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Summary An extended and improved theory is presented for marked and weighted
empirical processes of residuals of time series regressions. The theory is motivated by 1-
step Huber-skip estimators, where a set of good observations are selected using an initial
estimator and an updated estimator is found by applying least squares to the selected
observations. In this case, the weights and marks represent powers of the regressors and
the regression errors, respectively. The inclusion of marks is a non-trivial extention to
previous theory and requires refined martingale arguments.
Keywords 1-step Huber-skip; Non-stationarity; Robust Statistics; Stationarity.

1 Introduction

We consider marked and weighted empirical processes of residuals from a linear time
series regression. Such processes are sums of products of an adapted weight, a mark that
is a power of the innovations and an indicator for the residuals belonging to a half line.
They have previously been studied by Johansen & Nielsen (2016a) - JN16 henceforth -
generalising results by Koul & Ossiander (1994) and Koul (2002) for processes without
marks. The results presented extend and improve upon expansions previously given
in JN16, while correcting a mistake in the argument, simplifying proofs and allowing
weaker conditions on the innovation distribution and regressors.

1.1 The setup

The results in this paper are aimed at analysis of 1-step Huber-skip estimators that are
popular in the robust literature and used extensively in applied work without reference

1Support from Programme for Economic Modelling, Oxford gratefully acknowledged.
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to the robust literature. While such estimators have been analyzed before, the present
purpose is to improve conditions and proofs of the underlying empirical process results.

Consider the linear time series model

yi = x′iβ + εi i = 1, . . . , n,

where the innovations εi/σ have distribution function F for some scale parameter σ and
where the regressors xi can be stationary, deterministic or stochastically trending. Let
β̃, σ̃ be initial estimators for the unknown β, σ. In applied work it is very common to
use full sample least squares estimators, although Welsh & Ronchetti (2006) recommend
to use robust estimators. In any case, we can construct initial residuals ε̃i = yi − x′iβ̃.
Observations satisfying |ε̃i| > σ̃c, for a certain cut-off value set up by the investigator,
are declared outliers and removed. A new regression is then run with the selected
observations satisfying |ε̃i| ≤ σ̃c giving an updated estimator, called the 1-step Huber-
skib estimator,

β̂ = {
∑n

i=1xix
′
i1(|ε̃i|≤σ̃c)}−1

∑n
i=1xiyi1(|ε̃i|≤σ̃c). (1.1)

Asymptotic expansions for N−1(β̂ − β) are of interest, where N−1 is a deterministic
normalizing matrix for the regressors. In particular, the generality of the normalization
N−1 allows us to consider a variety of regressors including stationary and non-stationary
variables. The normalized estimation error satisfies

N−1(β̂ − β) = {n−1
∑n

i=1N
′xix

′
iN1(|ε̃i|≤σ̃c)}−1n−1

∑n
i=1N

′xiεi1(|ε̃i|≤σ̃c). (1.2)

Both numerator and denominator in (1.2) are examples of marked and weighted empir-
ical distribution functions of the residuals ε̃i, which are of the form

n−1
∑n

i=1winε
p
i 1(|ε̃i|≤σ̃c). (1.3)

Specifically, the numerator and denominator have weights win = N ′xi and win =
N ′xix

′
iN, respectively, and marks εpi with p = 1 and p = 0. Note that the mark is

allowed to be unbounded. Therefore, the empirical process techniques derived in this
paper can be used to obtain asymptotic expansions for N−1(β̂ − β).

1.2 Marked and weighted empirical processes of residuals

This paper provides an improved analysis of weighted and marked empirical distribution
functions of the form (1.3). The proofs involve a number of steps.

First, in the residuals

ε̃i = εi − x′i(β̃ − β) = εi − x′iNN−1(β̃ − β),

the normalized random estimation error N−1(β̃ − β)/σ is replaced by a deterministic
quantity b. This requires that results are established uniformly over a compact set
for b. Similarly, the normalized estimation error for scale n1/2(σ̃ − σ) is replaced by a
deterministic scale error a as in Jiao & Nielsen (2017). If instead results are uniform
over a sequence of expanding compact sets it is possible to allow diverging normalized
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estimation errors. An example is the Least Median of Squares estimator of Rousseeuw
(1984) which is n1/3-consistent.

Second, weighted and marked empirical distribution functions are turned into nor-
malized sums of martingale differences by subtracting their compensators.

Third, uniform analysis over estimation errors a, b and the quantile c is carried out
by a chaining argument. This requires handling of tail probabilities of a family of
martingales for which we use the iterated exponential martingale inequality of JN16,
see Lemma A.1. When there are no marks, this is based on the Freedman (1975)
inequality used by Koul & Ossiander (1994), but in general it uses the Bercu & Touati
(2008) inequality.

Fourth, distances of two quantiles c1 and c2 are measured through a distance function
Hr(c) =

∫ c
−∞(1 + x2rp)f(x)dx with derivative Ḣr(c) for a suitable power r and where f

is the density of εi. The derivative is assumed to be Lipschitz and bounded from above
and below by two proportional unimodal functions. At the same time, the density f can
have finite support. Examples include densities f, that are normal as well as uniform
or triangular. In Lemmas A.8, A.9 we present improved inequalities for differences of
these functions evaluated at two points: Hr(c2)− Hr(c1) and Ḣr(c2)− Ḣr(c1).

The regularity conditions are simpler than in JN16 since Ḣr(c) is assumed to be
Lipschitz rather than differentiable. The assumption of weakly unimodal bounds is
equivalent, but more accessible, than a condition in JN16, see Lemma A.2. It is clearified
that it suffices that f has support on an open interval. The class of functions with weakly
unimodal bounds is shown to be closed under addition and multiplication, see Lemma
A.3. It includes the normal, triangular and uniform distributions as well as mixtures
thereof.

For the weights win and xin = N ′xi we require certain moment conditions. JN16
had the additional assumption that max1≤i≤n |xin| vanishes in probability. With the
improved proof, this condition is no longer needed and the range of regressors extends
from stationary and random walk-type regressors as in JN16 to explosive regressors.

1.3 Applications

The 1-step Huber-skip estimator β̂ is popular in the robust literature. It is used exten-
sively in applied work without reference to robust statistics. With the present results
it is possible to update existing results to have simpler assumptions. The estimator β̂
is a 1-step version of the skip-estimator of Huber (1964). Due to the hard rejection of
outlying residuals, the estimator differs from the scoring-type 1-step estimator of Bickel
(1975), see also (Jurečková et al., 2013, §7.4). It has various names in the literature: the
Trimmed Least Squares Estimation by Ruppert & Carroll (1980); the Weighted Least
Squares by (Rousseeuw & Leroy, 1987, p. 17, 153); and the Data Analytic Strategy by
Welsh & Ronchetti (2006). A variant of the 1-step Huber-skip estimator can be used
for scale estimation, when the regression parameter is estimated by the Least Trimmed
Squares estimator of Rousseeuw (1984), see (Rousseeuw & Leroy, 1987, p. 17), Croux
& Rousseeuw (1992), Johansen & Nielsen (2016b).

Least squares steps similar to the 1-step Huber-skip estimator are used in computer-
intensive iterative procedures such as the Forward Search and the Impulse Indicator
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Saturation. The Forward Search is an iterative algorithm for avoiding outliers in regres-
sion analysis suggested by Hadi & Simonoff (1993) and developed further by Atkinson
& Riani (2000) and Atkinson et al. (2010). The algorithm starts with the selection of
a subset of ”good” observations. In the iteration step, a variant of the 1-step Huber-
skip estimator is used and the size of the subset of ”good” observations is increased by
one. A related iterative algorithm is Impulse Indicator Saturation, based on an idea
of Hendry (1999), see also (Hendry & Doornik, 2014, §15). It is implemented in Ox,
see Doornik (2009) and R, see Pretis et al. (2018). A stylized version of the algorithm
is the split-half algorithm suggested by Hendry et al. (2008). The idea is to split the
sample into two, compute the least squares estimator in each sample and then use the
estimator from one sub-sample to detect outliers in the other sub-sample. This gives
rise to 1-step Huber-skip estimators. Johansen & Nielsen (2016b) review the available
asymptotic theory for these algorithms. This includes a budding theory for chosing the
cut-off values from the frequency of false discoveries, also called the gauge. A feature
of this theory is that it is developed under the hypothesis of no outliers, where the
reference distribution F is nice. The empirical process results presented here allows for
more irregular distributions, which brings us closer to the analysis of these algorithms
under contamination.

The results generalize previous work on the residual empirical distribution function
for autoregressions by Engler & Nielsen (2009). This, in turn, builds on separate proofs
of Lee & Wei (1999) and Koul & Leventhal (1989) for non-explosive and explosive
cases, respectively. The present proof has a unified argument for those cases. The
marked empirical processes of Koul & Stute (1999), Escanciano (2007) arise when the
weights are win = n−1/21(xi≤d) and the present indicators 1(εi≤σc) are set to unity. Their
expansions are uniform in d, which is not allowed here.

1.4 Outline

The paper is organized as follows. In Section 2, the model and definitions related to the
residual empirical processes are presented. The asymptotic analysis follows in Section 4.
At first, we improve a result in JN16 concerning estimation error for location. The main
results are presented in four theorems: First, the marked and weighted empirical process
of residuals is shown to be asymptotically equivalent to the corresponding process of the
true innovations; Second, the bias coming from the compensator is derived; Third, the
tightness of the empirical process of the true errors is presented; Fourth, the previous
three results are combined to give an asymptotic expansion of the marked and weighted
empirical process of residuals. All proofs are collected in the Appendix.

2 The model and the empirical distribution function

We assume that (yi, xi) for i = 1, . . . , n satisfy the multiple regression equation

yi = x′iβ + εi, (2.1)

with scale σ, regressors xi and parameter β, both of dimension dimx. The scaled inno-
vations εi/σ are independent and identically distributed with density f and distribution

4



function F(c) = P(εi/σ ≤ c). In practice, the distribution F will often be standard
normal. For each i the innovation εi is independent of the regressor xi.

Suppose we have an initial estimator β̃ for the regression parameter β, residuals ε̃i =
yi− x′iβ̃ and an estimator σ̃ of the scale σ. Define, for some deterministic normalization
matrix N, normalized estimators and regressors

ã = n1/2(σ̃ − σ)/σ, b̃ = N−1(β̃ − β)/σ, xin = N ′xi, (2.2)

so that x′i(β̃ − β) = x′inb̃σ. In most situations, the normalization N is chosen so that∑n
i=1xinx

′
in has a positive definite limit. In this way, we can choose N = n−1/2 for

stationary regressors and N = n−1 for random walk regressors. If the regressors are
xi = (1, i), we normalize them so that xin = (n−1/2, n−3/2i). If the regressors are
explosive so that xi = 2i, we let N = 2−n so that xin = 2i−n. In the asymptotic analysis,
we consider triangular arrays to accommodate the normalization built into xin. This
means that we also cover certain types of infill asymptotics. Suppose, in the context of
model (2.1), that xi = 1(i≤n†) for some n† ≤ n. The asymptotic constraint n†/n = τ for

some 0 < τ < 1 can be accommodated by choosing N−1 = n1/2 and xin = n−1/21(i≤τn)

in (2.2).
The theory does, however, leave the possibility of choosing N through a tradeoff

between two conditions. First, N should be so small that E
∑n

i=1xinx
′
in = O(1), which

allows for non-convergence or convergence to zero. Second, N−1 should be so small that
b̃ = N−1(β̃ − β) is bounded by n1/4−ηB for some 0 < η ≤ 1/4. This could potentially
be useful in irregular situations, where asymptotic theory is less developed.

The marked and weighted empirical distribution functions of residuals are defined as

Fw,pn (ã, b̃, c) = n−1
∑n

i=1winε
p
i 1(ε̃i≤σ̃c) = n−1

∑n
i=1winε

p
i 1(εi/σ≤c+n−1/2ãc+x′inb̃)

, (2.3)

where εpi is the mark and win is a weight function that could be matrix valued and
satisfies E

∑n
i=1win = O(n). Examples include win = 1, win = n1/2xin and win = nxinx

′
in.

3 Techniques for analysis of empirical processes

The primary challenge in the asymptotic analysis of Fw,pn (ã, b̃, c) in (2.3) is the estima-
tion errors ã, b̃, that is, to move from the empirical distribution function of residuals
Fw,pn (ã, b̃, c) to the empirical distribution function of innovations Fw,pn (0, 0, c). For this
purpose, we replace the normalized estimation errors ã and b̃ in (2.2) with deterministic
terms a and b varying in an apropriate compact set which depends on n. We assume ã
and b̃ are OP(n1/4−η) for 0 < η ≤ 1/4, so that nη−1/4ã and nη−1/4b̃ vary in compact sets
with large probability. Thus, due to the following lemma, Fw,pn (ã, b̃, c) can be analysed
by studying Fw,pn (a, b, c) uniformly over a large compact set for nη−1/4a and nη−1/4b.

Lemma 3.1. Let ε > 0. Suppose a compact set Θ exists so limn→∞ P(θ̃ ∈ Θ) > 1 − ε.
Let Fn(θ, c) be some function of θ ∈ Θ and c ∈ R. Then,

P{|Fn(θ̃, c)| > ε}≤ P{sup
θ∈Θ
|Fn(θ, c)| > ε}+ ε.
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Proof. Since P(A)≤ P(A ∩ B)+P(Bc) for events A,B, then

P{|Fn(θ̃, c)| > ε} ≤ P{|Fn(θ̃, c)| > ε, θ̃ ∈ Θ}+ P(θ̃ 6∈ Θ).

The first term is bounded by considering the largest possible outcome of |Fn(θ, c)| for
θ ∈ Θ. The second term vanishes by assumption.

The process Fw,pn (a, b, c) is analyzed under the following triangular array assumption
to the innovations εi, the regressors xin and weights win.

Assumption 3.1. Let Fin be an array of increasing sequences of σ-fields so that Fi−1,n ⊂
Fin where εi−1, xin, win are Fi−1,n measurable and εi/σ is independent of Fi−1,n with
density f, which is continuous on its support S, which is an open interval ]c, c[ with
−∞ ≤ c < c ≤ ∞.

Under Assumption 3.1 we apply a martingale decomposition to Fw,pn (a, b, c) as follows.
For a given n, let Ei−1(·) denote the conditional expectation given Fi−1,n. Thus, the
compensator is the following sum of conditional expectations

F
w,p

n (a, b, c) = n−1
∑n

i=1winEi−1{εpi 1(εi/σ≤c+n−1/2ac+x′inb)
}. (3.1)

From this, we form the marked and weighted empirical process

Fw,pn (a, b, c) = n1/2{Fw,pn (a, b, c)− F
w,p

n (a, b, c)}, (3.2)

which is a normalized sum of martingale differences, where the summands depend on n.
This gives the martingale decomposition Fw,pn (a, b, c) = F

w,p

n (a, b, c) + n−1/2Fw,pn (a, b, c).
In the asymptotic theory, uniform results over a, b, c are proved using chaining argu-

ments. This requires a compactification of the quantile axis for c ∈ R, which is done by
using the function Hr(c) = E(1 + |ε1/σ|2

rp)1(ε1≤σc), see also §A.2.
Two somewhat different types of chaining arguments are used. To illustrate the first

type of chaining technique, consider a generic empirical process Fn(θ, c) where θ ∈ Θ
and c ∈ R. To set up the chaining in this case, introduce K gridpoints ck so that
Hr(ck)−Hr(ck−1) are constant in k and proportional to 1/K. Then, cover the set Θ by
M balls with centres θm with a small radius δ. The first chaining argument is

sup
θ∈Θ

sup
c∈R
|Fn(θ, c)| ≤ max

1≤m≤M
max

1≤k≤K
|Fn(θm, ck)|

+ max
1≤m≤M

max
1≤k≤K

sup
|θ−θm|≤δ

sup
ck−1<c≤ck

|Fn(θ, c)− Fn(θm, ck)|.

The two bounding terms are denoted the discrete point term and the perturbation term.
The second chaining argument is used in the proof of the tightness of the empirical

process Fw,pn (0, 0, c) without estimation errors. The proof uses chaining over dyadic
rational numbers on the set Hr(R). A result of this type is given in Theorem 4.3.
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4 Uniform expansions of empirical processes

The following results are concerned with a uniform Central Limit Theorem for the
empirical distribution function Fw,pn (ã, b̃, c). The analysis starts with the decomposition

n1/2{Fw,pn (ã, b̃, c)− F̄w,pn (0, 0, c)}
= n1/2{Fw,pn (0, 0, c)− F̄w,pn (0, 0, c)}+ Bw,pn (ã, b̃, c)

+ n1/2{Fw,pn (ã, b̃, c)− F̄w,pn (ã, b̃, c)− Fw,pn (0, 0, c) + F̄w,pn (0, 0, c)}
+ n1/2{F̄w,pn (ã, b̃, c)− F̄w,pn (0, 0, c)} − Bw,pn (ã, b̃, c), (4.1)

where Bw,pn (a, b, c) is a bias term, which is linear in a, b. It is defined in (4.4) below.
Thus, using the notation Fw,pn defined in (3.2) we have

n1/2{Fw,pn (ã, b̃, c)− F̄w,pn (0, 0, c)} = Fw,pn (0, 0, c) + Bw,pn (ã, b̃, c)

+ {Fw,pn (ã, b̃, c)− Fw,pn (0, 0, c)}+ [n1/2{F̄w,pn (ã, b̃, c)− F̄w,pn (0, 0, c)} − Bw,pn (ã, b̃, c)].

The first term Fw,pn (0, 0, c) is a standard marked and weighted empirical process without
estimation error. For a fixed c, it is analyzed using a martingale Central Limit Theorem.
Viewed as a process, the tightness is shown in Theorem 4.3, which originates from JN16,
whereas, for instance, Billingsley (1968) considers the special case without marks and
weights and Koul & Ossiander (1994) consider the special case without marks. The
third and fourth terms vanish by Theorems 4.1, 4.2 below. Thus, uniformly in c,

n1/2{Fw,pn (ã, b̃, c)− F̄w,pn (0, 0, c)} = Fw,pn (0, 0, c) + Bw,pn (ã, b̃, c) + oP(1).

4.1 Location estimation error and the empirical process

The first result requires some regularity of h(c) = (1+ |c|2rp)f(c) for some r to be chosen.

Definition 4.1. Let h(c) ≥ 0 have support S =]c, c[ where −∞ ≤ c < c ≤ ∞:
(i) h is Lipschitz if ∃CL > 0: ∀c, c† ∈ S then |h(c)− h(c†)| ≤ CL|c− c†|;
(ii) h has weakly unimodal bounds if a constant Cu ≥ 1 and a function u exist so
that ∀c ∈ R: u(c) ≤ h(c) ≤ Cuu(c), where u has finite mode at cmode ∈ S, so that u(c)
is non-increasing for c > cmode and non-decreasing c < cmode.

Assumption 4.1. Let p ∈ N0, r ∈ N, 0 < η ≤ 1/4 be given so that r ≥ 2 and

2r−1 > 1 + (1/4− η)(1 + dimx). (4.2)

(i) innovations εi/σ. Suppose h(c) = (1 + |c|2rp)f(c) is (a) integrable and (b) Lipschitz
with weakly unimodal bounds (Definition 4.1);
(ii) regressors xin and weights win, where win may be matrix valued, satisfy

En−1
∑n

i=1(1 + |win|2
r
)(1 + |n1/2xin|2) = O(1).

Lemma 4.1. Suppose Assumptions 3.1, 4.1 hold. Let 0 < η ≤ 1/4. Then, ∀B > 0,

sup
c∈R

sup
|b|≤n1/4−ηB

|Fw,pn (0, b, c)− Fw,pn (0, 0, c)| = oP(1).
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We now give some remarks and some examples in relation to Assumption 4.1

Remark 4.1. In stationary models, N = n−1/2 so that
∑n

i=1 xinx
′
in = n−1

∑n
i=1 xix

′
i

converges. Standard estimators satisfy b̃ = OP(1) so that η = 1/4 and r = 2 in (4.2).
For non-standard estimators b̃ may diverge so that the required number of moments for
εi grows linearly with the dimension of the regressor. This would be relevant for the
n1/3-consistent least median of squares regression estimator β̃LMS by Rousseeuw (1984).
In that case, we get η = 1/12 since n1/2(β̃LMS − β) = OP(n1/2−1/3) = OP(n1/4−1/12).

Remark 4.2. We compare Assumption 4.1 with Assumptions 3.1, 4.1 in JN16.
(a) The coefficient r in (4.2) here satisfies a slighty weaker constraint in that a term
κ(1 + dimx) has fallen away from the lower bound. One implication is that when the
normalized estimators are bounded in probability, ã, b̃ = OP(1) so that η = 1/4, then we
can choose r = 2 for regressors xin of any dimension.
(b) Part (i) is simpler than the corresponding part in JN16. It is made clear that the
support can be finite. It suffices that the function h is Lipschitz on the support rather
than differentiable. The property of having weakly unimodal bounds is equivalent to
the smoothness condition in JN16, but easier to apply, see Lemma A.2. JN16 required
boundedness for certain functions of the density f. These conditions are now found to
be consequences of other conditions due to Lemmas A.4, A.5 in the Appendix.
(c) The regressors satisfy moment conditions here without requiring that max1≤i≤n xin
vanishes in contrast to earlier papers including Koul & Ossiander (1994), Engler &
Nielsen (2009) and JN16. Thus, the results cover the explosive regressors. An example
is xi = 2i normalized as xin = 2i−n. The normalized estimator

∑n
i=1 xinεi/

∑n
i=1 x

2
in

converges in distribution when εi is iid and the sum of squares
∑n

i=1 x
2
in converges, but

max1≤i≤n xin = xnn = 1 is not vanishing.

Example 4.1. Suppose that h(c) = (1 + |c|a)f(c), for some a > 0. We demonstrate that
h satisfies Assumption 4.1 for uniform, triangular, normal and mixture densities.
(a) Suppose f is the uniform density or the triangular density, ∆(c) = 1−|c| for |c| ≤ 1.
Because h(c) ≥ f(c) and the uniform and triangular have bounded support S, we can
choose u(c) = f(c), and Cu = maxc∈S(1 + |c|a), so that h has weakly unimodal bounds as
in (ib). Moreover, the densities have bounded right and left derivatives, so the h functions
are Lipschitz and satisfy (ic).
(b) Suppose f = ϕ is standard normal. There exists c0 > 0 such that (1 + |c|a)ϕ(c) is
decreasing for c ≥ c0 and increasing for c ≤ −c0. Let u0 = min|c|≤c0(1 + |c|a)ϕ(c). Then
condition (A.6) holds with

u(c) = min{u0, (1 + |c|a)ϕ(c)}, Cu = max
|c|≤c0

(1 + ca)ϕ(c)/u0. (4.3)

(c) Mixture densities f(c) = (1 − ε)f1(c) + εf2(c). The class of function with weakly
unimodal bounds and locally Lipschitz is closed to addition, see Lemma A.3. Thus,
(ib) is satisfied.

Example 4.2. The Lipschitz and weak unimodal bounds conditions in Assumption
4.1(ib) are supplementary:
(a) The density proportional to 1− |c|1/2 for |c| ≤ 1 is unimodal, but not Lipschitz.
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(b) The following oscillating function is Lipschitz, but it does not have unimodal bounds.
For c ≥ 1 and m− 1 ∈ N let m̃ = m+ (m− 1)−2−m−2 and define, for m < c ≤ m+ 1,

f(c) = m−2 + (m̃− c)1(m≤c≤m̃) + (m−1 − |c−m− 1/2|)1(|c−m−1/2|≤m−1).

The function is Lipschitz with Lipschitz coefficient 1. A decreasing lower bound must
satisfy u(m+ 1/2) ≤ u(m+ 1/4) and u(m+ 1/4) ≤ f(m+ 1/4) so that

f(m+ 1/2)

u(m+ 1/2)
≥ f(m+ 1/2)

f(m+ 1/4)
≥ 1/m

1/m2
= m,

which is unbounded for large m, so that f does not have weakly unimodal bounds.

4.2 Further intermediate results

Some further results are needed before the expansion (4.1) of Fw,pn (ã, b̃, c) can be analyzed.
In parallel with the previous Lemma 4.1 for the location estimation error the next Lemma
is concerned with scale estimation error. It simplifies proof and assumptions of Theorem
5 in Jiao & Nielsen (2017).

Lemma 4.2. Suppose Assumptions 3.1, 4.1(i, ii) hold with only r = 2. Let 0 < η ≤ 1/4.
Then, ∀B > 0,

sup
c∈R

sup
|a|≤n1/4−ηB

|Fw,pn (a, 0, c)− Fw,pn (0, 0, c)| = oP(1).

Combining the Lemmas 4.1, 4.2 leads to the following result.

Theorem 4.1. Suppose Assumptions 3.1, 4.1 hold. Let 0 < η ≤ 1/4. Then, ∀B > 0,

sup
c∈R

sup
|a|,|b|≤n1/4−ηB

|Fw,pn (a, b, c)− Fw,pn (0, 0, c)| = oP(1).

Next, we linearize the compensator. The result generalizes Jiao & Nielsen (2017,
Theorem 8) by replacing a differentiability assumption with a Lipschitz condition.

Assumption 4.2. Suppose, for p ∈ N0,
(i) innovations εi/σ satisfy

(a) moments: E|εi|p <∞;
(b) smoothness: |c|qf(c) is Lipschitz for q = p, p+ 1, p+ 2 (Definition 4.1);
(c) boundedness: supc∈S(1 + |c|)|c|pf(c) <∞;

(ii) weights and regressors: n−1
∑n

i=1|win|(1 + |n1/2xin|2) = OP(1).

Theorem 4.2. Suppose Assumptions 3.1, 4.2 hold. Define

Bw,pn (a, b, c) = σpcpf(c)n−1/2
∑n

i=1win(n−1/2ac+ x′inb). (4.4)

Let 0 < η ≤ 1/4. Then, ∀B > 0,

sup
c∈R

sup
|a|,|b|≤n1/4−ηB

|n1/2{Fw,pn (a, b,c)− F
w,p

n (0, 0, c)} − Bw,pn (a, b, c)| = OP(n−2η).
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Finally, we quote a tightness result proved under the following assumptions.

Assumption 4.3. Suppose, for p ∈ N0,
(i) innovations: E|εi|q <∞ for some q > 4p;
(ii) weights and regressors: En−1

∑n
i=1|win|4(1 + |n1/2xin|) = O(1).

Theorem 4.3 (JN16, Theorem 4.4). Suppose Assumptions 3.1, 4.3 hold. Then, ∀ε > 0,

lim
φ↓0

lim sup
n→∞

P{ sup
c,c†∈R:|F(c†)−F(c)|≤φ

|Fw,pn (0, 0, c†)− Fw,pn (0, 0, c)| > ε} = 0

4.3 Expansion of the empirical distribution function

We can now analyze the expansion of Fw,pn (ã, b̃, c) in (4.1). This gives an asymptotic
uniform expansion of Fw,pn (ã, b̃, c) that is linear in the estimation errors ã, b̃.

Theorem 4.4. Stochastic expansion. Suppose Assumptions 3.1, 4.1, 4.2(i), 4.3(i)
hold for some 0 < η ≤ 1/4 so that ã = n1/2(σ̃ − σ)/σ and b̃ = N−1(β̃ − β)/σ are
OP(n1/4−η). Then, the process Fw,pn (0, 0, c) is tight and uniformly in c ∈ R,

n1/2{Fw,pn (ã, b̃, c)− F̄w,pn (0, 0, c)}
= Fw,pn (0, 0, c) + σpcpf(c)n−1/2

∑n
i=1win(n−1/2cã+ x′inb̃) + oP(1). (4.5)

Proof. Since ã and b̃ are OP(n1/4−η), the expansion follows by Lemma 3.1 and Theorems
4.1, 4.2 and the tightness follows by Theorem 4.3.

The set of Assumptions in Theorem 4.4 simplify when distinguishing between the
three cases where p ∈ N with either r = 2 or r > 2 and where p = 0. The latter case
was also studied by Koul & Ossiander (1994).

Corollary 4.1. Suppose Assumption 3.1 holds and consider the special case where r = 2
and p ∈ N. Let ã = n1/2(σ̃ − σ)/σ and b̃ = N−1(β̃ − β)/σ be OP(n1/4−η). Suppose
(i) η satisfies 0 < η ≤ 1/4 and 2 > 1 + (1/4− η)(1 + dimx);
(ii) h(c) = (1 + |c|4p)f(c) is integrable and Lipschitz with weakly unimodal bounds;
(iii) En−1

∑n
i=1(1 + |win|4)(1 + |n1/2xin|2) = O(1);

(iv) cqf(c) is integrable for some q > 4p.
Then, the process Fw,pn (0, 0, c) is tight and the expansion of Fw,pn (ã, b̃, c) in (4.5) holds.

Proof. We verify Assumptions 4.1, 4.2(i), 4.3(i). Assumption 4.1 matches conditions
(i), (ii), (iii). Assumption 4.3(i) matches condition (iv). For Assumption 4.2(i) part (a)
requires integrability of |c|pf(c), which follows from condition (ii). Part (b) requires
Lipschitz of cpf(c), cp+1f(c), cp+2f(c). This follows from condition (ii) due to Lemma
A.6. Part (c) requires (1 + |c|)|c|pf(c) is bounded. This function is bounded by h(c) =
(1 + |c|4p)f(c), when p ∈ N. In turn, h(c) is bounded under condition (ii) due to Lemma
A.4.

Corollary 4.2. Suppose Assumption 3.1 holds and consider the special case where r > 2
and p ∈ N. Let ã = n1/2(σ̃ − σ)/σ and b̃ = N−1(β̃ − β)/σ be OP(n1/4−η). Suppose
(i) η satisfies 0 < η ≤ 1/4 and 2r−1 > 1 + (1/4− η)(1 + dimx);
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(ii) h(c) = (1 + |c|2rp)f(c) is integrable and Lipschitz with weakly unimodal bounds;
(iii) En−1

∑n
i=1(1 + |win|2

r
)(1 + |n1/2xin|2) = O(1).

Then, the process Fw,pn (0, 0, c) is tight and the expansion of Fw,pn (ã, b̃, c) in (4.5) holds.

Proof. The proof follows that of Corollary 4.2, except for one step. Assumption 4.2(ia)
requires integrability of |c|qf(c) for some q > 4p. This now follows from the integrability
of |c|2rpf(c) in condition (ii) since 2rp > 4p for r > 2.

Corollary 4.3. Suppose Assumption 3.1 holds and consider the special case where r ≥ 2
and p = 0. Let ã = n1/2(σ̃ − σ)/σ and b̃ = N−1(β̃ − β)/σ be OP(n1/4−η). Suppose
(i) η satisfies 0 < η ≤ 1/4 and 2r−1 > 1 + (1/4− η)(1 + dimx);
(ii) |c|qf(c) is integrable for some q > 0; (1 + c2)f(c) is Lipschitz; and f(c) has weakly
unimodal bounds;
(iii) En−1

∑n
i=1(1 + |win|2

r
)(1 + |n1/2xin|2) = O(1).

Then, the process Fw,pn (0, 0, c) is tight and the expansion of Fw,pn (ã, b̃, c) in (4.5) holds.

Proof. We need to verify Assumptions 4.1, 4.2(i), 4.3(i). For Assumption 4.1 note that
part (i) follows from condition (ii), since it implies that f is integrable and Lipschitz
with weakly unimodal bounds due to Lemma A.6. The remaining parts of Assumption
4.1 correspond to condition (i, iii). Assumption 4.3(i) requires integrability of |c|qf(c) for
some q > 0, which is stated in condition (ii). For Assumption 4.2(i) part (a) is trivially
satisfied when p = 0. Part (b) requires Lipschitz of f(c), cf(c), c2f(c), which follows from
condition (ii) due to Lemma A.6. Part (c) requires that f(c) and |c|f(c) are bounded.
This follows from Lemmas A.4, A.5, respectively, under condition (ii).

Theorem 4.4 provides a stochastic expansion of Fw,pn (ã, b̃, c). When the weights are
stationary or deterministic the limit will be a Gaussian process. This can be proved
using the Central Limit Theorem for martingale difference arrays of Dvoretzky (1972).

Example 4.3. Let the weights win satisfy Σ̂w = n−1
∑n

i=1w
2
in → Σw in probability

and EΣ̂w → Σw. Let ω2
c,p = Var{εpi 1(εi/σ≤c)}. Then Fw,pn (0, 0, c) converges to a Gaussian

process with variance Σwω
2
c,p. The Dvoretzky (1972) result requires a Lindeberg condition,

which is satisfied with fourth moments as in Assumption 4.3.

Non-Gaussian limiting processes arise with random walk-type weights.

Example 4.4. Let the weights win = n−1/2
∑i

j=1 ηj be normalized random walks where

ηj are i.i.d. with zero mean and unit variance. For u ∈ [0, 1] let Wu, B
(c)
u be independent

standard Brownian motions. Let int(nu) denote the integer part of nu. Then wint(nu),n

and n−1/2
∑int(nu)

i=1 {εpi 1(εi/σ≤c)−Eεpi 1(εi/σ≤c)} converge in distribution to Wu, B
(c)
u ω2

c,p, for
fixed c. Thus, Fw,pn (0, 0, c) converges to a process which, for each c, can be expressed as

the stochastic integral
∫ 1

0
WudB

(c)
u ω2

c,p, see Chan & Wei (1988).

5 Concluding remarks

The main result is Theorem 4.4, which gives an asymptotic uniformly linear expansion
of the weighted and marked empirical distribution function of estimated residuals. The
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expansion has three terms. First, the compensator of the weighted and marked empirical
distribution function applied to the true innovations. Second, the empirical process
defined from weighted and marked empirical distribution function applied to the true
innovations. Third, a bias term that is linear in the normalized estimation error.

The result generalizes previous work of Billingsley (1968) for empirical distribution
functions of the true innovations and of Koul and Ossiander for the case without marks.
The new proof corrects a mistake in the proof of JN16. In the process of writing the
new proof the conditions have been made more accessible. In particular, the necessary
smothness conditions have been formulated as a combination of a Lipschitz property
and unimodal bounds. The conditions to the regressors have been simplified so that the
present result also covers explosive regressors. This unifies separate proofs for explosive
and non-explosive cases by Koul & Leventhal (1989) and Lee & Wei (1999).

The result can be used to analyze 1-step Huber-skip estimators which appear in
various robust statistical procedures. They also appear implicitly in the common data
analytic strategy of first estimating a least squares regression, dropping observations
with large residuals and then reestimating a regression on the selected observations.
Johansen & Nielsen (2016b) review these results.

A Proofs

For sequences sn, tn we say sn ∼ tn if sn = O(tn) and tn = O(sn). The weights win may
be matrix valued. To show that the resulting matrix of empirical processes vanishes, it
suffices to show this for each element. Thus, we proceed in this appendix as if win is
scalar. Throughout the rest of the Appendix we denote by C a generic constant, which
need not be the same in different expressions. Let int(x) denote the integer part of x.

A.1 Iterated martingale inequality

In the proofs we will make frequent use of the following iterated exponential martingale
inequality which builds on the exponential martingale inequality by Bercu & Touati
(2008), see also Bercu et al. (2015), Bercu & Touati (2018).

Lemma A.1 (JN16, Lemma 4.2). For 1 ≤ ` ≤ Ln and 1 ≤ i ≤ n let zn`i be Fin adapted
and Ez2r

n`i < ∞ for some r ∈ N. Let Dnq = max1≤`≤Ln
∑n

i=1Ei−1z
2q

n`i for 1 ≤ q ≤ r.
Suppose, for some λ > 0, ς ≥ 0, that Ln = O(nλ) and Enq = EDnq = O(nς) for
1 ≤ q ≤ r. Then, if υ > 0 is chosen such that

(i) ς < 2υ, (ii) ς + λ < υ2r,
it holds that max1≤`≤Ln |

∑n
i=1(zn`i − Ei−1zn`i)| = oP(nυ).

A.2 Metric and cover

The chaining argument is based on a finite number of points ck ∈ R, k = 0, 1, . . . , K,
which define a cover of R by the K intervals

−∞ = c0 < c1 < · · · < cK−1 < cK =∞. (A.1)
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The definitions of c0 and cK are convenient even when the support is finite. In JN16
these chaining points are chosen using the function

Hr(c) =
∫ c
−∞(1 + |u|2rp)f(u)du = E(1 + |εi/σ|2

rp)1(εi/σ≤c), (A.2)

for a given r = 0, 1, . . . , such that the intervals have the same size when measured by
the increments of Hr, that is,

Hr(ck)− Hr(ck−1) = Hr/K for k = 0, 1, . . . , K. (A.3)

The function Hr is increasing in c and bounded when

Hr = Hr(∞) =
∫∞
−∞(1 + |u|2rp)f(u)du = E(1 + |εi/σ|2

rp) <∞. (A.4)

The inequality |εs| < 1 + |ε|r for 0 ≤ s ≤ r implies that, for c ≤ c†,

E{|εi/σ|1(c<εi/σ≤c†)}
2sp ≤ E(1 + |εi/σ|2

rp)1(c<εi/σ≤c†) = Hr(c
†)− Hr(c). (A.5)

We refer to Hr(c
†)− Hr(c) as the Hr-distance between c and c†.

The count K will be a function of n. In the different proofs, the count K and the
power r will be chosen differently. In the chaining argument, we compare Hr evaluated
at c and at c+n−1/2ac+x′inb. The proofs consider the additive perturbation c+x′inb for
a = 0, in Lemma A.9 and the multiplicative perturbation c + n−1/2ac = c(1 + n−1/2a)
for b = 0 in Lemma A.10. These will be used in the subsequent proofs of Lemmas 4.1,
4.2, when chaining over a, c and b, c respectively.

A.3 Weakly unimodal functions

We consider a reformulation of the condition in JN16, §B.5.

Lemma A.2. Let h(c) ≥ 0 have support on an open interval S ⊂ R. Then, h(c) has a
weakly unimodal bound u(c) (Definition 4.1) if and only if h has the bound h(c) ≤ h(c) ≤
h(c) ≤ Chh(c) for all c ∈ S and a constant Ch ≥ 1 and where for a point ch

h(c) = {infch≤d≤c h(d)}1(c≥0) + {inf−c≤d≤ch h(d)}1(c<0),

h(c) = {supc≤d<c h(d)}1(c≥0) + {supc<d≤−c h(d)}1(c<0).

Proof. ”⇐ ” : The functions h and h are weakly unimodal.
”⇒ ” : Choose ch = cmode. Then, h is the largest weakly unimodal function less than

h, while h is the smallest weakly unimodal function larger than h. Therefore, u(c) ≤
h(c) ≤ h(c) and h(c) ≤ h(c) ≤ Cuu(c). Since u(c) ≤ h(c) we can choose Ch = Cu.

We note that if h(c) = 0 then the weakly unimodal bound is also zero, that is
u(c) = 0. Further, the class of functions with weakly unimodal bound is closed under
multiplication with a positive constant. Thus, if h has a weakly unimodal bound so has
Ch for any C > 0.

We show that the class of non-negative functions with weakly unimodal bound is
closed to taking minimum, maximum, addition and multiplication.
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Lemma A.3. Let h1, h2 have support on open intervals S1,S2⊂R and suppose S1∩S2 6=
∅. Let f be a function from R2 to [0,∞[ that can represent addition, multiplication or
taking maximum or minimum. If each function hj has a weakly unimodal bound, see
Definition 4.1, then f{h1(x), h2(x)} also has a weakly unimodal bound.

Proof. By assumption there exists x̄ ∈ S1 ∩ S2. Let v̄ = min{v1(x̄), v2(x̄)}, so that
v̄i(x) = vi(x) ∧ x̄ are two weakly unimodal functions. The function f is non-decreasing
in its arguments. Therefore, f{v̄1(x), v̄2(x)} is weakly unimodal because v̄i(x) is non-
decreasing for x ≤ x̄, and non-increasing for x ≥ x̄, such that the same holds for
f{v̄1(x), v̄2(x)}.

To see that f{v̄1(x), v̄2(x)} provides weakly unimodal bounds, recall vi(c) ≤ h(c) ≤
Civi(x) and let vmax

i = maxx∈Si vi(x) to get the lower bound

f{v̄1(x), v̄2(x)} ≤ f{v1(x), v2(x)} ≤ f{h1(x), h2(x)},

and the upper bound, for C = max(C1v
max
1 , C2v

max
2 )/v̄,

f{h1(x), h2(x)} ≤ f{C1v1(x), C2v2(x)} ≤ f{C1
vmax

1

v̄
v̄1(x), C2

vmax
2

v̄
v̄2(x)}

≤ f{Cv̄1(x), Cv̄2(x)} ≤ f(C,C)f{v̄1(x), v̄2(x)},

where the last inequality uses the assumed functional form of f .

A.4 Bounds on the distance function

In the following lemmas, we provide uniform bounds for Ḣr and of the increment for Ḣr

over two points c1, c2. Lemma A.8, extracts the main argument in the proof of Lemma
B.1 in JN16 with a simplified proof and weaker conditions replacing differentiability
with Lipschitz continuity and allowing a finite support. The results are derived for a
general function Ḣ, as described in Assumption A.1 below. This general result will then
be applied to the particular function Ḣr in (A.2).

Assumption A.1. Let H(c) =
∫ c
−∞ Ḣ(x)dx, where Ḣ(x) ≥ 0. Suppose

(i) the support of Ḣ, that is S = {c : Ḣ(c) > 0}, is an interval with endpoints c, c̄ so that
−∞ ≤ c < c̄ ≤ ∞;

(ii) H = H(∞) =
∫
R Ḣ(c)dc <∞;

(iii) Ḣ is Lipschitz (Definition 4.1);
(iv) Ḣ has weakly unimodal bounds (Definition 4.1): ∃Cu ≥ 1, u(c), ∀c ∈ R:

0 ≤ u(c) ≤ Ḣ(c) ≤ Cuu(c). (A.6)

Lemma A.4. Suppose Assumption A.1(i)-(iii) is satisfied. Then, Ḣ is bounded. Fur-
ther, if c̄ =∞, then Ḣ(c)→ 0, for c→∞ and if c = −∞, then Ḣ(c)→ 0, for c→ −∞.

Proof. Let c0 be an interior point of S.
If c̄ <∞, since Ḣ is Lipschitz continuous by Assumption A.1(iii), it has a continuous

extension to c̄ so we can define Ḣ(c̄), and it is therefore bounded on [c0, c̄]. The same
argument shows that Ḣ can be extended to c and is bounded on [c, c0] if c > −∞.
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If c̄ = ∞ and c0 ≤ c1 < c then ∞ ≥ c1 + Ḣ(c1)/CL and c0 ≤ c1. Further, the
Lipschitz Assumption A.1(iii) implies Ḣ(c) ≥ CL max{0, c1 + Ḣ(c1)/CL − c}. We find
that ∫∞

c0
Ḣ(c)dc ≥

∫ c1+Ḣ(c1)/CL
c1

CL{c1 + Ḣ(c1)/CL − c}dc = {Ḣ(c1)}2/(2CL).

It then follows from Assumption A.1(ii), that maxc1≥c0{Ḣ(c1)}2 ≤ 2CL
∫∞
c0

Ḣ(c)dc <∞,
so that Ḣ is bounded on [c0,∞[ and Ḣ(c0) → 0 for c0 → ∞. A similar argument for
c = −∞ shows that Ḣ is bounded on ]−∞, c0] and that Ḣ(c0)→ 0 for c0 → −∞.

Lemma A.5. Suppose Assumption A.1 is satisfied. Then |c|Ḣ(c) is bounded.

Proof. Assumption A.1(iv) implies that Ḣ(c) ≤ Cuu(c) where u(c) is non-negative and
non-increasing on c ≥ cmode so that∫∞

cmode
u(x)dx ≥

∫ c
cmode

u(x)dx ≥
∫ c
cmode

u(c)dx = (c− cmode)u(c).

Rearranging the inequality and using that u is non-increasing gives

cu(c) ≤
∫∞
cmode

u(x)dx+ cmodeu(c) ≤
∫∞
cmode

u(x)dx+ cmodeu(cmode) <∞.

The bound is uniform in c since, first, the integral is finite by Assumption A.1(ii, iv),
second, the mode is finite and, third, u(cmode) is finite due to Lemma A.4 using Assump-
tion A.1(i)-(iii). Hence, cḢ(c) ≤ Cucu(c) < ∞. A similar argument can be made for
c ≤ cmode, which combining gives |c|Ḣ(c) <∞.

The following results are used when seeking to simplify the various Lipschitz and
boundedness conditions.

Lemma A.6. Let h(c) = (1 + |c|q)f(c) be bounded and Lipschitz (Definition 4.1) for
some q > 0. Then, |c|pf(c) is Lipschitz for any p ∈ N0 such that p ≤ q.

Proof. Consider ||c|pf(c)− |c†|pf(c†)|. Write |c|pf(c) = {|c|p/(1 + |c|q)}h(c) and add and
subtract {|c†|p/(1 + |c†|q)}h(c) so that, ∀c, c† ∈ S,

||c|pf(c)− |c†|pf(c†)| ≤ | |c|
p

1 + |c|q
− |c†|p

1 + |c†|q
|h(c) +

|c†|p

1 + |c†|q
|h(c)− h(c†)|.

For the first term use that |c|p/(1 + |c|q) is Lipschitz as it has right and left bounded
derivatives for all c, while h(c) is bounded by Assumption. For the second term use that
|c†|p/(1 + |c†|q) is bounded by unity, while h(c) is Lipschitz by Assumption.

Lemma A.7. Let hq(c) = (1 + |c|q)f(c) satisfy Assumption A.1 for some q ∈ N0. Then,
hm(c) = (1 + |c|m)f(c) satisfies Assumption A.1 for any m ∈ N0 such that m < q.

Proof. We check the four parts to Assumption A.1 for hm(c).
Part (i): the functions hq(c) and hm(c) have the same support.
Part (ii): integrability of hq(c) implies integrability of hm(c) as m < q.
Part (iii): by Lemma A.6 using Assumption A.1(i)-(iii), we have that f(c) and |c|mf(c)
are Lipschitz and so is their sum.
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Part (iv): Write hm(c) = v(|c|)hq(c) where v(x) = (1 + xm)/(1 + xq) for x ≥ 0.
We first argue that v(x) is strictly decreasing in x ≥ 1 for m < q. The derivative is

v̇(x) =
mxm−1(1 + xq)− (1 + xm)qxq−1

(1 + xq)2
=
mqxm+q−1

(1 + xq)2
{(1 + x−q)/q − (1 + x−m)/m},

which is negative since 1 + x−q < 1 + x−m for m < q and x ≥ 1. Since v(x) is strictly
decreasing for x ≥ 1 and continuous on R then v(|c|) must have a mode in some |c| ≤ 1.
Thus, v(|c|) is weakly unimodal, see Definition 4.1. The product hm(c) = v(|c|)hq(c) of
the weakly unimodal functions is weakly unimodal, see Lemma A.3.

Lemma A.8. Let Ḣ satisfy Assumption A.1. Then there exist constants CH, K0 > 0,
so that for any K > K0 and any c1 < c2 so that H(c2)− H(c1) ≤ H/K, then

|Ḣ(c2)− Ḣ(c1)| ≤ CH/K
1/2. (A.7)

Proof. 1. Tail behavior of Ḣ. Recall S is the support of Ḣ with endpoints c < c. We
have three types of behaviour of Ḣ around c, and a similar situation around c:

1.1: c <∞ and Ḣ is not continuous at c, that is, limc↑c Ḣ(c) > 0 = limc↓c Ḣ(c);
1.2: c <∞ and Ḣ is continuous at c, that is, Ḣ(c) = 0;
1.3: c =∞, and Ḣ(c)→ 0, c→∞.

Examples are uniform, triangular and normal densities, respectively, see Example 4.1.
2. Existence of c+, c−. Let cmode be a mode of the unimodal bound u. Let cmedian =
H−1(H/2), noting that H is strictly increasing on S. We first show that, in the three
cases 1.1-1.3 above, for large K, a c+ exists so that cmode ≤ c+ ≤ c̄ and

Ḣ(c+) ≥ H/K1/2 and H(c+) ≥ H(cmedian) +H/K. (A.8)

Similarly, a c− exists so that c ≤ c− ≤ cmode and

Ḣ(c−) ≥ H/K1/2 and H(c−) ≤ H(cmedian)−H/K. (A.9)

For later use, it is relevant to point out that, given the cmedian conditions (A.8) and
(A.9), c+ and c− are separated by at least 2H/K while, by assumption, c1 and c2 are
separated by at most H/K. We start by showing the existence of c+ in cases 1.1-1.3.

Case 1.1 : Define cmode ≤ c+ = c. Since limc↑c Ḣ(c) > 0 we can choose K so large
that (A.8) is satisfied.

Case 1.2 : Due to the continuity of Ḣ at c then, for large K, there exist c+ > cmode

so that (A.8) is satisfied with equality, that is,

Ḣ(c+) = H/K1/2. (A.10)

Case 1.3 : By Lemma A.4, Ḣ vanishes in the tails. Thus, for large K there exist c+

so that cmode < c+ and (A.8) and (A.10) are satisfied.
In all three cases, 1.1-1.3, c+ is in the tail of the distribution, hence, the median

condition in (A.8) is satisfied. The derivation for c− is analogous.
3. An inequality for |Ḣ(c2)− Ḣ(c1)|. By the Lipschitz condition in Assumption A.1(iii)

|Ḣ(c2)− Ḣ(c1)| ≤ CL(c2 − c1), (A.11)
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while the definition of c1 < c2 and the mean value theorem applied to H give

H/K ≥ H(c2)− H(c1) = (c2 − c1)Ḣ(c∗), (A.12)

for c∗ satisfying c1 < c∗ < c2. Eliminating c2 − c1 from (A.11), (A.12) shows that

|Ḣ(c2)− Ḣ(c1)| ≤ CLH/{KḢ(c∗)}. (A.13)

4. Bounding |Ḣ(c2)− Ḣ(c1)|. The desired results follow by showing that

|Ḣ(c2)− Ḣ(c1)| ≤ CLCu/K
1/2+2CuH/K

1/2 = (CL + 2H)Cu/K
1/2, (A.14)

which we do next. The proof depends on the position of c1, c2 relative to c−, c+. First,
note that the case c1 < c− < c+ < c2 is ruled out by the construction in item 2, since
c+ and c− are at least two H/K intervals apart while c1 and c2 are at most one H/K
interval apart. Hence, there are three possible situations:

4.1: c− ≤ c1 < c2 ≤ c+; 4.2: c+ ≤ c1 < c2; 4.3: c− ≤ c1 ≤ c+ ≤ c2,
while the cases c1 ≤ c− ≤ c2 ≤ c+ and c1 < c2 ≤ c+ are symmetric to 4.3 and 4.2.

Case 4.1 : c− ≤ c1 < c∗ < c2 ≤ c+. We first show Ḣ(c∗) ≥ C−1
u H/K1/2 when

cmode ≤ c∗. The bound in Assumption A.1(iv) shows that Ḣ(c∗) ≥ u(c∗). The unimodality
of u implies u(c∗) ≥ limc↑c+ u(c) so that Ḣ(c∗) ≥ limc↑c+ u(c). The ordering in (A.6) gives

u(c) ≥ C−1
u Ḣ(c) so that Ḣ(c∗) ≥ C−1

u limc↑c+ Ḣ(c). The construction of c+ in (A.8) and

(A.10) shows that limc↑c+ Ḣ(c) ≥ H/K1/2 for cases 1.1-1.3 so that Ḣ(c∗) ≥ C−1
u H/K1/2.

If c∗ ≤ cmode, we show Ḣ(c∗) ≥ C−1
u H/K1/2 by comparing c∗ with c− instead of c+.

Now, insert Ḣ(c∗) ≥ C−1
u H/K1/2 in (A.13)

|Ḣ(c2)− Ḣ(c1)| ≤ CLH/{KC−1
u H/K1/2} = CLCu/K

1/2, (A.15)

which is the first term of (A.14).
Case 4.2 : c+ ≤ c1 < c2. For the case 1.1, where c <∞ and Ḣ non-continuous, we have

that c+ = c so that H(c+) = H(c1) = H(c2) = H(∞) = H, and hence |Ḣ(c2)− Ḣ(c1)| = 0.
For the cases 1.2, 1.3 use the triangle inequality and the bound (A.6) to get

|Ḣ(c2)− Ḣ(c1)| ≤ Ḣ(c2) + Ḣ(c1) ≤ Cuu(c2) + Cuu(c1).

Noting cmode ≤ c+ ≤ c1 < c2, the weak unimodality for u, the ordering (A.6) and the
construction (A.10) with equality give

|Ḣ(c2)− Ḣ(c1)| ≤ 2Cuu(c+) ≤ 2CuḢ(c+) = 2CuH/K
1/2. (A.16)

This is the second term of (A.14).
Case 4.3 : c− ≤ c1 ≤ c+ ≤ c2. Add and subtract Ḣ(c+) so that

|Ḣ(c2)− Ḣ(c1)| ≤ |Ḣ(c+)− Ḣ(c1)|+ |Ḣ(c2)− Ḣ(c+)|,

by the triangle inequality. The first term is an example of case 4.1, so that (A.15) shows
that |Ḣ(c+)− Ḣ(c1)| ≤ CLCu/K

1/2, which is the first term in (A.14). The second term
is an example of case 4.2, so that (A.16) shows that |Ḣ(c2) − Ḣ(c+)| ≤ 2CuH/K

1/2.
Combine these results to complete the proof of (A.14).
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We can now establish a covering for local variations in b and c. This will be used in
the subsequent proof of Lemma 4.1, when chaining over b, c. The result replaces Lemma
B.2 in JN16 and clarifies how the covering depends on xin. For an additive perturbation
c+x′inb, as a basis for the chaining argument, we choose balls with centers bm and radius
δ and construct a new covering of R based on intervals [ckmi, ckmi], see (A.17). We then
find a bound on the Hr distance of these intervals. The Lemma does not exploit the
particular structure of the Hr-function so we formulate it for a general function H.

Lemma A.9. Consider k,m, xin and δ > 0. Suppose H(ck)− H(ck−1) = H/K, ∀k. Let

ckmi = ck−1 + x′inbm − |xin|δ, ckmi = ck + x′inbm + |xin|δ.

Then, ∀b, c so that |b− bm| ≤ δ and ck−1 < c ≤ ck,

ckmi < c+ x′inb ≤ ckmi. (A.17)

Suppose in addition that Ḣ satisfies Assumption A.1. Then, ∃C > 0, ∀m,xin,

max
0<k≤K

|H(ckmi)− H(ckmi)| ≤ C(K−1 + |x′inbm|K−1/2 + |xin|δ + |x′inbm|2). (A.18)

Proof. 1. Proof of (A.17). Since ck−1 < c ≤ ck and |b− bm| ≤ δ,

ck−1 − |xin|δ < c+ x′in(b− bm) ≤ ck + |xin|δ.

It follows by adding x′inbm that ckmi < c+ x′inb ≤ ckmi.
2. Proof of (A.18). Note H is well-defined by Assumption A.1(ii). Let

Hkmi = H(ckmi)− H(ckmi) = H(ck + x′inbm + |xin|δ)− H(ck−1 + x′inbm − |xin|δ). (A.19)

Using the mean value theorem, we get for intermediate points c∗, c∗ that

H(ck + x′inbm + |xin|δ) = H(ck + x′inbm) + |xin|δḢ(c∗), (A.20)

H(ck−1 + x′inbm − |xin|δ) = H(ck−1 + x′inbm)− |xin|δḢ(c∗). (A.21)

Using the mean value theorem once again, we get for intermediate points c∗∗, c∗∗ that

H(ck + x′inbm) = H(ck) + x′inbmḢ(ck) + x′inbm{Ḣ(c∗∗)− Ḣ(ck)}, (A.22)

H(ck−1 + x′inbm) = H(ck−1) + x′inbmḢ(ck−1) + x′inbm{Ḣ(c∗∗)− Ḣ(ck−1)}. (A.23)

The Lipschitz condition in Assumption A.1(iii) implies that

|Ḣ(c∗∗)− Ḣ(ck)| ≤ CL|c∗∗ − ck| ≤ CL|x′inbm|.

Likewise |Ḣ(c∗∗)−Ḣ(ck−1)| ≤ CL|x′inbm|. Inserting the expressions (A.20)-(A.23) and the
Lipschitz bounds in the equation (A.19) for Hkmi gives

|Hkmi| ≤ |H(ck)−H(ck−1)|+ |x′inbm||Ḣ(ck)−Ḣ(ck−1)|+(x′inbm)2CL+ |xin|δ|Ḣ(c∗)+Ḣ(c∗)|.

For the first term, note H(ck) − H(ck−1) = H/K by assumption. For the second term,
apply Ḣ(ck)− Ḣ(ck−1) ≤ CH/K

1/2 uniformly in k by Lemma A.8 using Assumption A.1.
For the third term, apply that CL <∞. For the fourth term, note that supc∈R Ḣ(c) <∞
by Lemma A.4. Thus, the desired result follows, uniformly in k.
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The following Lemma bounds Hr distances of multiplicative perturbations. It also
gives an estimate of the number of ck intervals, that are needed to cover the perturbation.
This is used in the proof of Lemma 4.2, when chaining over a, c. The result does not
use the particular structure of Hr and applies for general distance functions.

Lemma A.10. Let ca = c(1 + n−1/2a) so that c0 = c. Suppose H(ck)− H(ck−1) = H/K
for all k, that Ḣ is continuous on its support S and supc∈R |c|Ḣ(c) <∞.
(a) A constant C > 0 exists so that for all ζ > 0,

sup
c∈R

sup
|a|≤n1/2−ζB

|H(ca)− H(c)| ≤ Cn−ζ .

(b) Choose an index k(ca) and grid points ck(ca) so that ck(ca)−1 < ca ≤ ck(ca). Then, the
number of grid points between ca and c satisfies

supc∈R sup|a|≤n1/2−ζB |k(ca)− k(c0)| ≤ 2 + Cn−ζK/H.

Proof. (a) The distance H = H(ca) − H(c). Because ca − c = n−1/2ac, the mean value
theorem gives H = n−1/2acḢ(c̃) for an intermediate point c̃, so |c̃− c| ≤ n−1/2|ac|. This
implies that |c| ≤ |c̃|+ |c− c̃| ≤ |c̃|+ n−1/2|a||c|. Solving for |c|, we get

|c| ≤ |c̃|
1− n−1/2|a|

≤ 2|c̃|,

since n−1/2|a| ≤ 1/2 for large n. This gives |H| ≤ |n−1/2a|2|c̃|Ḣ(c̃). By Assumption,
|c̃|Ḣ(c̃) is bounded uniformly in c, a, while |a| ≤ n1/2−ζB so that |H|≤Cn−ζ as desired.

(b) Translating the distance H in item (a) into a number of grid points. We start by
bounding H∗ = |H{ck(ca)} −H{ck(c0)}|. Add and subtract H(ca) and H(c) and apply the
triangle inequality to get

H∗ ≤ |H{ck(ca)} − H(ca)|+ |H{ck(c0)} − H(c)|+ |H(ca)− H(c)|. (A.24)

Each of the first two terms in (A.24) are bounded by H/K. Indeed, since ck(ca)−1 < ca ≤
ck(ca) and, noting that c0 = c,

|H{ck(ca)} − H(ca)| ≤ |H{ck(ca)} − H{ck(ca)−1}| = H/K.

The third term in (A.24) equals |H| and satisfies |H|≤Cn−ζ as shown in part (a). Overall

H∗ ≤ 2H/K + Cn−ζ = (2 + Cn−ζK/H)H/K,

implying that |k(ca)− k(c0)| ≤ 2 + Cn−ζK/H uniformly in a, c.

B Proof of empirical process results

Proof of Lemma 4.1. Let zibc = winε
p
i {1(εi≤c+σ−1x′inb)

− 1(εi≤c)} and write

Rn(b, c) = Fw,pn (0, b, c)− Fw,pn (0, 0, c) = n−1/2
∑n

i=1(zibc − Ei−1zibc).
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We show Rn = supc∈R sup|b|≤n1/4−ηB |Rn(b, c)| = oP(1).
1. The chaining setup.
1.1. Choice of covering radius. We chain over b and c. Later, in item 3.6, we choose a
small δ > 0 which will be used to form the covering balls for b and c in items 1.2 and
1.3. We note that δ > 0 will be chosen independently of the sample size n.
1.2. Construct c-balls. We choose r so that 2r−1 > 1 + (1/4 − η)(1 + dimx) as given
in (4.2) in Assumption 4.1. Consider the δ > 0 mentioned in item 1.1. For δ, n > 0,
partition the range of c as laid out in (A.1) with K = int(Hrn

1/2/δ) using Assumption
4.1(ia) so that Hr < ∞. Thus, Hr(ck) − Hr(ck−1) = Hr/K ∼ δ/n1/2. Then, for each c
there exists ck−1, ck so ck−1 < c ≤ ck. We note that Fw,pn and F̄w,pn and hence Fw,pn and
Rn are well-defined at c =∞.
1.3. Construct b-balls. Cover the set |b| ≤ n1/4−ηB with balls of radius δ and centers
bm. The number of balls is M ∼ (n1/4−ηB/δ)dimx ∼ n(1/4−η) dimx/δdimx. Thus, for any b
there exists a bm so that |b− bm| ≤ δ.
1.4. Chaining. Write Rn(b, c) = Rn(bm, ck) + {Rn(b, c)− Rn(bm, ck)}, where Rn(bm, ck)
is a discrete point term and Rn(b, c) − Rn(bm, ck) is a local perturbation term. By the
triangle inequality Rn ≤ Rn1 +Rn2 where

Rn1 = max
1≤k≤K

max
1≤m≤M

|Rn(bm, ck)|,

Rn2 = max
1≤k≤K

max
1≤m≤M

sup
ck−1<c≤ck

sup
|b−bm|≤δ

|Rn(b, c)−Rn(bm, ck)|.

It suffices to show that Rnj = oP(1) for j = 1, 2.
2. The discrete point term Rn,1. Write Rn(bm, ck) = n−1/2

∑n
i=1(zikm − Ei−1zikm) where

zikm = zi,bm,ck = winε
p
i {1(εi/σ≤ck+x′inbm) − 1(εi/σ≤ck)}. (B.1)

We use Lemma A.1 for n1/2Rn(bm, ck) with υ = 1/2, index ` = (k,m) so that zi` = zikm,
parameters Ln = KM and λ = 1/2 + (1/4 − η) dimx and ς = 3/4 − η and r is given
in item 1.2. We verify the conditions of Lemma A.1. Note that zi` is Fin adapted
and Ez2r

i` < ∞ since bounding the difference of indicator functions by unity and using
independence of εi and Fi−1,n gives Ez2r

i` ≤ Ew2r

inε
p2r

i = Ew2r

inEεp2
r

i , which is finite by
Assumption 4.1(ia, ii).

The parameter λ. The set of indices ` has size Ln = KM. Since K ∼ n1/2/δ and
M ∼ n(1/4−η) dimx while δ is fixed, Ln ∼ nλ where λ = 1/2 + (1/4− η) dimx > 0.

The parameter ς. Since |1(εi/σ≤ck+x′inbm) − 1(εi/σ≤ck)| ≤ 1(ck−|xin||bm|<εi/σ≤ck+|xin||bm|)
and given the inequality (A.5), we find for 1 ≤ q ≤ r that

Si = Ei−1[εpi {1(εi/σ≤ck+x′inbm) − 1(εi/σ≤ck)}]2
q ≤ Hr(ck + |xin||bm|)− Hr(ck − |xin||bm|).

Applying the mean value theorem to the bound gives Si ≤ 2|xin||bm|Ḣr(c
∗) for an in-

termediate point c∗ so ck − |xin||bm| ≤ c∗ ≤ ck + |xin||bm|. Since |bm| ≤ n1/4−ηB, while
supv∈R Ḣr(v) <∞ by Assumption 3.1, 4.1(i) and Lemma A.4, we find, uniformly in `,

Si ≤ Cn1/4−η|xin|. (B.2)

20



Since zi` = winε
p
i {1(εi≤ck+σ−1x′inbm) − 1(εi≤ck)} and win is Fi−1,n adapted we get that

Ei−1(zi`)
2q = |win|2

qSi. Inserting the bound to Si in (B.2) gives the bound Ei−1(zi`)
2q ≤

C|win|2
q
n1/4−η|xin| and therefore, writing n1/4−η = n−1n1/2n3/4−η,

Dnq = max
1≤`≤Ln

∑n
i=1Ei−1(zi`)

2q ≤ Cn−1
∑n

i=1|win|
2q |n1/2xin|n3/4−η.

Since |win|2
q ≤ 1 + |win|2

r
then |win|2

q |n1/2xin| ≤ (1 + |win|2
r
)|n1/2xin|. Thus,

Enq = EDnq ≤ Cn3/4−ηEn−1
∑n

i=1(1 + |win|2
r

)|n1/2xin| = O(nς),

where ς = 3/4 − η ≥ 0 since the expectation of the average is O(1) by Assumption
4.1(ii).

Condition (i) of Lemma A.1 is that ς < 2υ. This holds since ς = 3/4− η < 1 = 2υ.
Condition (ii) of Lemma A.1 is that ς + λ < υ2r. We have

ς + λ = 3/4− η + 1/2 + (1/4− η) dimx = 1 + (1/4− η)(1 + dimx).

By (4.2) in Assumption 4.1 r is chosen so that 1 + (1/4− η)(1 + dimx) < υ2r = 2r−1.
Hence, Lemma A.1 shows that n1/2Rn1 = maxk,m |n1/2Rn(bm, ck)| = oP(n1/2) which

in turn implies Rn1 = maxk,m |Rn(bm, ck)| = oP(1).
3. The perturbation term Rn2 is oP(1). 3.1. A first bound for Rn2. Write

Rn(b, c)−Rn(bm, ck) = n−1/2
∑n

i=1{ri(b, bm, c, ck)− Ei−1ri(b, bm, c, ck)} (B.3)

with ri(b, bm, c, ck) = winε
p
i [{1(εi/σ≤c+x′inb) − 1(εi/σ≤c)} − {1(εi/σ≤ck+x′inbm) − 1(εi/σ≤ck)}].

Pairing the second and fourth and the first and third indicators we get ri(b, bm, c, ck) =
si(ck, 0, c, 0)− si(ck, bm, c, b) where

si(ck, bm, c, b) = winε
p
i {1(εi/σ≤ck+x′inbm) − 1(εi/σ≤c+x′inb)}.

Correspondingly, let Sn(ck, bm, c, b) = n−1/2
∑n

i=1{si(ck, bm, c, b)− Ei−1si(ck, bm, c, b)} so
that we can write Rn(b, c)−Rn(bm, ck) = Sn(ck, 0, c, 0)− Sn(ck, bm, c, b).

By the triangle inequality Rn2 ≤ Sn1 + Sn2 where

Sn1 = max
1≤k≤K

sup
ck−1<c≤ck

|Sn(ck, 0, c, 0)|,

Sn2 = max
1≤k≤K

max
1≤m≤M

sup
ck−1<c≤ck

sup
|b−bm|≤δ

|Sn(ck, bm, c, b)|.

Note that Sn1 ≤ Sn2 since we can choose one of the b-centers to be 0, say bm′ = 0
for some m′ and choose b = 0 so that Sn(ck, 0, c, 0) = Sn(ck, bm′ , c, b) can be a term in
Sn2. Thus, to show Rn2 = oP(1) it suffices to show that Sn2 = oP(1).
3.2. Bounding the function si(ck, bm, c, b) = winε

p
i {1(εi/σ≤ck+x′inbm) − 1(εi/σ≤c+x′inb)}. By

(A.17) in Lemma A.9 we have ckmi < c+ x′inb ≤ ckmi where

ckmi = ck−1 + x′inbm − |xin|δ, ckmi = ck + x′inbm + |xin|δ. (B.4)

As a consequence, we get, uniformly in b, c,

|si(ck, bm, c, b)| ≤ z̃ikm = |win||εi|p{1(εi/σ≤ckmi) − 1(εi/σ≤ckmi)}. (B.5)
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3.3. Bounding the function |Sn(ck, bm, c, b)|. The triangle inequality gives

|Sn(ck, bm, c, b)| ≤ n−1/2
∑n

i=1{|si(ck, bm, c, b)|+ Ei−1|si(ck, bm, c, b)|}.

Using the bound |si(ck, bm, c, b)| ≤ z̃ikm in (B.5) in item 3.2 we get the further bound

|Sn(ck, bm, c, b)| ≤Mnkm = n−1/2
∑n

i=1(z̃ikm + Ei−1z̃ikm),

uniformly in b, c. Thus, Rn2 and Sn2 are oP(1) if Mnkm = oP(1) uniformly in k,m.
3.4. Martingale decomposition. Define

M̃nkm = n−1/2
∑n

i=1(z̃ikm − Ei−1z̃ikm), M̄nkm = n−1/2
∑n

i=1Ei−1z̃ikm. (B.6)

Add and subtract M̄nkm to get Mnkm = M̃nkm + 2M̄nkm. Thus, Mnkm = oP(1) if

M̃n = max
1≤k≤K

max
1≤m≤M

M̃nkm = oP(1), M̄n = max
1≤k≤K

max
1≤m≤M

M̄nkm = oP(1). (B.7)

3.5. The conditional moments Dikmq = Ei−1(z̃2q

ikm). To show that z̃ikm has finite mo-
ments note that by Assumption 3.1 the independence of εi and Fi−1,n gives Ez̃2r

ikm ≤
E|win|2

r
E|εi|2

rp, which is finite by Assumption 4.1(ia, ii).
Recall from (B.4) that ckmi = ck−1 + x′inbm − |xin|δ and ckmi = ck + x′inbm + |xin|δ.

Since win is Fi−1,n adapted then, for 0 ≤ q ≤ r,

Dikmq = Ei−1(z̃2q

ikm) = |win|2
q

Ei−1|εi|p2
q{1(εi/σ≤ckmi) − 1(εi/σ≤ckmi)}.

The inequality (A.5) implies Dikmq ≤ |win|2
q{Hr(ckmi) − Hr(ckmi)}. Thus, Lemma A.9

requiring Assumption 4.1(i) gives, for some constant C not depending on k,m, xin, that

Dikmq ≤ C|win|2
q

(K−1 + |x′inbm|K−1/2 + δ|xin|+ |x′inbm|2).

Using that |bm| ≤ Bn1/4−η and K−1 ∼ δn−1/2 we get the further bound

Dikmq ≤ Diq = C|win|2
q

(δn−1/2 + δ1/2n−1/4n1/4−η|xin|+ δ|xin|+ n1/2−2η|xin|2).

This reduces as

Diq ≤ δCn−1/2|win|2
q

(1 + |n1/2xin|) + n−1/2−η|win|2
q

(1 + δ1/2)(1 + |n1/2xin|2).

In turn, since E
∑n

i=1(1 + |win|2
r
)(1 + |n1/2xin|2) = O(n) by Assumption 4.1(ii), we get

Enq = E max
1≤k≤K

max
1≤m≤M

∑n
i=1Ei−1(z̃ikm)2q ≤ E

∑n
i=1Diq = δO(n1/2) + (1 + δ1/2)O(n1/2−η),

where the order terms are uniform in k,m, xin.
3.6. The compensator is M̄n = oP(1). Note that EM̄n = n−1/2En0. Thus, item 3.5
shows that EM̄n = δO(1). The Markov inequality then shows M̄n = δOP(1) so that
∀ε > 0, ∃C > 0 so that P(M̄n ≥ δC) ≤ ε. We are still free to choose δ which will be
exploited now. For any γ > 0 we can choose δ = γ/C so that P(M̄n ≥ γ) ≤ ε. Hence,
M̄n = oP(1).
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3.7. The martingale is M̃n = oP(1). Recall from (B.6), (B.5) that

M̃nkm = n−1/2
∑n

i=1(z̃ikm − Ei−1z̃ikm), z̃ikm = |win||εi|p{1(εi/σ≤ckmi) − 1(εi/σ≤ckmi)}.

We use Lemma A.1 for n1/2M̃nkm with υ = 1/2, index ` = (k,m) so that zi` = z̃ikm,
Ln = KM , λ = 1/2 + (1/4 − η) dimx and ς = 3/4 − η, while r satisfies 2r−1 >
1 + (1/4− η)(1 + dimx) as given in (4.2) in Assumption 4.1. We verify the conditions of
Lemma A.1. In item 3.5 it was established that zi` = z̃ikm is Fin adapted and Ez2r

i` <∞.
The parameter λ = 1/2 + (1/4− η) dimx as in item 2.
The parameter ς = 1/2. Apply item 3.5 for 1 ≤ q ≤ r to see that Enq = δO(n1/2) =

O(n1/2) since δ is fixed. Since ς = 1/2 ≤ 3/4 − η we can use the same argument as in
item 2, so that Conditions (i), (ii) are satisfied.

Hence, Lemma A.1 shows that n1/2M̃n = oP(n1/2) so that M̃n = oP(1). Since also
M̄n = oP(1) as shown in item 3.5, we have that Rn2, Sn2, Mnkm, Mnkm are oP(1). In
item 2 it was shown that Rn1 = oP(1). In combination Rn = oP(1).

Remark B.1. Lemma 4.1 corrects Theorem 4.1 in JN16. The issue arises in the anal-
ysis of the oscillation terms in item 6 of that proof. The oscillation terms correspond
to (B.3) in the present proof. It has to be argued, that these are small uniformly in grid
points indexed by k,m and in small deviations therefrom indexed by b, c. The idea is to
find a bound that is uniform in b, c and then deal with k,m using the iterated martin-
gale inequality in Lemma A.1, while keeping track of the regressors xi. The bound (C4)
in JN16 established using their Lemma B.2 depends on xi, which ruins the uniformity.
Here we replace that lemma with Lemma A.9, which allows us to keep track of xi.

Proof of Lemma 4.2. Let ca = c + n−1/2ac so that c0 = c and define the summands
zi(ca, c) = winε

p
i {1(εi/σ≤ca) − 1(εi/σ≤c)}. Let

Zn(ca, c) = n1/2{Fw,pn (a, 0, c)− Fw,pn (0, 0, c)} =
∑n

i=1{zi(ca, c)− Ei−1zi(ca, c)}. (B.8)

We want to prove that Zn = supc∈R sup|a|≤n1/4−ηB |Zn(ca, c)| = oP(n1/2).
1. Partition the support. We choose r = 2, noting that Hr is finite by Assumption
4.1(ia). Consider a small δ > 0, which will be chosen in item 4. Partition the axis as
laid out in (A.1) with K = int(Hrn

1/2/δ). Thus, Hr(ck)− Hr(ck−1) = Hr/K ∼ n−1/2.
2. Assign ca and c0 = c to the partitioned support. For each ca there exists an integer
k(ca) and grid points ck(ca)−1, ck(ca) so that ck(ca)−1 < ca ≤ ck(ca). Assumption 4.1(i) is the
same as Assumption A.1, which by Lemma A.5 implies that supc∈R |c|(1 + c4p)f(c) <∞.
With this property and Assumption 3.1, Lemma A.10 applies. Used with 1/2 − ζ =
1/4− η and K ∼ n1/2/δ it gives, for some C > 0,

supc∈R sup|a|≤n1/4−ηB |k(ca)− k(c)| ≤ 2 + Cn−1/4−ηK = Dn. (B.9)

3. Bound Zn(ca, c). Add and subtract 1{εi/σ≤ck(ca)} and 1{εi/σ≤ck(c)} so that

zi(ca, c) = winε
p
i [1(εi/σ≤ca) − 1{εi/σ≤ck(ca)}

+ 1{εi/σ≤ck(ca)} − 1{εi/σ≤ck(c)} − 1(εi/σ≤c) + 1{εi/σ≤ck(c)}].
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By the triangle inequality we get

|Zn(ca, c)| ≤ |Zn{ca, ck(ca)}|+ |Zn{ck(ca), ck(c)}|+ |Zn{c, ck(c)}|. (B.10)

The third term is a special case of the first term with a = 0 since c = c0. Accordingly,
the triangle inequality gives Zn ≤ 2Z1n + Z2n where

Z1n = sup
c∈R

sup
|a|≤n1/4−ηB

|Zn{ca, ck(ca)}|, Z2n = sup
c∈R

sup
|a|≤n1/4−ηB

|Zn{ck(c), ck(ca)}|.

3.1. The term Z1n: The summands are zi{ca, ck(ca)} = winε
p
i [1{εi/σ≤ck(ca)} − 1{εi/σ≤ca}]

where ck(ca)−1 < ca ≤ ck(ca). They satisfy

|zi{ca, ck(ca)}| ≤ |win||εi|p|1(εi/σ≤ck(ca)) − 1(εi/σ≤ck(ca)−1)| = zi,k(ca)−1,k(ca),

where the bound only depends on a, c through grid points that are one interval apart.
Hence, using the triangle inequality

|Zn{ca, ck(ca)}| ≤
∑n

i=1zi,k(ca)−1,k(ca) +
∑n

i=1Ei−1zi,k(ca)−1,k(ca),

so that we can bound, uniformly in a, c,

|Zn{ca, ck(ca)}| ≤ Nn = max
1≤k≤K

∑n
i=1zi,k−1,k + max

1≤k≤K

∑n
i=1Ei−1zi,k−1,k.

Adding and subtracting Ei−1zi,k−1,k and applying the triangle inequality gives that Nn ≤
Ñn + 2N n, where Ñn = max1≤k≤K |Ñnk| and N n = max1≤k≤K N̄nk with

Ñnk =
∑n

i=1(zi,k−1,k − Ei−1zi,k−1,k), N̄nk =
∑n

i=1Ei−1zi,k−1,k.

Hence,
Z1n = sup

c∈R
sup

|a|≤n1/4−ηB

|Zn{ca, ck(ca)}| ≤ Nn ≤ Ñn + 2N n.

3.2. The term Z2n: In this case zi{ck(ca), ck(c)} involves grid points k(ca), k(c) that may
be more than one point apart. Indeed, by (B.9) we have |k(ca)− k(c)| ≤ Dn uniformly
in a, c. As a consequence, we can bound

Z2n = sup
c∈R

sup
|a|≤n1/4−ηB

|Zn{ck(ca), ck(c)}| ≤ Mn = max
1≤k≤K

max
k≤k∗≤k+Dn

|Zn(ck, ck∗)|,

with zi(ck, ck∗) = winε
p
i {1(εi/σ≤ck∗ ) − 1(εi/σ≤ck)} = zikk∗ .

3.3. Combine items 3.1-3.2. We note that Ñn ≤Mn, as the former involves a maximum
over terms that are one grid point apart, whereas the second involves a maximum over
terms that are up to Dn > 2 grid points apart. In summary, we get

Zn ≤ 2Z1n + Z2n ≤ 2Ñn + 4N n +Mn ≤ 4N n + 3Mn,

so that it suffices to argue that N n,Mn = oP(n1/2).
4. The compensator N n = oP(n1/2). Note that zi,k−1,k is Fin adapted and E(zi,k−1,k) <
∞, since bounding the difference of indicator functions by unity and using independence
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of εi and Fi−1,n gives Ezi,k−1,k ≤ E|win||εi|p = E|win|E|εi|p, which is finite by Assumption
3.1,4.1(ii). In light of (A.5) we get

Ei−1zi,k−1,k ≤ |win|{Hr(ck)− Hr(ck−1)} = |win|Hr/K.

In turn, using Assumption 4.1(ii) we get

EN n = E max
1≤k≤K

∑n
i=1Ei−1|zi,k−1,k|2

q ≤ (Hr/K)E
∑n

i=1|win|
2q = O(n/K).

Finally, since K ∼ n1/2/δ we get EN n = δO(n1/2). Since we are free to choose δ we get
that N n = oP(n1/2) following the argument in item 3.7 of the proof of Lemma 4.1.
5. Conditional moments of zikk∗ . Note that zikk∗ is Fin adapted and that Ez4

ikk∗ is
finite by an argument similar to that in item 4. In light of (A.3), (A.5) and since
k ≤ k∗ ≤ k +Dn by (B.9) we get, for q = 1, 2,

Ei−1z
2q

ikk∗ ≤ |win|2
q{Hr(ck∗)− Hr(ck)} = |win|2

q

(k∗ − k)Hr/K ≤ |win|2
q

DnHr/K.

In turn, we get using Assumption 4.1(ii) that, for q = 1, 2,

Enq = E max
1≤k≤K

max
k∗:k≤k∗≤k+D

∑n
i=1Ei−1z

2q

ikk∗ ≤ (DnHr/K)E
∑n

i=1|win|
2q = O(nDn/K).

Since Dn = 2 + Cn−1/4−ηK and K ∼ n1/2/δ where δ is fixed, then Enq = O(n3/4−η).
6. The martingale Mn = oP(n1/2). We use Lemma A.1 forMn with υ = 1/2, index ` =
(k, k∗) so that zi` = zi(ck∗ , ck), parameters Ln = KDn ∼ n3/4−η and λ = ς = 3/4−η > 0
while r = 2. We verify the conditions of Lemma A.1. In item 5 it was established that
zi` = zikk∗ is Fin adapted and Ez4

ikk∗ <∞.
The parameter λ = 3/4− η. The set of indices ` has size Ln = KDn ∼ n3/4−η ∼ nλ.
The parameter ς = 3/4− η. Apply item 5 to see that Enq = O(n3/4−η) = O(nς).
Condition (i) is that ς < 2υ. This holds since 0 < η, so that ς = 3/4− η < 2υ = 1.
Condition (ii) is that ς + λ < υ2r with r = 2. We have ς + λ = 3/2 − 2η, while
υ2r = (1/2)4 = 2.

Hence, Lemma A.1 shows that Mn = oP(n1/2). As N n = oP(n1/2) by item 4 we get
Zn = oP(n1/2) as noted in item 3.3.

Proof of Theorem 4.1. Let Vn(a, b, c) = n−1/2
∑n

i=1{vi(a, b, c)− Ei−1vi(a, b, c)}, where

vi(a, b, c) = win(εi/σ)p{1(εi/σ≤c+n−1/2ac+x′inb)
− 1(εi/σ≤c)}.

We want to prove Vn = supc∈R sup|a|,|b|≤n1/4−ηB |Vn(a, b, c)| = oP(1).

Let ca = c + n−1/2ac. Adding and subtracting 1(εi/σ≤c+n−1/2ac) = 1(εi/σ≤ca) we get
vi(a, b, c) = vi(0, b, ca) + vi(a, 0, c), so that Vn(a, b, c) = Vn(0, b, ca) + Vn(a, 0, c). Taking
supremum for each term we see that, for 0 < η ≤ 1/4,

sup
c∈R

sup
|a|,|b|≤n1/4−ηB

|Vn(0, b, ca)| = sup
c∈R

sup
|b|≤n1/4−ηB

|Vn(0, b, c)| = V1n,

sup
c∈R

sup
|a|,|b|≤n1/4−ηB

|Vn(a, 0, c)| = sup
c∈R

sup
|a|≤n1/4−ηB

|Vn(a, 0, c)| = V2n.

Thus, using the triangle inequality we see that Vn = oP(1) if V1n,V2n = oP(1). This
follows from the Lemmas 4.1, 4.2 using Assumptions 3.1, 4.1.
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Proof of Theorem 4.2. Let Cn(a, b, c) = n1/2{Fw,pn (a, b, c)− F
w,p

n (0, 0, c)}. The definition
of F

w,p

n (a, b,c), see (3.1), shows that

Cn(a, b, c) = σpn−1/2
∑n

i=1winEi−1(εi/σ)p{1(εi/σ≤c+n−1/2ac+x′inb)
− 1(εi/σ≤c)},

noting that E|εi|p <∞ by Assumption 4.2(ia). As a consequence we can write

Cn(a, b, c) = σpn−1/2
∑n

i=1winIi where Ii =
∫ c+n−1/2ac+x′inb

c
upf(u)du. (B.11)

Recall from (4.4) that Bw,pn (a, b, c) = σpcpf(c)n−1/2
∑n

i=1win(n−1/2ac+ x′inb) and define

E = Cn(a, b, c)− Bw,pn (a, b, c) = σpn−1/2
∑n

i=1winDi, (B.12)

where Di = Ii− (n−1/2ac+x′inb)c
pf(c). We argue that Ei = OP(n−2η) uniformly in a, b, c.

1. The case |c| ≤ 1. Write Ii as
∫ c+n−1/2ac+x′inb

−∞ upf(u)du minus
∫ c
−∞u

pf(u)du. The latter
integral has derivative cpf(c), so that the mean value theorem gives

Ii = (n−1/2ac+ x′inb)c
p
∗if(c∗i),

for an intermediate point c∗i, so that |c− c∗i| ≤ |n−1/2ac+ x′inb|. In turn,

Di = Ii − (n−1/2ac+ x′inb)c
pf(c) = (n−1/2ac+ x′inb){c

p
∗if(c∗i)− cpf(c)}. (B.13)

Since cpf(c) is Lipschitz by Assumption 4.2(ib) while |c − c∗i| ≤ |n−1/2ac + x′inb|, then
|Di| ≤ CL(n−1/2ac+ x′inb)

2. Use first that |c| ≤ 1 and then the bounds |a|, |b| ≤ Bn1/4−η

and (1 + x)2 ≤ 2(1 + x2) to get

|Di| ≤ CL(|n−1/2a|+ |x′inb|)2 ≤ CLB
2n−1/2−2η2{1 + (n1/2|xin|)2}. (B.14)

Insert the bound for Di in (B.12), while applying the triangle inequality to get

|E| = |Cn(a, b, c)− Bw,pn (a, b, c)| ≤ σp2CLB
2n−2ηn−1

∑n
i=1|win|{1 + (n1/2|xin|)2}.

The sum is OP(n) by Assumption 4.2(ii) so that E = OP(n−2η) as desired.
2. The case |c| > 1 requires a more careful expansion. Rewrite Ii = Ia + Ibi where

Ia =
∫ ca
c
upf(u)du, Ibi =

∫ ca+x′inb

ca
upf(u)du,

by inserting the division point ca = c+n−1/2ac. Accordingly write Di = Da +Dbi where

Da = Ia − n−1/2acp+1f(c), Dbi = Ibi − x′inbcpf(c).

We expand these terms separately.
3. The term Da. Apply the mean value theorem to get Ia = (n−1/2ac)cp∗f(c∗) for an
intermediate point c∗ so that |c− c∗| < |n−1/2ac|. Add and subtract (n−1/2ac)cpf(c) and
(n−1/2a)c−1cp+2

∗ f(c), which is well-defined for |c| > 1, to get

Da = Ia − n−1/2acp+1f(c) = n−1/2a[c−1{cp+2
∗ f(c∗)− cp+2f(c)}+ c−1(c2 − c2

∗)c
p
∗f(c∗)].

We analyse the two summands of the square bracket, Da1 and Da2 say, separately.
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For Da1 = c−1{cp+2
∗ f(c∗)−cp+2f(c)}, the Lipschitz Assumption 4.2(ib) for cp+2f(c) and

the bounds |c− c∗| < |n−1/2ac| and |c−1| < 1 imply that |Da1 | ≤ CL|n−1/2a|.
For Da2 = c−1(c2 − c2

∗)c
p
∗f(c∗), write (c2 − c2

∗) = (c − c∗)(c + c∗). Recall |c − c∗| ≤
|n−1/2a||c|. Further, we argue |c∗ + c| ≤ 3|c∗|. Indeed, since |c| ≤ |c∗| + |c∗ − c| ≤
|c∗| + |n−1/2a||c| then |c|(1 − |n−1/2a|) ≤ |c∗|. Since |n−1/2a| < 1/2 for large n, then
|c| ≤ 2|c∗| and therefore |c∗+c| ≤ 3|c∗|. In combination, we get |c2−c2

∗| ≤ 3|n−1/2a||c||c∗|
so that Da2 ≤ 3|n−1/2a|2|c∗|p+1f(c∗). Since |c∗|p+1f(c∗) is bounded by Assumption 4.2(ic),
we get that |Da2 | ≤ C|n−1/2a| for some C > 0.

Taken together we get that Da = n−1/2a(Da1 +Da2) satisfies |Da| ≤ C|n−1/2a|2.
4. The term Dbi = Ibi − x′inbc

pf(c). The mean value theorem gives Ibi = x′inbc
p
∗f(c∗)

where |ca − c∗| < |x′inb|. Add and subtract x′inb{cpf(c) + cpaf(ca) + c−1cp+1
a f(c)} to get

Dbi = x′inb[{cp∗f(c∗)− cpaf(ca)}+ c−1{cp+1
a f(ca)− cp+1f(c)}+ c−1(c− ca)cpaf(ca)].

We analyse the three summands of the square bracket, Dbi1, Db2 and Db3 say, separately.
For Dbi1 = cp∗f(c∗)−cpaf(ca), the Lipschitz Assumption 4.2(ib) for cpf(c) and the bound

|ca − c∗| < |x′inb| imply that |Dbi1| ≤ CL|x′inb|.
For Db2 = c−1{cp+1

a f(ca)−cp+1f(c)}, the Lipschitz Assumption 4.2(ib) for cp+1f(c) and
the identity c−1(ca − c) = n−1/2a imply that |Db2| ≤ CL|n−1/2a|

For Db3 = c−1(c − ca)c
p
af(ca), note that c−1(ca − c) = n−1/2a and that |ca|pf(ca) is

bounded by Assumption 4.2(ib) so that |Db3| ≤ C|n−1/2a|.
Taken together, Dbi ≤ x′inb(Dbi1 +Db2 +Db3) satifies |Dbi | ≤ C|x′inb|(|x′inb|+ |n−1/2a|).
5. The term Di = Da+Dbi . Combine the results above to get that |Di| ≤ C(|n−1/2a|+

|x′inb|)2 for some C > 0. This bound is of the same form as (B.14) so the remaining proof
for |c| ≤ 1 applies.
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