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Abstract

Economic forecasting is difficult, largely because of the many sources of nonstationarity. The M4
competition aims to improve the practice of economic forecasting by providing a large data set on
which the efficacy of forecasting methods can be evaluated. We consider the general principles that
seem to be the foundation for successful forecasting, and show how these are relevant for methods
that do well in M4. We establish some general properties of the M4 data set, which we use to improve
the basic benchmark methods, as well as the Card method that we created for our submission to the
M4 competition. A data generation process is proposed that captures the salient features of the annual
data in M4.

Automatic forecasting, Calibration, Prediction intervals, Regression, M4, Seasonality, Software, Time series,
Unit roots

1 Introduction

Economic forecasting is challenging. No clear consensus approach has arisen in the literature. Sophisti-
cated methods often fail to beat a simple autoregressive model. Then, when a small advantage is shown,
this may fail to survive in slightly different settings or time periods. What does hold is that all theoreti-
cal results that assume stationarity are irrelevant. Instead, small shocks occur regularly, and large shocks
and structural breaks intermittently. Causes of such breaks could be financial crises, trade wars, conflicts,
policy changes, etc. So nonstationarities can arise from unit roots as well as structural breaks in mean or
variance.

The M3 and M4 competitions create realistic, immutable, and shared data sets that can be used as
testbeds for forecasting methods. They have made invaluable contributions to improving the quality of
economic forecasting, as well as increasing our understanding of methods and techniques. There are
limitations to the data: variables are anonymized, and have unknown and differing sample periods. This
prevents the use of subject matter expertise (or even judgement). It also creates problems for methods that
try to link variables for forecasting: the misaligned sample periods may cause some variables to be ahead
in time of others. Unfortunately, this also rules out any multiple variable or factor approaches. A useful
addition to M4 is the request for forecast intervals: good expression of the uncertainty of a forecast is
just as important as the forecast itself. Probabilities of rain are now a routine aspect of weather forecasts,
and forecast uncertainty should be quantified in other settings as well.

Over time, between our research, the literature, and M4 results, there seem to emerge a few relatively
general ‘principles’ for economic forecasting:

∗Financial support from the Robertson Foundation (award 9907422) and Institute for New Economic Thinking (grant
20029822) is gratefully acknowledged.
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A] dampen trends/growth rates;
B] average across forecasts from ‘non-poisonous’ methods;
C] include forecasts from robust devices in that average;
D] select variables in forecasting models at a loose significance;
E] update estimates as data arrive, especially after forecast failure.

The authors made a submission to the M4 competition that did well in many aspects. Here we aim to
interpret our results, as well as some methods that did well in M3 and M4, in the light of these principles.
As part of this we summarize the properties of the M4 data set, which leads to improved benchmark
forecast methods.

Our proposed forecast method, Card, is formally described in Doornik, Castle, and Hendry (2019).
The procedure is based on simple autoregressive models, augmented with a dampened trend and some
robustification through differencing. Forecast combination is also used. Below we show that some
further improvement can be made by paying more attention to our principles. Furthermore, improved
formulation of the forecast standard errors is provided.

M4 is the fourth generation of M forecast competitions, created by Spyros Makridakis and the M4
team. M4 provides a database of 100 000 series requiring out-of-sample forecasts. This large size makes
it a computational challenge too. Efficient production of forecasts is useful, even more so when studying
subsample properties. The previous competition, M3, consisted of ‘only’ 3003 variables. The best
performing method in the M3 competition is the so-called Theta method, see Makridakis and Hibon
(2000) and §2.1 below, so many papers take that as the benchmark to beat.

Proper handling of seasonality is expected to be an important aspect of forecasting. This implies that
the exercise has some similarities to the X12-ARIMA programme of the US Census Bureau, see Findley,
Monsell, Bell, Otto, and Chen (1998). The X12 approach involves estimating a seasonal ARIMA model
to extend the series with forecasts, followed by smoothing using a sequence of moving averages in the
seasonal and deseasonalized directions. Moving averages are sensitive to outliers and structural breaks,
and procedures need to make allowance for this.

The remainder of this paper is as follows. We discuss the stucture of M4 and its benchmark methods
in §2, together with data visualization in §3. Next, we adapt the Theta method, and also introduce a
simple but effective variant in §4. We also consider the expected outcomes of the accuracy measures,
and study the performance of the new benchmark methods. In §5 we consider improvements to the
Card method. In §6 we propose a simulation experiment that captures the salient features of yearly M4.
Finally, §7 concludes. Derivations are presented in appendices.

2 M4 competition

Some basic aspects of the M4 data are given in Table 1, including values of the forecast horizon H
and frequency S. The data is also classified into six categories: demographic, finance, industry, macro,
micro, and other. This information is not used in our methods. The yearly, monthly, and quarterly series
together constitute 95% of the sample, so will dominate the overall results.

The frequency is based on the labels ‘hourly’, ‘weekly’ etc. but is not otherwise provided (so daily
data could be for five weekdays or a full seven day week). The frequency m is used1 in the performance
measures (§2.3), but S in estimation (with some exceptions). A second frequency S2 can capture longer
cycles. For hourly data, S = 24 reflects the diurnal rhythm, while S2 = 7 creates an additional frequency
of SS2 = 168 for the weekly pattern. If there is enough data, an annual pattern could be added: energy
consumption, e.g., is quite different during public holidays.

1We only discovered the value of m after the end of the competition.
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dimension frequency sample size forecasts Tlimit

# series % S × S2 m Tmin Tmax H

Yearly 23000 23.0 1 1 13 835 6 40 years
Quarterly 24000 24.0 4 4 16 866 8 40 years
Monthly 48000 48.0 12 12 42 2794 18 40 years
Weekly 359 0.4 52 1 80 2597 13 40 years
Daily 4227 4.2 1 1 93 9919 14 3650
Hourly 414 0.4 24× 7 24 700 960 48 5040

Table 1: Basic properties of the M4 data set

The sample sizes range from 13 annual observations to almost ten thousand daily observations. Ta-
ble 1 records the lengths of shortest and longest series as Tmin and Tmax. The sample sizes refer to the
competition (or training) version. The objective is to create H forecasts beyond the end of the sample.
The M4 organizers held back the outcomes in order to evaluate the submitted forecasts. These were
subsequently made available as a separate data set. When developing our methods, we emulated the
evaluation procedure by withholding a further H observations.

2.1 M4 benchmark forecasting methods

Several forecasting techniques are used in M4 as benchmark methods. We review random walk, ex-
ponential smoothing, and Theta forecasts, but ignore the basic machine learning and neural network
approaches.2

The random walk forecasts of annual and nonseasonal data are a simple extrapolation of the last
observation. This is called Naive2 forecasts in M4:

ŷT+h = yT , h = 1, ...,H.

Exponential smoothing (ES) methods are implemented as single source of innovation models, see
Hyndman, Koehler, Snyder, and Grose (2002) and Hyndman, Koehler, Ord, and Snyder (2008). They
can be formulated using an additive or multiplicative (or mixed) representation. The additive exponential
smoothing (AES) model has the following recursive structure:

µt = lt−1 + bt−1,

εt = yt − µt,
lt = lt−1 + αεt,

bt = bt−1 + δεt,

where yt is the observed time series, εt the one-step prediction error, lt the level, and bt the slope.
Given initial conditions l0 and b0, the coefficients α and δ can be estimated by maximum likelihood.
An alternative approach is to add the initial conditions as additional parameters for estimation, but this
can lead to estimation problems. Forecasting simply continues the recursion with εt = 0, keeping the
parameters fixed.

AES includes the following forecasting methods:
2Makridakis, Spiliotis, and Assimakopoulos (2018) show the inferior forecasting performance of some machine learning

and artificial intelligence methods on monthly M3 data.
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SES Simple exponential smoothing δ = b0 = 0,
HES Holt’s exponential smoothing,
Theta2 Theta(2) method δ = 0, b0 = τ̂ /2 defined in (1).

The SES and HES models with infinite startup are ARIMA(0, 1, 1) and ARIMA(0, 2, 2) models respec-
tively, see Hyndman, Koehler, Ord, and Snyder (2008, Ch.11). A dampened trend model adjusts the
slope equation to bt = φbt−1 + δεt. Holt–Winter adds a seasonal equation to the system.

The Theta method of Assimakopoulos and Nikolopoulos (2003) first estimates a linear trend model

yt = µ+ τ(t− 1) + ut, t = 1, ..., T, (1)

by OLS. The Theta forecasts are then the sum of the extrapolated trend and forecasts from the model for
yt(θ) = yt − τ̂(t− 1)/θ, with weights 1/θ and one respectively. The suggested model for yt(θ) is SES,
in which case this method can be implemented within the AES framework, as shown by Hyndman and
Billah (2003). Theta2, i.e. using θ = 2, had the best sMAPE (see §2.3 below) in the M3 competition, see
Makridakis and Hibon (2000).

The AES estimates depend on several factors: initial conditions of the recursion, imposition of pa-
rameter constraints, and objective function. We have adopted different conventions for the initial con-
ditions, so, in general, will get different results from Hyndman, O’Hara-Wild, Bergmeir, Razbash, and
Wang (2017). The exception to this is SES with 0.001 ≤ α ≤ 0.9999 and l0 as an estimated parameter.
We also get almost identical results for Theta2, using 0.001 ≤ α ≤ 0.9999 and l0 = y1 − b0, which
conditions on the first observation to force ε1 = 0. For the yearly M3 data with H = 6 we obtain an
sMAPE of 16.72, where Hyndman and Billah (2003, Table 1) report 16.62 (the submission to M3 has
sMAPE 16.97).

2.2 Seasonality in the M4 benchmark methods

When a series has T observations with frequency S > 1, the seasonality decision in the M4 benchmarks
is based on the Sth term in the ACF according to:

R(S) = T
r2
S

1 + 2
∑S−1

j=1 r
2
i

∼ χ2(1). (2)

If seasonality is detected with a p-value of 10% or less, it is estimated as the seasonal average of an
MA2×S filter (or just MAS if S is odd). The benchmark method is then applied to the seasonally adjusted
data.

The benchmark methods use multiplicative adjustment throughout. Assuming the frequency S is
even, the seasonal component is the deviation from a smooth ‘trend’:

st = yt/MA2×S(yt), t = 1 + S/2, ..., T − S/2.

Now let s̄.j denote the average for each season from the T − S observations st (so not all seasons need
to have the same number of observations). These seasonal estimates are normalized to the frequency:

ŝj = s̄.j/

[
1

S

∑S
j=1 s̄.j

]
.

The seasonally adjusted series is
ysa
t = yi,j/ŝj .

Finally, the forecasts from the seasonally adjusted series are multiplied by the appropriate seasonal fac-
tors.
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2.3 M4 forecast evaluation

M4 uses two scoring measures, called MASE (Hyndman and Koehler, 2006) and sMAPE (Makridakis,
1993). For time-series yt, t = 1, ..., T +H with forecasts ŷt produced over T +1, ..., T +H and seasonal
frequency m:

sMAPE =
100

H

T+H∑
t=T+1

|yt − ŷt|
(|yt|+ |ŷt|) /2

, (3)

MASE =
1

H

∑T+H
t=T+1 |yt − ŷt|
|∆my|

, (4)

where the denominator of MASE is the average of the seasonal difference over the ‘estimation period:’

|∆my| =
1

T −m

T∑
t=m+1

|yt − yt−m| .

MASE is infinite if the series is constant within each season: in that case we set it to zero.
The results below report the average MASE and sMAPE for each frequency. To facilitate comparison,

these averages are often scaled by the average accuracy of the benchmark Naive2 forecasts.
A 100(1 − α)% forecast interval is expressed as [L̂t, Ût]. Accuracy of each forecast interval for all

series and horizons h is assessed on the basis of mean scaled interval score (MSIS):

MSIS =
1

∆my

1

H

T+H∑
t=T+1

[
Ût − L̂t +

2

α
(L̂t − yt)I(yt < L̂t) +

2

α
(yt − Ût)I(yt > Ût)

]
. (5)

M4 uses α = 0.05, so that any amount outside the bands is penalized by forty times that amount.
Gneiting and Raftery (2007, p.370) show that the interval score is ‘proper,’ meaning that it is optimized
at the true quantiles.

We can also count the number of outcomes that are outside the given forecast interval. For a 95%

pointwise interval we aim to be outside in about 5% of cases, corresponding to a coverage difference of
close to zero.

3 Visualization of M4

Understanding the properties of such a large dataset is a challenge: it is too time consuming to look at
each series separately. We found distribution plots as presented in Figure 1 useful. Each graph plots
the frequency of outcomes along the vertical axis. To create Figure 1, we estimated ρ̂ by OLS from
log yt = µ+ ρ log yt−1 + εt. Along the vertical axis in the first graph are the frequencies of ρ̂. The same
data is shown in cumulative form along the horizontal axis. This dual perspective reveals the central
tendency without hiding the tails. The estimates of ρ cluster near unity at all frequencies, corresponding
to very high persistence in the data.

The top row of Figure 2 shows the distribution of the p-values of the test for a seasonal root (2),
applied to the original yt. This is the method used in the benchmarks, with the exception of daily data
that we gave S = 5 to highlight the impact on inference. The null hypothesis assumes that there is no
significant lower order serial correlation, which is mostly proven wrong by Figure 1. As a consequence,
the incidence of seasonality is over-estimated, and a more accurate representation is to apply the test to
∆ log yt. This is shown in the middle row of graphs, now with a lower incidence of seasonality. This can
be seen most strongly for daily data, which are tested with S = 5 but have no seasonality.

The bottom row of graphs shows the p-values of the ANOVA test for stable seasonality, applied to
∆ log yt and as used in Doornik, Castle, and Hendry (2019).
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Figure 1: Distribution of autoregressive coefficient for each frequency of M4
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Figure 2: Tests of seasonality for quarterly, monthly, weekly and daily (with S = 5) M4. First row for yt, second
row for ∆ log yt, third row seasonal ANOVA test for ∆ log yt.

4 Evaluation of benchmark methods

4.1 An improved benchmark method: Theta.log

The benchmark methods do not take any transformations of the variables. In contrast, Bergmeir and
Hyndman (2016) use a Box–Cox transformation in their bagging method. Legaki and Koutsouri (2018)
improve on the Theta method in the M4 competition by using a Box–Cox transformation. In both cases
the transformation is restricted to λ ∈ [0, 1]

yt(λ) = λ−1
(
yλt − 1

)
,

where λ = 0 is the logarithmic transformation, and one is no transformation. The difference between
the two approaches is that the former does the Box–Cox transformation before deseasonalization, and
the latter afterwards. We found that this distinction matters little: the values of λ estimated before or

6



0.0 0.5 1.0

2500

5000

7500

M4Y(.|6)

0.0 0.5 1.0

2500

5000

7500

M4Q(.|8)

0.0 0.5 1.0

5000

10000

15000

M4M(.|18)

Figure 3: Estimated Box–Cox λ for yearly (left), quarterly (middle) and monthly M4 (right)

after multiplicative seasonal adjustments are similar: in quarterly M4 and monthly M3 the correlation
between the estimates exceeds 0.9.

Figure 3 shows the histogram of λ estimated by maximum likelihood in a model on a constant and
trend (and restricted to be between zero and one). This amounts to minimizing the adjusted variance as
a function of λ. The U shapes in Figure 3 indicates that the choice is mainly between logarithms and
levels. This suggests a simpler approach, such as comparing the variance when using levels to that using
logs. Removing the trend by differencing leads to an approach as in Ermini and Hendry (2008), i.e. using
logs when min yt > 1 in combination with:

exp(2log y)var[∆ log yt] < c2
l var[∆yt], (6)

where var[xt] is the sample variance of xt, t = 1, ..., T and log y is the sample mean of log yt. Using (6)
means that the iterative estimation of λ can be avoided. All observations in M3 and M4 are positive, and
experimentation suggests a benefit from preferring logs when λ̂ < 1. The c2

l term is introduced to allow
a bias towards using logarithms: based on forecast performance we adopt cl = 1.3. As a consequence
the proportion that is not logs in M4 is about 3% for annual data, 2% for quarterly and monthly, and less
than 1% for the remainder.

4.2 A simplified benchmark method: THIMA.log and THIMA

To understand why Theta(2) is relatively successful, we introduce a simplified variant. Remember that
SES is an ARIMA(0,1,1) model, and that the slope of the trend can also be estimated through the mean of
the first differences. This leads us to suggest a trend-halved integrated moving average model (THIMA):

(1) Starting from yt, t = 1, ..., T , the first differences ∆yt, t = 2, ..., T have mean τ̃ . Construct
xt = ∆yt − 1

2
τ̃ .

(2) Estimate the following MA(1) model by nonlinear least squares (NLS) with θ̂ ∈ [−0.95, 0.95]:

xt = εt + θεt−1

(3) The forecasts are:
ŷT+H = yT + 1

2
τ̃H + θ̂ε̂T . (7)

The forecasts from the MA(1) component are θ̂ε̂T for H = 1 and zero thereafter: their cumulation
is constant (this is also the case for the SES forecasts). So THIMA forecasts consist of a dampened trend
(arbitrarily halved), together with an intercept correction estimated by the moving average model. That
estimation of one parameter does not have to be very precise, and the overall procedure is very fast.
The THIMA.log version uses (6), again with cl = 1.3, then is based on growth rates when the decision
indicates the use of logs.
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DGP MASE sMAPE

yt ∼ IN[µ, σ2] 1 113 σ
|µ|

∆yt ∼ IN[µ, σ2] 1 200
2T+1

[
2σµφ

(−µ
σ

)
+ 1− 2Φ

(−µ
σ

)]
∆ log yt ∼ IN[µ, σ2]

mT
3

1
T

∑T
t=1m

t−1
3

200m3−1
m3+1

Table 2: Approximate expectations of MASE and sMAPE under different data generation processes,
H = 1. Φ is the standard normal cdf, φ the density, m3 = exp(µ+ σ2/2).

4.3 Evaluation

There is an extensive literature on forecast evaluation, and these measures will not give the same rank-
ing of forecast performance. They are also sensitive to the adopted transformation of the variable, say
differences versus levels (Clements and Hendry, 1993). In the context of M4, only MASE and sMAPE
are relevant. The MASE is invariant to a change in location and scale of the target variable, while the
sMAPE is invariant to rescaling yt but not to a change in mean.

The sMAPE was introduced to address two issues with the MAPE (this is (3) but with just |yt| in
the denominator): instability when outcomes close to zero are possible, as well as asymmetric response
when exchanging outcomes and forecasts. However, it introduces two new problems. First, it favours
overforecasting. As an illustration, take yt = µ > 0, µ > δ > 0 with forecast µ+ δ or µ− δ:

sMAPE(µ+ δ) =
2δ

2µ+ δ
< sMAPE(µ− δ) =

2δ

2µ− δ
.

This was already noted by Goodwin and Lawton (1999) and Koehler (2001). A second problem is that it
introduces a bias that can be very large in some settings, illustrated in A.

For a better understanding, we derive approximate expectations of MASE and sMAPE when using
random walk (naive) one-step forecasts. Three data generation processes (DGP) are considered: nor-
mally distributed in levels, stationary in differences and stationary growth rates. The results are derived
in the Appendix, and summarized in Table 2. Interestingly, the approximate mean of MASE is unity
unless the DGP is in logs. So this could be turned into another test of logs versus levels, complementing
Spanos, Hendry, and Reade (2008). In the third case, the MASE is very roughly proportional to the
sample size.

The sMAPE behaves very differently. In the white noise case it is a fixed multiple of the coefficient of
variation (inverse signal-to-noise ratio). In the second case, difference stationary, the sMAPE is inversely
proportional to the sample size. Finally, in the third case, it is largely independent of sample size again.

The top row of Figure 4 reports the average of the accuracy measures of the random walk forecasts
for annual M3 and M4 in the line labelled Naive2. This is for H = 1 forecasts, so the first point of each
line in each graph, when the horizontal axis is −12, twelve observations were withheld, eleven in the
next, etc. The following table shows how the data are used:

1 · · · · · Ti−H Ti −H +1 · · · · · Ti Ti+1 · · · · · Ti+ H

development training Test forecasts unavailable
competition competitor forecasts from this M4 team tests
Fig. 4a, first estimation T unused
Fig. 4a, second estimation T unused
Fig. 4a, last estimation T

When developing our submission, we held back an additional H observations to test performance. In
Figure 4 we use an expanding window, forecasting one observation ahead each time.
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Figure 4: Average one step-ahead forecast accuracy for yearly M3 and M4, withholding from 12 to 1 observations
at the end from the full dataset. The bottom row is normalized by the naive results.

First we note from the graphs that the variability is similar between M3 and M4, despite moving
from 645 to 23 000 series for annual data. So uncertainty in rankings in M4 could be similar to that in
M3. Next, accuracy rankings can switch for different subsamples, so it is not enough to claim success
by looking at one particular sample. Finally, the M3 profile is somewhat U shaped, but M4 is more
the opposite. This is relevant, because the competition version omits the last six observations, which
corresponds to the middle of the graphs.

Comparing the approximations of 2 with the MASE in Figure 4, suggests that a representative DGP
is that of ∆ log. From simulation we find that µ = 0.025, σ = 0.1, T = 15 gives sMAPE of 8.3 (this is
a case where the approximation does not work) and MASE of 1.4. Standardizing by the naive results, as
shown in the bottom row of Figure 4, reduces variability and makes the switch overs more visible.

Figure 4 also shows that all methods in the graph are, with a few exceptions, an improvement over
the random walk forecast. As expected THIMA.log and Theta.log are similar. Table 3 reports the M3
performance of the improved and simplified benchmark methods, showing that both are improvements
over the standard Theta(2) method. Their relative ranking is similarly unclear, because, dropping one
observation at the end shows THIMA.log as the best performer. Seasonality is handled as in §2.2 in each
case.

5 Adjustments to the Card method

Doornik, Castle, and Hendry (2019) provides a technical description of our Card method.
Experience has shown that a dampened trend is often useful for forecasting. Robustness is also

helpful: the forecasts should not be thrown too much by a previous structural break. We introduce two
forecasting methods that incorporate a dampened trend and robustness to structural breaks. The main
focus is on autoregressive models, because these are easy to estimate and M4 provides no covariate
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Yearly(H = 6) Quarterly(H = 8) Monthly(H = 18)

M3 sMAPE MASE sMAPE MASE sMAPE MASE

Full sample, holdback H
Theta.log 16.00 2.68 9.15 1.11 13.57 0.85

THIMA.log 16.10 2.68 9.19 1.11 13.75 0.86

Theta(2) 16.72 2.77 9.24 1.12 13.91 0.87

With last observation removed, holdback H
Theta.log 15.91 2.64 9.26 1.13 13.22 0.82

THIMA.log 15.61 2.57 9.07 1.10 13.22 0.82

Theta(2) 17.07 2.87 9.26 1.13 13.61 0.84

Table 3: M3 performance of MASE and sMAPE for Theta(2) and revised benchmark methods.

information. However, without precautions these can give quite wild forecasts in small samples.
Initial decisions are made about the use of logarithms, differences versus levels, and the presence of

seasonality:
1. Let yt denote the initial series. If min(y1, ..., yT ) > 1 take logs: xt = log(yt), t = 1, ..., T , else
xt = yt. This means that logs are always used in the M3 and M4 data.
Forecasts for the logarithms are transformed back using ŷt = exp(x̂t) at the end (so not using a
bias correction).

2. Compute sample variances of the differences and the levels. If var[∆xt] ≤ 1.2 var[xt] then forecast
from a dynamic model (if in differences, these must be cumulated to get level forecasts), else
directly forecast the levels using a static model. The static model only occurs at a rate of 1.5%

(yearly), 4% (quarterly), 6% (monthly), but almost never at the other frequencies.
3. The presence of seasonality is tested at 10% using the ANOVA test for stable seasonality, as used

in Census X-11 seasonal adjustment (Ladiray and Quenneville, 2001). This is applied to ∆xt or
xt depending on the previous step. The bottom row of Figure 2, however, always used ∆ log yt,
which is the most common case.

Our first forecast method is based on estimating the growth rates from first differences — hence
labelled Delta method, but with removal of the largest values and additional dampening. This method
uses means when levels forecasts are made.

The second method, called Rho, estimates a simple autoregressive model, possibly switching to a
model in first differences with dampened mean.

Our final adjustment is to create a calibrated average of Rho and Delta, called Card. First, the
forecasts of Rho and Delta are averaged with equal weights. Next is a calibration stage which treats
the forecasts as if they were observed, and re-estimates a model that is a richer version of the first stage
autoregressive model. The fitted values over the forecast period (now pseudo in sample) are the new
forecasts. There is no issue with overfitting or explosive roots, because no further extrapolation is made.

Calibration makes little difference for annual or daily data, which have no seasonality. It does,
however, provide almost uniform improvements in all other cases, in some cases substantially so. This
experience is also reported for the X12-ARIMA procedure (Findley, Monsell, Bell, Otto, and Chen,
1998), although there the ARIMA model comes first, providing a forecast extension that is used in the
X11 procedure. Our procedure could be a more flexible alternative.

Some further minor adjustments are made to allow for specific aspects at certain frequencies. For
hourly data, the Rho and Delta are calibrated, then averaged, then calibrated again. Calibration is done
with autoregressive lag six instead of one. For weekly data, Rho is applied to the four-weekly averages
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(giving frequency 13), and calibrated before averaging with Delta.
In Doornik, Castle, and Hendry (2019) we specified the daily frequency as 5 × 12, but this was not

beneficial, and we change it here to S = S2 = 1. So no distinction is made anymore between yearly and
daily data.

The Ox 7 (Doornik, 2013) code to replicate our Card submission was uploaded to Github shortly
after the M4 competition deadline.

5.1 Robust forecasts

A correction can make the forecast more robust when there is an unmodelled break at the forecast origin.
To illustrate, consider an autoregressive model of order one, AR(1):

yt = µ+ ρyt−1 + x′tβ + εt, t = 1, ..., T.

In the current setting, all components in xt are deterministic, so known for the forecast period (see Castle,
Doornik, and Hendry (2018) for an analysis where the future xt’s are not known). The one-step forecast
is

ŷT+1 = µ̂+ ρ̂yT + x′T+1β̂.

The robust forecast is taken from the differenced model:

ŷRT+1 = yT + ρ̂∆yT + ∆x′T+1β̂ = µ̂+ ρ̂yT + x′T+1β̂ + yT − µ̂− ρ̂yT−1 − x′T β̂ = ŷT+1 + ε̂T .

The robust forecast is an intercept correction based on the last residual. When nothing changes, E[ŷT+1] =

E[ŷRT+1], but the variance is increased by σ̂2
ε . However, if there is a location shift in µ at T , this is captured

in the residual, so there is a trade off between the increased variance and the reduced shift. A seasonal
equivalent can be based on the seasonally differenced model:

ŷ
R(S)
T+1 = ŷT+1 + ε̂T+1−S .

Recursive application of robust forecasting leads to a rapid increase in the variance; for two steps
ahead:

ŷRT+2 = ŷRT+1 + ρ̂∆ŷRT+1 + ∆x′T+2β̂ = (1 + ρ̂)ŷRT+1 − ρ̂yT + ∆x′T+2β̂.

In comparison the standard forecast is ŷT+2 = µ̂+ ρ̂ŷT+1 + x′T+2β̂.

5.1.1 Robust adjustment for Rho

If the Rho model is not already estimated in differences (i.e. I∆ = 0), the following adjustment is made
to x̂T+1:

R =
[

1
2(ε̂T + ε̂T−S+1)

]+2σ̂

−2σ̂
,

x̂RT+1 = x̂T+1 + 1
2R. (8)

R is the averaged residual, which is limited to two residual standard errors, and half of that is added to
the one-step forecast. So the robust forecast is the average of the original and the winsorized and shifted
forecast. The notation [x]ba indicates that x is bounded between a and b.

Figure 5 shows that the robust version of Rho using (8) leads to improvements at all frequencies,
except for monthly and weekly data where the gains and losses are similar. The benefit is substantial for
quarterly, daily and hourly data. It is small but consistent for annual data.

The results for M3 are similar: again there is no improvement for monthly data, although the annual
improvement is more pronounced.
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Figure 5: Accuracy of one-step forecasts from Rho and robustified Rho relative to Naive2. Recursive M4 data, all
frequencies.

5.1.2 Robust adjustment for Card

At very short horizons, calibration performs worse than the inputs to calibration. We therefore made
a small change for the first two forecasts, taking the average of the original and calibrated forecasts.
Beyond H = 3, the forecasts are unchanged at the fitted values from calibration.

5.2 More averaging: Cardt

Our annual forecasts using Card did not do as well as expected. Part of the explanation is that hold-
ing back twelve observations from the full M4 data set is quite different from withholding six, as was
illustrated in Figure 4. At the time we considered adding a Theta-like forecast to the average prior to
calibration, but decided against this. That was a mistake, and we propose Cardt for frequencies up to
twelve as the calibrated average of Rho, Delta, and THIMA.log.

5.3 Forecast intervals

The forecast intervals of an AR(1) model with drift, yt = µ+ ρyt−1 + εt, grow with the horizon h when
the errors are IID:

SE = σ
(

1 + ρ2 + ...+ ρ2(h−1)
)1/2

.

This is slower than the mean effect:

yT+h = µ
(

1 + ρ+ ...+ ρh−1
)

+ ρhyT .

Our submitted approach was based on zt = log yt with 90% forecast interval:

exp
[
ẑT+h ± C1σ̂

(
1 + ρ̂L + ...+ ρ̂h−1

L

)]
,
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where ρ̂L is an adjusted estimate of the autoregressive parameter and C1 is determined by withholding
data from the competition data set, aiming for a 90% interval. Even though this approach did well, it
suffers from being asymptotically invalid, as well as being fixed at the 90% interval.

Our new approach makes a small-sample adjustment to the standard formula for the forecast interval.
The basis for this is the calibration formula, which, however, is somewhat simplified and restrained.
Because the sample size is small in some cases, we account for parameter uncertainty. Ideally, we get
the correct point-wise coverage at each interval and in total, as well as a small MSIS.

The forecast bands have the following form:[
L̂T+h, ÛT+h

]
=

[
exp

(
ẑT+h ± cα

{
(var[ẑT+h])1/2 +

πh(S)

T

})]
. (9)

This is the standard forecast uncertainty for an autoregressive model with regressors, but here with an
inflation factor πh that depends on the frequency. The value of πh is determined by withholding H
observations from the training data, and finding a value that combined reasonably good coverage at all
forecast horizons with a low value of MSIS. The form of πh is given in B. The critical value cα is from
a student-t distribution. In addition, for S = 4, 12, 52, we average the forecasts standard errors from
calibration in logs with those from calibration applied to the levels.

5.4 Evaluation

Figure 6 shows the performance of Delta and Rho at each fequency of M4. From 2H to H observations
are withheld (see Table 1 for the value of H), so the last entry amounts to evaluating a submission to the
competition. We see that Delta performs better than Rho for annual, weekly and daily data. Next, we
consider DelRho, which is the simple average of the two. This always improves: it either matches the
best of either (yearly, weekly, hourly) or improves considerably on both (quarterly, monthly). For daily
data, it is very hard to beat the random walk, as expected from data that is largely financial. Finally, we
consider the calibrated average. This improves a bit for quarterly monthly, but is a particularly effective
way to handle the complex seasonal patterns of weekly and hourly data. Note that all plots in Figure 6
have the same scale, except for hourly data where the improvement over the naive forecast is so large.

Figure 7 looks at THIMA.log, Card, and Cardt. This shows that the addition of THIMA.log makes
Cardt consistently outperform Card, except for daily (and weekly where it is not used). THIMA.log on
its own is nowhere better, except for a short period with the yearly data.

Figure 8 shows the coverage of the forecast intervals, averaged up to H-steps ahead for α = 0.05

and α = 0.1. This shows that the forecast intervals are generally well behaved. The exceptions are that
the 90% intervals for monthly data are a bit to wide, and hourly intervals a bit too narrow. The bands’
effectiveness fluctuates with the subsample, perhaps more than expected.

These graphs average over all horizons, and are uninformative on any specific horizon. A good MSIS
performance gives additional support for the adoped procedure. MSIS scores are reported in the bottom
half of Table 4, which gives the summary statistics of our methods in the format that is used to determine
M4 rankings. The new approach to computing forecast intervals is comparable in terms of coverage,
but a considerable improvement as measured by MSIS. The new intervals have been derived after the
competition finished — nonetheless, they are among the best methods in terms of MSIS.

Table 4 also gives the forecast performance in terms of MASE and sMAPE. As expected, the changes
to Card have a negligable impact on its performance. The new Cardt, which adds THIMA.log to the
combination, is mainly improved for annual data, and just a bit better for quarterly data.
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Figure 6: H-step forecast accuracy relative to that of Naive2 for all frequencies of M4, retaining from 2H to H
observations for evaluation. Forecast methods are Delta, Rho, (Delta + Rho)/2, Card.
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Figure 7: H-step forecast accuracy relative to that of Naive2. Forecast methods are Card, Cardt, THIMA.log.
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Figure 8: Average rejection of 95% and 90% H-step forecast intervals for all frequencies of M4, retaining from
2H to H observations for evaluation.

M4 Y Q M W D H Y Q M W D H All
sMAPE MASE OWA

new Cardt 13.50 9.94 12.76 6.72 3.00 8.92 3.09 1.15 0.93 2.30 3.21 0.81 0.849

updated Card 13.87 10.02 12.80 6.72 3.01 8.92 3.26 1.16 0.93 2.30 3.21 0.81 0.864

submitted Card 13.91 10.00 12.78 6.73 3.05 8.91 3.26 1.16 0.93 2.30 3.28 0.80 0.865

new THIMA.log 13.55 10.03 13.21 7.91 3.02 18.41 3.05 1.17 0.97 2.55 3.23 2.50 0.865

MSIS ACD90%∗/95% MSIS ACD

new Cardt 25.77 8.71 8.09 15.78 26.55 5.85 .002 .006 .005 .001 .006 .010 13.10 0.005

updated Card 26.50 8.82 8.12 15.78 26.60 5.85 .010 .009 .006 .001 .007 .010 13.31 0.008

submitted Card∗ 30.20 9.85 9.49 16.47 29.13 6.14 .013 .021 .004 .003 .009 .048 15.18 0.007

Table 4: Summary performance in M4 competition. Absolute coverage difference is for a 95% forecast
interval except for submitted Card which used 90%. OWA is the overall weighted average of sMAPE
and MASE, with weights determined by the relative number of series for each frequency.

15



Figure 9: QQ plots of annual and quarterly residuals against Normal and closely matching Student-t distribution

Figure 10: Eighteen actual yearly M4 series and eighteen simulated series

6 A simulation experiment

As a first step in designing an experiment that mimics some of the properties of M4, we address normality.
The backbone of Card is the calibration method. We apply calibration to the yearly and quarterly series
without forecasting, and collect the residuals, standardized by their estimated equation standard error.
This gives 630 515 yearly and 2 010 696 quarterly residuals. Figure 9 shows that normality is strongly
rejected: with so many residuals, the 95% error bands (see Engler and Nielsen, 2009) are very tight.
Normality is matched well in the center between ±2, but the residuals have fatter tails. This is not a
surprise for economic data, where breaks happen intermittently. It also corresponds to the need to inflate
the forecast intervals from calibration.

The following data generation process (DGP)

xt = µ0U1 + ρxt−1 + σ [δt + εt + θεt−1] , εt ∼ IN[0, 1], t = −99, ..., T

U1, U2 ∼ IN[1, 1],

σ = σ0 + 0.02
(
U2

2 − 1
)
,

δt = 2utI(|ut| > 2.58) ut ∼ IN[0, 1], t ≥ 1(δt = 0 for t < 1),

yt = 100 exp(xt − x1),

(10)

with parameters ρ = 1, θ = 0, µ0 = 0.03, σ0 = 0.06, closely matches the M4 yearly data in terms of the
mean and standard deviation of growth rates, the distribution of the estimated autoregressive coefficient,
as well as the shape of the QQ plot of the calibration residuals. The dominance of the unit root (ρ = 1)
in logarithmic form was already established from Figure 1, the values of MASE and sMAPE, as well as
the improved benchmark methods.

For a superficial comparison, we show in Figure 10 eighteen real M4 series, followed by the same
number of simulated series. They look comparable, except that the third series would be unlikely to arise
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Figure 11: H-step forecast accuracy measured by average MASE, sMAPE, and MAAPE relative to that of Naive2
for simulated data, retaining from 2H to H . 10 000 series.

from the DGP. The M4 data set has a few extremely large breaks that will not be replicated. Finally, the
DGP could be lacking some heteroscedasticity.

However, the DGP (10) also has some advantages over M4. The first is that the series are independent
(albeit highly correlated). This means that ‘whole database’ forecast methods do not inadvertently use
future information, thus avoiding infeasible forecasts. Furthermore, generating data this way is much
easier to implement, so can serve as an initial forecasting testbed. The DGP captures the properties that
seem relevant for economic time series, which can help to improve machine learning methods in such a
setting. Finally, there are some parameters that can be varied, in addition to the sample size.

Figure 11 evaluates forecasting six periods ahead, holding back from 12 to 6 observations from a
sample of 32. The first two plots show the sMAPE and MAPE. In contrast to Figure 7, the results are
much more stable over expanding windows. The third plot introduces the MAAPE, Kim and Kim (2016),
which is defined as:

MAAPE =
100

H

T+H∑
t=T+1

atan2 (|yt − ŷt| , |yt|) .

The MAAPE avoids the problems of small values that MAPE and sMAPE have, and has a lower bias
(see A). The final plot is the frequency of forecasts outside the 95% and 90% forecast intervals. The
intervals are a bit too wide, showing that the inflation factor is overcorrecting.

Table 5 shows the forecast accuracy for data simulated from the DGP (10). The first three rows use
default parameters (ρ = 1, θ = 0, µ0 = 0.03, σ0 = 0.06). The sample size T = 28 with six out-of-
sample forecasts is representative for yearly M4. We also generate 250 observations (plus an extra six for
evaluation). In the first case all 250 are used for forecasting, in the second case just the last 40, as is the
default for Cardt. The presence of large shocks with probability of 1% means that there is no advantage
here from using the whole data set. The bottom half of the table varies one parameter at a time. In all
cases, Cardt outperforms THIMA.log, which in turn outperforms Theta (with one exception), although in
some cases the difference is small. A larger µ0 or smaller σ0 increases the relative performance advantage
of Cardt. Small changes in ρ have a large impact, but are not compatible with its observed distribution.

7 Conclusions

We established that the dominant features of M4 are mostly stationary growth rates that are subject to
intermittent large shocks, combined with strong seasonality. This led us to propose a simple extension to
the Theta method by adding a simple rule to take logarithms. We also introduced THIMA.log as a simple
benchmark method that helps understanding the Theta method. Moreover, this improves on Theta(2)
in both M3 and M4 forecasting at low frequencies. We added this to the forecast combination prior to
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T MAAPE sMAPE MASE
Theta THL Cardt Theta THL Cardt Theta THL Cardt

ρ = 1, θ = 0, µ0 = 0.03, σ0 = 0.06

Default DGP 28 14.73 13.36 12.94 16.56 14.40 13.87 4.00 3.42 3.22

Default DGP 250/250 22.34 20.02 18.49 28.20 24.64 22.51 25.68 18.40 15.90

Default DGP 250/40 15.12 13.60 13.03 17.12 14.81 14.00 23.26 18.42 16.62

Default DGP 28 14.73 13.36 12.94 16.56 14.40 13.87 4.00 3.42 3.22

σ0 = 0.03 28 11.84 9.92 8.58 13.22 10.64 9.15 4.09 3.21 2.58

σ0 = 0.09 28 18.20 17.23 17.12 20.69 18.66 18.51 3.93 3.57 3.50

µ0 = 0.01 28 12.63 12.46 12.39 13.55 13.01 12.96 2.46 2.44 2.43

µ0 = 0.05 28 18.54 14.94 13.49 22.37 16.60 14.69 6.44 4.82 4.05

θ = 0.2 28 15.79 14.45 14.13 17.90 15.61 15.18 4.25 3.69 3.52

θ = −0.2 28 13.86 12.41 11.94 15.48 13.37 12.79 3.72 3.14 2.91

ρ = 1.01 28 30.82 22.58 17.85 44.31 28.01 20.78 19.17 13.86 10.20

ρ = 0.98 28 12.58 12.51 12.30 13.20 12.86 12.66 2.11 2.13 2.09

ρ = 0.90 28 12.27 12.29 12.04 12.64 12.59 12.32 1.89 1.90 1.86

Table 5: Summary performance in DGP. THL is short for THIMA.log. T is the sample size, with H = 6

out-of-sample observations for evaluation. T = 250/40 means that 250 observations are available, but
only the last 40 used for forecasting. 10 000 series.

calibration, which mainly improved performance at the yearly frequency.
Our experience with M4 supports most of the principles that were introduced in the introduction:

A] dampen trends/growth rates;
This certainly holds for our methods and Theta-like methods. Both Delta and Rho explicitly squash
the growth rates. Theta(2) halves the trend. The THIMA method that we introduced halves the
mean of the differences, which has the same effect.

B] average across forecasts from ‘non-poisonous’ methods;
This principle, which goes back to Bates and Granger (1969), is strongly supported by our results,
as well as the successful methods in M4. There may be some scope for clever weighting schemes
for the combination, as used in some M4 submissions that did well. It may be that a judicious few
would be better than using very many.
A small amount of averaging also helped with forecast intervals, although the intervals from annual
data in levels turned out to be ‘poisonous.’

C] include forecasts from robust devices in that average;
We showed that short-horizon forecasts of Rho could be improved by overdifferencing when using
levels. The differenced method already has some robustness, because it reintegrates from the last
observation. This, in turn, could be an adjustment that is somewhat too large. The IMA model of
the THIMA method effectively estimates an intercept correction, so has this robustness property
(as does Theta(2), which estimates it by exponential smoothing).

D] select variables in forecasting models at a loose significance;
Some experimentation showed that the seasonality decisions work best at 10%, in line with this
principle. Subsequent pruning of seasonal dummies in the calibration model does not seem to
do much, probably because we already conditioned on the presence of seasonality. However,
for forecast uncertainty, a stricter selection helps to avoid underestimating the residual variance.
Castle, Doornik, and Hendry (2018) find support for this in a theoretical analysis.

E] update estimates as data arrive, especially after forecast failure.
This aspect was not covered here.
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We derived a DGP that generates data similar to annual M4. This could be a useful complement to
the actual data. It also confirmed the good performance of our Cardt method. Extending this to include
the properties of the seasonal time series is left to a later date. Another possible refinement is to consider
whether the data categories (macro, micro, etc.) have different time-series properties.

A Accuracy measures under naive forecasts

The random walk (or naive) forecast of annual data is simply ŷT+1 = yT , so for one step ahead MASE,
from (4):

MASE(N1) =
|∆yT+1|

1
T

∑T
t=1 |∆yt|

. (11)

Similarly for MAPE and sMAPE:

MAPE(N1) = 100
|∆yT+1|
|yT+1|

, (12)

sMAPE(N1) = 200
|∆yT+1|

|yT+1|+ |yT |
. (13)

In this setting we can derive approximate expected values of these measures.

A.1 Stationary case, I

First assume that the data generation process is given by:

yt = µ+ εt, εt ∼ N[0, σ2].

Then ∆yt ∼ N[0, 2σ2], therefore |∆yt| has a half normal distribution, and

E[|∆yt|] = σ

(
4

π

)1/2

= 2σφ(0) ≡ m1.

Using the first term of the Taylor expansion around the expectation amounts to approximating the expec-
tation of the ratio by the ratio of the expectations:

E[MASE(N1)] ≈ E [|∆yT+1|]
1
T

∑T
t=1 E[|∆yt]|

≈ 1.

The numerator and denominator of the MASE(N1) in (11) are asymptotically uncorrelated because the
distributions of |∆yt| and |∆ys| are independent for s < t− 1.

For the denominator of sMAPE, note that |yt| has a folded normal distribution:

E[|yt|] = 2σφ

(
−µ
σ

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
≡ m2.

So
E[sMAPE(N1)] ≈ 100

m1

m2
.

When µ/σ is large enough:
E[sMAPE(N1)] ≈ 100

m1

µ
= 113

σ

|µ|
.

This does not hold when µ = 0: in that case the expectation is approximately 100
√

2 = 141. The
numerator and denominator of the sMAPE (13) are uncorrelated provided yT+1 and yT have the same
sign (an alternative version with |yT+1 + yT | in the denominator would always be uncorrelated).
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µ = 0.5 µ = 1 µ = 2 µ = 5 µ = 10

Simulated
E[MASE] 1.136 1.136 1.136 1.136 1.136

E[sMAPE] 133.9 109.1 63.2 23.0 11.3

Bias[MASE] −0.006 −0.006 −0.006 −0.006 −0.006

Bias[sMAPE] 1.100 0.923 0.573 0.198 0.093

Bias[MAPE] −0.279 −0.932 −1.640 −0.222 −0.108

Bias[MAAPE] 0.064 0.038 −0.109 −0.159 −0.100

Approximated
E[MASE] 1 1 1 1 1

E[sMAPE] 225.7 112.8 56.4 22.6 11.3

Bias[MASE] 0 0 0 0 0

Bias[sMAPE] 2 1 0.5 0.2 0.1

Table 6: Simulated and approximated mean and bias of MASE and sMAPE for one-step ahead naive
forecasts. DGP N[µ, 1], T = 15, M = 100 000 replications.

The approximations can provide some inside in the amount of bias introduced when minimizing the
error measures: what is the optimal amount β to add to the naive forecast in the current DGP. In the
MASE, only the nominator is affected, turning it into a folded normal distribution. Then minimizing
the approximation amounts to minimizing f(β) = 2φ (−β) + β [1− 2Φ (−β)]. Because ∂f(β)/∂β =

1 − 2Φ(−β), this is zero at β = 0: the bias comes from the higher order terms that were ignored in the
approximation.

In case of the sMAPE the bias function is more difficult because β also enters the denominator.
For µ > 0, sMAPE is roughly minimized for β = σ2/µ. Table 6 compares the approximations to
simulations for a range of means when the variance equals one, confirming the increasing accuracy of
the approximate expectations as µ increases.

It also shows that while the MASE is essentially unbiased, the bias from minimizing sMAPE and
MAPE is large in some cases. The MAAPE was recently introduced by Kim and Kim (2016), and is
defined as:

MAAPE =
100

H

T+H∑
t=T+1

atan2 (|yt − ŷt| , |yt|) .

A.2 Nonstationary case, II

Keeping T fixed:

∆yt = µ+ εt, εt ∼ N[0, σ2], t = 1, ..., T + 1.

Then |∆yt| has a folded normal distribution with mean m2 and E[MASE] ≈ 1.
Setting y0 = 0 we have that yt =

∑t
s=1 ∆ys ∼ N[tµ, tσ2].

E[sMAPE(N1)] ≈ 200
m2

(2T + 1)µ
.

This is roughly 100/T when µ/σ is large, but more like (100/T )σ/µ for small µ.
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A.3 Nonstationary case, III

Let

yt = exp(xt),

∆xt = µ+ εt, εt ∼ N[0, σ2],

xt =
t∑

s=1

∆xt, x0 = 0.

For fixed T , exp(∆xt) has a lognormal distribution with mean exp(µ+ σ2/2) ≡ m3, and yt = exp(xt)

has a lognormal distribution with mean exp(tµ+ tσ2/2) = mt
3, so

E[∆yt] = E[[exp(xt)]− E[[exp(xt−1)] = mt−1
3 (m3 − 1).

Ignoring the absolute values:

E[MASE] ≈ mT
3

1
T

∑T
t=1m

t−1
3

.

This is always positive, because m3 − 1 cancelled out in this approximation. As a consequence, the
approximation remains somewhat effective even for negative µ. Note that the MASE tends to zero as µ
gets more negative. For larger µ the MASE behaves as Tm3.

Finally, for the sMAPE when µ is large:

E[sMAPE(N1)] ≈ 200
mT+1

3 −mT
3

mT+1
3 +mT

3

= 200
m3 − 1

m3 + 1
.

B Forecast intervals

Forecast intervals are obtained from the calibration model that is used to create the final forecasts. The
calibration model is:

zt = µ+ (ρzt−1 + ρRzt−RIRI4IS + ρR+1zt−R−1IRI4IS)Iρ + {δjqj,t} IAIS
+ (γ1St + γ∗1Ct) (1− IA)IS + (γ2S2,t + γ∗2C2,t) (1− I3)IS2 (14)

+ ρSS2zt−SS2I3IS2 + (τ1dt + τ2tdtI5Iρ)I6 + ut, t = T0, ..., T +H

where Iρ = 0 for a static model, IS = S > 1, IR = 1 when R > 1, I4 = T > 4S, I3 = T +H > 4SS2,
IS2 = S2 > 1, I6 = S 6=24 and T > 3S and T +H−k > 10, I5 = S=4, 12, 13, St = sin[2πt/S], Ct =

cos[2πt/S], S2,t = sin[2πt/(SS2)], C2,t = cos[2πt/(SS2)], dt = I(t < T − min[2S, (T + H)/2]).
Note that no observations are lost when lag SS2 is used, because the first SS2 observations are duplicated
at the start.

The preliminary forecasts are treated as if they are insample observations, and then replace by fitted
values from calibration. However, the forecast error variance can only be estimated from out-of-sample
extrapolation. This makes it essential to avoid explosive behaviour; we also wish to avoid underestimat-
ing the residual variance, so (14) is adjusted as follows:

1. remove the broken intercept and trend (if present, so setting I6 = 0);
2. remove deterministic variables that are insignificant at 2%; the intercept and autoregressive part

are not changed;
3. add the absolute residuals from (14) as a regressor;
4. estimate the reformulated calibration model;
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yt ∼ N[µ, σ2] ∆yt ∼ N[µ, σ2] ∆ log yt∼N[µ, σ2]

mean sdev mean sdev mean sdev

µ = 0, σ = 1, T = 15

MASE 1.14 0.92 1.04 0.84 2.9 9.8

sMAPE 144.1 68.5 51.0 58.9 69.9 45.4

MAPE 6629.4 18×105 809.6 1.6×105 112.4 195.1

MAAPE 90.8 40.1 40.3 38.8 58.7 37.9

µ = 0.025, σ = 0.1, T = 15

MASE 1.14 0.92 1.05 0.85 1.4 1.2

sMAPE 141.3 69.3 37.7 50.0 8.3 6.3

MAPE 654.0 10871 365.7 15478 8.5 6.8

MAAPE 89.5 40.6 31.7 34.8 8.4 6.7

µ = 0.1, σ = 1, T = 15

MASE 1.14 0.92 1.04 0.84 4.3 13.2

sMAPE 143.8 68.6 48.5 57.6 70.1 45.5

MAPE 797.4 23462 188.7 6304.6 124.6 219.1

MAAPE 90.6 40.2 38.6 38.2 60.8 39.6

µ = 1, σ = 1, T = 15

MASE 1.14 0.92 1.04 0.75 41.8 71.6

sMAPE 109.1 71.0 8.60 7.02 94.0 51.6

MAPE 648.1 27743 9.31 21.5 358.8 579.4

MAAPE 75.3 43.5 9.07 7.52 91.9 46.8

µ = 10, σ = 1, T = 15

MASE 1.14 0.92 1.00 0.104 5.1×105 6.6×105

sMAPE 11.3 8.63 6.90 0.69 200.0 0.039

MAPE 11.5 9.05 7.15 0.74 36×105 47×105

MAAPE 11.3 8.71 7.14 0.74 157.1 0.010

Table 7: Simulated means and standard deviations of MASE, sMAPE, MAPE, and MAAPE for one-step
ahead naive forecasts. T = 15, M = 100 000 replications.

5. if ρ̂ > 0.999 then impose the unit root, and re-estimate;
6. if ρ̂ < 0 then set ρ = 0, and re-estimate.
Let ût denote the reformulated calibration residuals, then the equation standard error is estimated

from ‘recent’ residuals:

σ̃2
u =

T∑
max(T−T ∗+1,T0)

û2
t

max[min(T ∗, T − T0 + 1− k∗), 2]
, T ∗ = max(SS2, 80), (15)

where k∗ is the number of regressors in the reformulated calibration model. The variance (15) is com-
puted from ‘recent’ residuals to reflect neglected (conditional) heteroscedasticity. T is the original sample
size excluding the forecast period, so the residuals from the forecast period are excluded; T0 equals 1 for
a static model, 2 for a model with one lag, and R+ 2 if the seasonal lag is included.

The parameters of the adjusted model are estimated using all observations, but the forecast variance
is extrapolated using the standard autoregressive forecast formulae from T + 1 onwards. This can be
represented as

σ̂2
u

[
f̂uT+h + f̂xT+h

]
,
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where fu is the contribution from the error term, and fx the contribution of parameter estimation, with
the former dominating asymptotically.

Two small adjustments are made: we use the recent residual variance (15) and limit the contribution
from parameter uncertainty:

var[ẑT+h] = σ̃2
u

[
f̂uT+h + min(f̂xT+h, 4f̂

u
T+h)

]
.

By default, the modelling is in logs, so that the 100(1− α)% interval is given by:[
L̂T+h, ÛT+h

]
=

[
exp

(
ẑT+h ± cα

{
(var[ẑT+h])1/2 +

πh(S)

T

})]
. (16)

The critical value cα is from a student-t distribution with T − T0 − k∗ degrees of freedom.
The πh term is an inflation factor for S = 4, 12, 24 that is added when using logarithms because

otherwise the forecast intervals are too small, particularly at longer horizons:

πh(S)



0.25h S = 1,

0.1(h− 1) S = 4,

0.4h S = 12

0.4bh/6c S = 24

0.0 S = 52

One further step for forecast intervals from calibation in logarithms is to also calibrate the levels,
and then average the two. In that case the forecast standard errors are multiplied by 1 + 4h/T . This
is used for S = 4, 12, 52. For yearly data the levels forecast intervals are too far out to be useful in a
combination.

C Some more results

Table 8 presents some additional performance comparisons of different methods. The top half of the
table looks at different forecast horizons for the annual data using the competition data set (so excluding
the evaluation data): in the first row, one observation is withheld for forecasting, in the second row, two,
etc. In this example, the relative forecast performance of all methods gets increasingly better than the
random walk forecast as the horizon grows.

The next block of Table 8 consideres several transformations. Because the implicit null hypothesis is
that the growth rates are approximately normal, we may find preformance for transformations quite dif-
ferent. Note that in this case the MASE and sMAPE are expressed in terms of the transformed variables.
Random1 draws from a normal distribution with the same mean and variance as the growth rates of the
original series, then reintegrates:

exp

{
1 +

t∑
s=1

us

}
, ut ∼ N

[
µ = ∆ log yt, σ

2 = var(∆ log yt)
]
.

Random2 is similar to a wild bootstrap:

y1 exp

{
t∑

s=2

µ+ (∆ log ys − µ)εs

}
, εt ∼ N [0, 1] .

The results from the range of transformations shows that, in terms of sMAPE, THIMA.log always im-
proves over Theta2, and Cardt is better again, occasionally by a large amount. The same broadly holds
for MASE as well. For y−1

t all methods are worse than Naive2 on sMAPE, but it is likely that it is
ill-defined in that case, with observations close to zero.

Cardt usually improves on the best of THIMA.log, Rho and Delta.
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sMAPE MASE

H Theta THL Delta Rho Cardt Theta THL Delta Rho Cardt

Yearly M4 relative to Naive2
last observation 1 1.00 0.96 0.96 0.96 0.94 0.96 0.90 0.92 0.93 0.90
last two 2 0.96 0.89 0.91 0.91 0.89 0.92 0.83 0.86 0.86 0.83
last three 3 0.93 0.85 0.84 0.85 0.83 0.89 0.78 0.77 0.79 0.75
last four 4 0.91 0.80 0.78 0.80 0.77 0.89 0.77 0.75 0.77 0.74
last six 6 0.88 0.75 0.73 0.76 0.72 0.86 0.73 0.70 0.73 0.69

Transformed yearly M4 data relative to Naive2
yt 6 0.88 0.75 0.73 0.76 0.72 0.86 0.73 0.70 0.73 0.69
∆∆yt 6 1.10 1.04 1.13 1.02 1.05 0.83 0.87 0.85 0.88 0.86
∆yt 6 0.97 0.97 0.99 0.97 0.97 0.92 0.95 0.95 0.94 0.94
∆ log 6 0.96 0.96 0.97 0.99 0.97 0.91 0.93 0.92 0.93 0.91
log yt 6 0.75 0.73 0.75 0.79 0.72 0.74 0.71 0.71 0.76 0.70∑t

s=1 ys 6 0.66 0.53 0.37 0.69 0.23 0.72 0.58 0.38 0.85 0.25
y

1/2
t 6 0.82 0.75 0.74 0.76 0.72 0.79 0.71 0.68 0.71 0.67
y2
t 6 0.96 0.75 0.73 0.76 0.72 1.00 1.00 1.00 1.00 1.00
y−1
t 6 1.69 1.76 1.11 1.89 1.46 0.94 0.94 0.85 1.04 0.89

Random1 6 0.92 0.81 0.72 0.72 0.73 0.86 0.71 0.61 0.63 0.63
Random2 6 0.92 0.76 0.64 0.68 0.68 0.87 0.73 0.60 0.64 0.64
yT−t+1 6 1.19 0.81 0.70 0.75 0.73 0.82 0.81 0.76 0.81 0.77

Table 8: Forecast comparison for yearly M4 training data relative to Naive2 for Theta2, THIMA.log,
Delta, Rho, and Cardt.

D Comparison with R

The table compares Theta2 forecasts using the R code supplied with the M4 competition to our Ox
implementation (using all data). The forecast summary statistics are almost identical except for weekly
data, where we get a different result. The Ox version is about 130 times faster. Of that advantage, a
factor of three is obtained from the parallel implementation.

Theta2 Ox implementation R implementation

Time (sec) sMAPE Time (seconds) sMAPE
Total Data Forecast

Yearly 3.67 0.876 4.61 375 0.880
Quarterly 4.83 0.949 4.31 627 0.950
Monthly 10.49 1.017 4.22 1499 1.016
Weekly 0.45 0.838 3.95 33 0.886
Daily 6.96 1.007 4.05 1019 1.008
Hourly 0.27 0.991 3.89 28 0.991
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E Comparison with 118

Method 118 by Smyl (2018) had the best performance for yearly, quarterly, and monthly forecasting.
The method uses exponential smoothing together with recurrent neural network (RNN). The ES and
seasonal parameters are specific to each series, while the neural network weights are shared. Information
on the data category are used in the RNN. This method is quite complex, and we try to understand why
it performs well through separate experiments. Note that it is slow, especially for long series: hourly
forecasts took three days on an 8-core Intel Xeon E5 2667v3 computer — Cardt takes a couple of
seconds.

The following table is based on 10 000 replications from DGP (10) with default parameters using
T = 28 with H = 6 out-of-sample forecasts. The results from 118 are obtained using the code provided
on Github. It shows that 118 retains an advantage for annual data. While there is a concern that any
whole database method for M4 will use future data, this cannot happen in the DGP, thus confirming the
advantage of 118.

Mean Median

RMSE MAPE MASE sMAPE MAAPE RMSE MAPE MASE sMAPE MAAPE
118 106.89 13.87 3.00 13.06 12.84 27.10 9.40 2.20 9.40 9.33

Cardt 115.43 13.86 3.24 13.92 13.02 28.76 10.11 2.36 10.36 10.03

THIMA.log 122.05 14.46 3.41 14.43 13.48 29.60 10.69 2.45 10.92 10.61

Theta 131.03 15.45 3.86 16.07 14.48 32.10 12.01 2.70 12.47 11.88

Naive 145.83 16.75 4.46 17.79 15.85 37.70 13.93 3.10 14.64 13.76

118.sep 141.33 18.03 4.29 17.80 16.78 36.80 13.86 3.20 14.11 13.66

MASE at horizons
1 2 4 6

118 1.37 2.06 3.27 4.67

Cardt 1.41 2.15 3.54 5.18

THIMA.log 1.48 2.24 3.73 5.47

Theta 1.53 2.43 4.25 6.36

Naive 1.63 2.71 4.94 7.51

118.sep 2.25 2.92 4.56 6.75

Next, we apply the 118 method to each series in isolation. This is in the table as 118.sep: now
forecast accuracy is on a par with the Naive forecasts.
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