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Summary We propose an asymptotic theory for distribution forecasting from the log
normal chain-ladder model. The theory overcomes the difficulty of convoluting log
normal variables and takes estimation error into account. The results differ from that of
the over-dispersed Poisson model and from the chain-ladder based bootstrap. We embed
the log normal chain-ladder model in a class of infinitely divisible distributions called
the generalized log normal chain-ladder model. The asymptotic theory uses small σ
asymptotics where the dimension of the reserving triangle is kept fixed while the standard
deviation is assumed to decrease. The resulting asymptotic forecast distributions follow
t distributions. The theory is supported by simulations and an empirical application.
Keywords chain-ladder, infinitely divisibility, over-dispersed Poisson, bootstrap, log-
normal.

1 Introduction

Reserving in general insurance usually relies on chain-ladder-type methods. The most
popular method is the traditional chain-ladder. A contender is the log-normal chain-
ladder, which we study here. Both methods have proved to be valuable for point forecast-
ing. In practice, distribution forecasting is needed too. For the standard chain-ladder
there are presently three methods available. Mack (1999) has suggested a method for
recursive calculation of standard errors of the forecasts, but without proposing an actual
forecast distribution. The bootstrap method of England and Verrall (1999) and England
(2002) is commonly used, but it does not always produce satisfactory results. Recently,
Harnau and Nielsen (2017) have developed an asymptotic theory for the chain-ladder in
which the idea of a over-dispersed Poisson framework is embedded in a formal model.
This was done through a class of infinitely divisible distributions and a new Central
Limit Theorem. An asymptotic theory provides an analytic tool for evaluating the dis-
tribution of forecast errors and building inferential procedures and specification tests
for the model. Here we adapt the infinitely divisible framework of Harnau and Nielsen
(2017) to the log-normal chain-ladder and present an asymptotic theory for the distri-
bution forecasts and model evaluation. Thereby, asymptotic distribution forecasts and
model evaluation tools are now available for two different models, which together cover
a wide range of reserving triangles.

The data consists of a reserving triangle of aggregate amounts that have been paid
with some delay in respect to portfolios of insurances. Table 1.1 provides an example.
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1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
1997 2185 13908 44704 56445 67313 62830 72619 42511 32246 51257 11774 21726 10926 4763 3580 4777 1070 1807 824 1288
1998 3004 17478 49564 55090 75119 66759 76212 62311 31510 15483 23970 8321 15027 3247 8756 14364 3967 3858 4643
1999 5690 28971 55352 63830 71528 73549 72159 37275 38797 27264 28651 14102 8061 17292 10850 10732 4611 4608
2000 9035 29666 47086 41100 58533 80538 70521 40192 27613 13791 17738 20259 12123 6473 3922 3825 3082
2001 7924 38961 41069 64760 64069 61135 62109 52702 36100 18648 32572 17751 18347 10895 2974 5828
2002 7285 25867 44375 58199 61245 48661 57238 29667 34557 8560 12604 8683 9660 4687 1889
2003 3017 22966 62909 54143 72216 58050 29522 25245 19974 16039 8083 9594 3291 2016
2004 1752 25338 56419 75381 64677 58121 38339 21342 14446 13459 6364 6326 6185
2005 1181 24571 66321 65515 62151 43727 29785 23981 12365 12704 12451 8272
2006 1706 13203 40759 57844 48205 50461 27801 21222 14449 10876 8979
2007 623 14485 27715 52243 60190 45100 31092 22731 19950 18016
2008 338 6254 24473 32314 35698 25849 30407 15335 15697
2009 255 3842 14086 26177 27713 15087 17085 12520
2010 258 7426 22459 28665 32847 28479 24096
2011 1139 10300 19750 32722 41701 29904
2012 381 5671 34139 33735 33191
2013 605 11242 24025 32777
2014 1091 9970 31410
2015 1221 8374
2016 2458

Table 1.1: XL Group, US casualty, gross paid and reported loss and allocated loss
adjustment expense in 1000 USD.

The objective of reserving is to forecast liabilities that have occurred but have not yet
been settled or even recorded. The reserve is an estimate of these liabilities. Thus, the
problem is to forecast the lower reserving triangle and then add these forecasts up to
get the reserve. The traditional chain-ladder provides a point forecast for the reserve.

The chain-ladder is maximum likelihood in a Poisson model. This is useful for
estimation and point forecasting. Mart́ınez Miranda, Nielsen and Nielsen (2015) have
developed a theory for inference and distribution forecasting in such a Poisson model
in order to analyze and forecast incidences of mesothelioma. However, this is not of
much use for the reserving problem because the data is nearly always severely over-
dispersed. The over-dispersion arises because each entry in the paid triangle is the
aggregate amount paid out to an unknown number of claims of different severity. It
is common to interpret this as a compound Poisson variable, see Beard, Pentikäinen
and Pesonen (1984, §3.2). Compound Poisson variables are indeed over-dispersed in the
sense that the variance to mean ratio is larger than unity. They are, however, difficult
to analyze and even harder to convolute. England and Verrall (1999) and England
(2002) developed a bootstrap to address this issue. This often works, but it is known
to give unsatisfactory results in some situations. The model underlying the bootstrap
is not fully described, so it is hard to show formally when the bootstrap is valid and to
generalize it to other situations, including the log-normal chain-ladder.

The infinitely divisible framework of Harnau and Nielsen (2017) provides a plausi-
ble over-dispersed Poisson model and framework for distribution forecasting with the
traditional chain-ladder. It utilizes that the compound Poisson distribution is infinitely
divisible. If the mean of each entry in the paid triangle is large, then the skewness of
compound Poisson variable is small and a Central Limit Theorem applies. Thus, keep-
ing the dimension of the triangle fixed, while letting the mean increase, the reserving
triangle is asymptotically normal with mean and variance estimated by the chain-ladder.
Since the dimension is fixed we then arrive at an asymptotic theory that matches the
traditional theory for analysis of variance (anova) developed by Fisher in the 1920s. If
the over-dispersion is unity and therefore known as in the Poisson model of Mart́ınez
Miranda, Nielsen and Nielsen (2015) then inference is asymptotically χ2 and distribution
forecasts are normal. When the over-dispersion is estimated as appropriate for reserving
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data then we arrive at inference that is asymptotically F and distribution forecasts that
are asymptotically t. The chain-ladder bootstrap could potentially be analyzed within
this framework, but this is yet to be done.

When it comes to the log-normal model the situation is different. The log-normal
model has apparently been suggested by Taylor in 1979, and then analyzed by for
instance Kremer (1982), Renshaw (1989), Verrall (1991, 1994), Doray (1996) and Eng-
land and Verrall (2002). The main difference to the over-dispersed Poisson model is that
the mean-variance ratio is constant across the triangle in that model, while the mean-
standard deviation ratio is constant in the log-normal model. Therefore the tails of
distributions are expected to be different, which may matter in distribution forecasting.

Estimation is easy in the log-normal model. It is done by least squares from the log
triangle. Recently, Kuang, Nielsen and Nielsen (2015) have provided exact expressions
for all estimators along with a set of associated development factors. Least squares
theory provides a distribution theory for the estimators and for inference. However, the
reserving problem is to make forecasts of reserves that are measured on the original scale.
Each entry in the original scale is log-normally distributed. While there are expressions
for such log-normal distributions it is unclear how to incorporate estimation uncertainty,
let alone convolute such variable to get the reserve.

The infinitely divisible theory provides a solution also for the log-normal model.
Thorin (1977) showed that the log-normal distribution is infinitely divisible. First of all,
this indicates that the log normal variables actually have an interpretation as compound
sums of claims. Secondly, the framework of Harnau and Nielsen (2017) and their Central
Limit Theorem apply, albeit with subtle differences. In the over-dispersed Poisson model
the mean of each entry is taken to be large in the asymptotic theory, whereas for
generalized log-normal model we will let the variance be small in the asymptotic theory.
In both cases the mean-dispersion ratio is then small. In this paper we will exploit that
infinitely divisible theory to provide an asymptotic theory for the log-normal distribution
forecasts.

We also discuss specification tests for the log-normal model. Mis-specification can
appear both in the mean and the variance of the log-normal variables. The mean
could for instance have an omitted calendar effect. Thus, we study the extended chain-
ladder model discussed by Zehnwirth (1994), Barnett and Zehnwirth (2000), and Kuang,
Nielsen and Nielsen (2008a,b,2011). The variance could be different in subgroups of
the triangle as pointed out by Hertig (1985). Barlett (1937) proposed a test for this
problem. Recently, Harnau (2017) has adapted that test to the traditional chain-ladder.
We extend this to the generalized log-normal model.

We illustrate the new methods using a casualty reserving triangle from XL Group
(2017) as shown in Table 1.1. The triangle is for US casualty and includes gross paid
and reported loss and allocated loss adjustment expense in 1000 USD.

We conduct a simulation study where the data generating process matches the XL
Group data in Table 1.1. We find that that the asymptotic results give good approxima-
tions in finite samples. The asymptotic will work even better if the mean-dispersion ratio
is larger. The generalized log-normal model is also compared with the over-dispersed
Poisson model and the England (2002) bootstrap. The bootstrap is found not to work
very well by an order of magnitude for this log-normal data generating process. The
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over-dispersed Poisson model works better although it is dominated by the generalized
log-normal model.

In §2 we review the well known log-normal models for reserving. In §3 we set up the
asymptotic generalized log-normal model based on the infinitely divisible framework.
We check that the log-normal model is embedded in this class and show that the results
for inference in the log-normal model caries over to the generalized log-normal model.
We also derive distribution forecasts. We apply the results to the XL Group data in §4,
while §5 provides the simulation study. Finally, we discuss directions for future research
in §6. All proofs of theorems are provided in an Appendix.

2 Review of the log-normal chain-ladder model

A competitor to the chain-ladder is the log-normal model. In this model the log of
the data is normal so that parameters can be estimated by ordinary least squares.
We review the log-normal model by describing the structure of the data, the model,
statistical analysis, point forecasts and extension by a calendar effect.

2.1 Data

Consider a standard incremental insurance run-off triangle of dimension k. Each entry is
denoted Yij so that i is the origin year, which can be accident year, policy year or year of
account, while j is the development year. Collectively we have data Y = {Yij,∀i, j ∈ I},
where I is the triangular index set

I = {i, j : i and j belong to (1, . . . , k) with i+ j − 1 = 1, . . . , k}. (2.1)

Let n = k(k + 1)/2 be the number of observations in the triangle I. One could allow
more general index sets, see Kuang, Nielsen and Nielsen (2008a), for instance to allow
for situations where some accidents are fully run-off or only recent calendar years are
available. We are interested in forecasting the lower triangle with index set

J = {i, j : i and j belong to (1, . . . , k) with i+ j − 1 = k + 1, . . . , 2k − 1}. (2.2)

2.2 Model

In the log-normal model the log claims have expectation given by the linear predictor

µij = αi + βj + δ. (2.3)

The predictor µij is composed of a an accident year effect αi, a development year effect
βj and an overall level δ. The model is then defined as follows.

Assumption 2.1 log-normal model. The array Yij, i, j ∈ I, satisfies that the vari-
ables yij = log Yij are independent normal N(µij, ω

2) distributed, where the predictor is
given by (2.3)
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The parametrisation presented in (2.3) does not identify the distribution. It is com-
mon to identify the parameters by setting, for instance, δ = 0 and

∑k
j=1 βj = 0. Such

an ad hoc identification makes it difficult to extrapolate the model beyond the square
composed of the upper triangle I and the lower triangle J and it is not amenable to
the subsequent asymptotic analysis. Thus, we switch to the canonical parametrisa-
tion of Kuang, Nielsen and Nielsen (2009, 2015) so that the model becomes a regular
exponential family with freely varying parameters. The canonical parameter is

ξ = {µ11,∆α2, . . . ,∆αk,∆β2, . . . ,∆βk}′, (2.4)

where ∆αi = αi − αi−1 is the relative accident year effect and ∆βj = βj − βj−1 is the
relative development year effect, while µ11 is the overall level. The length of ξ is denoted
p, which is p = 2k − 1 with the chain-ladder structure. We can then write

µij = µ11 +
i∑

`=2

∆α` +

j∑
`=2

∆β` = X ′ijξ, (2.5)

with the convention that empty sums are zero and Xij ∈ Rp is the design vector

X ′ij = {1, 1(2≤i), . . . , 1(k≤i), 1(2≤j), . . . , 1(k≤j)}, (2.6)

where the indicator function 1(m≤i) is unity if m ≤ i and zero otherwise.

2.3 Statistical analysis

The log observations yij = log Yij have a normal log likelihood given by

`logN(ξ, ω2) = −n
2

log(2πω2)− 1

2ω2

∑
i,j∈I

(yij −X ′ijξ)2. (2.7)

Stacking the observations yij = log Yij and the row vectors X ′ij then gives an obser-
vation vector y and a design matrix X and a model equation of the form

y = Xξ + ε. (2.8)

The least squares estimator for ξ and the residuals are then

ξ̂ = (X ′X)−1X ′y, ε̂ij = yij −X ′ij ξ̂. (2.9)

while the variance ω2 is estimated by

s2 =
RSS

n− p
where RSS =

∑
i,j∈I

ε̂2ij. (2.10)

Kuang, Nielsen and Nielsen (2015) derive explicit expressions for each coordinate of the
canonical parameter and they provide an interpretation in terms of so-called geometric
development factors.
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Standard least squares theory provides a distribution theory for the estimators, see
for instance Hendry and Nielsen (2007), so that

ξ̂
D
= N{ξ, ω2(X ′X)−1}, s2

D
= χ2

n−p/(n− p). (2.11)

Individual components of ξ̂ will also be normal. Standardizing those components and
replacing ω2 by the estimate s2 gives the t-statistic, which is tn−p distributed.

We may be interested in testing linear restrictions on ξ. This can be done using
F-tests. For instance, the hypothesis that all ∆α parameters are zero would indicate
that the policy year effect is constant over time. Such restrictions can be formulated as
ξ = Hζ for some known matrix H ∈ Rp×pH and a parameter vector ζ ∈ RpH . In the
example of zero ∆α’s the H matrix would select the remaining parameters, the µ11 and
the ∆βjs. We then get a restricted design matrix XH = XH and a model equation of
the form y = XHζ + ε. We then get estimators

ζ̂ = (X ′HXH)−1X ′Hy, s2H =
RSSH

n− pH
,

where the residual sum of squares RSSH =
∑

i,j∈I ε̂
2
H,ij is formed from the residuals

ε̂H,ij = yij −X ′H,ij ζ̂ as before. The hypothesis can be tested by F-statistic

F =
{RSSH −RSS}/(p− pH)

RSS/(n− p)
D
= F(p− pH , n− pH). (2.12)

We may also be interested in affine restrictions. For instance, the hypothesis that
all ∆α parameters are known corresponds the hypothesis of known values of relative
ultimates. This may be of interest in an Bornhuetter-Ferguson context, see Margraf and
Nielsen (2018). This is analyzed by restricted least squares which also leads to t and F
statistics.

2.4 Point forecasting

In practice we will want to forecast the variables Yij on the original scale. Since yij is
N(µij, ω

2) then Yij = exp(yij) is log-normally distributed with mean exp(µij + ω2/2).
Thus, the point forecast for the lower triangle J , as well as the predictor for the upper
triangle I, can be formed as

Ỹij = exp(X ′ij ξ̂ + ω̂2/2), (2.13)

We will also be interested in distribution forecasting. However, the log-normal model has
the drawback that it is a non-trivial problem to characterize the joint distribution of the
variables on the original scale. Renshaw (1989) provides expressions for the covariance
matrix of the variables on the original scale, but a further non-trivial step would be
needed to characterize the joint distribution. Once it comes to distribution forecasting
we would also need to take the estimation error into account. This does not make the
problem easier. We will circumvent these issues by exploiting the infinitely divisible
setup of Harnau and Nielsen (2017).
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2.5 Extending with a calendar effect

It is common to extend the chain-ladder parametrization with a calendar effect, so that
linear predictor in (2.3) becomes

µij,apc = αi + βj + γi+j−1 + δ, (2.14)

where i+j−1 is the calendar year corresponding to accident year i and development year
j. This model has been suggesting in insurance by Zehnwirth (1994). Similar models
have been used in a variety of displines under the name of age-period-cohort models,
where age, period and cohort are our development, calendar and policy year. The model
has an identification problems. The canonical parameter solution of Kuang, Nielsen and
Nielsen (2008a) is to write µij,apc = X ′ij,apcξapc where, with h(i, s) = max(i − s + 1, 0),
we have

ξapc = (µ11, νa, νc,∆
2α3, . . . ,∆

2αk,∆
2β3, . . . ,∆

2βk,∆
2γ3, . . . ,∆

2γk)′, (2.15)

Xij,apc = {1, i− 1, j − 1, h(i, 3), . . . , h(i, k), h(j, 3), . . . , h(j, k),

h(i+ j − 1, 3), . . . , h(i+ j − 1, k)}. (2.16)

The dimension of these vectors is papc = 3k − 3.
This model can be analyzed by the same methods as above. Stack the design vectors

X ′ij,apc to a design matrix Xapc and regress y on Xapc to get an estimator ξapc of the
form (2.9) along with a residual sum of squares RSSapc and a variance estimator s2apc
The significance of the calendar effect can be tested using an F-statistic as in (2.12),
where ξ and p now correspond to the extended model, while ζ and pH correspond to the
chain-ladder specification.

When it comes to forecasting it is necessary to extrapolate the calendar effect. This
has to be done with some care due to identication problem, see Kuang, Nielsen and
Nielsen (2008b, 2011).

3 The generalized log-normal chain-ladder model

The log-normal distribution is infinitely divisible as shown by Thorin (1977). We can
therefore formulate a class of infinitely divisible distributions encompassing the log-
normal. We will refer to this class of distributions as the generalized log-normal chain-
ladder model. In the analysis we exploit the setup of Harnau and Nielsen (2017) to
provide distribution forecasts for the generalized log-normal model.

3.1 Assumptions and first properties

The infinitely divisible setup of Harnau and Nielsen (2017, §3.7) encompasses the log-
normal model. Recall that a distribution D is infinitely divisible, if for any m ∈ N,
there are independent, identically distributed random variables X1, . . . , Xm such that∑m

`=1X` has distribution D. The log-normal distribution is infinitely divisible as shown
by Thorin (1977). This matches the fact that the paid amounts are aggregates of number
of payments. In our data analysis we neither know the number nor the severities of the
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payments. Due to the infinite divisibility the log-normal distribution can therefore be a
good choice for modelling aggregate payments.

We will need two assumptions. The first assumption is about a general infinite
divisible setup. The second assumption gives more specific details on the log-normal
setup.

Assumption 3.1 Infinite divisibility. The array Yij, i, j ∈ I, satisfies
(i) Yij are independent distributed, non-negative and infinitely divisible;
(ii) asymptotically, the dimension of the array I is fixed;
(iii) asymptotically, the skewness vanishes: skew(Yij) = E[{Yij −E(Yij)}/sdv(Yij)]3 → 0.

We have the following Central Limit Theorem for non-negative, infinitely divisible
distributions with vanishing skewness. This is different from the standard Lindeberg-
Lévy Central Limit Theorem for averages of independent, identically distributed vari-
ables, but proved in a similar fashion by analyzing characteristic function and exploiting
the Lévy-Kintchine formula for infinitely divisible distributions.

Theorem 3.1 (Harnau and Nielsen, 2017, Theorem 1) Suppose Assumption
3.1 is satisfied. Then

Yij − E(Yij)√
Var(Yij)

D→ N(0, 1).

We need some more specific assumptions for the log-normal setup. When describing
the predictor we write µij = X ′ijξ to indicate that any linear structure is allowed as long
as ξ is freely varying when estimating in the statistical model. This could be the chain-
ladder structure as in (2.5), (2.6) or an extended chain-ladder model with a calendar
effect.

Assumption 3.2 The generalized log-normal chain-ladder model. The array
Yij, i, j ∈ I, satisfies Assumptions 3.1 and the following:
(i) log EYij = µij + ω2/2 = X ′ijξ + ω2/2, where ξ is identified by the likelihood (2.7);
(ii) asymptotically, ω2 → 0 while ξ is fixed;
(iii) asymptotically, Var(Yij)/{ω2E2(Yij)} → 1.

We check that the log-normal model set out in Assumption 2.1 is indeed of the
generalized log-normal model.

Theorem 3.2 Consider the log-normal model of Assumption 2.1. Suppose the dimen-
sion of the array I is fixed as ω2 → 0. Then Assumptions 3.1, 3.2 are satisfied.

A first consequence of the generalized log-normal model is that Theorem 3.1 provides
an asymptotic theory for the claims on the original scale. We now check that we have
a normal theory for the log claims. The proof applies the delta method. Theorem 3.3
is useful in deriving the inference in Theorem 3.5 and estimation error for forecasts in
Theorem Theorem 3.8 in later sections.
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Theorem 3.3 Suppose Assumptions 3.1, 3.2 are satisfied. Let yij = log Yij. Then, as
ω2 → 0,

ω−1(yij − µij)
D→ N(0, 1).

Due to the independence of Yij over i, j ∈ I then the standardized yij are asymptotically
independent standard normal.

We will need to reformulate the Central Limit Theorem 3.1 slightly. The issue is
that the generalized log-normal model leaves the variance of the variable unspecified
in finite sample, so that the Central Limit Theorem is difficult to manipulate directly.
Theorem 3.4 is useful in deriving the process error for forecasts in Theorem 3.8 later.

Theorem 3.4 Suppose Assumptions 3.1, 3.2 are satisfied. Then, as ω2 → 0,

ω−1{Yij − E(Yij)}
D→ N{0, exp(2µij)}.

Note that Yij over i, j ∈ I are assumed independent.

3.2 Inference

We check that the inferential results for the log-normal model, described in §2.3, carry
over to the generalized log-normal model. First, we consider the asymptotic distribution
of estimators and then the properties of F-statistics for inference.

Theorem 3.5 Consider the generalized log-normal model defined by Assumptions 3.1,
3.2 and the least squares estimators (2.9). Then, as ω2 → 0,

ω−1(ξ̂ − ξ) D−→ N{0, (X ′
X)−1},

ω−2s2
D−→ χ2

n−p/(n− p).

The estimators ξ̂ and s2 convergence jointly and are asymptotically independent.

We can derive inference for of the estimator ξ̂ using asymptotic t distribution. The
proof follows Theorem 3.5 and the Continuous Mapping Theorem.

Theorem 3.6 Consider the generalized log-normal model, defined by Assumptions 3.1,
3.2. Then as ω2 → 0,

v′(ξ̂ − ξ)
s
√
v′(X ′X)−1v

D−→ tn−p

We can also make inference using asymptotic F-statistics, mirroring the F-statistic
(2.12) from the classical normal model. The proof is similar to Theorem 4 of Harnau
and Nielsen (2017).
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Theorem 3.7 Consider the generalized log-normal model, defined by Assumptions 3.1,
3.2 with three types of linear predictor:

the extended chain-ladder model parametrised by ξapc ∈ Rpapc in (2.15);
the chain-ladder model parametrised by ξ ∈ Rp in (2.4); and
a linear hypothesis ξ = Hζ for ζ ∈ RpH and some known matrix H ∈ Rp×pH .

Let RSSapc, RSS and RSSH be the residual sums of squares under the linear hypotheses.
Then, as ω → 0,

F1 =
(RSS −RSSapc)/(papc − p)

RSSapc/(n− papc)
D→ Fp−papc,n−papc ,

F2 =
(RSSH −RSS)/(p− pH)

RSS/(n− p)
D→ FpH−p,n−p,

where F1 and F2 are asymptotically independent.

3.3 Distribution forecasting

The aim is to predict a sum of elements in the lower triangle, that could be the overall
sum, which is the total reserve; or it could be row sums or diagonal sums giving a cash
flow. We denote such sums by YA =

∑
(i,j)∈A Yij for some subset A ∈ J . The point

forecasts for a single entry are Ŷij = exp(X ′ij ξ̂+s2/2) as given in (2.13), while the overall
point forecast is

ỸA =
∑

(i,j)∈A

Ỹij =
∑

(i,j)∈A

exp(X ′ij ξ̂ + s2/2) (3.1)

To find the forecast error we expand

Yij − Ỹij = {Yij − E(Yij)}+ exp(ω2/2){exp(X ′ij ξ̂)− exp(X ′ijξ)}
+ {exp(ω2/2)− exp(s2/2)} exp(X ′ijξ), (3.2)

which we will sum over A. This is sometimes called the forecast taxonomy. This
expansion gives some insight into the asymptotic forecast distribution, although the
detailed proof will be left to the appendix. The first term in (3.2) is the process error.
When extending Theorem 3.4 to the lower triangle J we will get

ω−1{YA − E(YA)} D→ N(0, ς2A,process), (3.3)

where
ς2A,process =

∑
i,j∈A

exp(2X ′ijξ) (3.4)

The second term in (3.2) is the estimation error for the canonical parameter ξ. From
Theorem 3.5 we will be able to derive

ω−1 exp(ω2/2){exp(X ′ij ξ̂)− exp(X ′ijξ)}
D→ N(0, ς2A,estimation), (3.5)

where
ς2A,estimation = {

∑
i,j∈A

exp(X ′ijξ)X
′
ij}(X ′X)−1{

∑
i,j∈A

exp(X ′ijξ)Xij}. (3.6)
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The third term in (3.2) vanishes asymptotically. We will estimate ω2 by s2, which
turns the asymptotic normal distributions into t-distribution. The process error and
the estimation error are asymptotically independent as they are based on independent
variables for the upper and lower triangle, J and I. We can describe the asymptotic
forecast error as follows.

Theorem 3.8 Suppose the generalized log-normal model defined by Assumptions 3.1,
3.2 applies both in the upper and the lower triangle, I and J . Then, as ω2 → 0,

ω̂−1(YA − ỸA)
D→ (ς2A,process + ς2A,estimation)1/2tn−p,

where ς2A,process and ς2A,estimation can be estimated consistently by

r2A,process =
∑
i,j∈A

exp(2X ′ij ξ̂), (3.7)

r2A,estimation = {
∑
i,j∈A

exp(X ′ij ξ̂)X
′
ij}(X ′X)−1{

∑
i,j∈A

exp(X ′ij ξ̂)Xij}. (3.8)

Thus, the distribution forecast is

ỸA + {ω̂2(r2A,process + r2A,estimation)}1/2tn−q. (3.9)

3.4 Specification test

Specification tests for the log-normal model can be carried out by allowing a richer
structure for the predictor or for the variance. We have already seen how the generalized
log-normal chain-ladder model can be tested against the extended chain-ladder model
using an asymptotic F-test. We can test whether the variance is constant across the
upper triangle by adopting the Bartlett (1937) test. Recently, Harnau (2017) has shown
how to do model specification tests for the over-dispersed Poisson model. Here we will
adapt the Bartlett test to the log-normal chain-ladder. It should be noted that one can
of course also allow a richer structure for the predictor and the variance simultaneously
following the principles outlined here.

Suppose the triangle I can be divided into two or more groups as indicated in Figure
3.1. Thus, the index set I is divided into disjoint sets I` for ` = 1, . . . ,m. We then
set up a log-normal chain-ladder seperately for each group. Note that the full canonical
parameter vector ξ may not be identified on the subsets. As we will only be interested
in the fit of the models we can ad hoc identify ξ by dropping sufficiently many columns
of the design matrix X. This gives us a parameter ξ` and a design vector Xij` for each
subset I` and a predictor µij` = X ′ij`ξ`. Thus the model for each group is that yij` is
N(µij`, ω

2
` ). Let p` denote the dimension of these vectors, while n` is the number of

elements in I` giving the degrees of freedom df` = n` − p`.
When fitting the log-normal chain-ladder seperately to each group we get estimators

ξ̂` and predictors µ̂ij` = X ′ij`ξ̂`. From this we can compute the residual sum of squares
and variance estimators as

RSS` =
∑
i,j∈I`

(yij − µ̂ij,`)
2, s2` =

1

df`
RSS`. (3.10)
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Figure 3.1: Examples of dividing triangles in two parts

If there are only two subsets then we have two choices of tests available. The first
test is a simple F-test for the hypothesis that ω1 = ω2. In the log-normal model this is

F ω = s22/s
2
1

D
= Fn2−p2,n1−p1 . (3.11)

In the generalized log-normal the F-distribution can be shown to be valid asymptotically.
Harnau (2017) has proved this for the over-dispersed Poisson model using an infinitely
divisible setup. That proof extends to the generalized log-normal setup following the
ideas of the proofs of the above theorems. We can then construct a two sided test.
Choosing a 5% level this test rejects when F ω is either smaller than the 2.5% quantile
or larger than the 97.5% quantile of the Fn2−p2,n1−p1-distribution.

The second test is known as Bartlett’s test and applies to any number of groups.
Thus, suppose we have m groups and want to test ω1 = · · · = ωm. In the exact log-
normal case then s21, . . . , s

2
m are independent scaled χ2 variables. Bartlett found the

likelihood for this χ2 model. Under the hypothesis the common variance is estimated
by

s̄2 =
1

df·

m∑
`=1

RSS`, where df· =
m∑
`=1

df` = n−
m∑
`=1

p`, (3.12)

while the likelihood ratio test statistic for the hypothesis is

LRω = df· log(s̄2)−
m∑
`=1

df` log(s2`). (3.13)

The exact distribution of the likelihood ratio test statistic depends on the degrees of
freedom of the groups, but not on their ordering. No analytic expression is known.
However, Bartlett showed that this distribution is very well approximated by a scaled
χ2-distribution. That is

LRω

C
≈ χ2

m−1 where C = 1 +
1

3(m− 1)
(

m∑
`=1

1

df`
− 1

df·
). (3.14)

The factor C is known as the Bartlett correction factor. Formally, the approximation is
a second order expansion which is valid when the small group is large, so that min` df` is
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sub −2 log L dfsub Fsub,apc p Fsub,ac p
apc 170.003 153
ac 179.873 171 0.41 0.984
ad 258.570 189 2.23 0.000 4.32 0.000

Table 4.1: Analysis of variance for the US casualty data

large. However, the approximation works exceptionelly well in very small samples; see
the simulations by Harnau (2017). Once again the Bartlett test (3.13) will be applicable
in the generalized log-normal model, which can be proved by following the proof of
Harnau (2017).

In practice, we can fit seperate log-normal models to each group, that is yij` is
assumed N(µij`, ω

2
` ). If the Bartlett test does not reject the hypothesis of common

variance we then arrive at a model where yij` is assumed N(µij`, ω
2). This model can

be estimated by a single regression where the design matrix is block diagonal, Xm =
diag(X1, X2, . . . , Xm) of dimension p· =

∑m
`=1 p`. We then compare the models with

design matrices Xm and the original X of the maintained model through an F-test.

4 Empirical illustration

We apply the theory to the insurance run-off triangle shown in Table 1.1. All R (2017)
code is given in the supplementary material. We use the R packages apc, see Nielsen
(2015) and ChainLadder, see Gesmann et. al. (2015). First, we apply the proposed
inference and estimation procedures to the data. This is followed first by distribution
forecast and then by an analysis of the model specification.

4.1 Inference and estimation

We apply the log-normal model to the data and consider three nested parametrizations:

apc age-period-cohort model = extended chain-ladder
ac age-cohort model = chain-ladder
ad age-drift model = chain-ladder with a linear accident year effect

Table 4.1 shows an analysis of variance. This conforms with the exact distribution
theory in §2.3 and the asymptotic distribution theory in Theorems 3.5, 3.7 in §3.2.

First, we test the chain-ladder model (ac for age-cohort) against the extended chain-
ladder model (apc for age-period-cohort) with p = 0.984. The chain-ladder hypothesis is
clearly not rejected at a conventional 5% test level. Next, we test the further restriction
(ad for age-drift) that the row differences are constant, that is ∆2αi = 0. We get
p = 0.000 and p = 0.000 when testing against the apc and ac models respectively.
This suggests that a further reduction of the model is not supported. In summary,
the analysis of variance indicates that it is adequate to proceed with a chain-ladder
specification and thereby ignore calendar effects.

Table 4.2 shows the estimated parameters for the log-normal model with chain-
ladder structure (ac). We report standard errors set following Theorem 3.6. They are
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estimate set estimate set
µ11 7.660 0.138
∆α2 0.289 0.134 ∆β2 2.272 0.134
∆α3 0.163 0.136 ∆β3 0.933 0.136
∆α4 -0.265 0.140 ∆β4 0.236 0.140
∆α5 0.150 0.144 ∆β5 0.089 0.144
∆α6 -0.374 0.148 ∆β6 -0.176 0.148
∆α7 -0.199 0.153 ∆β7 -0.144 0.153
∆α8 -0.009 0.159 ∆β8 -0.428 0.159
∆α9 -0.005 0.165 ∆β9 -0.301 0.165
∆α10 -0.132 0.172 ∆β10 -0.400 0.172
∆α11 -0.022 0.180 ∆β11 -0.190 0.180
∆α12 -0.473 0.190 ∆β12 -0.242 0.190
∆α13 -0.438 0.200 ∆β13 -0.260 0.200
∆α14 0.296 0.214 ∆β14 -0.555 0.214
∆α15 0.311 0.230 ∆β15 -0.303 0.230
∆α16 -0.269 0.250 ∆β16 0.406 0.250
∆α17 0.142 0.277 ∆β17 -0.895 0.277
∆α18 0.202 0.316 ∆β18 0.117 0.316
∆α19 -0.093 0.378 ∆β19 -0.383 0.378
∆α20 0.873 0.508 ∆β20 -0.273 0.508
s2 0.169 RSS 28.956

Table 4.2: Estimates for the US casualty data for the log-normal chain-ladder (ac).

the same for ∆α and ∆β due to symetry of (X ′X)−1 at the diagonal. These follow a
t-distribution with n − p = 171 degrees of freedom, since the triangle has dimension
k = 20 and n = k(k + 1)/2 = 210 and p = 2k − 1 = 39. The corresponding two-sided
95% critical values are 1.97. We also report the degrees of freedom corrected estimate,
s2, for ω2. We see that many of the development year effects ∆β, in particular ∆β2,
are significant. The first few development year effects are positive, which matches the
increases seen in first few columns of the data in Table 1.1. At the same time many
the accident year effects ∆α are not individually significant, although they are jointly
significant as seen in Table 4.1. The signs of the ∆α’s match the relative increase or
decrease of the amounts seen in the rows of Table 1.1.

In Appendix B we present a further Table B.1 with estimates. These are the es-
timated parameters for the log-normal model with an extended chain-ladder structure
(apc) as in §2.5. These will be used for the simulation study. The ∆2γ-coefficients
measure the calendar effect and are restricted to zero in the chain-ladder model.

4.2 Distribution forecasting

Table 4.3 shows forecasts of reserves for the US casualty data in different accident years,
i.e. the row sums in the lower triangle J . We report results from the generalized log-
normal chain-ladder model (GLN), the over-dispersed Poisson chain-ladder (ODP) and
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generalized log-normal over-dispersed Poisson bootstrap

i Reserve
se

Res

99.5%

Res
Reserve

se

Res

99.5%

Res
Reserve

se

Res

99.5%

Res

2 1871 0.55 2.43 1368 1.81 5.71 1345 1.99 9.93
3 5099 0.37 1.96 4476 0.92 3.40 4415 0.97 4.63
4 7171 0.30 1.77 6925 0.69 2.78 6830 0.71 3.56
5 11699 0.26 1.66 10975 0.54 2.41 10846 0.56 2.90
6 13717 0.24 1.64 14941 0.44 2.14 14767 0.45 2.50
7 14344 0.22 1.58 18337 0.39 2.01 18147 0.40 2.29
8 18377 0.21 1.54 24487 0.34 1.87 24233 0.35 2.09
9 25488 0.21 1.54 31876 0.29 1.76 31607 0.30 1.93

10 30525 0.20 1.53 35567 0.28 1.72 35270 0.28 1.87
11 40078 0.20 1.53 48595 0.24 1.63 48176 0.25 1.73
12 32680 0.20 1.53 42027 0.26 1.68 41659 0.27 1.80
13 28509 0.21 1.54 37114 0.28 1.74 36814 0.29 1.88
14 51761 0.21 1.55 66977 0.22 1.58 66554 0.23 1.69
15 98748 0.22 1.58 102982 0.20 1.51 102282 0.20 1.59
16 100331 0.23 1.60 136647 0.19 1.51 135880 0.20 1.59
17 149813 0.24 1.64 164318 0.22 1.56 163500 0.22 1.68
18 221550 0.26 1.69 218874 0.25 1.66 218115 0.26 1.83
19 229481 0.30 1.79 166120 0.49 2.29 166431 0.51 2.84
20 575343 0.41 2.06 337001 0.94 3.46 353628 1.03 4.91

total 1656586 0.16 1.42 1469605 0.23 1.60 1480500 0.26 1.95

Table 4.3: Forecasting for the US casualty data using the generalized log-normal, the
over-dispersed Poisson model and the bootstrap. The bootstrap simulation is based on
105 repetitions.

England (2002) bootstrap (BS). For each method, we present a point forecast of the
reserve, the standard error over point forecast (se/Res) and the 1 in 200 over point
forecast values (99.5%/Res).

For the generalized log-normal chain-ladder model we use the asymptotic distribution
forecast in (3.9). For the over-dispersed Poisson model we use the asymptotic distribu-
tion forecasts from Harnau and Nielsen (2017, equation 11). For the bootstrap we use
the ChainLadder package by Gesmann et al (2005), based on the method described in
England (2002). We apply 105 bootstrap draws using the gamma option.

Table 4.3 shows that the over-dispersed Poisson forecasts are similar to the boot-
strap. Their point forecasts are smaller than that of the generalized log-normal model.
This is in part due to the additional factor exp(s2/2) = exp(0.169/2) = 1.088 in the
generalized log-normal point forecast. The difference seems large compared to the au-
thors’ experience with other data. It is possibly due to the relatively large dimension of
the triangle, so that there are more degrees of freedom to pick up differences between
the over-dispersed Poisson and the generalized log-normal models.

The standard error and 99.5% quantiles over reserve ratios are generally lower and
less variable for the generalized log-normal chain-ladder model. This is especially pro-
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Figure 4.1: Illustration of the forecasts in Table 4.3 for the US casualty data. Solid
line is the generalized log-normal forecast. Dashed line is the over-dispersed Poisson
forecast. Dotted line is the bootstrap forecast. Panel (a) shows the reserves against
accident year i. Panel (b) shows the standard error to reserve ratio. Panel (c) shows
the 99.5% quantile to reserve ratio.

nounced for early accident years and the latest accident year.
Figure 4.1 shows the trends of the reserve and standard error and 99.5% quantile

over reserve ratios for the three methods. The point forecast trends are similar for
models, showing an increasing trend with accident year as expected. The ratios are seen
to be flatter for the generalized log-normal model. This is related to the assumption of
the generalized log-normal chain-ladder model that standard deviation to mean ratio is
constant across the entries, while the variance to mean ratio is assumed constant for the
over-dispersed Poisson model and the bootstrap.

4.3 Recursive distribution forecasting

To check the robustness of the model we apply the distribution forecasting recursively.
Thus, we apply the distribution forecast to subsets of the triangle.

In this way, Table 4.4 shows standard error and 99.5% over reserve ratios. It has 9
panels, where the rows are for the asymptotic generalized log-normal model, the over-
dispersed Poisson model and the bootstrap, respectively. In the first column we show
the ratios for the last 5 accident years based on the full triangle. These numbers are the
same as those in Table 4.3. In the second column we omit the last diagonal of the data
triangle to get a k − 1 = 19 dimensional triangle. We then forecast the last 5 accident
years relative to that triangle. In the third column we omit the last two diagonals of
the data triangle to get a k − 2 = 18 dimensional triangle.

We see that the generalized log-normal forecasts are stable for all years. The over-
dispersed Poisson and bootstrap forecasts are less stable in the latest accident year.
This is possibly because of instability in the corners of the data triangle shown in Table
1.1, that may be dampened when taking logs. Alternatively, it could be attributed to a
better fit of the log-normal model across the entire triangle. We will explore the model
specification using formal tests in the next section.
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Full triangle Leave 1 out Leave 2 out
generalized log-normal

i
se

Res

99.5%

Res
i

se

Res

99.5%

Res
i

se

Res

99.5%

Res
16 0.23 1.60 15 0.23 1.61 14 0.23 1.61
17 0.24 1.64 16 0.25 1.64 15 0.25 1.64
18 0.26 1.69 17 0.27 1.69 16 0.27 1.69
19 0.30 1.79 18 0.31 1.80 17 0.31 1.80
20 0.41 2.06 19 0.41 2.07 18 0.41 2.07
all 0.16 1.42 all 0.13 1.33 all 0.12 1.31

over-dispersed Poisson
16 0.19 1.51 15 0.20 1.53 14 0.22 1.58
17 0.22 1.56 16 0.22 1.56 15 0.24 1.62
18 0.25 1.66 17 0.28 1.74 16 0.28 1.72
19 0.49 2.29 18 0.48 2.25 17 0.48 2.24
20 0.94 3.46 19 1.38 4.61 18 1.51 4.94
all 0.23 1.60 all 0.20 1.53 all 0.20 1.52

bootstrap
16 0.20 1.59 15 0.21 1.62 14 0.23 1.70
17 0.22 1.68 16 0.22 1.68 15 0.24 1.75
18 0.26 1.83 17 0.29 1.97 16 0.28 1.92
19 0.51 2.84 18 0.49 2.78 17 0.49 2.77
20 1.03 4.91 19 1.49 6.69 18 1.66 7.45
all 0.26 1.95 all 0.23 1.81 all 0.22 1.79

Table 4.4: Recursive forecasting for the US casualty data in the latest 5 accident years.
The bootstrap simulation is based on 105 repetitions.

4.4 Model selection

We now apply the specification test outlined in §3.4 for the log-normal model and in
Harnau (2017) for the over-dispersed Poisson model. For the tests we split the data
triangle of Table 1.1 as outlined in Figure 3.1:

(a) a horizontal split with the first 6 rows in one group and the last 14 rows in a
second group.

(b) a horizontal and diagonal split with the first 10 diagonals in one group, the last
10 rows in a second group and the remaining entries in a third group.

(c) a diagonal split with the first 14 diagonals in one group and the last 6 diagonals
in a second group.

For each split we estimate a chain-ladder structure separately for each sub-group. We
then compute the Bartlett test statistic LRω/C from (3.14) for a common variance
across groups. Given a common variance we also compute an F -statistic for common
chain-ladder structure in the mean.
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generalized log-normal over-dispersed Poisson
splits LRω/C p F p LRω/C p F p
(a) 6.29 0.012 1.34 0.030 11.68 0.001 2.29 0.000
(b) 4.70 0.095 1.55 0.005 11.63 0.003 4.17 0.000
(c) 1.12 0.291 1.33 0.037 15.07 0.000 2.30 0.000

Table 4.5: Bartlett tests for common dispersion and F tests for common mean parame-
ters.

For each of the generalized log-normal and over-dispersed Poisson model we are
conducting 6 tests. When chosing the size of each individual test, that is the probability
of falsely rejecting the hypothesis, we would have to keep in mind the overall size of
rejecting any of the hypotheses. If the test statistics were independent and the individual
tests were conducted at level p the overall size would be 1− (1− p)6 ≈ 6p by binomial
expansion, see also Hendry and Nielsen (2007, §9.5). Thus, if the individual tests are
conducted at a 1% level we would expect the overall size to be about 5%. At present
we have no theory for a more formal calculation of the joint size of the tests.

Starting with the log-normal model we see that there is only moderate evidence
against model. The worst cases are that variance differs across the (a) split and the
chain-ladder structure differs across the (b) split. In contrast, the over-dispersed Poisson
model is rejected by all 6 tests.

5 Simulation

In Theorems 3.7 and 3.8 we presented asymptotic results for inference and distribution
forecasting. We now apply simulation to investigate the quality of these asymptotic
approximations.

5.1 Test statistic

We assess the finite sample performance of the F -tests proposed in Theorem 3.7 and
applied in Table 4.1. We simulate under the null hypothesis of a chain-ladder spec-
ification, ac, as well as under the alternative hypothesis of an extended chain-ladder
specification, apc. We choose the distribution to be log-normal so, to be specific, we
actually illustrate the well-known exact distribution theory for regression analysis. The-
orem 3.7 also applies for infinitely divisible distributions that are not log-normal but
satisfy Assumptions 3.1 and 3.2. Such infinitely divisible distributions are, however, not
easily generated. The real point of the simulations is therefore to illustrate the small
variance asymptotics in Theorem 3.7 by showing that power increases with shrinking
variance.

The data generating processes are constructed from the US casualty data as follows.
We consider a k = 20 dimensional triangle. We assume that the variables Yij in the
upper triangle I are independent log-normal distributed, so that yij = log(Yij) is normal
with mean µij and variance σ2. Under the null hypothesis of a chain-ladder specification,
Hac, then µij is defined from (2.5) where the parameters µij are chosen to match those
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Size under Hac Power under Hapc

Confidence level 1.00% 5.00% 10.00% 1.00% 5.00% 10.00%
v = 2 1.01% 5.00% 10.16% 2.26% 9.03% 16.31%
v = 1 0.98% 5.07% 10.07% 10.49% 27.51% 40.22%
v = 0.5 0.99% 5.09% 10.05% 78.03% 92.17% 96.07%

Table 5.1: Simulated performance of F test based on 105 draws. The Monte Carlo
standard error less than 0.01.

of Table 4.2. We also choose σ2 to match the estimate s2 from Table 4.2, but multiplied
by a factor v2 where v is chosen as 2, 1, 1/2 to capture the small-variance asymptotics.
Under the alternative, we apply the extended chain-ladder specification Hapc where the
parameters are chosen to match those of Table B.1. In all cases we draw 105 repetitions.

We note that the F(18, 153)-distribution is exact under the null hypothesis, since we
are operating on the log-scale and simulate normal variables so that standard regression
theory applies. Indeed, Table 5.1 shows that simulated size (type I error) is correct
apart from Monte Carlo standard error. We check this for at the 1%, 5% and 10% level
for v = 2, 1, 1/2.

Under the alternative we simulate power (unity minus type II error). The exact dis-
tribution is a non-central F-distribution. The simulations show that the power increases
for shrinking variance v2ω2 and for increasing level (type I error) of the test.

We can also illustrate the increasing power with shrinking variance through the
following analytic example. Suppose we consider variables Z1, . . . , Zn that are in-
dependent N(µ, ω2)-distributed. Then the parameters are estimated by µ̂ = Z̄ and
s2 = (n− 1)−1

∑n
i=1(Zi − Z̄)2. The t-statistic for µ = 0 has the expansion

µ̂− 0√
s2/(n− 1)

=
µ̂− µ√
s2/(n− 1)

+
µ− 0√
s2/(n− 1)

.

The first term is t distributed with (n− 1) degrees of freedom regardless of the value of
µ. The second term is zero under the hypothesis µ = 0. Under the alternative µ 6= 0
the second term is non-zero and measures non-centrality so that the overall t-statistic is
non-central t. In standard asymptotic theory n is large so that for fixed µ, ω then s2 is
consistent for ω2 and the second term is close to µ/

√
ω2/(n− 1) = (µ/ω)

√
(n− 1). Due

to the (n − 1)-factor the non-centrality diverges, so that the power increases to unity
and the test is consistent. In the small variance asymptotics ω2 shrinks to zero while n
is fixed. Then s2 vanishes, see Theorem 3.7, and the non-centrality diverges in a similar
way even though n is fixed.

5.2 Forecasting

We assess the finite sample performance of the asymptotic distribution forecasts pro-
posed in Theorem 3.8 and applied in Table 4.3. These asymptotic distribution forecasts
are compared to the over-dispersed Poisson forecast of Harnau and Nielsen (2017) and
the bootstrap of England and Verrall (1999) and England (2002). Two different log-
normal chain-ladder data generating processes are used. First, we apply the estimates
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from the US casualty data so that the parameters are chosen to match those of Table 4.2.
As before the variance ω2 is multiplied by a factor v2 where v = 2, 1, 1/2. We have seen
that the over-dispersed Poisson model is poor for this data set and we will expect the
generalized log-normal distribution forecasts to be superior. Secondly, we obtain similar
estimates for the Taylor and Ashe (1983) data, see also Harnau and Nielsen (2017, Ta-
ble 1). For those data the generalized log-normal model and the over-dispersed Poisson
model provide equally good fits so that the different distributions forecasts should be
more similar in performance.

We first compare the asymptotic distribution forecast from Theorem 3.8 with the
exact forecast distribution. This is done by simulating log-normal chain-ladder for both
the upper and the lower triangles, I and J . The true forecast error distribution is then
based on YA− ỸA, where YA is computed from the simulated lower triangle J while ỸA
is the log-normal point forecast computed from the upper triangle data I. We compute
the true forecast error YA−ỸA for each simulation draw and report mean, standard error
and quantiles of the draws. This is done for the entire reserve, so that A = J . The
asymptotic theory in Theorem 3.8 provides a t-approximation, so that for each draw
of the upper triangle I, we also compute mean, standard error and quantiles from the
t-approximations and report averages over the draws.

The first panel of Table 5.2 compares the simulated actual forecast distribution,
trueGLN , with the simulated t-approximations, tGLN . We see that with shrinking vari-
ance factor v then the overall forecast distribution becomes less variable and the t-
approximation becomes relatively better. The t-approximation is symmetric and does
not fully capture the asymmetry of the actual distribution. We note that the perfor-
mance of the t-approximation is better in the upper tail than the lower tail, which is
beneficial when we are interested in 99.5% value at risk.

The second panel of Table 5.2 shows the performance of the traditional chain-ladder.
Since the data are log-normal we expect the chain-ladder to perform poorly. We apply
the asymptotic theory of Harnau and Nielsen (2017) and the bootstrap of England and
Verrall (1999) and England (2002) as implemented by Gesmann et al. (2015) The results
are generated as before with the difference that the point forecasts are based on the
traditional chain-ladder, while the data remain log-normal. The actual forecast errors,
trueODP are similar to the previous actual errors trueGLN , particular in the right tail of
the distribution. The asymptotic distribution approximation, tODP , and the bootstrap
approximation, BS, do not provide the same quality of approximations as tGLN did for
trueGLN . For large v = 2 the bootstrap is very poor, possibly because of resampling of
large residuals arising from the mis-specification.

We also simulate the root mean square forecast error for the three methods. For
the log-normal asymptotic distribution approximation this is computed as follows. We
first find mean, standard deviation and quantiles of the infeasible reserve based on the
draws of the lower triangle J . This is the true forecast distribution. For each draw
of the upper triangle I we then compute mean, standard deviation and quantiles of
the asymptotic distribution forecast (3.9) and subtract the mean, standard deviation
and quantiles, respectively, of the true forecast distribution. We square, take average
across the draws of the upper triangle I, and then the take the square root. Similar
calculations are done for the over-dispersed approximation and the bootstrap.
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Moments Quantiles
v Mean SE 0.5% 1% 5% 50% 95% 99% 99.5%

generalized log-normal (GLN)
2 trueGLN 3.0 12.6 -55.1 -42.6 -18.5 5.4 17.2 22.2 24.4

tGLN 0.0 7.9 -20.7 -18.7 -13.1 0.0 13.1 18.7 20.7
1 trueGLN 0.5 3.3 -11.2 -9.5 -5.5 0.9 5.0 6.5 7.0

tGLN 0.0 3.0 -7.7 -6.9 -4.9 0.0 4.9 6.9 7.7
0.5 trueGLN 0.1 1.4 -4.1 -3.6 -2.3 0.2 2.3 3.0 3.3

tGLN 0.0 1.4 -3.6 -3.2 -2.3 0.0 2.3 3.2 3.6
v over-dispersed Poisson (ODP) and bootstrap (BS)
2 trueODP 7.7 10.5 -37.9 -28.5 -10.0 9.3 20.3 25.4 27.3

tODP 0.0 19.8 -51.6 -46.5 -32.8 0.0 32.8 46.5 51.6
BS -15.4 2631.6 -683.1 -350.8 -78.9 3.3 55.8 313.3 643.1

1 trueODP 1.3 3.2 -9.9 -8.3 -4.5 1.7 5.8 7.3 7.8
tODP 0.0 7.9 -20.7 -18.6 -13.1 0.0 13.1 18.6 20.7
BS -1.8 123.4 -73.9 -50.1 -21.2 0.5 12.5 23.4 35.1

0.5 trueODP 0.3 1.4 -4.0 -3.5 -2.2 0.4 2.5 3.3 3.6
tODP 0.0 3.8 -9.8 -8.8 -6.2 0.0 6.2 8.8 9.8
BS -0.2 4.2 -15.4 -13.1 -7.5 0.1 5.9 9.1 10.3

v root-mean-square-errors (rms)
2 rmsGLN 3.0 8.3 38.7 28.8 12.5 5.4 11.9 16.3 18.1

rmsODP 7.7 13.8 29.7 29.9 28.2 9.3 20.9 31.8 35.9
rmsBS 4284.4 135397.1 925.7 431.1 86.4 6.8 17.3 52.7 397.7

1 rmsGLN 0.5 1.1 4.5 3.6 1.9 0.9 1.8 2.6 2.9
rmsODP 1.3 5.1 11.9 11.3 9.2 1.7 8.0 12.2 13.8
rmsBS 67.6 2132.3 79.5 48.4 18.2 1.2 5.4 6.1 18.8

0.5 rmsGLN 0.1 0.3 0.8 0.7 0.4 0.2 0.4 0.6 0.7
rmsODP 0.3 2.4 5.9 5.5 4.1 0.4 3.8 5.7 6.4
rmsBS 0.6 3.0 11.9 10.0 5.5 0.3 2.4 2.7 5.7

Table 5.2: Simulation performance of distribution forecasts for the US casualty data.
Results in USD. The study is based on 105 repetitions, and for each simulated upper
triangle, the bootstrap is based on 999 simulations.
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Moments Quantiles
v Mean SE 0.5% 1% 5% 50% 95% 99% 99.5%

generalized log-normal (GLN)
2 trueGLN 7.2 99.8 -372.9 -310.0 -170.0 20.4 140.6 187.5 206.2

tGLN 0.0 75.7 -205.7 -184.2 -127.7 0.0 127.7 184.2 205.7
1 trueGLN 1.7 31.8 -96.4 -83.7 -54.0 3.9 49.6 66.8 72.8

tGLN 0.0 29.7 -80.7 -72.2 -50.1 0.0 50.1 72.2 80.7
0.5 trueGLN 0.4 14.3 -39.6 -35.4 -23.9 0.9 23.0 31.7 34.4

tGLN 0.0 14.0 -38.0 -34.0 -23.6 0.0 23.6 34.0 38.0
v over-dispersed Poisson (ODP) and bootstrap (BS)
2 trueODP 45.1 91.4 -297.9 -242.1 -116.8 56.9 168.2 213.5 230.8

tODP 0.0 76.6 -208.4 -186.6 -129.4 0.0 129.4 186.6 208.4
BS -14.1 340.9 -414.3 -335.9 -193.8 -0.3 114.3 155.6 177.4

1 trueODP 9.1 31.9 -89.8 -76.9 -46.8 11.4 56.9 73.5 79.6
tODP 0.0 31.7 -86.1 -77.1 -53.5 0.0 53.5 77.1 86.1
BS -2.5 35.4 -109.5 -97.2 -64.6 0.1 50.5 68.2 74.1

0.5 trueODP 2.1 14.7 -39.3 -34.7 -22.8 2.7 25.2 33.8 36.9
tODP 0.0 15.1 -41.2 -36.9 -25.6 0.0 25.6 36.9 41.2
BS -0.6 16.5 -46.3 -41.6 -28.6 0.0 25.3 34.9 38.2

v root-mean-square-errors (rms)
2 rmsGLN 7.2 45.3 197.1 156.7 77.4 20.4 66.0 93.4 104.3

rmsODP 45.1 32.2 118.5 89.1 49.9 56.9 61.9 74.7 80.9
rmsBS 645.6 20322.2 415.1 259.0 126.9 57.4 168.6 107.6 107.7

1 rmsGLN 1.7 7.4 24.8 20.7 12.6 3.9 12.0 18.1 20.8
rmsODP 9.1 6.4 17.9 15.6 12.7 11.4 11.4 16.0 18.7
rmsBS 11.7 8.6 36.0 32.7 23.7 11.3 56.8 25.2 17.7

0.5 rmsGLN 0.4 2.2 6.0 5.4 3.6 0.9 3.7 5.7 6.8
rmsODP 2.1 2.3 6.4 5.9 4.7 2.7 3.8 6.3 7.5
rmsBS 2.7 3.1 11.3 10.3 7.6 2.7 25.1 9.3 5.7

Table 5.3: Simulation performance of distribution forecasts for the data used in Taylor
& Ashe (1983) Results. The study is based on 105 repetitions, and for each simulated
upper triangle, the bootstrap is based on 999 simulations.
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The third panel of Table 5.2 shows the root mean square forecast errors. We see
that the generalized log-normal distribution approximation is superior in all cases and
that the bootstrap can be very poor if v is not small.

In Table 5.3 we repeat the simulation exercise for the Taylor and Ashe (1983) data.
For these data we repeated the empirical exercise of §4, although we do not report the re-
sults here. We found that the generalized log-normal chain-ladder and the over-dispersed
chain-ladder appear to give equally good fit, so that we will expect less difference be-
tween the methods in this case. We suspect that this arises because of two features in
the data. The Taylor and Ashe triangle has a smaller dimension of k = 10 and there is
less difference between the accident year parameters, see also Harnau and Nielsen (2017,
Table 2). As before we simulate a log-normal distribution with parameters equal to the
estimates from the data.

Table 5.3 shows that the three methods perform similarly. In this discussion we
focus on the root mean square error for the 99.5% quantile which is perhaps of most
practical interest. For large v = 2 and v = 1 the over-dispersed Poisson method actually
dominates the generalized log-normal model even though the data are generated to be
log-normal. For a smaller v = 1/2 the asymptotic approximation for the generalized log-
normal beats that of the over-dispersed model slightly. However, the bootstrap appears
to be best for v = 1 and v = 1/2.

6 Conclusion

We have presented a new method for distribution forecasting of general insurance re-
serves in terms of the generalized log-normal model. The forecasts are done under the
asymptotic framework which allows users to draw inferences and make model selections
easily. This gives an alternative to the traditional chain-ladder where we have the com-
monly used bootstrap method developed by England and Verrall (1999) and England
(2002) along with the recent asymptotic theory of Harnau and Nielsen (2017).

The actuary will have to choose whether the traditional or the normal chain ladder
or a third method should be used for a given reserving triangle. In some situations the
normal chain ladder will be better than the traditional chain latter as shown in our
empirical data analysis and simulation study. In addition, we have considered a number
of London market datasets. We compared the standard error over mean forecast trends
by year of account with the actuaries’ selected volatilities and found that the generalized
log-normal trends are more in line with the actuaries selected trends than the over-
dispersed Poisson model.

The generalized log-normal model distribution forecasts developed here could also
improve the actuarial process for a corporation. The log-normal is also often used in
simulating attritional reserve risk for capital modelling. At present this is some times
combined with the bootstrap method for the traditional chain ladder. This can result
in inconsistencies often between reserving and capital modelling.

A limitation of the log-normal model is that it only fits positive incremental values,
while in real life some values can be negative due to reinsurance recoveries, salvage or
other data issues such as mis-allocation between classes of business or currencies. In
these cases judgements are required and further research must look at how to provide
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statistical tools to overcome such a limitation.
There is also scope to develop a more advanced model selection process than the

model specification tests discussed here. This will give actuaries a statistical basis to
select one model over another rather than just eye-balling a distribution fit on a graph.
Testing constancy of the dispersion as presented here for the log normal chain ladder
and by Harnau (2017) for the traditional chain ladder is a beginning of that research
agenda.

The bootstrap method has become popular in recent decades. This is because it
usually produces distributions that appear reasonable and it is a simulation based tech-
nique which is favoured by many actuaries. A deeper understanding of the bootstrap
method can be developed so that it allows model selections and extensions to generate
reserve forecasts under other distributions than the over-dispersed Poisson.
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A Appendix: Proofs of Theorems

Proof of Theorem 3.2. Recall the following results. A log-normally distributed
variable Yij is positive, hence non-negative. It is infinitely divisible as shown by Thorin
(1977). The first three cumulants are

E(Yij) = exp(µij + ω2/2), (A.1)

Var(Yij) = exp(2µij + ω2){exp(ω2)− 1}, (A.2)

E{Yij − E(Yij)}3

{Var(Yij)}3/2
= {exp(ω2)− 2}1/2{exp(ω2) + 2}, (A.3)

see Johnson, Kotz and Balakrishnan (1994, equations 14.8a, 14.8b and 14.9a).
The log-normal distribution is a non-degenerate and non-negative divisible distribu-

tion, see Thorin (1977) and

skew(Y ) =
E(Y − E(Y ))3√

V ar(Y )
3 =

exp(3ω2)− 3 exp(ω2) + 2

(exp(ω2)− 1)3/2

=
1 + 3ω2 + 1

2
9ω4 − 3

(
1 + ω2 + ω4

2

)
+ 2 +O(ω6)

(1 + ω2 − 1)3/2

=

(
9
2
− 3

2

)
ω4 +O(ω6)

ω3
= 3ω +O(ω3)→ 0.

as ω → 0. Theorem 3.2 follows by Theorem 3.1, or Theorem 1 in Harnau & Nielsen
(2017). �

The next results require the delta method given as follows.

Lemma A.1 The delta method (van der Vaart, 1998, Theorem 3.1) Let Tω
be a sequence of random vectors or variables indexed by ω. Suppose ω−1(Tω − θ) is
asymptotically normal N(0,Ω) for ω → 0 and that g is a vector or scale valued function
that is differentiable in a neighbourhood of θ with derivative ġ. Then ω−1{g(Tω)− g(θ)}
is asymptotically normal with mean zero and variance {ġ(θ)}Ω{ġ(θ)}′ .

Proof of Theorem 3.3. Throughout the proof we ignore the indices i, j.
1. We show that

ω−1{Y − exp(µ)} = ω−1{Y − E(Y )}+ O(ω) (A.4)

First, we add and subtracting E(Y ) term in Y − exp(Y ) to get

ω−1{Y − exp(Y )} = ω−1{Y − E(Y )}+ ω−1{E(Y )− exp(µ)}. (A.5)

By Assumption 3.2(i) then E(Y ) = exp(µ+ ω2/2) so that the second term becomes

E2 = ω−1{E(Y )− exp(µ)} = ω−1 exp(µ){exp(ω2/2)− 1}.

Taylor expand the exponential function as exp(ω2/2)− 1 = ω2/2 + O(ω4) to get

E2 = exp(µ){ω/2 + O(ω3)} = O(ω),

25



since the canonical parameter ξ is fixed, and hence µij is fixed. The expression (A.4)
then follows.

2. We show that

ω−1{Y exp(−µ)− 1} D−→ N(0, 1). (A.6)

Apply (A.4) and divide by exp(µ), multiply and divide by
√
Var(Y )/ω and E(Y ) to get

Y − exp(µ)

ω exp(µ)
=

Y − E(Y )

ω exp(µ)
+ O(ω) = {Y − E(Y )√

Var(Y )
}{
√
Var(Y )

ωE(Y )
}{ E(Y )

exp(µ)
}+ O(ω).

Assumption 3.2(i, iii) implies that the second and third terms converge to unity. Theo-
rem 3.1, using Assumption 3.1. shows the first term is asymptotically normal. Dividing
by exp(µ) in numerator and denominator establishes (A.6).

3. Apply the delta method in Lemma A.1 to (A.6) with Tω = Y exp(−µ) and θ = 1
and choose g(t) = log(t) + µ, so ġ(t) = 1/t. Then g(Tω) = log Y and g(θ) = µ while
ġ(θ) = 1 so that ω−1(log Y − µ) is asymptotically standard normal as desired. �

Proof of Theorem 3.4. Theorem 3.1 shows that {Yij − E(Yij)}/
√
Var(Yij) is asymp-

totically standard normal. Now, Assumption 3.2(iii) shows Var(Yij)/{ω2E2(Yij)} → 1,
while Assumption 3.2(i, ii) implies log E(Yij)→ µij. Combine these three results to get
the desired statement. �

Proof of Theorem 3.5. The model equation is yij = log Yij = X ′ijξ + εij, see (2.8).
Theorem 3.3, using Assumptions 3.1, 3.2, shows that the vector of innovations ω−1ε =
ω−1(y − Xξ) is asymptotically standard normal as ω → 0. We can then use standard
least squares distribution theory in the limit.

Recall ξ̂ = (X
′
X)−1X

′
y, see (2.9). Substitute y = Xξ + u to get

ω−1(ξ̂ − ξ) = ω−1{(X ′
X)−1X

′
(Xξ + ε)− ξ} = (X

′
X)−1X

′
(ω−1ε).

Since ω−1ε
D−→ N(0, In), we have (ω−1(ξ̂ − ξ) D−→ N{0, (X ′

X)−1} as required.
The residuals in (2.9) can be written as ε̂ = P⊥y, where P⊥ = {In −X(X

′
X)−1X

′}
is an orthogonal projection matrix so that P⊥ = P ′⊥ and P 2

⊥ = P⊥. Inserting the

model equation this becomes ε̂ = P⊥ε, while P⊥X = 0. Since ω−1ε
D−→ N(0, Ip), then

ω−1P⊥ε
D−→ N(0, P⊥), so that ω−2s2 is asymptotically χ2

n−p/(n−p) noting tr(P⊥) = n−p.
Finally ξ̂ and s2 are asymptotically independent, since ξ̂ − ξ and s2 are functions of

X ′ε and P⊥ε, while ω−1ε is asymptotically standard normal, while P⊥X = 0. �

Proof of Theorem 3.8. Recall the forecast taxonomy (3.2), summed over A.
The first contribution is the process error and satisfies

ω−1{YA − E(YA)} = ω−1
∑
i,j∈A

{Yij − E(Yij)}.

This is a sum of independent terms, each of which is asymptotically N{0, exp(2µij)}
by Theorem 3.4. Therefore, ω−1{YA − E(YA)} is asymptotically N(0, ς2A,process), where
ς2A,process =

∑
i,j∈A exp(2µij) as stated in (3.3), (3.4).
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The second contribution is the estimation error from ξ̂. Theorem 3.5 shows that

as ω → 0 then ω−1(ξ̂ − ξ) D−→ N{0, (X ′
X)−1}. Apply the delta method in Lemma A.1

with Tω = ξ̂ and g(T ) =
∑

i,j∈J exp(X ′ijξ), so that ġ(T ) =
∑

i,j∈J exp(X ′ijξ)X
′
ij. There-

fore, ω−1{exp(X ′ij ξ̂)− exp(X ′ijξ)} is asymptotically N(0, ς2A,estimation), where ς2A,estimation

is given in (3.6). Further, by continuity exp(ω2/2) → 1 as ω2 → 0. In combination we
arrive at (3.5).

The third term is the contribution from estimation error of s2. By continuity, we
get exp(ω2/2)→ 1 as ω2 → 0, while

∑
i,j∈A exp(X ′ijξ) is fixed. Rewrite s2 = (s2/ω2)ω2.

Since s2/ω2 converges in distribution by Theorem 3.5 as ω2 → 0 then s2 vanishes in
probability. Applying the exponential function, which is a continuous mapping, yields
that exp(s2/2)→ 1 in probability and so does the entire third term.

The process error and the estimation error are independent as they are based on the
independent upper and lower triangles J and I. Therefore, the first and second con-
tributions to the forecast taxonomy (3.2) are independent, while the third contribution
vanishes, so that

ω−1{YA − E(YA)} D→ N (ς2A,process + ς2A,estimation),

which is asymptotically independent of s2. Further, s2/ω2 is asymptotically χ2
n−p/(n−p)

so that s−1{YA − E(YA)} is asymptotically tn−p as desired. �
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B Further table

µ11 7.689 µ21 − µ11 0.0929 µ12 − µ11 2.076
∆2α3 -0.133 ∆2β3 -1.347 ∆2γ3 0.343
∆2α4 -0.422 ∆2β4 -0.690 ∆2γ4 0.044
∆2α5 0.427 ∆2β5 -0.134 ∆2γ5 -0.312
∆2α6 -0.532 ∆2β6 -0.272 ∆2γ6 0.170
∆2α7 0.181 ∆2β7 0.036 ∆2γ7 -0.253
∆2α8 0.177 ∆2β8 -0.297 ∆2γ8 0.249
∆2α9 0.008 ∆2β9 0.131 ∆2γ9 0.065
∆2α10 -0.118 ∆2β10 -0.090 ∆2γ10 -0.042
∆2α11 0.119 ∆2β11 0.219 ∆2γ11 -0.268
∆2α12 -0.471 ∆2β12 -0.073 ∆2γ12 0.335
∆2α13 0.050 ∆2β13 -0.003 ∆2γ13 -0.341
∆2α14 0.707 ∆2β14 -0.321 ∆2γ14 0.247
∆2α15 0.018 ∆2β15 0.255 ∆2γ15 -0.010
∆2α16 -0.579 ∆2β16 0.709 ∆2γ16 0.095
∆2α17 0.436 ∆2β17 -1.276 ∆2γ17 -0.227
∆2α18 0.031 ∆2β18 0.984 ∆2γ18 0.202
∆2α19 -0.258 ∆2β19 -0.463 ∆2γ19 0.229
∆2α20 0.890 ∆2β20 0.034 ∆2γ20 0.236
s2 0.181 RSS 27.626

Table B.1: Estimates for the US casualty data for extended chain-ladder, Hapc.
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Concina, F. (2015) Chainladder: Statistical methods and models for claims re-
serving in general insurance. cran.R-project.org/package=ChainLadder.

Harnau, J. (2017) Misspecification tests for chain-ladder models. Department of Eco-
nomics, University of Oxford, Discussion Paper 840.

Harnau, J. and Nielsen, B. (2017) Over-dispersed age-period-cohort models. Nuffield
College Discussion Paper. To appear in Journal of the American Statistical Asso-
ciation.

Hendry, D.F. and Nielsen, B. (2007) Econometric Modeling. Princeton, NJ: Princeton
University Press.

Hertig, J. (1985) A statistical approach to IBNR-reserves in marine reinsurance. ASTIN
Bulletin 15, 171–183.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distribu-
tions volume 1, 2nd edn. New York: Wiley.

Kremer, E. (1982) IBNR-Claims and the Two-way model of ANOVA. Scandinavian
Actuarial Journal, 47–55.

Kuang, D., Nielsen B. and Nielsen J.P. (2008a) Identification of the age-period-cohort
model and the extended chain-ladder model. Biometrika 95, 979–986.

Kuang, D., Nielsen B. and Nielsen J.P. (2008b) Forecasting with the age-period-cohort
model and the extended chain-ladder model. Biometrika 95, 987–991.

Kuang, D., Nielsen B. and Nielsen J.P. (2009) chain-ladder as Maximum Likelihood
Revisited. Annals of Actuarial Science 4, 105-121.

Kuang, D., Nielsen B. and Nielsen J.P. (2011) Forecasting in an extended chain-ladder-
type model. Journal of Risk and Insurance 78, 345–359.

Kuang, D., Nielsen B. and Nielsen J.P. (2015) The geometric chain-ladder. Scandinavian
Actuarial Journal, 278–300.

Mack, T. (1999) The standard error of chain ladder reserve estimates: Recursive calcu-
lation and inclusion of a tail factor. ASTIN Bulletin 29, 361–366.

29



Mart́ınez-Miranda, M.D., Nielsen, B. and Nielsen, J.P. (2015) Inference and forecasting
in the age-period-cohort model with unknown exposure with an application to
mesothelioma mortality. Journal of the Royal Statistical Society series A 178,
29–55.

Nielsen, B. (2015) apc: An R package for age-period-cohort analysis. R Journal 7,
52–64.

R Core Team (2017) R: A language and environment for statistical computing.
www.R-project.org.

Renshaw, A.E. (1989) Chain ladder and interactive modelling (Claims reserving and
GLIM). Journal of the Institute of Actuaries 116, 559–587.

Taylor, G. C. (1979) Statistical Testing of a Non-Life Insurance Model. Proceedings
Actuarial Sciences Institute, Act. Wetemschappen, Katholieke Univ. Leuven,
Belgium.

Taylor, G. C. and Ashe, F. R. (1983) Second Moments of Estimates of Outstanding
Claims. Journal of Econometrics 23, 37–61.

Thorin, O. (1977) On the infinite divisibility of the lognormal distribution. Scandinavian
Actuarial Journal 1977, 121–148.

van der Vaart, A.W. (1998) Asymptotic Statistics Cambridge: Cambridge University
Press.

Verrall, R.J. (1991) On the estimation of reserves from log-linear models. Insurance:
Mathematics and Economics 10, 75–80.

Verrall, R.J. (1994) Statistical methods for the chain-ladder technique. Casualty Actu-
arial Society Forum, Spring 1994, 393–446.

XL Group (2017) 2016 Global Loss Triangles
http://phx.corporate-ir.net/phoenix.zhtml?c=73041&p=irol-financialreports

Zehnwirth, B. (1994) Probabilistic development factors with applications to loss reserve
variability, prediction intervals, and risk based capital. Casualty Actuarial Society
Forum, Spring 1994, 447–605.

30


