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Abstract

The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators
are popular robust regression estimators. The idea behind the estimators is to �nd,
for a given h; a sub-sample of h �good�observations among n observations and esti-
mate the regression on that sub-sample. We �nd models, based on the normal or the
uniform distribution respectively, in which these estimators are maximum likelihood.
We provide an asymptotic theory for the location-scale case in those models. The LTS
estimator is found to be h1=2 consistent and asymptotically standard normal. The LMS
estimator is found to be h consistent and asymptotically Laplace.
Keywords: Chebychev estimator, LMS, Uniform distribution, Least squares esti-

mator, LTS, Normal distribution, Regression, Robust statistics.

1 Introduction

The Least Trimmed Squares (LTS) and the Least Median of Squares (LMS) estimators sug-
gested by Rousseeuw (1984) are popular robust regression estimators. They are de�ned as
follows. Consider a sample with n observations, where some are �good�and some are �out-
liers�. The user chooses a number h and searches for a sub-sample of h �good�observations.
The idea is to �nd the sub-sample with the smallest residual sum of squares �for LTS �or
the least maximal squared residual �for LMS.
In this paper, we �nd models in which these estimators are maximum likelihood. In these

models, we �rst draw h �good�regression errors from a normal distribution, for LTS, or a
uniform distribution, for LMS. Conditionally on these �good�errors, we draw n� h �outlier�
errors from a distribution with support outside the range of the drawn �good�errors. The
models are therefore semi-parametric, so we apply a general notion of maximum likelihood
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that involves pairwise comparison of probabilities of small hyper-cubes around the data
vector. We provide an asymptotic theory for location-scale models for the case where we
know the number h of �good�observations. We �nd that the LTS estimator is h1=2-consistent
and asymptotically normal, while the LMS estimator is h-consistent and asymptotically
Laplace. More than 50% contamination can be allowed under mild regularity conditions on
the distribution function for the �outliers�. The associated scale estimators do not require
consistency factors.
The approach of asking in which models the LTS and LMS estimators are maximum

likelihood is similar to that taken by Gauss in 1809, following the principles set out by Laplace
in 1774, see Hald (2007, §5.5, 7.2). In the terminology of Fisher (1922), Gauss asked in which
continuous i.i.d. location model is the arithmetic mean the maximum likelihood estimator
and found the answer to be the normal model. Maximum likelihood often brings a host of
attractive features, such as: the model reveals the circumstances under which an estimator
works well, provides insight from interpreting the model, produces nice distributional results,
yields optimality properties, and we have a framework for testing the goodness-of-�t, which
leads to the possibility of �rst refuting and then improving a model.
To take advantage of these attractive features of the likelihood framework, we follow

Gauss and suggest models in which the LTS and LMS estimators are maximum likelihood.
The models for LTS and LMS presented here are distinctive in that the errors are not i.i.d..
Rather, the h �good�errors are i.i.d. and normal, in the LTS model, or uniform, in the LMS
model, whereas the n � h �outlier�errors are i.i.d., conditionally on the �good�errors, with
a distribution assigning zero probability to the range of the �good�errors. When h = n; the
models are standard i.i.d. normal or uniform models, just as the LTS and LMS estimators
reduce to the least squares estimator and the Chebychev estimator, respectively. The models
are semi-parametric, so we use an extension of the traditional likelihoods, in which we carry
out pairwise comparison of probabilities of small hypercubes around the data point, following
suggestions by Kiefer and Wolfowitz (1956) and Scholz (1980).
The LTS estimator is widely used. At �rst, the LMS estimator seemed numerically

more attractive, but that changed with the fast LTS algorithm approximation to LTS by
Rousseeuw and van Driessen (2000). The LTS estimator is often used in its own right and
sometimes as a starting point for algorithms such as the Forward Search (Atkinson, Riani,
Cerioli, 2010). Many variants of LTS have been developed: non-linear regression in time
series (µCiµzek, 2005), algorithms for fraud detection (Rouseeuw, Perrotta, Riani and Hubert,
2019) and sparse regression (Alfons, Croux and Gelper, 2013).
Rousseeuw (1984) developed the LTS and LMS estimators in the tradition of Huber

(1964) and Hampel (1971). Both Huber and Hampel were instrumental in formalizing ro-
bust statistics. Huber suggested a framework of i.i.d. errors from an �-contaminated normal
distribution, where errors are normal with probability 1 � � and otherwise sampled from a
contamination distribution, G say. He developed M-estimators for location as a generaliza-
tion of maximum likelihood, where the most robust M-estimators would typically rely on a
criterion function that would not stem from a distribution. This focused attention on �nding
estimators rather than providing models. Hampel de�ned robustness and breakdown points
in terms of Prokhorov distances within a measure theoretic framework. Loosely speaking
the de�nitions are as follows. A sequence of estimators from i.i.d. models is robust, if it is
bounded in probability in a wide class of distributions. An estimator from an i.i.d. model
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has a breakdown point b 2 [0; 1]; if it is bounded in probability within a class of distribution
functions where the maximal distance to the reference distribution function is b. The least
squares estimator has breakdown point 0, hence, is severely a¤ected by outliers. The LTS
and LMS are some of the �rst high-breakdown point estimators in regression being suggested.
As long as h is chosen larger than n=2 plus the dimension of the regressors, the breakdown
point is 1� h=n (Rousseeuw 1984, 1985).
An important aspect of the model based framework for analyzing the LTS and LMS

estimators is a conceptual shift from the notion of robustness and breakdown point by Ham-
pel (1971) to the notion of consistency by Fisher (1922). There is no doubt that Hampel�s
ideas have been extraordinarily fruitful in �nding new robust estimators. However, when it
comes to applying the estimators, classically trained statisticians will look for consistency
and reliable inference. It is therefore of interest to describe classes of distributions under
which this is achieved. The idea of bounded in�uence to outliers is a good starting point,
but it is insu¢ cient to complete the journey. This view shines through in the discussion of
robust regression estimators by Huber and Ronchetti (2009).
To ful�ll the task of establishing consistency and deriving reliable inference, we conduct

an asymptotic analysis in the location-scale case, where the �outliers� follow an arbitrary
distribution subject to the regularity condition, that �good�and �outlier�errors are su¢ ciently
separated. In the LTS model, the �good�errors are normal. Since the �outliers�are placed
outside the range of the �good�observations, and the normal distribution has thin tails, the
�good�observations and the outliers�are well-separated. The asymptotic theory shows that
the set of �good�observations is estimated consistently. The rate is so fast, that the estimation
error in selecting the �good�observations does not in�uence the asymptotic distribution of
the LTS estimators. In the LMS model, the �good�errors are uniform, so that they have thick
tails. We separate the �good�and the �outlier�errors by requiring that the �outliers�follow a
distribution that is thin for small �outliers�. This feature is not present in the �-contaminated
i.i.d. models of Rousseeuw (1984) and Kim and Pollard (1990), which then results in a rather
complicated asymptotic theory, compared to the present case. It also throws light on the
discussion regarding estimators�ability to separate overlapping populations of �good�and
�outlier�observations, see Riani, Atkinson and Perrotta (2014), Doornik (2016).
The LTS and LMS estimators for the regression parameter have the virtue that their

derivation does not depend on the scale of the errors. However, the scale is needed for
conducting inference. The LTS estimator had previously been analyzed by Butler (1982) for
the location-scale case with symmetric contamination. He found it to be n1=2-consistent, see
also Rousseeuw (1985). Rousseeuw (1984) suggested to estimate the scale by the residual
sum of squares for the selected h observations, normalized by a consistency factor found as
the variance in a truncated normal distribution. Ví�ek (2006) has analyzed the asymptotic
distribution of the LTS estimator for regression. Regarding the LMS regression estimator,
Rousseeuw (1984) suggested that it would be n1=3-consistent under symmetric i.i.d. errors,
as con�rmed by Kim and Pollard (1990). As scale estimator, Rousseeuw (1984) suggested
the largest absolute residual among the selected h observations, normalized by a consistency
factor found as the (1+h=n)=2 quantile of the standard normal distribution. The maximum
likelihood estimators for the scale in the models analyzed in this paper are those suggested
by Rousseeuw, but without consistency factors.
The number, h; of �good�observations is assumed known throughout this paper to match
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the data generating process with the LTS/LMS estimators. At �rst, this may be seen to be
very restrictive. In the concluding remarks, we will argue that this assumption is testable
and outline a broader context of di¤erent types of testable distributional assumptions for
the �good�and the �outlying�observations.
The technical analysis in the paper includes the following ingredients. As maximum like-

lihood concept, we use pair-wise comparison of probability measures, as suggested by Kiefer
and Wolfowitz (1956), and consider small hyper-cubes around the data point following Fisher
(1922) and Scholz (1980). For the asymptotic analysis of the LTS model, we apply marked
and weighted empirical processes of residuals (Johansen and Nielsen, 2016a; Berenguer-Rico,
Johansen and Nielsen, 2019), quantile processes (Csörg½o, 1983), and extreme value theory
for the normal distribution (Leadbetter, Lindgren and Rootzén, 1982, Watts 1980). For the
asymptotic analysis of the LMS model, we apply results for uniform spacings (Pyke, 1965).
We start by presenting the LTS and LMS estimators and the associated least squares and

Chebychev estimators in §2. The general maximum likelihood concept is introduced in §3.
The models for LTS and LMS are given in §4, and §6 provides an asymptotic analysis for the
location-scale case with proofs given in the Appendix. The supplementary material contains
some derivations that appear to be well-known in the literature, but where we could not �nd
a convenient reference, along with some simple, but tedious algebraic manipulations.

2 The LTS and LMS estimators

The available data are a scalar yi and a p-vector of regressors xi for i = 1; : : : ; n:We consider
a regression model yi = �0xi+�"i with regression parameter � and scale �: For the moment,
the distribution of xi; "i is not speci�ed.

2.1 De�nitions of estimators

We will consider four estimators for �. First, the ordinary least squares estimator

�̂OLS = (
nX
i=1

xix
0
i)
�1

nX
i=1

xiyi;

which minimizes the least squares criteria
Pn

i=1(yi � �0xi)
2: It is known to be sensitive to

unusual combinations of xi; "i:
Second, the Chebychev regression estimator, also referred to as the L1 estimator or the

minimax estimator, has the form

�̂Cheb = argmin
�

max
1�i�n

jyi � �0xij:

Knight (2017) studied the asymptotic theory of this estimator. Wagner (1959) pointed out
that the Chebychev estimator can be found as a regular linear programming problem with
p + 1 relations, where p is the dimension of xi: This implies that the maximum absolute
residual will be attained at p + 1 points. Harter (1953) and Schechtman and Schechtman
(1986) found that the Chebychev estimator is a non-unique maximum likelihood estimator
in a model with uniform errors with known range. We show in Theorem 5.2, that it is the
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unique maximum likelihood, when the range of the uniform errors is unknown, see also §B.1
in the supplementary material.
Third, the Least Trimmed Squares (LTS) estimator was suggested by Rousseeuw (1984).

It is computed as follows. Given a value of � compute the squared residuals r2i (�) = (yi �
�0xi)

2: The ordered residuals are denoted r2(1)(�) � � � � � r2(n)(�): The user chooses an integer
h � n. Given that choice, the sum of the h smallest residual squares is computed. Minimizing
over � gives the LTS estimator

�̂LTS = argmin
�

hX
i=1

r2(i)(�): (2.1)

The LTS minimization classi�es the observations as �good�or �outliers�. The set of indices
of the h �good�observations is denoted �, which is an h-subset of (1; : : : ; n): The estimator
�̂LTS is, therefore, the indices of the observations corresponding to r2(i)(�̂LTS) for i � h:

Rousseeuw and van Driessen (2000) point out that we can compute �̂LTS as a minimizer
over least squares estimators, that is

�̂LTS = argmin
�

X
i2�

(yi � �̂0�xi)
2 where �̂� = (

X
i2�

xix
0
i)
�1
X
i2�

xiyi: (2.2)

Fourth, the Least Median of Squares (LMS) estimator was also suggested by Rousseeuw
(1984). Rousseeuw was concerned with the case where h = n=2 or its integer part, but we
consider any choice of an integer h � n. Given that choice, the LMS estimator is

�̂LMS = argmin
�

r2(h)(�): (2.3)

Rousseeuw has h = n=2; so that r2(h)(�) is a median, but other quantiles are routinely used.
As for the LTS, the LMS minimization divides the observations into �good�observations

and �outliers�. The indices of the �good�observations are estimated by �̂LMS; which consists of
the indices of the observations corresponding to r2(i)(�̂LMS) for i � h: Thus, we can compute

�̂LMS as a minimizer over Chebychev estimators, that is

�̂LMS = argmin
�

max
i2�

jyi � �̂0�xij where �̂� = argmin
�

max
i2�

jyi � �0xij: (2.4)

When calculating the LTS and LMS estimators it is possible that observations are re-
peated. In the models we introduce later, continuity of the distribution of the �good�ob-
servations is important and repetitions are ruled out. The idea is essentially the same as in
ordinary least squares theory. The least squares estimator can be applied to data with rep-
etitions of the dependent variable, but under normality, repetitions happen with probability
zero.
The LTS and LMS estimators are computationally demanding. They require binomial

searches, which are infeasible except for a very small dimensions. Computational approxi-
mations have been suggested in the literature, such as the fast LTS by Rousseeuw and van
Driessen (2000). The optimization problem simpli�es considerably for location-scale models.
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2.2 The special case of location-scale models

The LTS and LMS estimators simplify for the special case of a location-scale model, so that
yi = �+ �"i: In both cases, we need to �nd sets � of �good�data. The parameter � has

�
n
h

�
possible values. However, we will argue that to �nd the optimal set �̂, it su¢ ces to study
the order statistics y(1) � � � � � y(n). The optimal set �̂ is then the indices of observations of
the form y(�+1); : : : ; y(�+h) for some � = 0; : : : ; n� h, where the optimal �̂ is

�̂LTS = argmin
0���n�h

hX
i=1

fy(�+i) � �̂�g2 where �̂� =
1

h

hX
i=1

y(�+i);

in the case of LTS, while in the case of LMS,

�̂LMS = argmin
0���n�h

fy(�+h) � y(�+1)g while �̂LMS = fy(�+h) + y(�+1)g=2:

This replaces the problem of �nding the optimal �̂ by the problem of �nding an optimal �̂:
For the LMS estimator, Rousseuw (1984, Theorem 2) proves the equivalence of the op-

timality problems. The idea is as follows. For an arbitrary �, the Chebychev estimator is
�̂� = (maxi2� yi +mini2� yi)=2 and the square root of the criterion function in (2.4) is then
maxi2� jyi� �̂� j = (maxi2� yi�mini2� yi)=2: This value equals fy(�+r)� y(�+1)g=2 where �+1
and � + r are the ranks of mini2� yi and maxi2� yi, such that r � h: If r > h, the criterion is
bounded below by fy(�+h) � y(�+1)g=2:
For the LTS estimator and an arbitrary �, the argument is slightly tedious and left to

§?? in the supplementary material.

2.3 Scale estimation in i.i.d. models

The problem of estimating the scale is intricately linked to the choice of model for the
innovations "i. Proposals have been given for regression models with i.i.d. innovations "i
with distribution function F:
For the LTS estimator, Croux and Rousseeuw (1992) proposed to estimate the scale by

the residual sum of squares of selected observations divided by a consistency factor de�ned
as the conditional variance of "i given that jF("i)� 1=2j � h=(2n):
For the LMS estimator, Rousseuw (1984) was concerned with a model where "i are i.i.d.

normal with F = � and h = n=2: Evaluated at the true parameter, r2(h)(�0) equals the hth
smallest value of �2"2i : Under normality this converges to �

2f��1(0:75)g2. Thus, he suggests
to estimate the scale by r(h)(�̂LMS)=�

�1(0:75) where 1=��1(0:75) = 1:483:

2.4 Asymptotics for i.i.d. models

Butler (1982) proved that in a location-scale model, where "i are i.i.d. with a symmetric and
strongly unimodal distribution, then n1=2(�̂LTS��) is asymptotically normal distributed with
a variance depending on the density of "i: Ví�ek (2006) analyzed �̂LTS in the regression case.
Johansen and Nielsen (2016b, Theorem 5) proved consistency and provided an asymptotic
expansion of the above scale estimator under normality.
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Rousseeuw (1984) argues heuristically that in a location-scale model, where "i are i.i.d.
with a symmetric and strongly unimodal distribution, n1=3(�̂LMS � �) converges in distrib-
ution. This has been studied formally by Kim and Pollard (1990).

3 A general de�nition of maximum likelihood

Traditional parametric maximum likelihood is de�ned in terms of densities, which are not
well-de�ned here. Thus, we follow the generalization proposed by Scholz (1980), which has
two ingredients. First, it uses pairwise comparison of measures, as suggested by Kiefer and
Wolfowitz (1956), see Johansen (1978) and Gissibl, Klüppelberg, and Lauritzen (2019) for
applications. This way, a dominating measure is avoided. Second, it compares probabilities
of small sets that include the data point, following the informality of Fisher (1922). This
way, densities are not needed. Scholz�approach is suited to the present situation, where the
candidate maximum likelihood estimator is known and we are searching for a model.
We consider data in Rn and can therefore simplify the approach of Scholz. Let P be a

family of probability measures on the Borel sets of Rn: Given a (data) point y 2 Rn and a
distance � de�ne the hypercube C�

y = (y1 � �; y1]� � � � � (yn � �; yn]; which is a Borel set.

De�nition 3.1 For P;Q 2 P write P <y Q if lim sup�!0fP(C�
y)=Q(C

�
y)g < 1 and P �y Q if

lim sup�!0fP(C�
y)=Q(C

�
y)g � 1; where by convention 0=0 = 1:

Following Scholz (1980), de�ne P;Q to be equivalent at y and write P =y Q if P �y Q
and Q �y P. As Scholz, we get that (i) P =y Q if and only if lim�!0fP(C�

y)=Q(C
�
y)g exists

and equals 1; (ii) P <y Q and Q <y R implies P <y R (transitivity); and (iii) P =y P for all
P 2 P (re�exivity).

De�nition 3.2 The probability measure P̂ 2P is a maximum likelihood estimator of P 2 P
at y if P �y P̂ for all P 2 P : It is unique if P <y P̂ for all P 6= P̂: We will say that
L�(P) = P(C�

y) is the �-likelihood for the data point y:

Scholz provides two examples that we will use here. Detailed derivations are provided in
the supplementary material.

Example 3.1 (Traditional maximum likelihood) Suppose P;Q 2 P are dominated by
a �-�nite measure � with density versions p and q with respect to �: Suppose p and q are
continuous at y with q(y) > 0: Then lim�!0 P(C

�
y)=Q(C

�
y) = p(y)=q(y):

Example 3.2 (Empirical distribution function) Consider y1; : : : ; yn that are i.i.d. with
unknown distribution function F on R: Let x1 < � � � < xk be the distinct outcomes with counts
n1; : : : ; nk so that

Pk
j=1 nj = n: The empirical distribution function Fn(x) = n�1

Pn
i=1 1(yi�x)

has support on x1 < � � � < xk with jumps of size nj=n: Then Fn is the maximum likelihood
estimator for F with PFn(C

�
y) =

Qk
j=1(nj=n)

nj for any � < min1<j�k(xj � xj�1):

4 Location-scale models

We start by presenting the LTS location-scale model. Subsequently, it is used for the likeli-
hood analysis. Finally, an LMS model and its likelihood are presented.
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4.1 The LTS location-scale model

Model 1 (LTS location-scale model) Consider the location-scale model yi = �+�"i for
data yi with i = 1; : : : ; n. Let h � n be given. Let � be a set with h elements from 1; : : : ; n:
For i 2 �; let "i be i.i.d. N(0; 1) distributed.
For j 62 �; let �j be i.i.d. with distribution function G(x) for x 2 R where G is continuous at
0. The �outlier�errors are de�ned by

"j = (max
i2�

"i + �j)1(�j>0) + (min
i2�

"i + �j)1(�j<0): (4.1)

The parameters are � 2 R; � > 0; � which is any h-subset of 1; : : : ; n and G which is an
arbitrary distribution on R assumed continuous at zero.

The observations yi indexed by i 2 � are the �good�observations, while those indexed by
j 62 � are the �outliers�. We note that the �good�observations have a continuous distribu-
tion, so they can not be repetitions. The �outliers�may come from an arbitrary distribution
that may have a discrete element. Moreover, the �good�observations must have consecutive
order statistics since the �outliers�must take values outside the range of the �good�observa-
tions. Randomly, according to the choice of G, some �outliers�are to the left of the �good�
observations. The count of left �outliers�is the random variable

� =
X
j 62�

1(�j<0) =
X
j 62�

1("j<mini2� "i): (4.2)

Thus, the ordered errors satisfy

"(1) � � � � � "(�)| {z }
� left �outliers�

< "(�+1) < � � � < "(�+h)| {z }
h �good�

< "(�+h+1) � � � � � "(n)| {z }
n=n�h�� right �outliers�

:

The set � corresponds to indices of observations corresponding to "(�+1); : : : ; "(�+h):

4.2 Maximum likelihood for the LTS location-scale model

We �nd the �-likelihood for the LTS location-scale Model 1.
We start by �nding the probability that the random n-vector y belongs to an �-cube C�

x

around an n-vector x of outcomes. Since the �outliers�depend on the �good�observations,
we write

P(y 2 C�
x) =

Y
i2�

P(xi � � < yi � xi)
Y
j 62�

P(xj � � < yj � xj j yi for i 2 �): (4.3)

For the �good�observations P(xi� � < yi � xi) = �f(xi� �)=�g��f(xi� �� �)=�g; which
we denote ���f(xi � �)=�g. For the �outliers�, combine the model equation yi = � + �"i
and the error de�nition (4.1) to get

yj = (max
i2�

yi + ��j)1(�j�0) + (min
i2�

yi + ��j)1(�j<0):
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It follows that for yj > maxi2� yi we have �j = (yj � maxi2� yi)=�; which is invariant to �:
Thus, the conditional probability that an �outlier�belongs to an �-interval given the �good�
observations is, for xj > maxi2� yi;

P(xj � � < yj � xj j yi for i 2 �) = Gf(xj �max
i2�

yi)=�g � Gf(xj � ��max
i2�

yi)=�g;

which we denote ��Gf(xj � maxi2� yi)=�g: Correspondingly, for xj < mini2� yi, we have
P(xj � � < yj � xj j yi for i 2 �) = ��Gf(xj �mini2� yi)=�g:
The �-likelihood arises from the probability (4.3) by inserting the above expressions for

the individual probabilities and replacing the outcome vector x with observations y to get

L�(�; �; �;G) = 1(yi 6=yiy for i;iy2�)
Y
i2�

���(
yi � �

�
)

�
Y
j 62�

��Gfyj �mini2� yi
�

1(yj<mini2� yi) +
yj �maxi2� yi

�
1(yj>maxi2� yi)g; (4.4)

where the likelihood is set to zero if any two �good� observations are equal, due to the
continuity of the �good�observations. The factor for the �outliers�allow repetitions. Thus,
any repetitions in the sample has to be found among the �outliers�. As an example, suppose
we have n = 9 observations with ordered values

1; 1; 2; 3; 6; 6; 7; 8; 9:

The values 1 and 6 are repetitions and cannot be �good�. Thus, for h = 2; we can select � as
the index pairs corresponding to the ordered pairs with values (2,3), (7,8), (8,9), all other
choices would have a zero likelihood.
The two products in (4.4) resemble a standard normal likelihood and a likelihood for the

problem of estimating a distribution, respectively, see Examples 3.1, 3.2. We will exploit
those examples using pro�le likelihood arguments.
First, suppose �; �; � are given. Then the �rst product in the LTS �-likelihood (4.4) is

constant. The second product depends on G and corresponds to the �-likelihood in Example
3.2 for the model with unknown distribution function. The likelihood is maximized in the
same way. If yj > maxi2� yi; the observation yj is shifted to yj � maxi2� yi; and if yj <
mini2� yi; the observation yj is shifted to yj � mini2� yi: Let x1 < � � � < xk be the distinct
values of the shifted values of yj for j 62 �: The values x` have counts n`; so that

Pk
`=1 n` =

n�h. The maximum value of the second factor is
Qk

`=1fn`=(n�h)gn` = (
Qk

`=1n
n`
` )=(n�h)n�h

for any � less than the smallest spacing xj � xj�1: The maximum value is constant in � and
in �; where all selected �good�observations are singletons. For any � with repetitions among
yi for i 2 �; the likelihood is zero. Thus, maximizing over G gives

L�G(�; �; �) = L
�(�; �; �; Ĝ) = 1(yi 6=yiy for i;iy2�)

Y
i2�

���(
yi � �

�
)

kY
`=1

(
n`

n� h
)n` :

Second, suppose � is given. Apart from a constant, we �nd that LG = lim�!0 �
�hL�G is a

standard normal likelihood, see Example 3.1, which is maximized by

�̂� = h�1
X
i2�

yi and �̂2� = h�1
X
i2�

(yi � �̂�)
2: (4.5)
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Thus, the pro�le likelihood for � is

L�;�;G(�) = lim
�!0

��hL��;�;G(�) = (2�e�̂
2
� )
�h=21(yi 6=yiy for i;iy2�)

kY
`=1

(
n`

n� h
)n` :

Third, this pro�le likelihood is maximized by choosing � so that �̂� is as small as possible.
In §2.2, it was argued that the minimizer for � must select observations corresponding to
order statistics y(�+1) < � � � < y(�+h) for 0 � � � n � h: Thus, instead of �̂� ; �̂� in (4.5), it
su¢ ces to consider

�̂� = h�1
�+hX
i=�+1

y(i) and �̂2� = h�1
�+hX
i=�+1

fy(i) � �̂�g2; (4.6)

where �̂LTS minimizes �̂2� subject to y(i) 6= y(iy) for � + 1 � i; iy � � + h: We summarize.

Theorem 4.1 The LTS location-scale Model 1 has �-likelihood L�(�; �; �;G) de�ned in (4.4),
which, for � ! 0; is maximized as follows. Recall the de�nition of �̂�; �̂2� in (4.6). Let
�̂LTS = argmin0���n�h �̂

2
� subject to y(i) 6= y(iy) for �+1 � i; iy � �+h: Then �̂LTS is given by

the indices corresponding to y(�̂LTS+1); : : : ; y(�̂LTS+h) so that �̂LTS = �̂�̂LTS and �̂LTS = �̂�̂LTS :

We note that the LTS estimator (2.1) is the maximum likelihood estimator for the location
� in the LTS Model 1 subject to the assumption that the �good�observations are normal.
This constraint is irrelevant if all observations are distinct. We show in Theorem 6.3 that
the maximum likelihood estimator for scale, �̂LTS; is consistent without any need for a
consistency factor. This contrasts with the estimators for scale in i.i.d. models reviewed
in §2.4. The intuition is that in the LTS Model 1, the �good�observations follow a normal
distribution without truncation.

4.3 The LMS location-scale model

The LMS model has the same setup as the LTS model with the exception that the �good�
observations follow a uniform distribution.

Model 2 (LMS location-scale model) Consider data y1; : : : ; yn. Follow the setup of the
LTS location-scale Model 1 apart from the following:
For i 2 � let "i be i.i.d. uniformly distributed on [�1; 1].

The LMS model permits that the �outlier�distribution G can be chosen so that the �good�
observations and the �outliers�are independent. This is because the �good�observations have
�nite support, in contrast to the case of the LTS model. The LMS model permits that for
j 62 �; we can choose "j as i.i.d. with a distribution function G; which is constant and
continuous on [�1; 1]; and which does not depend on "i for i 2 �: Imposing this constraint
on the maximum likelihood problem would change the solution along the lines of Harter
(1953) and Schechtman and Schechtman (1986). This possibility is not pursued here.
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4.4 Maximum likelihood for the LMS location-scale model

The likelihood is de�ned in a similar fashion as in (4.4), only replacing the normal distribution
function with a uniform distribution function, U(x); taking the value (x + 1)=2 for jxj � 1:
Let ��U(y) = U(y)� U(y � �): The �-likelihood is therefore

L�(�; �; �;G) =1(yi 6=yiy for i;iy2�)
Y
i2�

��U(
yi � �

�
)

�
Y
j 62�

��G[f(yj �min
i2�

yi)1(yj<mini2� yi) + (yj �max
i2�

yi)1(yj>maxi2� yi)g=�]: (4.7)

We �nd the maximum likelihood estimator as before. First, maximize over G as before,
to get the pro�le �-likelihood for �; �2; �:

L�G(�; �; �) = L
�(�; �2; �; Ĝ)=1(yi 6=yiy for i;iy2�)

Y
i2�

��U(
yi � �

�
)
Qk

j=1(
nj

n� h
)nj :

Second, suppose � is given. We �nd that LG = lim�!0 �
�hL�G is a standard uniform

likelihood, see Example 3.1. The essential part is

lim
�!0

Y
i2�

��1��Uf(yi � �)=�g =
Y
i2�

(2�)�11(jyi��j��) = (2�)
�h1(maxi2� jyi��j��):

For given �; �; this is maximized by choosing � as small as possible, subject to the constraint
� � maxi2� jyi � �j: The lower bound is smallest when � is taken as the mid-point between
the largest and the smallest yi for i 2 �: That is, for �̂� = (maxi2� yi +mini2� yi)=2 so that
�̂� = (maxi2� yi �mini2� yi)=2: Thus, the pro�le likelihood for � is

L�;�;G(�) = lim
�!0

��hL��;�;G(�) =1(yi 6=yiy for i;iy2�)(2�̂�)
�h:

Third, this pro�le likelihood is maximized by minimizing �̂� . In §2.2, see also Rousseeuw
(1984, Theorem 2), it was argued that the minimizer � must select observations corresponding
to order statistics y(�+1) < � � � < y(�+h) for 0 � � � n � h: Thus, instead of �̂� ; �̂� it su¢ ces
to consider �̂� = fy(�+h) + y(�+1)g=2 and �̂� = fy(�+h) � y(�+1)g=2: We choose �̂LMS as the
minimizer of �̂� subject to y(i) 6= y(iy) for � + 1 � i; iy � � + h: We summarize.

Theorem 4.2 The LMS location-scale Model 2 has �-likelihood L�(�; �; �;G) de�ned in (4.7).
The maximum likelihood estimator is de�ned as follows. For � = 0; : : : ; n � h de�ne
�̂� = fy(�+h) � y(�+1)g=2 and �̂d = fy(�+h) + y(�+1)g=2: Let �̂LMS = argmin� �̂� subject to
y(i) 6= y(iy) for � + 1 � i; iy � � + h: Then �̂LMS is given by the indices corresponding to
y(�̂LMS+1)

; : : : ; y(�̂LMS+h)
while �̂LMS = �̂�̂LMS

and �̂LMS = �̂�̂LMS
:

We note that the LMS estimator is the maximum likelihood estimator for the location
� in the LMS Model 2 subject to the assumption that the �good�observations are uniform.
The maximum likelihood estimator for the scale di¤ers from the residual sum of squares
suggestion reviewed in §2.4, since the model assumes uniformity rather than normality. We
show in Theorem 6.5, that the maximum likelihood estimator for scale �̂LMS does not require
a consistency correction factor.
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5 Regression models

5.1 The LTS regression model

The argument for the regression case is essentially the same as for the location-scale case.
We do, however, need the restriction that the distribution G for the �outliers�is continuous.

Model 3 (LTS regression model) Consider the regression model yi = �0xi+�"i for data
yi; xi with i = 1; : : : ; n. Let h � n be given. Let � be a set with h elements from 1; : : : ; n:
For i 2 �; let "i be i.i.d. N(0; 1) distributed.
For j 62 �; let �j be i.i.d with continuous distribution function G(x) for x 2 R: Then de�ne
the �outlier�errors "j from �j as in (4.1).
The parameters are � 2 Rdimx; � > 0; � which is any h-subset of 1; : : : ; n and G which is an
arbitrary continuous distribution on R.

The reason that we now require continuity of the �outlier�distribution G is subtle. In the
location scale model, the observations yi are a simple translation of the errors yi�� for some
value of �. As a consequence, the ranks of observations yi and the errors yi�� are identical
and repetitions in the errors match repetitions in the observations. It is then possible to
construct the likelihood so that repetitions in errors only happen among the �outliers�.
For the regression model, where yi = �0xi+�"i; there is no simple relationship between the

ordering of the observations and the errors. As for the location-scale problem, repetitions of
pairs yi; xi is not a problem in itself. However, for any set of observations xi; yi the parameter
� can be chosen so that the errors yi � �0xi are the same for di¤erent values of xi: This is
illustrated in Figure 1. Thus, the number of repetitions of the errors depends on the choice
of the parameter �: This will complicate the maximization of the likelihood. This is avoided
by requiring that "i has a continuous distribution for all i: A zero likelihood is then assigned
to parameter values � with repetitions of the residual yi � �0xi:
The LTS location-scale �-likelihood (4.4) is modi�ed as follows, with y�xi = yi � �0xi;

L�(�; �; �;G) = 1(y�xi 6=y�x
iy

for 1�i;iy�n)

Y
i2�

���(y�xi =�)

�
Y
j 62�

��G[f(y�xj �min
i2�

y�xi )1(y�xj <mini2� y
�x
i ) + (y

�x
j �max

i2�
y�xi )1(y�xj >maxi2� y

�x
i )g=�]: (5.1)

It is maximized along the lines of the LTS location-scale �-likelihood. The only exception is
that the very last step of switching from general sub-samples � to consecutive order statistics
is no longer possible. We then arrive at the following result.

Theorem 5.1 The LTS regression model (3) has �-likelihood L�(�; �; �;G) de�ned in (5.1)
and which is maximized, for � ! 0; as follows. For any h-sub-sample �; de�ne the least
squares estimator �̂� = (

P
i2� xix

0
i)
�1P

i2� xiyi and the residual sum of squares estimator

�̂2� = h�1
P

i2�(yi � �̂0�xi)
2: Let �̂LTS = argmin� �̂

2
� subject to the constraint that "̂i 6= "̂iy

where "̂i = yi � �̂0�xi and 1 � i < iy � n: Then �̂LTS = �̂�̂LTS and �̂LTS = �̂�̂LTS :

We note that the LTS estimator (2.1) is the maximum likelihood estimator in the LTS
regression Model 3 subject to a continuity assumption for all observations.
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Figure 1: A set of points (xi; yi) and a choice of � so that the residuals yi� �0xi is the same
for two di¤erent points. The long line is the regression line where y = �0x: The shorter line
passes through two points marked with �; which have the same residual.

5.2 The LMS regression model

We can move from LTS to LMS in a similar fashion.

Model 4 (LMS regression model) Consider the regression model yi = �0xi+�"i for data
yi; xi with i = 1; : : : ; n. Follow the setup of the LTS regression Model 3, but where "i; for
i 2 �; are i.i.d. uniformly distributed on [�1; 1].

The likelihood is similar to that of the LTS regression, where the normal distribution
function � is replaced with the distribution function U for a uniform distribution on [�1; 1]:

Theorem 5.2 The likelihood for the LMS regression Model 4 is maximized as follows. For
any h-sub-sample � de�ne the Chebychev estimator �̂� = argmin�maxi2� jyi � �0xij and the
scale estimator �̂� = maxi2� jyi � �̂0�xij: Let �̂LTS = argmin� �̂� subject to the constraint that
yi � �̂0�xi 6= yiy � �̂0�xiy for 1 � i; iy � n: Then �̂LMS = �̂�̂LMS

and �̂LMS = �̂�̂LMS
:

6 Asymptotics for the location-scale case

We now consider asymptotic theory for the OLS, LTS, LMS estimators in the LTS, LMS
location-scale models. We start by choosing a sequence of data generating processes.

6.1 Sequence of data generating processes

For each n; the LTS and LMS location-scale models involve a choice hn; which is known to the
investigator. If hn = n the LTS and LMS estimators reduce to the full sample least squares



14

and Chebychev estimators, respectively, with standard asymptotic theory as described in
Lemmas A.7, A.12. Here, we choose hn so that

hn=n! 
 for 0 < 
 < 1; (6.1)

where 
 is the asymptotic proportion of �good�observations. We will not consider the case
where 
 = 1 and hn < n: The parameters �; �;G are constant in n.
When choosing the sets �n; it is convenient to reparametrize G in terms of

� = G(0); G(x) = (1� �)�1fG(x)� �g1(x>0); G(x) = 1� ��1 lim
�#0
G(�x� �)1(x>0); (6.2)

so that "j = ��j1(�j<0) is G-distributed and "j = �j1(�j>0) is G-distributed. This gives the
decomposition

G(x) = f�+ (1� �)G(x)g1(x>0) + �f1� G(�x)g1(x�0):

The �outliers�, "j for j 62 �; can be constructed through a binomial experiment. Draw n� h
independent Bernoulli(�) variables. If the jth variable is unity then "j = mini2� "i � "j: If it
is zero then "j = maxi2� "i + "j: In this way, the number of left �outliers�is

�n =
X
j2�n

1("j<mini2�n "i): (6.3)

When maximizing the likelihood it su¢ ces to consider sets �n corresponding to order statistics
y(�n+1); : : : ; y(�n+hn): The Law of Large Numbers gives

�n=(n� hn)
a:s:! �: (6.4)

The number of �outliers�to the right are n = n � hn � �n; so that n=(n � hn) ! 1 � � a:s:
We note the following limits

�n=hn
a:s:! ! = �(1� 
)=
; n=hn

a:s:! ! = (1� �)(1� 
)=
: (6.5)

In summary, the sequence of data generating processes is de�ned by �; �; �;G;G and hn; �n:
In the asymptotic analysis of the LTS and LMS estimators, the main challenge is to show

that the estimation error for the frequency of left �outliers�(�̂ � �n)=hn vanishes at various
rates, where �̂ could be �̂LTS or �̂LMS: We will write out detailed proofs for the situation
where �̂ > �n; so that some of the small �good�observations are considered left �outliers�and
some of the small right �outliers�are considered �good�. The case �̂ < �n is analogous due to
the setup for the left and right �outliers�in (6.2), since we can multiply all observations by
�1 and relabel left and right. Moreover, when considering �̂ > �n we note that �̂ � �n � n:
Due to the binomial construction of �n then n = 0 a:s: when � = 1; so that the event �̂ > �n
is a null set. Thus, when analysing (�̂ � �n)=hn it su¢ ces to consider �̂ > �n and � < 1:

6.2 OLS estimator in the LTS and LMS location-scale models

We start by showing that the least squares estimator �̂OLS = n�1
Pn

i=1 yi can diverge in the
LTS model when hn=n! 
 where 0 < 
 < 1: This implies that the least squares estimator is
not robust within the LTS model in the sense of Hampel (1971). For simplicity, we consider
the case where all �outliers�are to the right so that � = 0:
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Theorem 6.1 Consider the LTS location-scale Model 1 and the sequence of data generating
processes outlined in §6.1, so that hn=n ! 
 where 0 < 
 < 1 and � = 0: Suppose G has
�nite expectation �G =

R1
0
f1� G(x)gdx. Then, �̂OLS diverges at a (2 log n)1=2 rate,

(2 log n)�1=2(�̂OLS � �)=�
P! 1� 
 > 0:

We now consider an LMS model with a similar type of outlier distribution. In this case,
�̂OLS is inconsistent but the bias is bounded. This indicates that the least squares estimator
is robust in the sense of Hampel (1971) within a wider class of contamination in the LMS
model than in the LTS model.

Theorem 6.2 Consider the LMS location-scale Model 2 and the sequence of data generating
processes outlined in §6.1, so that hn=n ! 
 where 0 < 
 < 1 and � = 0: Suppose G has
�nite expectation �G =

R1
0
f1� G(x)gdx. Then, �̂OLS has an asymptotic bias,

(�̂OLS � �)=�
P! (1� 
)(1 + �G) > 0:

6.3 LTS estimator in LTS location-scale model

We show that the asymptotic distribution of the LTS estimators is the same as it would have
been, if we knew which observations were �good�. In the analysis, we distinguish between
the cases where less than and where more than half of the observations are �outliers�as the
latter case requires further regularity conditions.

Theorem 6.3 Consider the LTS location-scale Model 1 and the sequence of data generating
processes outlined in §6.1, so that hn=n! 
 where 1=2 < 
 < 1: Then, for any � > 0;

�̂LTS = �n + oP(h
�
n); h1=2n (�̂LTS � �)=�

D! N(0; 1); h1=2n (�̂2LTS � �2)=�2
D! N(0; 2);

where n1=2(�̂LTS � �) and n1=2(�̂2LTS � �2) are asymptotically independent.

The main di¢ culty in the proofs is to analyze the estimation error �̂LTS��n for the number
of �outliers�to the left, see (6.3). By construction, we have that ��n � �̂LTS � �n � n; where
�n and n = n� hn� �n are the number of �outliers�to the left and to the right, respectively.
We want to show that �̂LTS is consistent in the sense that (�̂LTS � �n)=hn = oP(h

��1
n );

or equivalently (�̂LTS � �n)=n = oP(n
��1); for any � > 1: In the proof of Theorem 6.3,

we analyze the criterion function �̂� � �̂�n for varying � and require that there are less
than hn �outliers�to the left and to the right, so that �n=hn ! ! = �(1 � 
)=
 < 1 and
n=hn ! ! = (1 � �)(1 � 
)=
 < 1; see (6.5). This is satis�es when 
 > 1=2 as in Theorem
6.3, but also in some cases where 
 � 1=2: At the extreme, this covers the situation with

 > 1=3 and symmetric �outliers�.
We now turn to the case allowing more than half of the observations to be outliers. When

! � 1 or ! � 1, additional regularity conditions are needed. Those regularity conditions
require the following de�nition from empirical process and quantile process theory.
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De�nition 6.1 A distribution function H is said to be regular, if it is twice di¤erentiable
on an open interval S =]s; s[ with �1 � s < s � 1 so that H(s) = 0 and H(s) = 1 and the
density h and its derivative _h satisfy
(a) supx2S h(x) <1 and supx2S H(x)f1� H(x)gj _h(x)j=fh(x)g2 <1;
(b) If limx#s h(x) = 0 (resp. limx"s h(x) = 0) then h is non-decreasing (resp. non-increasing)
on a interval to the right of s (left of s).

Example 6.1 The exponential distribution with H(x) = 1�exp(��x) is regular with S = R+
and H(x)f1� H(x)gj _h(x)j=fh(x)g2 = H(x) � 1 while h(x) is decreasing as x!1:

Assumption 6.1 Recall the de�nitions of !; ! from (6.5). Let q > 4:
(i) If ! � 1 suppose G is regular with

R1
0
xqdG(x) <1 and

v = min!�1�&�1 Varf"1j& � !�1 � G("1) � &g > 1.
(ii) If ! � 1 suppose G is regular with

R1
0
xqdG(x) <1 and

v = min!�1�&�1 Varf"1j& � !�1 � G("1) � &g > 1.

Theorem 6.4 Consider the LTS location-scale Model 1 and the sequence of data generating
processes outlined in §6.1 satisfying Assumptions 6.1, so that hn=n ! 
 where 0 < 
 < 1:
Then, the limit distributions established in Theorem 6.3 apply.

6.4 LMS estimator in LMS location-scale model

For the LMS estimator, we also distinguish between the cases where less than half and more
than half of the observations are �outliers�. Since the �good�observations are uniform, the
�outliers�have to be constrained even in the case with less �outliers�than good observations.

Assumption 6.2 Let G(x) for x � 0 represent G(x) or G(x): Suppose
(i) 9� > 0 so that 80 <  < 1 then G�1( ) � 2 % where % = (1� �+ �)(1� 
)=
;
(ii) 9 0 > 0; � < 1 so that 80 <  <  0 then G�1( ) �  � :

Figure 2 illustrates Assumption 6.2. The assumption constrains the �outliers�, so that
the quantile function G�1 for the �outliers�grows faster than the uniform quantile function
close to the �good�observations. This way, the �outliers�close to the �good�observations are
more dispersed than the �good�observations. The �rst condition is needed to establish that
�̂ = �n + oP(hn): It gives a global bound on the entire distribution function, while allowing
bursts of very concentrated �outliers�as long as they are not in the vicinity of the �good�
observations. The second condition is needed to show the stronger result that P(�̂ = �n)! 1:
This requires a strengthened bound to the �outliers�in the vicinity of the �good�observations
to ensure separation of �outliers�and �good�observations.

Theorem 6.5 Consider the LMS location-scale Model 2 and the sequence of data generating
processes outlined in §6.1, so that hn=n ! 
 where 1=2 < 
 < 1; and suppose Assumption
6.2 holds. Let e; e be independent, standard exponential variables. Then

P(�̂ = �n)! 1; hn(�̂� �)=�
D! e� e; hn(�̂ � �)=�

D! �(e+ e);

where e� e and e+ e are dependent Laplace(0; 
) and ��(2; 
) variables.
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Figure 2: Illustration of Assumption 6.2. Left panel: any permitted quantile G�1( ) falls
in the shaded area formed by the linear (� ) lower bound 2 (1� � + �G)(1� 
)=
 and the
curved (- - -) lower bound  � . Right panel: any permitted distribution function G(x) must
be in the shaded area.

In the regression case, the asymptotic distribution is likely to be considerably more
complicated and similar to that found by Knight (2017).
For a general proportion of �outliers�, we need to strengthen part (i) of Assumption 6.2

to uniformly bound the dispersion of the �outliers�from below.

Assumption 6.3 Recall the de�nitions of !; ! from (6.5). Let % = (1� �+ �)(1� 
)=
 for
some � > 0:
(i) If ! � 1 suppose that 80 < � < � +  � 1 then G�1(� +  )� G�1(�) � 2 %;
(ii) If ! � 1 suppose that 80 < � < � +  � 1 then G�1(� +  )� G�1(�) � 2 %.

Theorem 6.6 Consider the LMS location-scale Model 2 and the sequence of data generating
processes outlined in §6.1, so that hn=n ! 
 where 0 < 
 < 1; and suppose Assumptions
6.2,6.3 hold. Then, the limit distributions established in Theorem 6.5 apply.

7 Discussion

Other models of the LTS/LMS type. New models and estimators can be generated by replac-
ing the normal/uniform assumption in the LTS/LMS models with some other distribution.
An example is the Laplace distribution. This yields what is known as the Least Trimmed
sum of Absolute deviations (LTA) estimator. That estimator has been studied by Hawkins
and Olive (1999) and it is a special case of the rank-based estimators studied by Hössjer
(1994), see also Dodge and Jureµcková (2000, §2.7).
Applying LTS with less than n=2 �good�observations. This is commonly done, despite the

original recommendation by Rousseeuw (1984) of having more than n=2 �good�observations.
A particular example is when starting the Forward Search with an LTS estimator with a
small selection h, see for instance Atkinson, Riani and Cerioli (2010). Theorem 6.4 supports
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the idea that this could give a consistent starting point. Johansen and Nielsen (2016b) give
an asymptotic theory for the Forward Search conditional on a consistent start and under the
assumption of i.i.d. normal errors.
Inference requires a model for the outliers. In the presented theory, the �good�and the

�outlying�observations are separated, which gives a nice distribution theory for inference.
The traditional approach, as advocated by Huber (1964), is to consider mixture distributions
formed by mixing a reference distribution with a contamination distribution. This gives
a di¤erent distribution theory for inference. In practice, an investigator using LTS/LMS
estimation should seek to test whether one of these models is appropriate and conduct
inference accordingly.
Misspeci�cation tests should be developed for the present model. An investigator will

have to choose the number h of �good�observations. This choice may seem daunting, but
in principle it is not di¤erent from any other model choice in statistics. Given that choice,
the set of �good�observations is estimated and misspeci�cation tests can be applied. The
asymptotic theory developed here indicates that standard tests for normality or uniformity
can be applied to the set of estimated �good�observations.
Recently, misspeci�cation tests have been developed for i.i.d. models, where the �good�

observations are truncated normal. Berenguer-Rico and Nielsen (2017) show that the cu-
mulant based normality tests needs consistency correction factors, while Bererenguer-Rico
and Wilms (2018) show that the White heteroskedasticity test applies without consistency
correction under symmetry.
Applying LTS/LMS with unknown h: It would be interesting to study the properties of

the LTS/LMS estimators when using the present model framework, but with a wrong choice
of h: It is possible that it could result in a framework for consistently estimating h along the
lines of the above mentioned Forward Search.
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A Appendix

A.1 The OLS estimator in the LTS and LMS models

We start with some preliminary results on normal extreme values and uniform spacings used
throughout for the analysis of the LTS and LMS models, respectively.

A.1.1 Normal extreme values and uniform spacings

Lemma A.1 Let "1; : : : ; "n be independent standard normal.
(i) (2 log n)�1=2max1�i�n "i ! 1 in probability;
(ii) k

1=2
n (2 log n)�1=2"(kn) ! �1 a:s: for sequences so that kn=n! 0 and kn= log

3 n!1:

Proof. (i)We have the extreme value result P(max1�i�n "i � anx+bn)! expf� exp(�x)g
where a�1n =

p
2 log n and bn =

p
2 log n � (log log n + log 4�)=(2

p
2 log n); see Leadbetter,

Lindgren and Rootzén (1982, Theorem 1.5.3). Write

an max
1�i�n

"i = a2n
max1�i�n "i � bn

an
+ anbn:

Here, a2n vanishes, the ratio converges in distribution, while anbn ! 1:
(ii) Watts (1980) gives this as an example of his intermediate extreme value result.

The following lemma is well-known, see for instance Pyke (1965, §4.1).

Lemma A.2 Let u1; : : : ; un be independent standard uniform with order statistics u(1) <
� � � < u(n): The spacings s1; : : : ; sn are de�ned as si = u(i) � u(i�1) for i = 2; : : : ; n while
s1 = u(1) and sn+1 = 1 � u(n): Further, let e1; : : : ; en+1 be standard exponential variables
e1; : : : ; en+1. Then (s1; : : : ; sn+1) have the same distribution as (e1; : : : ; en+1)=(e1+� � �+en+1):

A.1.2 Proofs for OLS

Proof of Theorem 6.1. The least squares estimator satis�es (�̂OLS � �)=� = n�1
Pn

i=1 "i.
Since � = 0 there are only right �outliers�. Separate the �good�observations "i for i = 1; : : : ; hn
with maximum "(hn) and �outliers�"hn+j = "(hn) + "j for j = 1; : : : ; n� hn; to get

�̂OLS � �

�
=
1

n

hnX
i=1

"i + (
n� hn
n

)"(hn) +
1

n

n�hnX
j=1

"j: (A.1)

For the extreme value "(hn); Lemma A.1(i) gives "(hn)=(2 log hn)
1=2 = 1 + oP(1), while (n �

hn)=n! 1� 
. The average n�1
Phn

i=1 "i has mean zero and variance proportional to hn=n
2;

which vanishes for any 
. In particular, n�1
Phn

i=1 "i=(2 log hn)
1=2 = oP(1): The average

(n�hn)�1
Pn�hn

j=1 "j converges to �G by the Law of Large Numbers since (n�hn)=n! 1�
 >
0: Thus, we have n�1

Pn�hn
j=1 "j ! (1 � 
)�G so that n�1

Pn�hn
j=1 "j=(2 log hn)

1=2 = oP(1):

Combine to see that (2 log hn)�1=2(�̂OLS � �)=� = 1� 
 + oP(1):
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Proof of Theorem 6.2. Proceed as in the proof of Theorem 6.1, apart from a di¤erent
analysis of the order statistic "(hn): Speci�cally, for 1 � i � hn then "i is uniform on [�1; 1];
so that ui = ("i + 1)=2 is standard uniform. The uniform spacings Lemma A.2 shows that
1 � u(hn) is distributed as ehn+1=

Phn+1
i=1 ei; which vanishes by the Law of Large Numbers.

Thus, "(hn) = 2u(hn) � 1 = 1 + oP(1): This now has the same order as the last sum in (A.1),
so that (�̂OLS � �)=� = (1� 
)(1 + �G) + oP(1):

A.2 The LTS estimator in the LTS model

We start with some preliminary results on marked empirical processes evaluated at quantiles.

A.2.1 Marked empirical processes evaluated at quantiles

Let "i for i = 1; : : : ; n be i.i.d. continuous random variables. Let p 2 N: Consider the marked
empirical distribution, compensator and process de�ned for c > 0 by

Fpn(c) = n�1
nX
i=1

"pi 1("i�c); F
p
(c) = E"p11("1�c); Fpn(c) = n1=2fFpn(c)� F

p
(c)g: (A.2)

For p = 0; let F0n = Fn: We also de�ne the quantile function Q( ) = inffc : F(c) �  g and
the empirical quantiles Qn( ) = inffc : Fn(c) �  g: The �rst result concerns the lower tail
of quantiles of a non-negative random variable.

Lemma A.3 Suppose F(c) = 0 for c < 0: Let  n = oP(1): Then Qn( n) = OP(1):

Proof. Let a small � > 0 be given. Then a �nite x � 0 exists to that f = F(x) � 1��:We
show Pn = P(An) � 2� where An = fQn( n) � xg. Applying Fn; we get An = f n � Fn(x)g:
By the Law of Large Numbers, Fn(x) = f + oP(1): Hence, if Bn = fFn(x) > f � �g then
Pn(Bn) > 1� � for large n: Since An = (An\Bn)[ (An\Bc

n); we have An � (An\Bn)[Bc
n:

Here, P(Bc
n) � � by construction. Moreover, An\Bn � ( n > f��) where P( n > f��) � �

for large n since  n = oP(1) by assumption. Thus, Pn � 2�.

The following lemma follows from the theory of empirical quantile processes.

Lemma A.4 Suppose F is regular (De�nition 6.1). Then, for all � > 0;
(a) n1=2[FnfQ( )g �  ] converges in distribution on D[0; 1] to a Brownian bridge;
(b) sup0� �1 jn1=2[FfQn( )g �  ] + n1=2[FnfQ( )g �  ]j a:s:= o(n��1=4).

Proof. (a) This is Theorem 16.4 of Billingsley (1968).
(b) Let D( ) = ffQ( )gn1=2fQn( )�Q( )g and write the object of interest as the sum

of n1=2[FfQn( )g� ]�D( ) and n1=2[FnfQ( )g� ]+D( ). These two terms are o(n��1=4)
a:s: by Corollaries 6.2.1 and 6.2.2 of Csörg½o (1983), uniformly in  .

The following result is a special case of the Glivenko-Cantelli result of Berenguer-Rico,
Johansen and Nielsen (2019, Theorem 3.2).

Lemma A.5 Let p 2 N0: Suppose
R
R jxj

2pdF(x) <1: Then supc2R jFpn(c)j = oP(n1=2).
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The next result is inspired by Johansen and Nielsen (2016a, Lemma D.11).

Lemma A.6 Let p 2 N0: Suppose F is regular and
R
R jxj

qdF(x) <1 for some q > 2p: Then,

sup
1=(n+1)� �n=(n+1)

jFpnfQn( )g � F
pfQ( )gj = oP(1):

Proof. Let Rn( ) = FpnfQn( )g � F
pfQ( )g: Add and subtract FpnfQn( )g to get

Rn( ) =
P2

`=1Rn`( ) where

Rn1( ) = F
p
nfQn( )g � F

p

nfQn( )g = n�1=2FpnfQn( )g;
Rn2( ) = F

p

nfQn( )g � F
pfQ( )g:

We show that each of Rn`( ) vanishes uniformly for  in 	n = [1=(n+ 1); n=(n+ 1)]:
1. The term Rn1( ): Lemma A.5 shows that Fpn(c) = oP(n

1=2) uniformly in c 2 R: In
turn, FpnfQn( )g = oP(n1=2) uniformly in 0 <  < 1:
2. The term Rn2( ): We write Qn in terms of Q: Note Qn( ) = Q[FfQn( )g]: Expand

FfQn( )g =  + n�1=2�n where �n = n1=2[FfQn( )g �  ]: Thus,

Qn( ) = Q( + n�1=2�n): (A.3)

Let Rn2( ) = Sn( ; �n); where Sn( ; �) = F
p

nfQ( +n�1=2�)g�F
pfQ( )g:Write Sn( ; �)

as an integral, change variable u = F(c); du = f(c)dc; so that c = Q(u); and use the mean
value theorem to get, 8� 2 R;9 � so that j � �  j � n�1=2�, so that

Sn( ; �) =

Z Q( +n�1=2�)

Q( )

cpf(c)dc =

Z  +n�1=2�

 

fQ(u)gpdu = fQ( �)gpn�1=2�:

Note that Q( �) belongs to the interval from Q( ) to Q( +n�1=2�); see (A.3). Thus, when
inserting �n we get Rn2( ) = fQ( �n)gpn�1=2�n; where Q( �n) belongs to the interval from
Q( ) to Q( + n�1=2�n) = Qn( ): Lemma A.4 shows that �n is bounded in probability
uniformly in 0 �  � 1 and in particular on 	n: Thus, Rn2( ) vanishes uniformly in  2 	n
if fQ( �n)gp = oP(n

1=2) uniformly in  2 	n: It su¢ ces that fQ( )gp and fQn( )gp are
oP(n

1=2) uniformly in  2 	n: For p = 0 this is satis�ed as x0 = 1:
Consider Qn( ) for p 2 N,  2 	n. Bound jQn( )j � max1�i�n j"ij: For any � > 0 we have

Pn = Pfmax1�i�n j"ij � �n1=(2p)g = P
Sn
i=1(j"ijp � �pn1=2): Boole�s and Markov�s inequalities

give Pn �
Pn

i=1 P(j"ijp � �pn1=2) � ��qn1�q=(2p)Ej"ijq, which vanishes, since q > 2p; so that
n has a negative power. Hence, jQn( )jp = oP(n1=2):
Consider Qn( ) for p 2 N,  2 	n: Bound jQ( )j � cn, where cn satis�es (n + 1)�1 =

P(j"1j > cn): We show cpn = o(n
1=2): By the Markov inequality P(j"1j > cn) � c�qn Ej"ijq; so

that cn = O(n1=q): Since q > 2p we get cpn = o(n
1=2): Hence, jQ( )jp = o(n1=2):

A.2.2 Proofs for LTS

We consider the LTS location-scale Model 1 and the sequence of data generating processes
outlined in §6.1. The most di¢ cult part of the proof is to analyze the minimizer �̂LTS
of �̂2� , de�ned in (4.6), which counts the �outliers� to the left of the �good� observations.
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It has to be shown that �̂LTS is close to the Binomial(n � hn; �)-distributed variable �n =P
j2�n 1("j<mini2�n "i). In the following lemmas, we condition on the sequence �n; so that

the randomness stems from �good� errors "(�n+1); : : : ; "(�n+hn) and the magnitudes of the
�outliers�, "(�n+1�j) for j � �n and "(j��n�hn) for j > �n + hn: The unconditional statements

in the Theorems about �̂LTS are then derived as follows. If P(�̂LTS � �n 2 Inj�n)! 0 for an
interval In and a sequence �n then by the law of iterated expectations

P(�̂LTS � �n 2 In) = EfP(�̂LTS � �n 2 Inj�n)g ! 0; (A.4)

due to the dominated converges theorem, because P(�̂LTS � �n 2 Inj�n) is bounded and
vanishes. It is convenient to de�ne

sn = (2 log hn)
5; sn = (2 log hn)

�1=4hn: (A.5)

For large n; we have 0 < sn < sn: Numerical calculations indicate that this require hn >
2:042� 108, which is of course su¢ cient for asymptotic analysis.
The �rst Lemma concerns �̂�; �̂2� de�ned in (4.6), when � = �n is known.

Lemma A.7 Consider the LTS Model 1 and the sequence of data generating processes in
§6.1. Then, conditional on �n;

h1=2n (�̂�n � �)=�
D! N(0; 1); h1=2n (�̂2�n � �2)=�2

D! N(0; 2);

where n1=2(�̂�n � �) and n1=2(�̂2�n � �2) are asymptotically independent.

Proof. By construction, �n; the number of left �outlier� errors, is independent of the
�good�errors. Thus, conditioning on �n does not change the distribution of �̂�n ; �̂

2
�n
. As the

�good�errors are normal then h1=2n (�̂�n � �)=� is standard normal while hn�̂2�n=�
2 is �2hn�1;

so that h1=2n (�̂2�n � �2)=�2 is asymptotically normal by the Central Limit Theorem.

The next lemma concerns cases where ŝ = �̂LTS��n is small. We write "p(�̂+i) for f"(�̂+i)g
p:

Lemma A.8 Consider the LTS Model 1 and the sequence of data generating processes in
§6.1. Suppose �̂LTS = �n + oP(h

1=2�!
n ) for some ! > 0: Then, conditional on �n; we get

h
1=2
n (�̂LTS � �̂�n) and h

1=2
n (�̂2LTS � �̂2�n) are oP(1).

Proof. We suppress the index LTS. The estimators �̂ and �̂2 are formed from the
sample moments h�1n

Phn
i=1 "

p

(�̂+i)
for p = 1; 2: Thus, we must show that Enp =

Phn
i=1 "

p

(�̂+i)
�Phn

i=1 "
p
(�n+i)

= oP(h
1=2
n ):

It su¢ ces to consider �̂ > �n and assume � < 1 as remarked in §6.1. Then

Enp =
hn+�n��̂X

i=1

"p
(�̂+i)

+

hnX
i=hn+�n��̂+1

"p
(�̂+i)

�
�̂��nX
i=1

"p(�n+i) �
hnX

i=�̂��n+1

"p(�n+i):
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The �rst and the fourth sum cancel, so that

Enp =
hnX

i=hn+�n��̂+1

"p
(�̂+i)

�
�̂��nX
i=1

"p(�n+i) =
�̂��nX
i=1

f"p(�n+hn+i) � "p(�n+i)g:

Since "(�n+hn+j) = "(�n+hn) + "(j) we get

Enp =
�̂��nX
i=1

[f"(�n+hn) + "(i)gp � "p(�n+i)];

where "(�n+hn) is the maximum and "(�n+i) is the ith order statistic of the �good�errors. We
want to prove that if �̂ � �n = oP(h

1=2�!
n ) for some ! > 0; then Enp = oP(h1=2n ):

For p = 1 we �nd "(�n+i) � "(�n+1) and "(i) � "(�̂��n); so that

En1 � (�̂ � �n)f"(�n+hn) � "(�n+1) + "(�̂��n)g:

The normal extreme value Lemma A.1(i) shows that "(�n+1) and "(�n+hn) areOPf(2 log hn)1=2g
= oP(h

!
n): Next, "

p

(�̂��n)
is the (�̂ � �n)=n empirical quantile in the G distribution. By as-

sumption �̂ � �n = oP(h
1=2�!
n ) and n=hn ! ! = (1 � 
)(1 � �)=
 > 0 so that (�̂ � �n)=n =

oP(h
�1=2�!
n ) = oP(1): Lemma A.3 then shows "(�̂��n) = OP(1). In combination, En1 =

oP(h
1=2�!
n )foP(h!n) + OP(1)g = oP(n1=2):
For p = 2 we �nd similarly, using the inequality (x+ y)2 � 2(x2 + y2);

En2 �
�̂��nX
i=1

f2"2(�n+hn) + 2"
2
(i) � "2(�n+i)g � 2(�̂ � �n)f"2(�n+hn) + "2

(�̂��n)
g;

noting that "2(i) � "2
(�̂��n)

and "2(�n+i) � 0: Apply the above bounds "
2
(�n+hn)

= OP(2 log hn) =

oP(h
!
n) and "(�̂��n) = OP(1) to get En2 = oP(n

1=2):

The next Lemma is the main ingredient to showing consistency of �̂LTS; when less than
half of the observations are �outliers�.

Lemma A.9 Consider the LTS Model 1 and the sequence of data generating processes in
§6.1 where � < 1: Recall sn = (2 log hn)

5 and sn = (2 log hn)
�1=4hn from (A.5). Then,

conditional on �n; we have minsn�s�hn�sn hn(�̂
2
�n+s

� �̂2�n)!1 in probability.

Proof. Recall that �n is the number of left �outliers�and "(�n+1); : : : ; "(�n+hn) are the
ordered �good�observations. If � < 1 then n=n ! ! = (1� �)(1� 
) > 0: Let "(�n+hn+j) =
"(�n+hn) + "(j) for 1 � j � n:
Expand, see §B.3 in Supplementary material,

Ss = (�̂
2
�n+s � �̂2�n)=� = (s=hn)f1� (s=hn)g"

2
(�n+hn) + An; (A.6)
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with coe¢ cients An = An1 � An2 + 2An3 � 2An4 where

An1 =
1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2; An3 =
1

hn

sX
j=1

"(j)
1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g;

An2 =
1

hn

sX
i=1

"2(�n+i) � f
1

hn

sX
i=1

"(�n+i)g2; An4 =
1

hn

hnX
i=s+1

"(�n+i)
1

hn

sX
i=1

f"(�n+hn) � "(�n+i)g:

We �nd a lower bound for An: Notice An1; An3 � 0; which only requires 0 � s � hn and
0 < hn: Thus, An � �An2� 2An4; which does not involve the �outliers�. For An2, bound the
sample variance by a sample second moments to get An2 � h�1n

Ps
i=1 "

2
(�n+i)

= Bn2 say. For
An4; use Jensen�s inequality, add further summand and use the Law of Large Numbers for
the unordered normal �good�"�n+i to get

j 1
hn

hnX
i=s+1

"(�n+i)j2 �
1

hn

hnX
i=s+1

"2(�n+i) �
1

hn

hnX
i=1

"2(�n+i) =
1

hn

hnX
i=1

"2�n+i
P! 1: (A.7)

Further, we have h�1n
Ps

i=1f"(�n+hn)� "(�n+i)g � (s=hn)f"(�n+hn)� "(�n+1)g = Bn4 say, so that
jAn4j � Bn4f1 + oP(1)g; where the remainder term coming from (A.7) is uniform in s: In
combination,

Ss � (s=hn)(1� s=hn)"
2
(�n+hn) �Bn2 � 2Bn4f1 + oP(1)g; (A.8)

where the oP(1) term is uniform in s: This, we analyze separately for sn � s � sn and
sn � s � hn � sn:
1. Consider sn � s � hn� sn where sn=hn = (2 log hn)�1=4; see (A.5). Since the function

x(1 � x) is concave with roots at x = 0 and x = 1; so that, for x0 < x < 1 � x0 with
0 < x0 < 1=2; we get x(1� x) � x0=2: Thus, 2(s=hn)(1� s=hn) � sn=hn = (2 log hn)

�1=4 on
the considered range. We bound Bn2 � 1 + oP(1) uniformly in s as in (A.7). In Bn4; we use
s=hn � 1: Thus, (A.8) reduces to

2Ss � (2 log hn)�1=4"2(�n+hn) � 2f1 + 2"(�n+hn) � 2"(�n+1)gf1 + oP(1)g:

Lemma A.1(i) shows that

"(�n+1)=(2 log hn)
1=2 P! �1; "(�n+hn)=(2 log hn)

1=2 P! 1: (A.9)

Thus, minsn�s�hn�sn 2Ss=(2 log hn)
3=4 � 1 + oP(1):

2. Consider sn � s � sn where sn = (2 log hn)
5 and sn = (2 log hn)

�1=4hn; see (A.5).
We �nd lower bounds for the Bn` terms in (A.8). For Bn2; let rn = (2 log hn)

4: We apply
Lemma A.1(ii) for kn = rn and kn = sn, noting that rn � sn and sn=hn ! 0 while
rn=(2 log hn)

3 !1; and get

r1=2n "(�n+rn)=(2 log hn)
1=2 a:s:! �1; s1=2n "(�n+sn)=(2 log hn)

1=2 a:s:! �1: (A.10)

Since "(�n+sn); when normalized, has a negative limit a:s:; then Egoro¤�s Theorem, see David-
son (1994, Theorem 18.4), shows that a set 
� with large probability exists so that on 
�
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and for large n then "(�n+sn) < 0: In particular, "(�n+1) < "(�n+rn) < "(�n+sn) < 0. On the set

�, noting rn � s � sn; we can bound

Bn2 =
1

hn

rnX
i=1

"2(�n+i) +
1

hn

sX
i=rn+1

"2(�n+i) �
1

hn
frn"2(�n+1) + s"2(�n+rn)g:

We have s=hn � sn=hn ! 0 so that 2(1� s=hn) � 1 and 2(s=hn)(1� s=hn) � s=hn for large
n: Therefore, the expansion (A.8) is bounded from below by

2Ss �
s

hn
["2(�n+hn) � 2

rn
s
"2(�n+1) � 2"

2
(�n+rn) � 4f"(�n+hn) � "(�n+1)g]f1 + oP(1)g:

Applying the limits from (A.9), (A.10) and noting rn=s � rn=sn ! 0 while rn !1 we get
Ss= log hn � (s=hn)f1+oP(1)g where the oP(1) term is uniform in sn � s � sn: The minimum
is taken at the left end point, so that minsn�s�sn Ss= log hn � f(2 log hn)5=hngf1 + oP(1)g
and therefore hnSs !1 in probability, uniformly in sn � s � sn:

Proof of Theorem 6.3. We will show that ŝ = �̂LTS � �n = oP(h
�
n) for any � > 0: It

su¢ ces to consider the case where P(�̂LTS � �n > h�n) ! 0 and where � < 1 as remarked in
§6.1. We consider 
; � < 1 so that ! = (1 � �)(1 � 
)=
 satis�es 0 < ! < 1: In particular,
the constraint ! < 1 applies when 1=2 < 
 < 1 as required in the Theorem.
Recall sn; sn from (A.5). In particular, h

�
n > sn for large n, so that P(ŝ > h�n) � P(ŝ � sn):

We show, that the latter probability vanishes.
We have ŝ � n � n� hn; since there are n right �outliers�and n� hn �outliers�in total.

Here, hn satis�es hn=n ! 
 by (6.1), while n=hn ! !: Thus, for large n; we have that
ŝ=hn � 1� sn=hn and it su¢ ces to show P(sn � ŝ � hn � sn) vanishes.
Now, ŝ is the minimizer to �̂2�n+s � �̂2�n, which is zero for s = 0: Thus, it su¢ ces to show

that minsn�s�hn�sn hn(�̂
2
�n+s

� �̂2�n)!1 in probability. This follows from Lemma A.9.
The Lemmas A.7, A.8 give the limiting results for �̂; �̂2.

The next lemma is needed when there are more than half of the observations are �outliers�.
Compared to Lemma A.9 we �nd that �̂2� is not diverging and additional regularity conditions
are needed to ensure that �̂2� > �̂2�n :

Lemma A.10 Consider the LTS Model 1 and the sequence of data generating processes in
§6.1 where 1 � ! = (1 � �)(1 � 
)=
 < 1: Suppose Assumption 6.1(i) holds, so that G is
regular with moments of higher order than 4. Recall sn = (2 log hn)�1=4hn from (A.5). Then,
conditional on �n, an � > 0 exists so that minhn�sn�s�n(�̂

2
�n+s

� �̂2�n) � �+ oP(1) for large n:

Proof. The errors "(�n+i) are standard normal order statistics for 1 � i � hn and
"(�n+hn+j) = "(�n+hn)+ "(j) for 0 � j � n; where "j is G-distributed, with the convention that
"0 = 0:
It su¢ ces to show that �̂2�n+s=�

2 � 1 + � + oP(1) uniformly in hn � sn � s � n; since
�̂2�n=�

2 = 1 + oP(1) by Lemma A.7, so that (�̂2�n+s � �̂2�n)=�
2 � � + oP(1). We consider

separately the cases hn � s � n and hn � sn � s < hn.
1. Consider hn � s � n: In this case, �̂2�n+s is the sample variance of "(�n+s+j) for

1 � j � hn; where "(�n+s+j) are �outliers�. As sample variances are invariant to the level,
�̂2�n+s is the sample variance of "(�n+s+j) � "(�n+hn) = "(s�hn+j) for 1 � j � hn:
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We express �̂2�n+s=�
2 in terms of the empirical distribution function for the n right �out-

liers�with distribution G: First, write
Phn

j=1 "
p
(s�hn+j) =

Pn
k=1 "

p
(k)1(s�hn<k�s) for p = 0; 1; 2:

This sum over the order statistics "(k) can be written as a sum over the unordered obser-
vations "k through

Phn
j=1 "

p
(s�hn+j) =

Pn
k=1 "

p
k1f"(s�hn)<"k�"(s)g: Let G

p

n(c) = n�1
Pn

i=1 "
p
i 1("i�c)

and G
�1
n ( ) = inffc : G(c) �  g; so that "(k) = G

�1
n (k=n). Then,

n�1
hnX
j=1

"p(s�hn+j) = G
p

nfG
�1
n (s=n)g � G

p

n[G
�1
n f(s� hn)=ng]:

Apply Lemma A.6 with F = G; n = n, requiring the 4+ moments and regularity of As-
sumption 6.1(i); noting that G

�1
n fn=(n + 1)g = inffc : Gn(c) � n=(n + 1)g = "p(n); so that,

uniformly in hn � s � n;

n�1
hnX
j=1

"p(s�hn+j) = E"
p
11fs=n�hn=n<G("1)�s=ng + oP(1):

We have hn=n! !�1; where ! � 1 by construction, so that, by continuity of the distribution
of "1; we get E"

p
11fs=n�hn=n<G("1)�s=ng = E"p11As=n + oP(1) uniformly in hn � s � n where

As=n = fs=n� !�1 < G("1) � s=ng: In particular, hn=n = n�1
Phn

j=1 "
0
(s+j) = E1As=n + oP(1),

where E1As=n = !�1: We get

h�1n

hnX
j=1

"p(s+j) =
E"p11As=n
E1As=n

+ oP(1) = E("
p
1jAs=n) + oP(1);

so that �̂2�n+s=�
2 = E("21jAs=n) + oP(1) � fE("1jAs=n) + oP(1)g2: Since E"11As=n � E"1 < 1

and E1As=n = !�1 > 0 uniformly in s; we get E("1jAs) � !E"1 <1. Thus,

�̂2�n+s=�
2 = E("21jAs=n)� fE("1jAs=n)g2 + oP(1) = Var("1jAs=n) + oP(1):

The sets As=n are special cases of the sets A& = f& � !�1 � G("1) � &g: Thus,
min

hn�s�n
�̂2�n+s=�

2 = min
hn�s�n

Var("1jAs=n) + oP(1) � min
!�1�&�1

Var("1jA&) + oP(1):

We have that v = min!�1�&�1 Var("1jA&) > 1 by Assumption 6.1(i):
2. Consider hn � sn � s < hn where sn = (2 log hn)�1=4hn; see (A.5). In this case, we

have hn � sn �outliers�and sn �good�observations. Expand,

�̂2�n+s=�
2 = An = An1 + An2 + An3 + 2An4; (A.11)

see §B.3 in Supplementary material, where

An1 = h�1n

hnX
i=s+1

f"(�n+i) � "(�n+hn)g2 � [h�1n
hnX

i=s+1

f"(�n+i) � "(�n+hn)g]2;

An2 = (
s

hn
)2[
1

s

sX
j=1

"2(j) � f
1

s

sX
j=1

"(j)g2]; An3 =
s

hn
(1� s

hn
)
1

s

sX
j=1

"2(j)

An4 = [h
�1
n

hnX
i=s+1

f"(�n+hn) � "(�n+i)g]fh�1n
sX
j=1

"(j)g:
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We note that An1; An2; An3; An4 � 0: Therefore, �̂2�n+s=�
2 � An2: We argue, as in part (a),

that An2 � v + oP(1), where v > 1 by Assumption 6.1(i): Indeed, we have that 1 > s=hn �
1� sn=hn ! 1. Thus, n�1

Phn�sn
j=1 "p(j) � n�1

Ps
j=1 "

p
(j) � n�1

Phn
j=1 "

p
(j): Each of the bounds

equal E"p11A!�1 + oP(1): Hence, we get n
�1Ps

j=1 "
p
(j) = E"p11A!�1 + oP(1), uniformly in s;

where P(A!�1) = !�1: In turn, minhn�sn�s<hn An2 � Var("1jA!�1) + oP(1) � v + oP(1)

Proof of Theorem 6.4. We will show that ŝ = �̂LTS � �n = oP(h
�
n) for any � > 0: It

su¢ ces to consider the case where P(�̂LTS � �n > h�n) ! 0 and where � < 1 as remarked in
§6.1. We consider 
; � < 1 so that ! = (1� �)(1� 
)=
 satis�es 0 < !: The case ! < 1 was
covered in the proof of Theorem 6.3. Thus, suppose ! � 1:
Recall sn; sn from (A.5). In particular, h

�
n > sn for large n, so that P(ŝ > h�n) � P(ŝ � sn):

We show, that the latter probability vanishes. Note that ŝ � n.
We have that ŝ is the minimizer to �̂2�n+s � �̂2�n, which is zero for s = � � �n = 0: The

Lemmas A.9, A.10 using Assumption 6.1(i) show that �̂2�n+s � �̂2�n, asymptotically, has a
uniform, positive lower bound on each of the intervals sn � ŝ � hn�sn and hn�sn � ŝ � n.
Thus, �̂2�n+s � �̂2�n is bounded away from zero on s � sn so that P(ŝ � sn)! 0:

A similar argument applies for �̂LTS � �n < �h�n using Assumption 6.1(ii):
The Lemmas A.7, A.8 give the limiting results for �̂; �̂2.

A.3 The LMS estimator in the LMS model

In the LMS Model 2 the �good�observations are uniform. Uniform spacings can be written
as ratios of sums of exponential variables by Lemma A.2. We start with some properties of
sums of exponential variables.

A.3.1 Some results for sums of exponential variables

Lemma A.11 Let e1; e2; : : : be independent standard exponentially distributed. De�ne gjn =Pn
i=1 ej+i for n; j + 1 2 N: Then

(a) gjn is �(n; 1) distributed and Ejgjn � nj4 = 3n(n+ 2) � 9n2;
(b) P(jn�1(gjn � n)j � x) � 9x�4n�2;
(c) P(max0<j<n1 jn�10 (gjn0 � n0)j > x) � 9x�4n1n�20 .

Proof. (a) see §17.6 and equation 17.10 of Johnson, Kotz and Balakrishnan (1994).
(b) By the Markov inequality, P(jn�1(gjn � n)j � x) � (nx)�4Ejgjn � nj4: Apply (a):
(c) Let zj = n�10 (gjn0 � n0) and Pn = P(max0<j<n1 jzjj > x): Boole�s inequality gives

Pn �
P

0<j<n1
P(jzjj > x): Here, P(jzjj > x) � 9x�4n�20 by (b); so that Pn � 9x�4n1n�20 :

A.3.2 Proofs for LMS

We consider the LMS location-scale Model 2 and the sequence of data generating processes
outlined in §6.1. As for the LTS estimator, the main di¢ culty is to show that the minimizer
�̂LMS of �̂� is close to �n =

P
j2�n 1("j<mini2�n "i). Due to the argument (A.4), it su¢ ces to

analyze the asymptotic behaviour for deterministic sequences �n:
We start by noting that for known �n then �̂�n and �̂�n are the maximum likelihood

estimators for a uniform location-scale model. These estimators have been studied intensely.
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The following lemma gives an overview of the asymptotic theory. Johnson, Kotz and Bal-
akrishnan (1994b) give an overview of the �nite sample theory, which we will not need here.

Lemma A.12 Consider the LMS Model 2 and the sequence of data generating processes in
§6.1 where � < 1: Let e; e be independent standard exponential. Then, conditional on �n,

hn(�̂�n � �)=�
D! e� e; hn(�̂�n � �)=�

D! �(e+ e);

which are dependent Laplace(0; 
) and ��(2; 
) distributions.

Proof. Since "i is uniform on [�1; 1] then ui = ("i + 1)=2 is uniform on [0; 1]: The
spacings Lemma A.2 gives that independent standard exponential variables ei exist, so that
u(�n+1) = e1=

Phn+1
k=1 ek and 1� u(�n+hn) = ehn+1=

Phn+1
k=1 ek: In particular,

(�̂�n � �)=� = f"(�n+hn) � "(�n+1) � 2g=2 = u(�n+hn) � u(�n+1) � 1 = �(e1 + ehn+1)=
Phn+1

k=1 ek;

(�̂�n � �)=� = f"(�n+hn) + "(�n+1)g=2 = u(�n+hn) + u(�n+1) � 1 = (e1 � ehn+1)=
Phn+1

k=1 ek:

By the Law of Large Numbers, (hn + 1)�1
Phn+1

i=1 ei ! 1 in probability.

Lemma A.13 Consider the LMS Model 2 and the sequence of data generating processes in
§6.1 where 
; � < 1. Suppose Assumption 6.2 holds. Then, conditional on �n; an � > 0
exists, so that min1�s<hn hn(�̂�n+s � �̂�n) � �+ oP(1):

Proof. Let Ss = (�̂�n+s � �̂�n)=� = f"(�n+s+hn) � "(�n+s+1)g=2 � f"(�n+hn) � "(�n+1)g=2.
Reorganize as Ss = f"(�n+hn+s) � "(�n+hn)g=2� f"(�n+s+1) � "(�n+1)g=2:
The �good�errors "(�n+s+1) and "(�n+1) are order statistics of uniform errors on [�1; 1]:

Thus, f"(�n+1+s) � "(�n+1)g=2 = u(1+s) � u(1) is a standard uniform spacing. The uniform
spacings Lemma A.2 shows that there exists independent standard exponential variables ek
where 1 � k � hn + 1 so that u(1+s) � u(1) =

P1+s
k=2 ek=

Phn+1
k=1 ek.

The �outliers� satisfy "(�n+hn+s) � "(�n+hn) = "(s) where "(s) is positive and an order
statistic of the distribution function G: By the inverse probability transformation, there
exist independent standard uniform variables us; so that "(s) = G�1fu(s)g: Thus, "(�n+hn+s)�
"(�n+hn) = G

�1fu(s)g:
We consider the cases 1 � s < sn and sn � s < hn separately for some sequence sn !1,

but sn=n! 0: We choose sn = n(1��)=2 for � < 1 de�ned in Assumption 6.2(ii):
The case sn � s � hn: For the �good�observations bound

f"(�n+1+s) � "(�n+1)g=2 =
P1+s

k=2 ekPhn+1
k=1 ek

�
Ps+1

k=2 ekPhn+1
k=2 ek

= (
s

hn
)
1 + s�1

Ps+1
k=2(ek � 1)

1 + h�1n
Phn+1

k=2 (ek � 1)
: (A.12)

Letmlarge
n = maxt�sn jt�1

Pt+1
i=2(ei�1)j: By the strong Law of Large Numbers xt = t�1

Pt
i=1(ei�

1) ! 0 a:s: for t ! 1: This implies mlarge
n ! 0 a:s:, since for each outcome we have deter-

ministic sequence xt ! 0; say. But, if xt ! 0; then lim supt!1 jxtj ! 0: In particular, for
sn !1 we get maxt�sn jxtj ! 0: In summary, we get

f"(�n+1+s) � "(�n+1)g=2
a:s:

� (s=hn)f1 + o(1)g: (A.13)
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The �outliers�. By Assumption 6.2(i); we have G�1( ) � 2 %; where % = (1 � � +
�)(1 � 
)=
: Thus, we get f"(�n+hn+s) � "(�n+hn)g=2 = G�1fu(s)g=2 � %u(s): The uniform
spacings Lemma A.2 shows that there exists independent standard exponential variables ek
for 1 � k � n+ 1 so that u(s) =

Ps
k=1 ek=

Pn+1
k=1 ek. Thus, we can bound

f"(�n+hn+s) � "(�n+hn)g=2 � %

Ps
k=1 ekPn+1
k=1 ek

= %(
s

n+ 1
)

1 + s�1
Ps

k=1(ek � 1)
1 + (n+ 1)�1

Pn+1
k=1(ek � 1)

: (A.14)

Let mlarge
n = maxs�sn js�1

Ps
j=1(ej � 1)j: Using the strong Law of Large Numbers as before

we see that mlarge
n = o(1) a:s: Thus, we get

f"(�n+hn+s) � "(�n+hn)g=2
a:s

� %(
s

n+ 1
)f1 + o(1)g:

Combine with the bound (A.13) to see thatminsn�s�hn(n+1)Ss � sf%�(n+1)=hngf1+o(1)g
a:s: Since (n+ 1)=hn ! ~� = (1� �)(1� 
)=
, so that %� ~� = �(1� 
)
�1 > 0; while s > sn
we get minsn�s�hn(n + 1)Ss � sn�(1 � 
)
�1f1 + o(1)g a:s: which goes to in�nity with sn;
while n=hn ! ~� > 0:

The case 1 � s < sn = h
(1��)=2
n : For the �good�observations bound

f"(�n+1+s) � "(�n+1)g=2 =
P1+s

k=2 ekPhn+1
k=1 ek

�
P1+sn

k=2 ekPhn+1
k=2 ek

= (
sn
hn
)
1 + s�1n

Psn+1
k=2 (ek � 1)

1 + h�1n
Phn+1

k=2 (ek � 1)
:

By the strong Law of Large Numbers we get that the averages in the numerator and denom-
inator vanish, so that f"(�n+1+s) � "(�n+1)g=2 � (sn=hn)f1 + o(1)g a:s:
For the �outliers�, Assumption 6.2(ii) is G�1( ) �  � for some � < 1 and  <  0:

Thus, we get "(�n+hn+s) � "(�n+hn) = G�1fu(s)g � fu(s)g� : Further, u(s) � u(1): As before,
u(1) = e1=

Pn+1
k=1 ek: Thus, we can replace (A.14) with

"(�n+hn+s) � "(�n+hn) = G
�1fu(s)g � fu(1)g� = (

e1Pn+1
k=1 ek

)�
a:s:
= (

e1
n+ 1

)�f1 + o(1)g;

by the Strong Law of Large Numbers. Since e1 is exponential, then for all � > 0 exists a
� > 0 so that P(e1 > 2�) � 1� �. As before, n=hn ! ~� > 0. In combination, we get

min
1�s�sn

hnSs � [(hn=2)f�=(~�hn)g� � hn(sn=hn)]f1 + oP(1)g:

Recalling that sn = h
(1��)=2
n ; this gives,

Thus, for some constant C > 0; we get min1�s�sn hnSs � (Ch1��n � sn)f1 + oP(1)g: This
diverges since sn = h

(1��)=2
n = o(h1��n ) when 1� � > 0.

Proof of Theorem 6.5. We proceed as in the proof of Theorem 6.3, conditioning on
sequences �n satisfying �n=(n � hn) ! �; and only considering ŝ = �̂LMS � �n > 0: Thus, it
su¢ ces to show that n(�̂2�n+s � �̂2�n) > � + oP(1) for some � > 0; uniformly in 1 � s < hn:
This was proved in Lemma A.13 using Assumption 6.2.
Since P(�̂ = �n) ! 1; we get �̂ = �̂�̂ = �̂�n ; �̂ = �̂�̂ = �̂�n with large probability. The

limit distributions follow from Lemma A.12.
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Lemma A.14 Consider the LMS Model 2 and the sequence of data generating processes in
§6.1 where 1 � ! = (1� �)(1� 
)=
 <1: Suppose Assumption 6.3(i) holds. Let sn !1;
but sn=hn ! 0: Then, conditional on �n; an � > 0 exists, so that minhn�sn�s�n(�̂�n+s� �̂�n) �
�+ oP(1).

Proof. Let Ss = (�̂�n+s � �̂�n)=� = f"(�n+s+hn) � "(�n+s+1)g=2� f"(�n+hn) � "(�n+1)g=2:
The �outliers�. For small s; then Ss1 = "(�n+s+hn) � "(�n+s+1) includes both �outliers�

and �good� errors. Since "(�n+s+sn) � "(�n+hn); then Ss1 � "(�n+s+hn) � "(�n+s+sn); which
only includes �outliers�. Let t = s + sn � hn satisfying 0 � t � n + sn � hn; so that
"(�n+s+hn) � "(�n+s+sn) = "(�n+hn+t+hn�sn) � "(�n+hn+t):

As in the proof of Lemma A.13, we have that "(�n+hn+s) � "(�n+hn) = "(s) = G�1fu(s)g:
Thus, "(�n+hn+t+hn�sn) � "(�n+hn+s) = G�1fu(t+hn�sn)g � G�1fu(t)g: In combination, Ss1 �
G�1fu(t+hn�sn)g � G�1fu(t)g:
Assumption 6.3 has G�1(�+ )�G�1(�) � 2 % where % = (1��+�)(1�
)=
: Thus, Ss1 �

2%fu(t+hn�sn)�u(t)g: The uniform spacings Lemma A.2 shows that there exists independent
standard exponential variables ek for 1 � k � n+ 1 so that u(t) =

Pt
k=1 ek=

Pn+1
k=1 ek. Thus,

we get

Ss1 � 2%
Pt+hn�sn

k=t+1 ekPn+1
k=1 ek

= 2%(
hn � sn
n+ 1

)
1 + (hn � sn)

�1Pt+hn�sn
k=t+1 (ek � 1)

1 + (n+ 1)
Pn+1

k=1(ek � 1)
:

In the denominator the Law of Large Numbers shows (n+1)
Pn+1

k=1(ek�1) = oP(1): The sum in
the numerator depends on t: Thus, considermn = max0�s�n+sn�hn j(hn�sn)�1

Ps+hn�sn
k=s+1 (ek�

1)j: Lemma A.11(c) with n0 = hn�1; n1 = n+sn�hn+1; x = n�1=5 shows thatmn = oP(1):
Finally, (hn � sn)=(n+ 1)! ~
 = 
=f(1� 
)(1� �)g so that

Ss1 � 2%~
f1 + oP(1)g = 2f1 + �=(1� �)gf1 + oP(1)g: (A.15)

The �good�observations. Apply (A.13) with s+1 = hn to see that f"(�n+hn)�"(�n+1)g=2 �
1 + oP(1): Combine with (A.15) to get minhn�s�n Ss � �=(1� �) + oP(1):

Proof of Theorem 6.6. Extend the proof of Theorem 6.5 in the same way as the proof
of Theorem 6.4 extends that of Theorem 6.3 while replacing Lemmas A.9, A.10 with Lemmas
A.13, A.14.
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B Supplementary material

In the location-scale model, the LTS estimation in (2.2), that is

�̂LTS = argmin
�

X
i2�

(yi � �̂0�xi)
2 where �̂� = (

X
i2�

xix
0
i)
�1
X
i2�

xiyi;

reduces so that �̂LTS are the indices corresponding to the order statistics y(�̂LTS+1); : : : ; y(�̂LTS+h)
where

�̂LTS = argmin
�

hX
i=1

fy(�+i) � �̂�g2 where �̂� = h�1
hX
i=1

y(�+i):

Consider data y1; : : : ; yn: We want to argue that the residual sum of squares, RSS, for a
h sub-sample indexed by � is bounded below by the RSS of h consecutive order statistics.
Suppose n = h+1. The smallest RSS for any h sub-sample is either that of y(1); : : : ; y(h)

or y(2); : : : ; y(h+1): To see this, consider a h-sub-sample leaving out one of y(1); : : : ; y(n): Call
that observation y: De�ning �k = h�1

Ph+1
i=1 y

k
i ; the RSS is

RSSy =
1

h
(
h+1X
i=1

y2i � y2)� f1
h
(
h+1X
i=1

yi � y)g2 = (�2 �
y2

h
)� (�1 �

y

h
)2;

which we can expand as

RSSy = �y2
h+ 1

h2
+ 2y

�1
h
+ �2 � �21:

This is a concave, quadratic function with maximum at

�2�1=h
�2(h+ 1)=h2 =

h

h+ 1
�1 =

1

h+ 1

h+1X
i=1

yi = ��1:

The extreme order statistics, y(1) or y(n); are the y values furthest from the sample average
��1: Thus, RSSy must attain its minimum either at y(1) or y(n): Thus, the minimum RSS of
a h-sub-sample is achieved either from computing the RSS of y(2); : : : ; y(h+1) or y(1); : : : ; y(h):
In particular, if ��1 � y < y(h+1), then RSSy is larger than the RSS of y(1); : : : ; y(h): Further,
if ��1 � y > y(1), then RSSy is larger than the RSS of y(2); : : : ; y(h+1): The condition ��1 � y

is equivalent to
Ph+1

i=1 yi � (h+ 1)y: Subtracting y from both sides, shows this is equivalent
to y � h�1(

Ph+1
i=1 yi � y); which is the average of the h sub-sample without y:

For a general n; we select an h-sub-sample � and compute the RSS given by RSS� =
h�1

P
i2� y

2
i � (h�1

P
i2� yi)

2: Let � + 1; � + r be the ranks, in the full sample, of mini2� yi
and maxi2� yi, so that y(�+1) = mini2� yi and y(�+r) = maxi2� yi: Since there are h indices in
�; then r � h: If r > h then yi for i 2 � consists of points that are not consecutive order
statistics. Then there exists an order statistics y(s), say, that is not included among yi for
i 2 � and so that y(�+1) < y(s) < y(�+r): Thus, we can form a new index set � 0 from � by
replacing y(�+r) by y(s) if y(s) � h�1

P
i2� yi or by replacing y(�+1) by y(s) if y(s) � h�1

P
i2� yi:

The above derivations shows that RSS� > RSS�0 : Further, there exists a �0 � � and an
r0 < r so that y(�0+1) = mini2�0 yi and y(�0+r0) = maxi2�0 yi: This procedure can be iterated
until we achieve an h-sub-sample formed from consecutive order statistics y(�+1); : : : ; y(�+h):
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B.1 Maximum likelihood with uniform errors

Consider the location model with uniform errors with known range. That is y1; : : : ; yn satisfy
yi = �+ "i; where "i are i.i.d. Uniform[�1; 1]: Then the likelihood is

L(�) =
nY
i=1

1

2
1(�1�jyi��j�1) = 2

�n1(max1�i�n jyi��j�1):

The likelihood is maximized and constant for those � where max1�i�n jyi � �j � 1: Thus,
the likelihood is maximized for any � so that y(n) � 1 � � � y(1) + 1: This interval includes
the Chebychev estimator �̂Cheb = fy(1) + y(n)g=2 as an interior point. For instance, �̂Cheb =
y(1) + fy(n) � y(1)g=2 < y(1) + 1 since jy(n) � y(1)j < 2:
Consider the location-scale model with uniform errors. That is y1; : : : ; yn satisfy yi =

�+ �"i; where "i are i.i.d. Uniform[�1; 1]: Then the likelihood is

L(�; �) =
nY
i=1

1

2�
1(���jyi��j��) = (2�)

�n1(max1�i�n jyi��j��):

Since ��n is decreasing in �; this is maximized for �xed � by �̂� = max1�i�n jyi � �j, which
is a unique maximizer. This results in the pro�le likelihood

L(�; �) � L�(�) = (2�̂�)�n = (2 max
1�i�n

jyi � �j)�n;

which is maximized by minimizing �̂�: We �nd, for any �; that

�̂� = max
1�i�n

jyi � �j = maxfjy(n) � �j; j�� y(1)jg:

The maximum of two distances is minimized by choosing � so that they are equal. This gives
the Chebychev estimator �̂Cheb = fy(1)+y(n)g=2; which is the unique minimizer of �̂�: In other
words, we have maximized L(�; �) by choosing the smallest � subject to � � max1�i�n jyi��j;
which is the characterization of the Chebychev estimator in (2.4).

B.2 Details of examples for general maximum likelihood

Example 3.1: P;Q 2 P are dominated by a �-�nite measure �, and suppose P and Q have
density versions p and q with respect to � which are continuous at x and at least q(x) > 0:
Then lim�!0 P(Cx;�)=Q(Cx;�)! p(x)=q(x): Indeed, we can expand

jP(Cx;�)� p(x)�(Cx;�)j = j
Z
1Cx;�(u)fp(u)� p(x)gd�(u)j � �(Cx;�) sup

u2Cx;�
jp(u)� p(x)j:

The continuity of p implies that 8� > 0; 9� > 0 so that we get the further bound ��(Cx;�):
The same can be done for Q: We therefore get that

P(Cx;�)

Q(Cx;�)
=
p(x)�(Cx;�) + O(�)�(Cx;�)

q(x)�(Cx;�) + O(�)�(Cx;�)
:

For � ! 0 the remainder terms vanish.
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Example 3.2: Consider y1; : : : ; yn that are i.i.d. with unknown distribution func-
tion F: The parameter is F; which varies among arbitrary distribution functions on R: Let
x1 < � � � < xk be the distinct outcomes with counts n1; : : : ; nk so that

Pk
j=1 nj = n: The

empirical distribution function Fn has support on x1 < � � � < xk with jumps of size nj=n:
The probability of the hypercubes reduces to

Pn(Cx;�) =
Qk

j=1(nj=n)
nj ; (B.1)

for any � < min1<j�k(xj � xj�1): We start by arguing that the estimator F̂ of F has to have
discrete support on x1; : : : ; xk to be maximum likelihood estimator. Indeed, suppose F̂ is
continuous in a neighbourhood of some xj: Then �F̂(xj) = F̂(xj) � F̂(xj � �) vanishes for
small � and, for su¢ ciently small �; we have f�F̂(xj)gnj < Pn(Cx;�)=2: For other values of x;
we have the bound �F̂(x) � 1: In combination, PF̂(Cx;�) � Pn(Cx;�)=2 and we get F̂ <x Fn;

so that this F̂ cannot be a maximizer.
Now, consider an F̂ that has discrete support on x1; : : : ; xk: It may also have support

elsewhere, but that will not contribute to the likelihood. For such F̂; we let pj = �F̂(xj) and
�nd that PF̂(Cx;�) =

Qk
j=1(pj)

nj where
Pk

j=1pj � 1 for all small �:We apply the information
inequality

Qk
j=1(pj)

nj �
Qk

j=1(nj=n)
nj with equality if only if pj = nj=n for all j; which is

proved by applying Jensen�s inequality to the log ratio of the two products. Thus, applying
(B.1) we �nd that PF̂(Cx;�) � Pn(Cx;�) with equality if and only if F̂ = Fn; so that Fn is the
unique maximizer.

B.3 Details of identities in proofs of LTS asymptotics

The formula (A.6).
We expand Ss = (�̂2�n+s � �̂2�n)=�

2 when 0 < s < hn: By de�nition

Ss = h�1n

hnX
i=1

"2(�n+s+i) � fh
�1
n

hnX
i=1

"(�n+s+i)g2 � h�1n

hnX
i=1

"2(�n+i) + fh
�1
n

hnX
i=1

"(�n+i)g2:

We have that s < �n < s + hn: We can then divide the hn errors f"(�n+s+1); : : : ; "(�n+s+hn)g
into

f"(�n+s+1); : : : ; "(�n+hn)g and f"(�n+hn+1); : : : ; "(�n+s+hn)g:
The �rst group are order statistics of �good�errors. The second group consists of �outliers�
for which "(�n+hn+j) = "(�n+hn) + "(j) for 1 � j � s: Thus, for the second moment we have

hnX
i=1

"2(�n+s+i) =
hnX

i=s+1

"2(�n+i) +
sX
j=1

f"(�n+hn) + "(j)g2

=

hnX
i=s+1

"2(�n+i) + s"2(�n+hn) + 2"(�n+hn)

sX
j=1

"(j) +

sX
j=1

"2(j):
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For the squared �rst moment we have

f
hnX
i=1

"(�n+s+i)g2 = [
hnX

i=s+1

"(�n+i) +

sX
j=1

f"(�n+hn) + "(j)g]2

= f
hnX

i=s+1

"(�n+i)g2 + s2"2(�n+hn) + f
sX
j=1

"(j)g2

+ 2s"(�n+hn)

hnX
i=s+1

"(�n+i) + 2s"(�n+hn)

sX
j=1

"(j) + 2f
hnX

i=s+1

"(�n+i)gf
sX
j=1

"(j)g:

Further, we can expand

hnX
i=1

"2(�n+i) =

sX
i=1

"2(�n+i) +

hnX
i=s+1

"2(�n+i);

f
hnX
i=1

"(�n+i)g2 = f
sX
i=1

"(�n+i)g2 + f
hnX

i=s+1

"(�n+i)g2 + 2
sX
i=1

"(�n+i)

hnX
i=s+1

"(�n+i):

Inserting the expansions of the moments in the expression for Ss gives

Ss =
1

hn
f

hnX
i=s+1

"2(�n+i) + s"2(�n+hn) + 2"(�n+hn)

sX
j=1

"(j) +
sX
j=1

"2(j)g

� 1

h2n
[f

hnX
i=s+1

"(�n+i)g2 + s2"2(�n+hn) + f
sX
j=1

"(j)g2

+ 2s"(�n+hn)

hnX
i=s+1

"(�n+i) + 2s"(�n+hn)

sX
j=1

"(j) + 2f
hnX

i=s+1

"(�n+i)gf
sX
j=1

"(j)g]

� 1

hn
f

sX
i=1

"2(�n+i) +
hnX

i=s+1

"2(�n+i)g

+
1

h2n
[f

sX
i=1

"(�n+i)g2 + f
hnX

i=s+1

"(�n+i)g2 + 2
sX
i=1

"(�n+i)

hnX
i=s+1

"(�n+i)]

This reduces as
Ss =

s

hn
(1� s

hn
)"2(�n+hn) + An
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where

An =
1

hn
f

hnX
i=s+1

"2(�n+i) + 2"(�n+hn)

sX
j=1

"(j) +

sX
j=1

"2(j)g

� 1

h2n
[f

hnX
i=s+1

"(�n+i)g2 + f
sX
j=1

"(j)g2

+ 2s"(�n+hn)

hnX
i=s+1

"(�n+i) + 2s"(�n+hn)

sX
j=1

"(j) + 2f
hnX

i=s+1

"(�n+i)gf
sX
j=1

"(j)g]

� 1

hn
f

sX
i=1

"2(�n+i) +
hnX

i=s+1

"2(�n+i)g

+
1

h2n
[f

sX
i=1

"(�n+i)g2 + f
hnX

i=s+1

"(�n+i)g2 + 2
sX
i=1

"(�n+i)

hnX
i=s+1

"(�n+i)]

There are two cancellations: term 1 in line 1 with term 2 in line 4 and term 1 in line 2 with
term 2 in line 5. Thus, An reduces to

An = 2"(�n+hn)
1

hn

sX
j=1

"(j) +
1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2

� 2 s
hn
"(�n+hn)

1

hn

hnX
i=s+1

"(�n+i) � 2
s

hn
"(�n+hn)

1

hn

sX
j=1

"(j)

� 2f 1
hn

hnX
i=s+1

"(�n+i)gf
1

hn

sX
j=1

"(j)g �
1

hn

sX
i=1

"2(�n+i)

+ f 1
hn

sX
i=1

"(�n+i)g2 + 2
1

hn

sX
i=1

"(�n+i)
1

hn

hnX
i=s+1

"(�n+i):

Rearrange as

An = [
1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2]� [
1

hn

sX
i=1

"2(�n+i) � f
1

hn

sX
i=1

"(�n+i)g2]

+ 2
1

hn

sX
j=1

"(j)f(1�
s

hn
)"(�n+hn) �

1

hn

hnX
i=s+1

"(�n+i)g

� 2 1
hn

hnX
i=s+1

"(�n+i)f
s

hn
"(�n+hn) �

1

hn

sX
i=1

"(�n+i)g:
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The terms in second and in third line, respectively, can be simpli�ed to give

An = [
1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2]� [
1

hn

sX
i=1

"2(�n+i) � f
1

hn

sX
i=1

"(�n+i)g2]

+ 2
1

hn

sX
j=1

"(j)
1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g

� 2 1
hn

hnX
i=s+1

"(�n+i)
1

hn

sX
i=1

f"(�n+hn) � "(�n+i)g:

which has the desired form An = An1 � An2 + 2An3 � 2An4 �

The formula (A.11).
We have hn � sn � s < hn where sn = (2 log hn)�1=4hn: By de�nition

�̂2�n+s=�
2 =

1

hn

hnX
i=1

"2(�n+s+i) � f
1

hn

hnX
i=1

"(�n+s+i)g2:

A residual sums of squares is invariant to subtracting a constant from each observation.
Thus, subtracting "(�n+hn) from each "(�n+s+i) gives

�̂2�n+s=�
2 =

1

hn

hnX
i=1

f"(�n+s+i) � "(�n+hn)g2 � [
1

hn

hnX
i=1

f"(�n+s+i) � "(�n+hn)g]2:

Split into �good�and �outlier�errors to get

�̂2�n+s=�
2 =

1

hn

hnX
i=s+1

f"(�n+i) � "(�n+hn)g2 +
1

hn

sX
j=1

f"(�n+hn+j) � "(�n+hn)g2

� [ 1
hn

hnX
i=s+1

f"(�n+i) � "(�n+hn)g+
1

hn

sX
j=1

f"(�n+hn+j) � "(�n+hn)g]2:

Note that "(�n+hn+j) � "(�n+hn) = "(j) while "(�n+i) < "(�n+hn) so that

�̂2�n+s=�
2 =

1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g2 +
1

hn

sX
j=1

"2(j)

� [� 1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g+
1

hn

sX
j=1

"(j)]
2:
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Rearrange as

�̂2�n+s=�
2 =

1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g2 � [
1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g]2

+
1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2

+ 2[
1

hn

hnX
i=s+1

f"(�n+hn) � "(�n+i)g]f
1

hn

sX
j=1

"(j)g:

The term in the second line satis�es

1

hn

sX
j=1

"2(j) � f
1

hn

sX
j=1

"(j)g2 =
s

hn
(1� s

hn
)
1

s

sX
j=1

"2(j) + (
s

hn
)2[
1

s

sX
j=1

"2(j) � f
1

sn

sX
j=1

"(j)g2]:

Thus, we get
�̂2�n+s=�

2 = An = An1 + An2 + An3 + 2An4;

which is (A.11), where

An1 = h�1n

hnX
i=s+1

f"(�n+i) � "(�n+hn)g2 � [h�1n
hnX

i=s+1

f"(�n+i) � "(�n+hn)g]2;

An2 = (
s

hn
)2[
1

s

sX
j=1

"2(j) � f
1

s

sX
j=1

"(j)g2];

An3 =
s

hn
(1� s

hn
)
1

s

sX
j=1

"2(j)

An4 = [h
�1
n

hnX
i=s+1

f"(�n+hn) � "(�n+i)g]fh�1n
sX
j=1

"(j)g:

This completes the proof of (A.11). �


