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Abstract

The United Kingdom was the first country into the Industrial Revolution in the mid-18th Century.
250 years later, real income levels in the UK are about 7-10 fold higher per capita, even greater else-
where, many killer diseases have been tamed, and longevity has approximately doubled. However,
such beneficial developments have led to a global explosion in anthropogenic emissions of green-
house gases. Following the Climate Change Act of 2008, the UK is now one of the first countries
out, with annual CO2 emissions per capita below 1860’s levels. We develop an econometric model
of its highly non-stationary emissions process over the last 150 years, confirming the key roles of re-
duced coal use and of the capital stock, which embodies the vintage of technology at its construction.
Major shifts and outliers must be handled to develop a viable model, and the advantages of doing so
are detecting the impacts of important policies and improved forecasts. Large reductions in all CO2

sources will be required to meet the 2050 target of an 80% reduction from 1970 levels, and their near
elimination for a net-zero level.

JEL classifications: C51, Q54.
KEYWORDS: UK CO2 Emissions; Model Selection; Saturation Estimation; Autometrics; Climate
Change Act; Climate Policy Implications.

1 Introduction

As first into the Industrial Revolution, the UK initially produced a large share of global anthropogenic
CO2 emissions, albeit that much of that was embodied in its exports of cloth production, steam engines,
ships and iron products etc. Not only has its share of world CO2 emissions shrunk to a tiny proportion
following global industrialization, there has been a dramatic drop in its domestic emissions of CO2, so
that by 2017 they were back to 1890’s levels: the country first into the Industrial Revolution is one of the
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first out. Indeed, on April 22, 2017, ‘Britain has gone a full day without turning on its coal-fired power
stations for the first time in more than 130 years’,1 and on May 26, 2017 generated almost 25% of its
electrical energy from solar,2 and now goes weeks without burning coal for electric energy production.

The data analyzed here are aggregate, but as the UK population has more than doubled since 1860,
in 2013 the UK’s CO2 emissions in per capita terms actually dropped below the level of 1860 (see Figure
1c), and are now just 55% of their level in 1894, despite per capita real incomes being around 7-fold
higher. Thus, although the UK now ‘imports’ substantial embodied CO2—reversing the Industrial Rev-
olution direction—major domestic emissions reductions have occurred but have obviously not involved
substantive sacrifice: see Catherine Brinkley (2014) for an empirical analysis of decoupling growth and
CO2 emissions. Much remains to reduce CO2 emissions towards the net zero level that will be required
to stabilize temperatures, but renewable technologies offer hope of further rapid emission reductions.

The aim of this paper is to model the UK’s CO2 emissions to establish the determinants of the UK’s
remarkable drop accomplished with rising real incomes. We use Autometrics to jointly select relevant
variables, their lags, possible non-linearities, outliers and location shifts in putative relationships, and also
rigorously test selected equations for being well-specified representations of the data. The structure of
this paper is as follows. Section 2 defines the variables and records their sources then section 3 describes
the UK time-series data under analysis, using only data over 1861–2011 for estimation and selection
to allow an end-of-sample parameter-constancy test to 2017.3 Section 4 formulates the econometric
model, where §4.1 consider the choice of functional forms of the regressors. Then section 5 evaluates
a simple model formulation, and highlights the inadequacy of such specifications facing wide-sense
non-stationary data. The four stages of model selection from an initial general model are described
in section 6, then section 7 addresses selecting indicators in the general model. Section 8 describes
selecting relevant regressors given the retained indicators, and implementing a cointegration reduction,
where the non-integrated formulation is estimated in section 9. Section 10 conducts an encompassing test
of the linear-semilog model versus a linear-linear one. Section 11 presents conditional 1-step ‘forecasts’
and multi-step forecasts from a VAR, then section 12 addresses the policy implications of the empirical
analysis. Section 13 estimates a ‘climate-environmental Kuznets curve’ and section 14 concludes.

2 Data definitions and sources

The variables used in the analysis of UK CO2 emissions are defined as follows:

Et = CO2 emissions in millions of tonnes (Mt) [1], [2]
Ot = Net oil usage, millions of tonnes [3].
Ct = Coal volumes in millions of tonnes [4].
Gt = real GDP, £10 billions, 1985 prices [5], [7], p.836, [8]a,b.
Kt = total capital stock, £billions, 1985 prices [6], [7], p.864, [8]b,c.
∆xt = (xt − xt−1) for any variable xt
∆2xt = ∆xt −∆xt−1

1See https://www.ft.com/content/8f65f54a-26a7-11e7-8691-d5f7e0cd0a16.
2See https://www.ft.com/content/c22669de-4203-11e7-9d56-25f963e998b2.
3CO2 data are available to 2018, but other series only to 2017.
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Sources:
[1] World Resources Institute http://www.wri.org/our-work/project/cait-climate-data-explorer and
https://www.gov.uk/government/collections/final-uk-greenhouse-gas-emissions-national-statistics;
[2] Office for National Statistics (ONS)
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2015;
[3] Crude oil and petroleum products: production, imports and exports 1890 to 2015 Department for
Business, Energy and Industrial Strategy (Beis);
[4] Beis and Carbon Brief http://www.carbonbrief.org/analysis-uk-cuts-carbon-record-coal-drop;
[5] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts#timeseries;
[6] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocks
consumptionoffixedcapital/2014-11-14#capital-stocks-and-consumption-of-fixed-capital-in-detail;
[7] Brian Mitchell (1988) and Charles Feinstein (1972);
[8] Charles Bean (from (a) Economic Trends Annual Supplements, (b) Annual Abstract of Statistics, (c)
Department of Employment Gazette, and (d) National Income and Expenditure).
See Hendry and Neil Ericsson (1991), and Hendry (2001, 2015) for discussions about Gt and Kt. There
are undoubtedly important measurement errors in all these time series, but James Duffy and Hendry
(2017) show that strong trends and large location shifts of the form prevalent in the data analyzed here
help offset potential biases in the long-run relation’s estimated coefficients.

3 UK CO2 emissions and its determinants

As already noted, energy production, manufacturing, and transport each account for roughly 25% of
UK CO2 emissions, the rest coming mainly from agriculture, construction and waste in approximately
equal shares. While other greenhouse gas emissions matter, CO2 comprises about 80% of the UK total,
with methane, nitrous oxide and hydrochlorofluorocarbons (HCFCs) making up almost all the rest in
CO2 equivalents. However, the various fossil fuels have different CO2 emissions per unit of energy
produced and how efficiently fuels are burnt also matters, from coal on an open fire or in a furnace,
through gasoline-powered vehicles with different engine efficiencies, to a gas-fired home boiler or a
power station. A standard approach to estimate country fossil fuel emissions is to use the product of the
volumes of fuels produced, the proportion of each fuel that is oxidized, and each fuels’ carbon content
(see Greg Marland and Ralph Rotty, 1984). Table 1 records the average CO2 emissions per million
British thermal units (Btu) of energy produced for the main fossil fuels.4

As rough approximations for interpreting CO2 reductions, coal has a relative weight of around 2.2,
oil 1.6 and natural gas 1.1, depending on the units of measurements. Thus, switching energy production
from coal to natural gas would reduce emissions by about 45%–50% for the same amount of energy. Of
course, switching to renewable sources would effect a 100% reduction, and is an essential step to reach
a net-zero emissions target.

4Variations on such data are used in David Erickson, Richard Mills, Jay Gregg and Terence Blasing et al. (2008), Chris
Jones and Peter Cox (2005), James Randerson, Matthew Thompson, Thomas Conway and Inez Fung et al. (1997), and Cynthia
Nevison, Natalie Mahowald, Scott Doney and Ivan Lima et al. (2008). Data using this methodology are available at an annual
frequency in Marland, Thomas Boden, and Robert Andres (2011). CO2 emissions from cement production are estimated to
make up about 5% of global anthropogenic emissions (see Ernst Worrell, Lynn Price, Nathan Martin and Chris Hendriks et al.,
2001).
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Coal (anthracite) 228.6
Coal (bituminous) 205.7
Coal (lignite) 215.4
Coal (sub-bituminous) 214.3
Diesel fuel & heating oil 161.3
Gasoline 157.2
Propane 139.0
Natural gas 117.0

Table 1: Pounds of CO2 emitted per million British thermal units (Btu) of energy produced. Source: US
Department of Energy https://www.eia.gov/tools/faqs/faq.php?id=73&t=11

The main data over 1860–2017 on UK CO2 emissions, energy volumes, and the relation of CO2

emissions to the capital stock are shown in Figure 1.
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Figure 1: (a) UK CO2 emissions in millions of tonnes (Mt); (b) UK coal (Mt), oil (Mt), natural gas
(millions of tonnes of oil equivalent, Mtoe) and wind+solar (Mtoe); (c) CO2 emissions per capita, in tons
per annum; (d) ratio of CO2 emissions to the capital stock on a log scale, all to 2017.

Panel (a) shows that UK CO2 emissions rose strongly and quite steadily from 1860 till about 1916,
oscillated relatively violently till about 1946 from the sharp depression at the end of World War I, the
General Strike, Great Depression starting in 1930, and World War II, then resumed strong growth till
1970. Following another somewhat turbulent period till 1984, emissions began to fall slowly, accelerating
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after 2005 to the end of our time series in 2017, by which time they were below levels first reached in
1890. Panel (c) plots CO2 emissions per capita, revealing that by 2013 they had fallen below the level at
the start of our data period in 1860.

Panel (b) records the time series for coal volumes and net oil usage (imports plus domestic produc-
tion less exports), natural gas and renewables. Coal volumes behave similarly to CO2 emissions till 1956
at which point they turn down and continue falling from then onwards, dropping well below the volumes
mined in 1860. The sharp dips from miners’ strikes in 1921, 1926 and 1984 are clearly visible. Con-
versely, oil volumes are essentially zero at the start, but rise rapidly in the period of cheap oil after World
War II, peak in 1973 with the first Oil Crisis, but stabilize from 1981 on, despite a doubling in vehicle
travel to more than 500 billion kilometers p.a. Natural gas usage rises quickly from the late 1960s, but
has recently fallen slightly, and renewables have been growing rapidly this century.

Finally Panel (d) plots the log-ratio of CO2 emissions to the capital stock and shows that it started
to decline in the 1880s, and has dropped by more than 92% over the hundred and thirty years since.
As capital embodies the vintage of technology prevalent at the time of its construction, tends to be long
lasting, and is a key input to production, the volumes of CO2 produced by production are likely to
be strongly affected by the capital stock: see e.g., Alexander Pfeiffer, Richard Millar, Cameron Hepburn
and Eric Beinhocker (2016). Hence, ‘stranded assets’ could be a potential problem if legislation imposed
much lower CO2 emissions targets, as is the case for the UK.
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Figure 2: (a) Scatter plot of CO2 emissions against the quantity of coal by date; (b) 3-dimensional plot
of Et against Kt and Ct.

To highlight the massive changes that have occurred in the UK, Figure 2 reports a scatter plot of CO2

emissions against the quantity of coal, showing the dates of each pair of points, and a 3-dimensional
plot of Et against Kt and Ct. As with Figure 1(a), there is strong growth in emissions as coal output
expands until the mid 1950s when coal production peaks, but emissions continue to grow till the mid
1970s despite a substantial reduction in coal volumes, and only then start to decline but fall noticeably
after 2008. Referring back to Figure 1(b), the rapid rise in oil use initially offsets the fall in coal, but after
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the two Oil Crises of the 1970s, the fall in coal is reflected in the decline in emissions. Panel (b) shows the
major role played by the capital stock in changing the link between coal and CO2 emissions, reflecting
the efficiency gains seen in Figure 1(d). Figure 3 shows the distributional shifts in CO2 emissions that
have occurred historically, using approximately 40-year sub-periods.
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Figure 3: Sub-period distributions of UK CO2 emissions.

All the above graphs show non-linear relationships at the bivariate level (i.e., between CO2 emis-
sions and coal production, say), as well as shifts in relations. An immediate implication is that simple
correlations between pairs of variables change over time, so will be poor guides to what matters in a
multivariable relationship, as Table 2 shows. Coal volumes have the smallest correlation with CO2 emis-
sions, yet were manifestly one of its main determinants.5

Correlations : CO2 emissions Coal Oil real GDP capital
CO2 emissions 1.000 0.243 0.734 0.528 0.506
Coal 1.000 -0.424 -0.598 -0.624
Oil 1.000 0.829 0.822
real GDP 1.000 0.997

Table 2: Whole-sample correlations.

Figure 4 shows recursive estimates of the relation Et = β̂0 + β̂1Ct + ν̂t, confirming the dramatic
non-constancy of that overly simple model, illustrating the problems of not modelling non-stationarity.

5Correlations are not well defined for non-stationary variables, as they are not constant over time.
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Figure 4: (a) Recursive β̂1,t with ±2SE
β̂1,t

; (b) Recursive β̂0,t with ±2SE
β̂0,t

; (c) 1-step recursive

residuals ν̂t with ±2σ̂t; (d) Break-point Chow tests scaled by their 0.1% critical values.

4 Model formulation

The general model is the system characterizing the local data generating process (LDGP). We are in-
terested in modelling UK CO2 emissions given the volumes of coal and oil the UK used and the main
representations of the scale of the economy and its productive capacity, namely GDP and the capital
stock. Over most of our sample period, there would not be any contemporaneous or lagged feedbacks
from CO2 emissions to the explanatory regressors, although by the middle of the 20th century with
‘Clean Air’ Acts of Parliament, that is a possibility, increasingly so by the first decade of the 21st century
as climate change concerns grow, but overall a conditional model seems a viable representation here.

Combining all the above information, neither of the two ‘polar’ approaches to modelling the UK’s
CO2 emissions, namely as (a) decomposed into its sources (coal, oil, gas etc.), or (b) as a function of
economic variables (capital and output) alone, seems likely to be best. On (a), not all sources have been
recorded historically, especially their carbon compositions, which will have varied over time with the
type of coal used, and how oil was refined to achieve which products (inter alia). On (b), that changing
mix will entail non-constancy in the relation between emissions and the capital stock and GDP. To capture
the changing mix and its relation to the economic variables, we included the two main emitters, coal and
oil, with the capital stock and GDP. The latter then explain the emissions not accounted for by the former:
the solved long-run relationship in equation (5) below finds all four variables play a significant role, and
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the coefficients for coal and oil are also consistent with that interpretation. In turn, the additive nature
of emissions suggests a linear relation with coal and oil, although that leaves open how the economic
variables might enter, considered in §4.1.

A further obvious feature of Figure 1(a) is the number of very large ‘outliers’ occurring during
the inter-war and immediate post-war periods. Consequently, the general set of variables from which
the model for CO2 emissions will be selected comprises its lagged value and current and first lagged
values of coal and oil volumes, real GDP and the capital stock. These variables are all retained without
selection while selecting over both impulse and step indicators at α = 0.1% significance. First, however,
we address the functional forms for Gt and Kt.

4.1 Functional forms of the regressors
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Figure 5: Graphs on a logarithmic scale matched by means and ranges of linear (capitals) and log (lower
case) transforms of (a) GDP; (b) capital stock.

Castle and Hendry (2010) considered a low-dimensional representation of non-linearity, but here a
more specific issue is whether to transform the various regressors to logarithms or leave as linear. CO2

emissions depend linearly on the volumes of fossil fuels consumed with the weights shown in Table
1. Moreover, it is the volume of CO2 emitted that has to be reduced to net zero, so we use that as the
dependent variable. In turn, it is natural to include coal and oil volumes linearly as well. Nevertheless,
both linear and log linear relations were investigated. As oil was used in negligible quantities in the 19th
Century, early volumes were increased by unity (to ensure positive values), but the log transform still
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seemed to distort rather than help.
Equivalent linear and log-linear equations were formulated as:

Et = β0 + β1Et−1 + β2Ct + β3Ct−1 + β4Ot + β5Ot−1

+β6Gt + β7Gt−1 + β8Kt + β9Kt−1 + ut (1)

the with the same form but all variables in logs. Both were estimated with impulse-
indicator saturation (IIS) and step-indicator saturation (SIS), called super saturation when ap-
plied jointly, selecting indicators at a target significance level of 0.001 but retaining all the
regressors in (1) without selection. The log-linear version had a residual standard devia-
tion of 2.6%, whereas dividing the residual standard deviation of the linear form (reported in
https://voxeu.org/article/driving-uks-capita-carbon-dioxide-emissions-below-1860-levels) by the mean
value of Et yielded 2.0%, so the linear representation dominated on the criterion proposed by Sargan
(1964). By way of comparison, even after IIS, the formulation in (7) below had a residual standard
deviation of 5.5%.

However, that leaves open the choice of log or linear just for Gt and Kt. Figure 5 graphs those
variables in linear and log transforms, matched by means and ranges to highlight any relative curva-
ture. Given the large increase in both since 1860, £100billion corresponds to very different percentage
changes, illustrated by the apparently small fall in G after World War I, yet the largest drop in g, with
the opposite after 2008. Consequently, we will model with the logs, denoted g and k, scaled by 100 so
coefficients are between±10, and ∆g and ∆k are percentage changes. The encompassing test in section
10 checks how well the two possibilities of linear and semi-log compare. Outliers and location shifts
detected by super saturation estimation may well differ between these specifications.

5 Evaluating a model without saturation estimation

Thus, the baseline relationship between emissions and its main determinants was formulated as:

Et = β0 + β1Et−1 + β2Ct + β3Ct−1 + β4Ot + β5Ot−1

+β6gt + β7gt−1 + β8kt + β9kt−1 + vt. (2)

To demonstrate why a simple-to-general methodology is inadequate, we will first estimate and evalu-
ate the relation in (2) over 1861–2011 with four observations retained as an end-of-sample constancy
test for 2012–2017, given in (3) where estimated coefficient standard errors (SEs) are shown in paren-
theses below estimated coefficients with heteroskedastic and autocorrelation consistent standard errors
(HACSEs) shown below those in brackets (see Whitney Newey and Kenneth West, 1987, and Donald
Andrews, 1991).

Êt = 0.79
(0.054)

[0.070]

Et−1 + 2.58
(0.14)

[0.38]

Ct − 2.21
(0.18)

[0.40]

Ct−1 + 2.05
(0.43)

[0.53]

Ot − 1.53
(0.43)

[0.53]

Ot−1

+ 0.81
(0.53)

[0.49]

gt − 0.99
(0.53)

[0.57]

gt−1 + 1.67
(2.67)

[2.65]

kt − 1.39
(2.62)

[2.57]

kt−1 + 61
(133)

[109]

(3)
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σ̂ = 16.2 R2 = 0.985 FAR(2, 139) = 8.44∗∗ χ2
nd(2) = 64.4∗∗

FARCH(1, 149) = 18.9∗∗ FHet(18, 132) = 2.95∗∗

FReset(2, 139) = 14.3∗∗ FChow(6, 141) = 0.96 tur = −3.91

The tests are χ2
nd(2) for non-Normality (see Jurgen Doornik and Henrik Hansen, 2008), FAR for resid-

ual autocorrelation (see Lesley Godfrey, 1978), FARCH tests for autoregressive conditional heteroskedas-
ticity (see Robert Engle, 1982), FHet for residual heteroskedasticity (see Halbert White, 1980) and FChow
for parameter constancy (see Gregory Chow, 1960).

Despite the high R2 induced by the non-stationarities in the variables, the model is completely inad-
equate. Every mis-specification test rejects, the key economic variables g and k are insignificant, and tur
does not reject the null hypothesis of no cointegration (see Ericsson and James MacKinnon, 2002, for
the appropriate critical values, which are programmed into PcGive) The solved long-run equation for E
in Table 3 also has the ‘wrong’ relative coefficients of coal and oil.

Coefficient SE
1 289 635
C 1.77 0.17
O 2.45 0.64
g -0.86 1.05
k 1.35 0.97

Table 3: Solved static long-run equation for E.

The HACSEs do not alter the significance or insignificance of the regressors, and given the sub-
stantive rejections on FAR and FHet, are surprisingly close to the conventional SEs (see the critiques of
HACSEs in Castle and Hendry, 2014, and Aris Spanos and Reade, 2015), so do not alert investigators
who fail to compute mis-specification tests as to the problems.

Finally, the recursively-estimated coefficients β̂i,t with ±2SEi,t, the residuals with ±2σ̂t, and the
recursive FChow test are shown in Figure 6 revealing considerable non-constancy. The coefficient of
Et−1 is converging towards unity, often signalling untreated location shifts (see Castle, Fawcett, and
Hendry, 2010).

The dilemma confronting any investigator after fitting (3), and facing so many test rejections, is
how to proceed. Mis-specification tests can reject against a number of different alternatives to those
for which they were originally derived, so implementing that particular alternative is a non-sequitur.
For example, residual autocorrelation need not entail error autocorrelation but may arise from incorrect
dynamics, unmodelled location shifts or other parameter changes, data measurement errors and omitted
variables, so adopting a recipe of the form often attributed to Guy Orcutt and Donald Cochrane (1949)
can be counter-productive (see e.g. Mizon, 1995). Indeed, once there is residual heteroskedasticity
and non-constancy, it is unclear what other rejections mean, except to confirm that something is wrong.
The obvious alternative approach of general-to-specific is what we now explore for modelling UK CO2

emissions.
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Figure 6: Graphs of β̂i,t, i = 0, . . . , 9 with ±2SEi,t; ût with ±2σ̂t, and FChowt over 1875–2011.

6 Four stages of single-equation model selection

In this subsection, we consider the four stages of conditional model selection from (2) extended by using
super saturation (namely IIS+SIS), fitting to data over 1861–2011 to allow an end-of-sample parameter-
constancy test to 2017.

First, in section 7 we select both impulse and step indicators at a tight nominal significance level
α, which is the theoretical gauge, retaining all of the other regressors in (2) without selection. The
studies referenced above have established that the theoretical and empirical gauges are generally close
for IIS, and have derived the uncertainty around the latter, which is almost negligible for very small
α0.001 = 0.001. Less is known analytically about the gauge of SIS or super saturation, but the simulation
studies noted earlier suggest the gauge should be set around 1/2T . Since there are T = 151 observations,
there will be M ≈ 300 indicators in the candidate set (T impulse indicators and T − 2 step indicators),
so under the null hypothesis that no indicators are needed, α0.001M = 0.001×300 = 0.3 of an indicator
will be significant by chance. Even doubling that, α0.0012M can be interpreted that one indicator will
be retained adventitiously approximately 3 out of every 5 times these choices are applied to new data
sets with the same configuration of T , so over-fitting seems unlikely. As shown above, estimating (2)
without indicator variables is unsuccessful as all mis-specification tests strongly reject. Diagnostic tests
will be applied to check that the finally selected equation is well specified, with non-autocorrelated,
homoskedastic and nearly Normal residuals, constant parameters, and no remaining non-linearity: (4)
records that outcome.

Next, in section 8 we select over the other nine regressors at α0.01 (indicators already selected are
bound to be significant at this second stage). Almost none of the 9 regressors will be retained by chance
if in fact they are irrelevant.

Third, also in section 8 we solve this selected model for the cointegrating, or long-run, relation
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implicit in it, and reparametrize the non-deterministic variables to differences. In doing this mapping to
a non-integrated specification, step indicators are included in the cointegration relation, so that they do
not cumulate to trends, leaving impulse indicators and differenced step indicators unrestricted. While
this may seem somewhat complicated, the reasons for doing so are explained in the survey articles by
Hendry and Katarina Juselius (2000, 2001), and in Hendry and Pretis (2016). Finally, we re-estimate
that non-integrated formulation in section 9.

7 Selecting indicators in the general model

Following this path, we find for T = 1861–2011, retaining all the regressors and selecting impulse and
step indicators jointly at 0.1%, then simplifying several mixtures of impulse and step indicators, and
testing constancy over 2012–2017:

Êt = 0.52
(0.06)

Et−1 − 47
(13)

1{1921} − 163
(20)

1{1926} − 44
(10)

1{1946} + 56
(11)

1{1947}

+ 29
(9.8)

1{1996} − 42
(14)

S{1925} + 72
(13)

S{1927} − 31
(7.5)

S{1969} + 47
(10)

S{2010}

− 158
(89)

+ 1.86
(0.13)

Ct − 0.88
(0.18)

Ct−1 + 1.71
(0.26)

Ot − 1.07
(0.28)

Ot−1 + 0.95
(0.33)

gt

− 1.13
(0.33)

gt−1 + 7.64
(1.8)

kt − 7.02
(1.8)

kt−1 (4)

σ̂ = 9.58 R2 = 0.995 FAR(2, 130) = 2.93 χ2
nd(2) = 5.97

FARCH(1, 149) = 3.42 FHet(20, 123) = 0.82

FReset(2, 130) = 2.30 FChow(6, 132) = 1.40 Fnl(27, 105) = 1.04

where Fnl tests for non-linearity (see Castle and Hendry, 2010). All of these mis-specification tests are
insignificant, including FReset and Fnl so all of the non-linearity has been captured by (4), but the tests
are applied to I(1) data, so correct critical values are not known: see Vanessa Berenguer-Rico and Jesus
Gonzalo (2014) for a test of non-linear cointegration applied in this context.

Five impulse and four step indicators have been retained in (4) despite the very tight significance
level. Combining the indicators in (4) allows some simplification by transforming 1{1926} and S{1927}
to ∆1{1926}, and 1{1947} − 1{1946} = ∆1{1947}. This reduces the number of genuine location shifts to
three, an intermediate modelling stage that was implemented before selecting over the 9 regressors. The
resulting σ̂ was unaffected by these transformations.

The remaining step shifts capture major events with long-term impacts that are not otherwise captured
by the variables in the model. These could reflect changes in the improving efficiency of fuel use, or the
effects of omitting other sources of emissions with key technological changes, or usage shifts not taken
into account in calculating emissions. Since steps in the Autometrics implementation of SIS terminate at
the dates shown, their reported signs reflect what happened earlier, so a positive coefficient for S{1925}
entails a higher level prior to 1926. That is the date of the 1926 Act of Parliament that created the UK’s
first nationwide standardized electricity distribution grid, greatly enhancing the efficiency of electricity,
but also witnessed the General Strike probably captured by ∆1{1926}. Then 1969 saw the start of the
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major conversion of UK gas equipment from coal gas (about 50% hydrogen) to natural gas (mainly
methane) with a considerable expansion in its use. The coefficients of both these location shifts have
the appropriate signs of reducing and increasing emissions respectively. Although the UK’s Clean Air
Act of 1956 did not need a step indicator, probably because it was captured by the resulting fall in coal
use, we interpret the step shift S{2010} showing a higher level of emission of 47Mt before then as the
reaction to the Climate Change Act of 2008 (see https://www.legislation.gov.uk/ukpga/2008/27/contents)
and the European Union’s Renewables Directive of 2009, discussed in Section 12. Thus, we doubt the
explanation is the Great Recession of 2008–2012, since the previous largest GDP fall in 1921–22 did
not need a step, but just had an impulse indicator for the large outlier in 1921. As coal volumes are
included, indicators for miners’ strikes should only be needed to capture changes in inventories, which
might explain part of the large impulse indicator for 1926.

8 Selecting regressors and implementing cointegration

Secondly, selecting over the 9 regressors at 1% significance retained all of them.
Third, we solve for the long-run cointegrating relationship, justified by the Doornik and Hendry

(2018) unit-root t-test value of tur = −8.99∗∗ which strongly rejects the null hypothesis of no cointegra-
tion. The resulting cointegration relation defines the equilibrium-correction trajectory Q̃t = Et − ẼLR,t
(adjusting to a mean of zero in-sample). Step indicators need to be led by one period as Q̃t−1 will be
entered in the transformed model.

However, being at the end of the initial sample up to 2011 from the definition of step indicators here,
1 − S{2010} only has 2 observations in sample. Consequently, it was decided to extend the estimation
sample by two observations to 2013 since the current full sample now ended in 2017, to enable the
cointegrating relation to include S{2010}. This led to closely similar estimates to (4) with tur = −9.34∗∗

and:

ẼLR = 2.0
(0.06)

C + 1.4
(0.18)

O + 1.18
(0.27)

k − 0.27
(0.28)

g + 63
(6)

S{1924}

− 64.0
(14)

S{1968} + 70
(13)

S{2009} − 328
(165)

(5)

All variables are significant at 1% other than g. The coefficient of coal is close to the current standard
estimate of ≈ 2.1–2.3, as is that of oil to its estimate, though somewhat lower than the 1.6 in Table 1.

Because the units in which the different variables in (5) are measured are not directly comparable,
their relative importance as determinants of the level of Et is hard to judge. However, Figure 2(b)
provided a 3-dimensional plot of Et against Kt and Ct to show that while the rise then fall of coal usage
in Figure 2(a) explains much of the behavior of CO2 emissions, the increases in the capital stock track
the shift in the mid 20th Century to higher emissions for the same volumes of coal as in the 19th (a
similar picture emerges when plotting Et against Ct and Ot, but with a more erratic spread). Moreover,
in the relatively similar long-run solution in a log-linear formulation, where coefficients are elasticities,
the two dominant influences were 0.42 from coal and 0.40 from capital stock, with much smaller effects
from GDP and oil. These effects match prior anticipations as discussed above. Indeed, in the linear
and log-linear models, the long-run effect of GDP is also negative, possibly reflecting the move from
manufacturing to a service-based economy, although it is insignificant in the semi-log form (5).
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Figure 7(a) shows how closely the long-run derived relation ẼLR,t in (5) tracks Et (previously, there
was a substantial departure at the end of the sample when omitting S{2010}). Panel (b) records the
resulting time series for Q̃t centered on a mean of zero. While Q̃t is not stationary from a changing
variance—unsurprising given the huge variation in Et—a unit root is rejected.
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Figure 7: (a) Et and ẼLR,t; (b) Q̃t = Et − ẼLR,t centered on a mean of zero.

9 Estimating the cointegrated formulation

Fourth, transforming to a model in differences and the lagged cointegration relation from (5) then re-
estimating revealed a couple of additional outliers, and adding indicators for those (significant at 1% but
not the original 0.1%) yielded (6) for 1861–2013, testing constancy over 2014–2017. Increases in oil,
coal, k and g all lead to increases in emissions, which then equilibrate back to the long-run relation in
(5). There are very large perturbations from this relationship, involving step shifts, impulses and blips.
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∆̂Et = 1.88
(0.10)

∆Ct + 1.71
(0.21)

∆Ot + 7.15
(1.09)

∆kt + 0.89
(0.28)

∆gt − 0.50
(0.05)

Q̃t−1

− 15.2
(2.4)

− 79.4
(8.8)

∆1{1926} + 50.2
(6.4)

∆1{1947} − 45.8
(11.1)

1{1921} − 27.5
(8.9)

1{1912}

+ 26.8
(8.9)

1{1978} + 28.4
(8.9)

1{1996} (6)

σ̂ =8.87 R2 = 0.94 FAR(2, 139) = 0.49 χ2
nd(2) = 1.67 FARCH(1, 151) = 0.53

FHet(14, 134) = 1.03 FReset(2, 139) = 1.50 Fnl(15, 126) = 1.35 FChow(4, 141) = 1.75

Archival research revealed that 1912 saw the first national strike by coal miners in Britain causing
considerable disruption to train and shipping schedules, although nothing obvious was noted for 1978.
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Figure 8: (a) Actual and fitted values for ∆Et from (6); (b) residuals scaled by σ̂; (c) residual density
and histogram with a Normal density for comparison; (d) residual autocorrelation.

The turbulent periods create such large changes it is difficult to ascertain how well the model de-
scribes the data from Figure 8, so Figure 9 records the implied levels’ fitted values and outcomes. The
match is extremely close, although the sudden lurches are only ‘modelled’ by indicator variables, as
are several of the step shifts. Possible explanations for the need for impulse indicators, some discussed
above, include the role of gas, changes in stocks of coal and oil leading to divergences from measured
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output (so having different effects on emissions), the changing efficiency of production and usage (e.g.,
replacing electric fires by central heating), and general changes such as better insulation. All of the
diagnostic statistics remain insignificant.
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Figure 9: Actual and fitted values for UK CO2 emissions with indicator dates.

10 Encompassing of linear-semilog versus linear-linear

Encompassing tests can be applied to discriminate between the linear-semilog model in (6) denoted
M1 against the earlier linear-linear model reported in https://voxeu.org/users/davidfhendry0 denoted M2.
The instruments are the combined regressors of the two models. Table 4 records the outcome.

Test Form M1 vs. M2 Form M2 vs. M1

Cox (1962) N[0,1] −3.74∗∗ N[0,1] −5.40∗∗

Ericsson (1983) IV N[0,1] 3.26∗∗ N[0,1] 4.53∗∗

Sargan (1964) χ2(4) 10.0∗ χ2(4) 17.9∗∗

Joint model F(4,134) 2.62∗ F(4,134) 5.00∗∗

Table 4: Encompassing test statistics where M1 is (6) with σM1 = 8.89, M2 is the linear model with
σM2 = 9.18 and σJoint = 8.69.

The instruments used were S{2010}, ∆gt, ∆kt, Constant, ∆1{1947}, Q̃t−1, ∆Ct, ∆Ot, 1{1912},
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1{1921}, 1{1978}, 1{1996}, ∆Kt, 1{1970}, ∆S{1983}, ∆1{1926}, and Q̃GK,t−1, where Q̃t−1 and Q̃GK,t−1
denote the equilibrium correction terms of the versions with log and linear GNP and Capital respec-
tively. Although M1 is rejected against M2, the F(4,134) parsimonious encompassing test against the
joint model is equivalent to adding the four variables from the linear model, and is not significant at the
1% level used for selection, nor are any of those variables individually significant at 1%. Conversely,
Q̃t−1, ∆gt, ∆kt, and 1{1921} are highly significant at less than 0.1% if added to M2.

11 Conditional 1-step ‘forecasts’ and system forecasts
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Figure 10: (a) Outcomes ∆Et, fitted values, and 1-step conditional ‘forecasts’ ∆̂ET+h|T+h−1 with±2σ̂f

shown as bars, and robust ‘forecasts’ ∆̃ET+h|T+h−1; (b) implied ÊT+h|T+h−1 from (a) with ±2σ̂f ,
and corresponding robust ‘forecasts’ ẼT+h|T+h−1, both from 2013; (c) ∆Et, fitted values, and 1-step
conditional ‘forecasts’ ∆̂ET+h|T+h−1 with ±2σ̂f shown as bars, and robust ‘forecasts’ ∆̃ET+h|T+h−1
commencing in 2008.

To check the constancy of the model after 2013, Figure 10 (a) records the four 1-step ahead ‘forecasts’
∆̂ET+h|T+h−1 for ∆ET+h from (6), from T = 2013 with h = 1 . . . 4, conditional on the realized values
for the regressors, where σ̂f denotes the forecast standard error. We also report ‘forecasts’ from a robust
device denoted ∆̃ET+h|T+h−1 (see Hendry, 2006). The derived ‘forecasts’ ÊT+h|T+h−1 for the levels
ET+h are also shown in Panel (b). The robust devices have slightly larger root mean square forecast
errors (RMSFEs) of 14.9, as against ∆̂ET+h|T+h−1 of 13.7, so the conditional ‘forecasts’ suggest no
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substantive shift in the relationship, despite describing the lowest levels of CO2 emissions seen since the
19th century. However, Panel (c) shows the importance of the step-indicator for 2010 as the forecasts
resulting when it is absent are systematically too high.

Re-estimating the CO2 model up to 2017 shows little change in σ̂ to 8.99, consistent with constancy.
However, dropping S2010 then re-estimating to 2017 leads to a jump in σ̂ to 10.7 and rejection on some
diagnostic tests, as does the deterioration in forecasts commencing from 2008, at which point the effects
of the Climate Change Act would not be known. Now the advantages of the robust device come into their
own as panel (c) shows. The mis-specified model’s ‘forecasts’ suffer systematic failure when S{2010} is
excluded (all other indicators were included), lying outside the ±2σ̂f error bars for the last four obser-
vations, with a RMSFE of 36, whereas despite that omission, the robust ‘forecasts’ track the downward
trend in emissions and have a RMSFE of 25.
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Figure 11: (a) Outcomes fitted values, and 1-step forecasts with and without step indicators, with ±2σ̂f
respectively shown as bars and fans, plus RMSFEs; (b) Outcomes fitted values, and multi-step forecasts
with and without step indicators, with ±2σ̂f respectively shown as bars and fans, plus RMSFEs.

To obtain unconditional forecasts and evaluate the role of IIS and SIS in model development and
forecasting, a vector autoregression (VAR) with 2 lags was estimated for the five variables, Et, Ct, Ot,
gt, and kt, over the original sample of 1862–2011 with and without the indicators found for (4). In the
former, those indicators were included in all equations. The VARs were estimated unrestrictedly without
any selection to eliminate insignificant variables as that would lead to different specifications between
the systems: Clements and Hendry (1995) demonstrate the validity of forecasting in this setting. Figure
11 reports the outcomes. Panel (a) shows the outcomes for 1-step ahead forecasts with and without step
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indicators and Panel (b) the multi-step forecasts going 1, 2, ..., 6 steps ahead. In both cases, indicator-
based forecast intervals are shown as fans, and without step indicators by bars. In-sample, impulse
indicators only have an impact on forecasts to the extent that they change estimated parameters, whereas
step indicators can have lasting effects. As can be seen, including the step indicators greatly reduces
±2σ̂f for the forecasts in both Panels and leads to more accurate forecasts and much smaller RMSFEs
in both cases as compared to when no step indicators are included. The outcomes lie within their own
uncertainty intervals for both sets of forecasts.

12 Policy implications

The most important implication of the above evidence is that substantial CO2 reductions are feasible, so
far with little apparent impact on GDP. The UK’s 2008 Climate Change Act established the world’s first
legally-binding climate-change target to reduce the UK’s greenhouse-gas emissions by at least 80% by
2050 from the 1990 baseline (the UK carbon budget counts six greenhouse gas emissions, not just CO2).
A range of policy initiatives was implemented, with an updated carbon plan in 2011 (again covering
more than just CO2 emissions), with carbon budgets to limit greenhouse gas emissions to 3018 Mt CO2-
equivalent over the five years 2008–2012 and 2782 over 2013–2017. While only counting the CO2

component, which is approximately 80% of the total, emissions over 2008–2012 cumulated to 2477 Mt,
and to date over 2013–2017, to 2039 Mt, both below the sub-targets, allowing 20% for other greenhouse
gas emissions while still hitting those overall targets.

To test the UK’s achievement of its 2008 Climate Change Act targets for CO2, the above 5-year
total targets were translated into annual magnitudes, starting 20Mt above and ending 20Mt below the
average target for the period. However, our test does not depend greatly on the within-period allocation,
which affects any apparent residual autocorrelation (not significant, but the sample is small). We then
scaled these annual targets by 0.8 as the share of CO2 in total greenhouse gases emitted by the UK,
shown in Figure 12 (a). As a decade has elapsed since the Act, there were 10 annual observations on
CO2 emissions to compare to the targets, and we calculated a test of the difference between targets and
outcomes being zero, but starting in 2009 as the Act could not have greatly influenced the emissions in
its year of implementation. A graph of those differences is shown in Figure 12 (b).

The null of “emissions=targets” is strongly rejected on the negative side with a mean of −18 and a
zero-innovation error t-test value of −2.67 (p < 0.03: t = −1.99 correcting estimated standard errors
for residual autocorrelation and heteroskedasticity), or as in panel (b), a downward step of−46.8 starting
in 2013 with a t of −5.9. A similar approach could be used to evaluate the extent to which countries met
their Paris Accord Nationally Determined Contributions or NDCs, given the relevant data. Thus, the
UK has reduced its emissions faster than the targets and in 2017 was already below the implicit target
for 2018. Indeed, the budget for 2018–2022 of 2544 Mt, roughly 410 Mt p.a. of CO2, is undemanding
given the 2017 level of 368 Mt, but should not induce complacency, as the easiest reductions have been
accomplished with coal use now almost negligible. The NDCs agreed at COP21 in Paris are insufficient
to keep temperatures below 2◦C so must be enhanced, and common time frames must be adopted to
avoid a lack of transparency in existing NDCs: see Sam Rowan (2019). Since the baseline dates from
which NDCs are calculated is crucial, standardised dates, 5-year NDC reviews and evaluation intervals
are needed.
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Figure 12: (a) UK CO2 emissions and Climate Change Act 2008 CO2 targets; (b) deviations from tar-
geted values with a step indicator; (c) scenario reductions required in coal and oil use for original 2050
target; (d) resulting reductions in CO2 emissions from (6). In (c) & (d), the horizon is compressed to
5-year intervals after 2017.

12.1 Can the UK reach its 2008 Act CO2 emissions targets for 2050?

For CO2 emissions to meet their share of the 80% drop from the 1990 baseline of 590 Mt, they would
need to fall to about 120 Mt pa. To illustrate, we simulate a scenario with no coal usage, quite a possibility
now that coal is banned for electricity generation from 2025, and a 70% fall in oil use, to around 20
Mt p.a., from greatly increased use of non-gasoline vehicles sustained by expanded renewables and
alternative engines. The outcome is shown in Figure 12 panel (c). The horizon is compressed after 2017,
as the timing of such dramatic reductions is highly uncertain. Implicitly, reduced dependence on natural
gas to under 35 Mtoe p.a. (a 75% reduction) is required, potentially replaced by hydrogen as the UK
used to burn (then made from coal gas) before the switch starting in 1969. With about a quarter of CO2

emissions coming from agriculture, construction and waste (currently about 100 Mt p.a.) a serious effort
to much more than halve those must also be entailed. Panel (d) records the resulting trajectory for CO2

emissions, falling from around the 2015 level of 400 Mt p.a. to about 120 Mt p.a., or around 1.8 tonnes
per capita p.a., down from 12.4 tonnes per capita p.a. in 1970. The point and interval ‘forecasts’ are at
constant K and G, and assume the parameters of (6) remain constant despite the major shift. Increases
in K and G would make the targets harder to achieve unless they were carbon neutral. However, given
the key role of the capital stock in explaining the UK’s CO2 emissions since 1860, as K embodies the
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vintage of the technology at the time of its construction and is long lived, transition to zero carbon has to
be gradual, and necessitates that new capital, and indeed infrastructure in general, must be zero carbon
producing. As a ‘policy’ projection, together these measures would reach the UK’s target for 2050
announced in 2008–but only if such reductions, perhaps with offsetting increases, could be achieved. In
2019, the UK Government amended the target to zero net emissions by 2050. Then all the sources must
go to a level such that carbon capture and sequestration (CCS), possibly combined with atmospheric CO2

extraction methods, would remove the rest. An excellent target, incredibly difficult to achieve, and as yet
no sensible strategy to do so...

A probable reason for the sharp fall in coal use in 2017 is a rise in its price relative to those of other
energy sources, with the UK carbon tax doubling in 2015 to £18 per tonne of CO2. Conversely, nat-
ural gas use has increased 3.5 fold since the mid-1980s, so although producing less than half the CO2

emissions of coal per Btu, still contributes about 140 Mt p.a. to CO2 emissions. Natural gas is mainly
used for electricity production and household indoor and water heating. The former could be handled
in part by increased renewable sources, and the latter by households adopting solar panels and (e.g.)
air heat pumps, as well as switching the gas system back to hydrogen. To meet the zero net target is
demanding, and natural gas use would need to be reduced to near zero. Nevertheless, over the next 20–
30 years with ever improved technologies, and consequential cost reductions in renewables electricity
generation, a zero target does not seem impossible for electricity and gas without requiring reductions
in UK GDP growth, perhaps even increasing it with opportunities arising from new technologies. How-
ever, air transport, agriculture, construction and waste management look more problematic, although
some progress is occurring with electric cars and hydrogen driven trains in Germany and the UK (see
https://www.birmingham.ac.uk/research/spotlights/hydrogen-powered-train.aspx).

The UK’s total ‘consumption induced’ CO2 equivalent emissions are higher than the domestic level
through CO2 embodied in net imports,6 although the large reductions achieved to date have a major
domestic component, and of course ‘consumption induced’ CO2 will fall as the CO2 intensity of imports
falls with reductions in exporting countries. Unfortunately, targeting consumption emissions rather than
production has the unwanted consequence of removing any incentives for emitting industries or exporting
countries to improve their performance, as these would not be counted against them (e.g., if NDCs used
a consumption basis). Border carbon taxes have a role to play in improving both exporters and importers
performance. Similarly, allocating emissions from transport and packaging to (say) the food sector would
again alleviate those intermediate sectors of the responsibility to invest to reduce what are in fact their
emissions by attributing them to retail outlets or consumers. Conversely, the purchasing clout of large
retail chains can pressure suppliers to improve, as (e.g.) Walmart is doing.7

The aggregate data provide little evidence of high costs to the reductions achieved in CO2 emissions,
which have dropped by 186Mt from 554Mt to 368Mt (34%) so far this century, during which period real
GDP has risen by 35%, despite the ‘Great Recession’. Historically, those in an industry that was being
replaced (usually by machines) lose out and bear what should be the social costs of change, from cottage
spinners, weavers and artisans in the late 18th–early 19th centuries (inducing ‘Luddites’), to recent times
(from a million coal miners in 1900 to almost none today). There is a huge difference in the impacts
of substitutes and complements for existing methods: motor vehicles were a major advance, and created
many new jobs directly and indirectly, mainly replacing horses but indirectly destroying their associated

6See http://www.emissions.leeds.ac.uk/chart1.html and https://www.biogeosciences.net/9/3247/2012/bg-9-3247-2012.html.
7See https://corporate.walmart.com/2016grr/enhancing-sustainability/reducing-energy-intensity-and-emissions.
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workforce. Although not a direct implication of the aggregate model here, greater attention needs to
be focused on the local costs of lost jobs as new technologies are implemented: mitigating inequality
impacts of climate induced changes ought to matter centrally in policy decisions.

The rapidly falling costs of renewable-energy sources like solar cells and wind turbines (see e.g.,
Doyne Farmer and François Lafond, 2016), combined with improved storage methods should substan-
tially reduce oil and gas use in electricity production. Table 5 records recent estimates of electricity
generating costs in £/MWh by different technologies. Onshore wind turbines have fallen in cost and
increased in efficiency so rapidly over the past two decades that for the UK at least they offer the lowest
cost alternative, even below natural gas combined-cycle turbines before the costs of carbon capture and
storage (CCS) are included. Solar photovoltaics come next (and this is the UK!) if CCS is enforced,
though both require large backup electricity storage systems for (e.g.) windless nights.

Power generating technology| costs £/MWh Low Central High
Nuclear PWR (Pressurized Water Reactor) (a) 82 93 121
Solar Large-scale PV (Photovoltaic) 71 80 94
Wind Onshore 47 62 76
Wind Offshore (b) 90 102 115
Biomass 85 87 88
Natural Gas Combined Cycle Gas Turbine 65 66 68
CCGT with CCS 102 110 123
Open-Cycle Gas Turbine 157 162 170
Advanced Supercritical Coal Oxy-comb. CCS 124 134 153
Coal IGCC with CCS (c) 137 148 171

Table 5: Electricity generating technology costs in £/MWh (megawatt hour). Lowest cost alternatives
shown in bold. (a) New nuclear power guaranteed strike price of £92.50/MWh for Hinkley Point C
in 2023; (b) Fell to £57.5MWh in late 2017. (c) IGCC = Integrated Gasification Combined Cycle.
Source: Electricity Generation Costs, Department for Business, Energy and Industrial Strategy (BEIS),
November 2016.

Increased outputs of renewable electricity will reduce the volume of emissions for a given level of
energy production by also reducing usage of oil in transport through electric car use, but would not
influence emissions conditional on the volumes of coal and oil included in the empirical models above.
The use of oil in transport will take longer to reduce, but more efficient engines (with diesel being phased
out completely given its toxic pollutants), and most vehicles powered from renewable sources, combined
with much higher taxes on gasoline, offer a route to the next stage of CO2 emissions reductions. Recently,
the UK has banned new diesel and petrol cars from 2035. Facing an almost certain irreducible non-zero
minimum demand for oil and gas, to achieve the Paris COP21 target of zero net emissions before 2050
requires really major technological change, almost certainly involving development of current research
avenues into removing or using existing CO2: see https://phys.org/news/2014-09-carbon.html.

Given the important role of the capital stock in the model above, ‘stranded assets’ in carbon producing
industries are potentially problematic as future legislation imposes ever lower CO2 emissions targets to
achieve zero net emissions (see Pfeiffer et al., 2016). As argued by Farmer, Hepburn, Matthew Ives and
Thomas Hale et al. (2019) exploiting sensitive intervention points in the post-carbon transition could be
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highly effective, and they cite the UK’s Climate Change Act of 2008 as a timely example that had a large
effect.

An excellent ‘role model’ that offers hope for reductions in other energy uses is the dramatic increases
in lumen-hours per capita consumed since 1300 (approximately 100,000 fold in the UK: see Roger
Fouquet and Peter Pearson, 2006) yet at one twenty-thousandth the price per lumen-hour.

13 Climate-environmental Kuznets curve

The ‘environmental Kuznets curve’ is assumed to be a ∩ shaped relationship between pollution and
economic development: see Susmita Dasgupta, Benoit Laplante, Hua Wang and David Wheeler (2002)
and David Stern (2004). For a ‘climate-environmental Kuznets curve’, we estimated a regression of the
log of CO2 emissions, denoted et (lower case denotes logs) on the log of real GDP, gt and its square g2t ,
which delivered:

êt = − 31.5
(1.6)

+ 6.13
(0.27)

gt − 0.247
(0.012)

g2t (7)

σ̂ = 0.091 R2 = 0.91 FAR(2, 145) = 37.3∗∗ FARCH(1, 148) = 0.26

FHet(3, 146) = 1.70 χ2
nd(2) = 68.3∗∗ FReset(2, 145) = 10.61∗∗

FChow(5, 147) = 3.06∗ Fnl(6, 141) = 8.72∗∗

Many of the diagnostic tests are significant, and both Freset and Fnl reveal that all of the non-linearity
has not been captured by (7). Indeed, (7) has a borderline rejection on the parameter-constancy test,
but the rejections on the other mis-specification tests makes that difficult to interpret. Full-sample
impulse-indicator saturation (IIS) selected 17 indicators at a significance level of 0.1%, but still led
to Fnl(6, 128) = 11.5∗∗, and σ̂ = 0.055.

The relationship between log CO2 emissions and log real GDP is plotted in Figure 13. The large
drop in CO2 emissions while GDP more than doubled is notable, and reflects improved technology in
energy use as well as a changing mix of fuels. Although the non-linearity is marked, there are large and
systematic deviations from the fitted curve, shown inside ellipses for the start and end of the sample,
1921 & 1926, and the 1930s & 1940s.

Since the final model in (6) is linear in CO2 emissions, and log-linear in GDP, a natural question is
whether it can account for the non-linearity of the ‘climate Kuznets curve’ in Figure 13. This is answered
in Figure 14 where the log of the fitted values from (6) are cross plotted against log(GDP) together with
log(CO2) data, to reveal the same non-linearity even though log(GDP) enters the equilibrium-correction
mechanism in (5) linearly and is insignificant. The regression of log(CO2) on the log of the fitted values
from (6) had σ̂ = 0.019. Of course that better explanation is greatly enhanced by using coal and oil, but
conversely is after translation into logs.

Thus, the ‘curvature’ of an eventually declining relationship between log CO2 emissions and log real
GDP is an artefact of both being correlated with technology. Had electricity been discovered in 1300,
batteries several decades later, rather than waiting for Volta in 1800, and solar cell technologies a few
decades after that and so on, all of which depended on knowledge and understanding rather than income
levels per se, an electrical world economy may have circumvented the need for coal. Conversely, if
neither electricity nor the internal combustion engine had been discovered, leaving only coal as a fuel
source, efficiency improvements or lower usage would have been the only routes to reductions in CO2

23



10.25 10.5 10.75 11 11.25 11.5 11.75 12 12.25 12.5 12.75 13 13.25 13.5

5.
2

5.
4

5.
6

5.
8

6
6.

2
6.

4

L
og

(C
O

2 e
m

is
si

on
s)

 →

Log(GDP) →
1860
1861
1862

1863

1864

1865
1866
18671868

18691870

1871
1872

1873
1874
18751876187718781879

1880
18811882

1883
188418851886

1887
1888

1889189018911892
189318941895

1896
18971898

18991900
1901
1902190319041905

1906
1907

190819091910
1911
1912

1913
19141915

19161917

1918
1919

1920

1921

1922

1923
1924

1925

1926

1927

1928
1929
1930

1931
19321933

19341935
1936

1937
19381939

194019411942
1943

1944
1945

1946

1947
19481949

1950

1951
19521953

1954
195519561957
19581959

19601961196219631964
19651966

1967
1968
1969
1970
1971
1972

1973

1974
197519761977

19781979

19801981
19821983

1984
1985

198619871988198919901991
1992
199319941995

1996
19971998199920002001

20022003
2004200520062007

2008

2009
2010

2011
20122013

2014
2015

2016
20172018

Figure 13: Scatter plot of log of CO2 emissions against the log of GDP (shown by dates) with the fitted
values from equation (7) (shown by the line).

emissions. Relative costs of energy provision matter, and Table 5 showed recent power generating costs,
but the metaphor suggests a ‘climate Kuznets curve’ is mainly a technology-driven relation. Income
levels may matter more for other environmental relations.

14 Conclusions on modelling UK CO2 emissions

Having been first into the Industrial Revolution that has transformed the world’s per capita incomes and
wealth at the cost of climate change, the United Kingdom is one of the first out in terms of its CO2

emissions. The UK’s total CO2 emissions have dropped below the level first reached in 1890, and in
2017 in per capita terms, are just 53% of that level, and below the level of 1860—when the UK was
the ‘workshop of the world’—despite per capita real incomes being more than 7-fold higher: major
emissions reductions have not yet involved major aggregate sacrifices.8

The econometric approach to modelling such dramatic changes was explained in four steps. This was
applied to develop a model of the observed CO2 emissions data over 1860–2017 in terms of coal and oil
usage, capital stock and GDP, taking account of their non-stationary nature, with many turbulent periods
and major shifts over the 157 years. The key explanatory variables were coal usage and capital stock, with
the estimated coefficients of coal and oil being close to their emissions factors. Renewable-generated
electricity costs have fallen sharply, replacing carbon emitting methods. GDP had no long-run effect

8Carbon Brief (https://www.carbonbrief.org/) estimates that UK greenhouse gas emissions in 2016 were 42% below 1990
levels, but this estimate is much more uncertain than the CO2-only figures.
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Figure 14: Plot of UK log(CO2) emissions and log fitted values against log(GDP): re-creating a ‘climate
Kuznets Curve’.

given the other explanatory variables, probably reflecting an increased share of services, notwithstanding
which, the model implies a non-linear ‘climate Kuznets curve’ between emissions and GDP. Compared
to directly fitting a ‘climate Kuznets curve’ as in (7), the resulting model highlights the benefits of
the more general methodology. Improvements in multi-step forecasts also highlighted the advantages of
taking account of in-sample outliers and shifts using impulse- and step-indicator saturation, despite those
creating more candidate variables to select over than observations.

The policy implications are that climate policy can be effective; that reducing CO2 emissions to date
has not had a large cost at the aggregate level, but local losses need to be addressed; that ‘stranded assets’
could be a potentially serious problem as legislation imposes even lower CO2 emissions targets; that
the UK’s targets of an 100% reduction from the 1990 baseline of 590 Mt are only achievable with total
elimination of coal, oil and gas use and in other emissions sources or increased re-absorption.
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