
+

∫ ∞
0

r

{
y,

s√
var(Y`)

}
ν`(dy). (16)

The standard normal distribution has log characteristic function −s2/2 (Lukacs 1960,
page 26). Thus, the distribution of U` converges weakly to a standard normal distribu-
tion if and only if its characteristic function converges point-wise to the standard normal
characteristic function (Lukacs 1960, Theorem 3.6.1). Hence, we want to show that for
each s ∈ R the second term in (16) vanishes as skew(Y`)→ 0. Denoting the integrand
by r for shortness, we find |

∫∞
0
rν`(dy)| ≤

∫∞
0
|r|ν`(dy). With (14),∫ ∞

0

|r|ν`(dy) ≤
∫ ∞
0

min

{
|ys|3

6var(Y`)3/2
,

(ys)2

var(Y`)

}
ν`(dy) ≤ min

{
|s|3

6
skew(Y`), s

2

}
where the last inequality follows by the non-negativity of the integrand and (13). The
minimum is dominated by either of its arguments. It therefore vanishes as skew(Y`)→ 0.

Proof of Theorem 2

With {Y` − E(Y`)}/
√

var(Y`) → N(0, 1) and E(Y`)/
√

var(Y`) → ∞ the results follows
since

Y`
E(Y`)

= 1 +
Y` − E(Y`)√

var(Y`)

{
E(Y`)√
var(Y`)

}−1
.

Proof of Lemma 1

Consider the mixed parametrization of the Poisson likelihood discussed in §3.5 for a
saturated model in which µik is unrestricted. This nests the age-period-cohort model
and its sub models. The saturated model has mixed parametrization ψS = {τ, (θ)T}T
where the vector θ contains θik = µik − µ`m for (i, k) ∈ I \ (`,m). Define the design
vectors sik ∈ Rn−1 for (i, k) ∈ I so s`m = 0 and sik for (i, k) 6= (`,m) is a unit vector
so θik = sTikθ. The minimal sufficient statistic for ψS in a saturated Poisson model is

(Y.., T
(2)
S ) where T

(2)
S =

∑
ik∈I s

T
ikYik. We have µik = log(τ) + log{πik(θ)}. Recalling that
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τ̂ = Y.. and organizing Yik and µik for (i, k) ∈ I in vectors, Y and µ, say, we find

M−1
τ

∂`Y
∂ψS

=

{
τ̂ − τ

τ̂(T
(2)
S /τ̂ −

∑
ik∈I s

T
ikπik)

}
= M−1

τ

∂µT

∂ψS

∂`Y
∂µ

= M−1
τ

∂µT

∂ψS
{Y − E(Y )}.

(17)
Organize {πik : (i, k) ∈ I} as a vector, π, say. With Johansen (1979, Proof of Lemma
7.2) we verify that

M−1
τ

∂µT

∂ψS
diagonal(π)

∂µ

∂ψTS
M−1

τ = −τ−1 ∂2`Y
∂ψS∂ψTS

∣∣∣∣
Y=E(Y )

=

(
1 0
0 ı̄θ

)
= ı̃ψS

. (18)

With independent Yik Theorem 1 extends to τ−1/2{Y −E(Y )} → N{0, σ2diagonal(π)}.
This implies that τ̂ /τ → 1 in probability by Theorem 2. Then, by Slutsky’s theorem,
τ̂−1/2{Y − E(Y )} and τ−1/2{Y − E(Y )} have the same asymptotic distribution. Thus,

τ̂−1/2M−1
τ

∂`Y
∂ψS

= M−1
τ

∂µT

∂ψS
τ̂−1/2{Y − E(Y )} → N(0, σ2ı̃ψS

). (19)

In particular, the asymptotic distribution of the two components of the normalized suffi-
cient statistics τ̂−1/2(τ̂ − τ) and τ̂ 1/2(T

(2)
S /τ̂ −

∑
ik∈I s

(2)
ik πik) are asymptotically indepen-

dent. Quasi likelihood estimators for ξ(2) and its restrictions, as well as deviances and
log likelihood ratio statistics are functions of the second component only, thus asymp-
totically independent of τ̂−1/2(τ̂ − τ). We note that (τ̂ /σ2)1/2(T

(2)
S /τ̂ −

∑
ik∈I s

(2)
ik πik)

has the same asymptotic distribution as in a multinomial model conditional on Y.. and
that we are interested in the same data transformations as in that model. Thus, for
the asymptotic argument, we can exploit results from exponential family theory. The
asymptotic distribution of τ̂ 1/2(ξ̂(2) − ξ(2)) follows from Johansen (1979, Theorem 7.3).
With Johansen (1979, Theorems 7.6, 7.7, 7.8), the asymptotic distributions and inde-
pendence of Dapc, LR1,apc and LR2,1 follow, as does asymptotic independence of LR1,apc

and τ̂ 1/2(ξ̂(2) − ξ(2)).

Proof of Theorem 3

From Lemma 1, τ̂ 1/2vT (ξ̂(2) − ξ(2))→ N{0, σ2vT (̄ıξ(2))
−1v}, asymptotically independent

of Dapc → σ2χ2
n−p. The studentized estimator is then tn−p distributed.

Proof of Theorem 4

If W 2
1 = χ2

df1
, W 2

2 = χ2
df2

and W 2
3 = χ2

df3
are mutually independent then V 2

1 =
W 2

1 /(W
2
1 + W 2

2 ) = beta(df1/2, df2/2) and V 2
2 = (W 2

1 + W 2
2 )/(W 2

1 + W 2
2 + W 2

3 ) =
beta{(df1+df2)/2, df3/2} are independent (Johnson et al. 1993, page 212). Hence, the F
distributed {(1− V 2

1 )/df2}/{V 2
1 /df1} and {(1− V 2

2 )/df3}/{V 2
2 /(df1 + df2)} are indepen-

dent. By Lemma 1, Dapc, LR1,apc and LR2,1 are asymptotically mutually independent
σ2χ2 distributed with n − p, p − q and q − r degrees of freedom. By taking ratios as
in F1,apc and F2,1, σ

2 cancels out in the asymptotic distribution. Setting W 2
1 = Dapc,

W 2
2 = LR1,apc and W 2

3 = LR2,1, the asymptotic F distribution and independence follows.
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Proof of Theorem 5

Since τ̂ /τ → 1 in probability as noted in the proof of Lemma 1, τ̂−1/2{YA−E(YA)} has
the same asymptotic distribution as τ−1/2{YA−E(YA)} → N(0, σ2πA), using Theorem 1.
The latter is a function of the future realisations in J and thus independent of both
estimation error components which are functions of the data in I. The distribution of the
two estimation error components and D1 are asymptotically independent by Lemma 1.
Since D1 is a function of the data, it is also asymptotically independent of the process
error component. The studentized forecast error is then tn−q distributed.
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