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Abstract

We study equilibria in Product-Mix, sequential, and simultaneous auctions, which are used

to sell differentiated, indivisible goods. A flexible bidder with unit demand, interested in buying

any of the goods, competes against several inflexible bidders, each interested in only one specific

good. For first-price and second-price payments, we obtain theoretical results on equilibrium

bidding, and compare efficiency, revenue, and bidder surplus numerically. Differences in out-

comes between Product-Mix and sequential auctions are small for a range of value distributions.

The simultaneous auction performs worst in all dimensions, and differences in performance vary

substantially with the degree of competition the flexible bidder faces.

Keywords: multi-unit auctions, asymmetric auctions, market power, menu auctions, sequential

auctions, simultaneous auctions
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1 Introduction

If buyers are interested in two different goods, but want to buy at most one of them, they face

a difficult strategic situation in standard simultaneous auction: they do not know which auction to

participate in. Holding auctions sequentially mitigates this difficulty, and the Product-Mix auction

design resolves it altogether. Following the financial crisis in 2007, the Product-Mix auction (PMA)

was designed for the Bank of England to allocate loans to commercial banks against different

collateral (Klemperer (2008, 2010, 2018)) and has been in use ever since. In a single-round procedure,

bidders can express trade-offs between different varieties of goods. The auction implements the

efficient allocation and if bidders act as price takers it determines a competitive equilibrium.

The PMA allows a bidder with the aforementioned preferences to submit bids on both goods,

under the constraint to win at most one. It therefore greatly simplifies the bidder’s bidding decision,

and it is expected to result in a more efficient allocation, if the number of bidder is sufficiently large.

However, this auction has not been studied in game-theoretic models: if the number of bidders in
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I thank Elizabeth Baldwin, Péter Esö, Ian Jewitt, Bernhard Kasberger, Paul Klemperer, Itzhak Rasooly, Alex Teytel-
boym, and Kyle Woodward for their many helpful comments and suggestions. All mistakes are my own.

1



the auction is small, bidders are have a strong incentive to bid strategically in order to influence

auction prices and maximise their surplus. My contribution is, to the best of our knowledge, the first

comparison of equilibrium bidding in PMAs with standard simultaneous and sequential auctions.

We consider first-price and second-price payment rules, where the standard PMA with uniform

prices falls under the second-price rule. The first-price PMA we discuss is an instance of the menu

auction by Bernheim and Whinston (1986), equipped with the Product-Mix bidding language.

The PMA has further applications in finance and various other industries, e.g. in online adver-

tisement. Advertisers bid for web space to display their ads on publishers’ websites. If two websites

have different audiences, an advertiser with say only one ad they want to display has a trade-off

between publishing on either (but not both) of the two websites. Another important application

are electricity markets. Capacity-constrained suppliers, e.g. operators of pumped-storage hydro

power facilities, face a trade-off between bidding for adjacent time slots. Suppose they can supply

either in the morning or the afternoon, but not both. The Product-Mix format would allow them to

express a trade-off between the morning-product and the afternoon-product, without taking on the

risk of having to supply both. Consumer good auctions provide many other examples for possible

applications of the PMA.1

In our analysis, simultaneous auctions perform worst in terms of efficiency, revenue, and bidder

surplus. The performance of PMAs and sequential auctions is similar, with a slight advantage for

sequential auctions in terms of efficiency and bidder surplus. When bidders are restricted to bid for

at most one unit, the standard PMA is outcome-equivalent to the general VCG mechanism2,3 and

thus sets the benchmark for efficiency. The first-price PMA achieves the highest revenue, closely

followed by the sequential auction. The flexible bidder prefers the PMA under the second-price rule,

and she prefers a sequential auction under the first-price rule. Among first-price auctions, efficiency

is highest in the PMA, close to a sequential format. We obtain most of our results assuming bidders’

values are uniformly distributed; but varying the distributions does not significantly change the

results.

In a simple version of our model, the auctioneer sells two differentiated goods, one unit of each.

All bidders have constant marginal values for one or two goods and unit demand. There is one

flexible bidder who values both goods, up to one unit overall; and there are two groups of inflexible

bidders who are interested in only either one of the goods, respectively. Inflexible bidders are

modelled as a competitive fringe: in equilibrium, it is optimal for them to bid their true value.

This allows us to focus on the flexible bidder’s behaviour. She has to balance the trade-off between

winning one good or the other and not too often winning both goods at the same time. Under the

first-price rule, there is an additional incentive to shade bids. In Product-Mix auctions, the former

1Vintage cars are an obvious example. I have also run several Product-Mix auctions among students at Oxford,
to sell licences for rental of community-owned exercise equipment: we have rowing machines of different quality in
storage and each student (most likely) wants not more than one.

2Ausubel and Milgrom (2005)
3A proof for this can be found e.g. in Leonard (1991). When bidders are restricted to bid for one unit, the PMA

is equivalent to his formulation of an assignment problem of individuals to positions. Demange (1982) proves a closely
related result in a two-sided market setup.
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trade-off is eliminated because the bidding format allows to specify bids (so called “paired” bids4)

that prevent the flexible bidder from winning both goods at once. Similarly, in sequential auctions

the flexible bidder can choose when to expose herself to potentially winning more than one unit.

We find that differences between auction formats are more extreme for high values of the flexible

bidder.5 We also vary the inflexible bidders’ value distribution in a way that is straightforwardly

interpreted as varying the degree of competition the flexible bidder faces. We find that outcomes in

the first-price PMA and the first-price sequential auction formats do not differ by much, irrespective

of the degree of competition. However, in the comparison of the first-price PMA/sequential auction

versus the first-price simultaneous auction, differences in bidder surplus increase considerably with

increased competition, while differences in efficiency and revenue decline with increased competition.

Our paper is among the first to study strategic bidding in PMAs, and it is the first paper to

compare relevant auction formats for the sale of heterogeneous goods with respect to equilibrium

bidding, efficiency, revenue, and bidder surplus. Holmberg et al. (2018) extend Klemperer and

Meyer (1989)’s supply function equilibrium to two goods. Their characterisation of linear equilibria

under demand uncertainty can be used to describe equilibrium bidding in two-variety PMAs with

a number of symmetric bidders holding private information. However, the authors provide no

information on how these equilibria compare to other mechanisms used in practice.

Our setting builds on Krishna and Rosenthal (1996)’s model with “global” and “local” bidders.

In contrast to their work, we study the sale of heterogeneous goods and assume different preferences

for the flexible (global) bidder: if she wins both goods she can only use one of them, whereas in

Krishna and Rosenthal (1996) the flexible bidder has increasing returns.6 Albano et al. (2001)

study a similar framework and draw comparisons with the VCG mechanism, but they also restrict

to super-additive valuations.7 Vickrey (1961) discussed simultaneous and “successive” auctions with

unit-demand bidders, however, with identical objects.

Simultaneous auctions have been also studied by Gerding et al. (2008), in a setup similar to

ours. For identical goods and identical second-price auctions, they show that a flexible bidder

participates in each auction with a strictly positive bid. The setup is extended to non-identical

auctions, but identical goods. Our model differs in that we assume identical distributions for the

inflexible bidders’ values across all auctions, but we allow for the goods to be non-identical to the

flexible bidder. In addition, we provide a result on the uniqueness of equilibria with two goods, and

also consider first-price payments. Simultaneous first-price auctions under full information have

been studied by Palfrey (1980), and a related optimal bidding problem is discussed in Rothkopf

(1977). Both papers consider a setup with constraints on the sum of all amounts bid for.

A related approach to modelling multi-unit auctions with large and small bidders is taken by

4In the original design of the PMA, these bids are called paired bids (Klemperer (2010)); in the computer science
literature, they are better known as XOR-bids.

5We only compare mechanisms with the same payment rule, as comparisons between payment rules are inherently
flawed by the setup of our model: inflexible bidders are comparatively stronger under the first-price rule.

6In their paper, the authors establish equilibria for simultaneous second-price auctions and, in an example, compare
equilibrium bidding and revenue to sequential second-price and combinatorial auctions.

7Albano et al. (2001) provide efficiency and revenue comparisons between a variant of the 1994 FCC simultaneous
ascending auction, simultaneous and sequential second-price auctions, using the VCG mechanism as a benchmark.
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Baisa and Burkett (2017). In their model, the small bidders each demand only an infinitesimal

amount. They bid truthfully in the uniform-price auction, but shade their bids under discriminatory

payments. Their model is less distorting than ours under the first-price rule; however, we found it

not to be tractable for Product-Mix auctions.

Our paper is structured as follows. We present a simple version of the model in section 2 and

provide results on equilibrium behaviour. In section 3, we describe the general model. We present

our numerical analysis in section 4, assuming different distributions for the inflexible bidders’ values.

Section 5 concludes.

2 A simple two-good model

The flexible bidder’s decision problem is best illustrated in a simple model with just two differ-

entiated goods. We describe a model where two indivisible goods A and B are for sale, one unit

of each, but all our results hold if the goods are divisible as well. Three types of bidders compete

for the goods: a flexible bidder with unit demand, bidder F (which we refer to as “she”) values one

unit of good A at vA or one unit of good B at vB and has no value for more than one unit in total.

The two goods are differentiated for bidder F with vB ≥ vA > 0.8 All bidders are risk neutral.

Formally, we have

uF (pA, pB) =


vA − pA if A is won

vB − pB if B is won

vB − pB − pA if A and B are won

0 otherwise

where pA and pB denote the prices of good A and B. There is a group GA of nA ≥ 2 inflexible

bidders, each of which is interested only in good A, and there is another group GB of nB ≥ 2

inflexible bidders, each of which is interested only in good B. It is without loss of generality to

assume that nA = nB = n; the size of each competitive fringe does not matter. Bidders of group

GK value one unit of good K = A,B at k = a, b, k ≥ 0, that is

uK(pA, pB) =

{
k − pK if good K is won

0 otherwise

The auctioneer (“he”) has one unit of good A and one unit of good B for sale. Both goods are

identical to him at a zero reserve price. Each bidder knows their value privately, but the distribution

of the inflexible bidders’ values is common knowledge. The inflexible bidders also know that they

have at least one competitor with an identical value. The inflexible bidders’ values a and b are

random variables drawn from an absolutely continuous probability distribution G with probability

density function g and support [0, v] where v ∈ R ∪ {∞}. We make the following assumption:

8We will sometimes note illustrative results for the corner case vA = 0, or vA = vB = 0.
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Assumption 1. The reverse hazard rate g(x)
G(x) is weakly decreasing on [0, v].

For most of our results, we assume 0 < vA ≤ vB < v.9 We now describe the auction formats we

are interested in.

Product-Mix auctions. In describing the PMA for our setup, we define (i) the bidding language,

(ii) the allocation rule, and (iii) the payment rule.

(i) The bidding language allows single and paired bids.10 The flexible bidder submits a bid

(wA, wB) to state demand for 1 unit of good A or good B, but not both, at prices of up to wA or

wB respectively. The inflexible bidders of group GK submit a single bid each for good K = A,B.

Call the bid value of this bid yK .

(ii) The auctioneer is given bids (wA, wB), (yA, 0), (0, yB). In the standard PMA, he then de-

termines the efficient allocation given the reported values, i.e. the flexible bidder obtains good A if

and only if wA−yA > wB−yB and wA ≥ yA, and she wins good B if and only if wB−yB ≥ wA−yA
and wB ≥ yB.11 In the first-price PMA, the same allocation rule applies. Together with the pricing

rule, this is equivalent to choosing the revenue-maximising allocation, as in the menu auction by

Bernheim and Whinston (1986).

(iii) In the standard PMA, the auctioneer determines the lowest competitive equilibrium prices.

In our model, prices will always be set by the inflexible bidders’ bids yA and yB.12 In the first-price

PMA, each winning bidder pays their bid price for the unit won.

Simultaneous auction. Bidders can participate in either one or both of two simultaneous single-

unit auctions. The auction price is set by the highest losing bid, respectively, under the second-price

rule. A winner pays her bid under the first-price rule.13

Sequential auction. Two single-unit auctions for good A and B, respectively, are held sequentially.

After the first auction, the auctioneer announces the winning allocation and the clearing price.

Bidders then choose their bid in the second auction. They are allowed to participate in either or

both auctions. Payment rules are as in the simultaneous auction. We distinguish the case where

good A is sold first and the case where good B is sold first.

Remark: In our setup the standard PMA (second-price rule) is equivalent to the VCG mech-

anism. Bidders pay precisely their social externality from participating in the auction. This also

holds more generally for the standard PMA when bidders are restricted to bid for only one unit

(possibly with a paired bid).

9We note some corner solutions for vB ≥ v, but this is not the focus of this study.
10Paired bids are an instance of XOR bids (see, e.g., Sandholm (2002)) where each component specifies the quantity

and price of exactly one good. Let pA and pB denote the auction prices. A paired bid (wA, wB) for good A and
good B respectively expresses the following preference: if wA − pA > wB − pB , then the bidder would like to receive
up to one unit of good A. If the inequality sign is switched, she would like to receive up to one unit of good B. If
the inequality sign is replaced by an equality, the bidder is indifferent between receiving good A and B, assuming
indivisibility of goods.

11Ties are broken in favour of good B in case of indifference between the components of the paired bid, and in
favour of the flexible bidder between her and the inflexible bidders; but this is not important for our analysis.

12In general, prices are determined in a linear programme. A detailed description of the price setting concept would
go beyond the scope of our study and can be found in Baldwin and Klemperer (2019).

13Ties are broken in favour of the flexible bidder, but again this is not important in our analysis.
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Throughout the paper, we use subscripts to denote the auction format. The subscripts are “P2”

(standard PMA), “Sim2” (simultaneous second-price), “SeqK2” (sequential second-price with good

K sold first), “P1” (first-price PMA), “Sim1” (simultaneous first-price), and “SeqK1” (sequential

first-price with good K sold first).

2.1 Equilibrium bidding

First, we formalise that inflexible bidders bid indeed truthfully as claimed above. All proofs are

relegated to the appendix.

Lemma 1. In the auction formats introduced above, at least two inflexible bidders in each group

bid their true values in any equilibrium.

Under the second-price rule, truthful bidding is a dominant strategy for the inflexible bidders

in all auction formats. With first-price payments, a simple Bertrand-type argument can be made

to establish the lemma. We show this for the first-price PMA in the appendix, and the arguments

for the other first-price auctions are analogous. The flexible bidder’s choice set can be restricted

by eliminating weakly dominated strategies: she never bids above her true values. Knowing the

inflexible bidders’ equilibrium strategy, we can illustrate the allocation to the flexible bidder, as an

outcome of each mechanism’s allocation rule, graphically in a-b-space in figures 1(a) - 1(d). The

dark shaded region marked with “A” corresponds to bidder F winning good A, the light shaded

region to winning good B, and the striped region to winning both goods. Note that wA and wB,

assuming wA ≤ wB,14 are not drawn at the optimal values, although proportions approximately

resemble equilibrium bidding.15

Product-Mix auctions.

The Product-Mix auction caters to the unit demand preference of the flexible bidder. The format

alleviates the exposure to win more than one unit, maintaining the facility to win either of the

goods. Given the flexible bidder’s preference, it is without loss of generality to assume that she

makes one flat paired bid.16 Denote this bid (wA, wB). In the same way, each inflexible bidder of

group GA or GB makes a bid (yA, 0) = (a, 0) and (0, yB) = (0, b), respectively. As stated above,

the flexible bidder obtains good A if and only if wA − a > wB − b and wA ≥ a, i.e. north of the 45

degree line in figure 1(a). She wins good B if and only if wB − b ≥ wA − a and wB ≥ b. Ties such

that wA = a, wB = b, or wA + b = wB + a occur with zero probability in equilibrium.

Proposition 1. In the standard PMA, there exists a unique equilibrium in which the flexible bidder

bids truthfully.

14The figure corresponding to wA > wB is symmetric.
15The only precisely optimal value drawn is wA in the sequential auction with good B sold first.
16 This is argued in many related models, see for example Baisa and Burkett (2017). Note that, when the good is

divisible, this only holds if the flexible bidder knows that her bid (or a part of it) will never win and set the auction
price at the same time. For example, if she knew that the inflexible bidders might demand only half a unit of some
good, it might be her bid which ends up setting the price. In this case, the flexible bidder would have an incentive to
reduce demand on the second half of the unit she is bidding for.
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Figure 1: Allocations to the flexible bidder
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The standard PMA achieves full efficiency in our model. Indeed, it is equivalent to VCG-

mechanism. It is straightforward to calculate bidder surplus, revenue, and efficiency, which can be

found in the appendix and will be needed for our numerical analysis later.

The Product-Mix auction can also be implemented with first-price payments, i.e. each winner

pays their respective bid for the goods won. Naturally, the flexible bidder then has an incentive

to shade her bids. Again, she makes a flat paired bid (wA, wB), given the inflexible bidders’ flat,

truthful bid. Clearly, any decreasing bid would leave her with an opportunity to improve her payoff

ex-post. We denote by PA(wA, wB) and PB(wA, wB) denote the probability of bidder F winning

good A and good B, respectively. The allocation rule remains unchanged from the standard PMA;

or, looking at it differently, the auctioneer now chooses the revenue-maximising allocation. To study

equilibrium play, we now write out the flexible bidder’s expected payoff function. We simply have

ΠF
P1|vA,vB (wA, wB) =PA(wA, wB) [vA − wA] + PB(wA, wB) [vB − wB] (1)

To determine the probabilities of winning good A or B, respectively, we note the following lemma.

Lemma 2. In any BNE, bids must be such that wA ≤ wB.

The argument is simple: wA > wB cannot be part of an equilibrium because simply switching

the bid amounts between good A and B would guarantee the bidder a strictly better payoff. Using

figure 1(a), it is not hard to see that

PA(wA, wB) =

∫ wA

0

∫ v

wB−wA+a
dG(b) dG(a) and (2)

PB(wA, wB) =

∫ wA

0

∫ wB−wA+a

0
dG(b) dG(a) +

∫ v

wA

∫ wB

0
dG(b) dG(a) (3)

So the flexible bidder’s maximisation problem is

max
wA,wB

ΠF
P1|vA,vB (wA, wB)

s.t. 0 ≤ wK ≤ vK , K = A,B, and (2) and (3) hold

Proposition 2. In the first-price Product-Mix auction, there exists an equilibrium, in which the

flexible bidder makes a strictly positive bid (wA
∗, wB

∗), characterised by equations (17) and (18) (in

the appendix).

The fact that bidder F makes strictly positive bids on both goods in equilibrium may seem

intuitive, but in fact is not obvious considering carefully the probabilities of winning. Notice that

by increasing her bid on one of the goods, while increasing the probability of winning on that re-

spective good, but also the bid price, she decreases the probability of winning the respective other

good. A priori, it is not clear in what direction the trade-off between these three effects goes. This

is illustrated in figure 13 in the appendix. We demonstrate that any point on the boundary of

[0, vA]× [0, vB] cannot be optimal and therefore the global optimum must be interior and coincide
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with a stationary point; i.e., first-order conditions fully characterise the global optimum of the flex-

ible bidder’s maximisation problem.

Sequential auctions.

A standard alternative to sell good A and B, without creating exposure to win both goods at once,

is to sell them sequentially. The flexible bidder learns the outcome of the first auction before she

decides how to bid in the second auction. Let wK
∗ denote the equilibrium bid after winning the

first auction, and let wK
∗ denote the equilibrium bid after losing the first auction, for K = A,B,

where good J 6= K is sold prior to good K. The flexible bidder’s optimal strategy is found by

straightforward backwards-induction. Because of the asymmetry in the flexible bidder’s values the

order in which good A and B are sold matters; we first present the case where good A is sold first.

Proposition 3. In the sequential second-price auction, where good A is sold prior to good B, there

exists a unique equilibrium, in which

(i) in the first auction, the flexible bidder submits a strictly positive bid, and

(ii) in the second auction, the flexible bidder always submits a strictly positive bid.

All characterisations of optimal bids can be found in the appendix. Intuitively, the second stage

adjusts the flexible bidder’s true first-stage value for good A; it is the difference in the expected

second-stage payoffs conditional on winning or losing the first auction. If she won the first auction,

she will make a strictly positive bid in the auction for good B again, but only so high that her

potential additional payment is entirely hedged: she bids exactly the difference in value between

good B and good A. This is different, of course, when good B is sold first; there is no incentive to

bid again in the second auction if the first auction and the higher-value good is won.

Proposition 4. In the sequential second-price auction, where good B is sold prior to good A, there

exists a unique equilibrium, in which

(i) in the first auction, the flexible bidder submits a strictly positive bid, and

(ii) in the second auction, the flexible bidder bids always submits a strictly positive, truthful bid

after losing the first auction, and a zero bid after losing the first auction.

Suppose now that good A and B are sold in two sequential first-price auctions. We first discuss

the case where good A is prior to good B. Fix vB and let v̂A := G(wB
∗(v̂A, vB))(vB−wB∗(v̂A, vB))−

G(wB
∗(v̂A, vB))(vB − wB∗(v̂A, vB)− vA).

Proposition 5. In the sequential first-price auction, where good A is sold prior to good B, there

exists a unique equilibrium, in which

(i) in the first auction, the flexible bidder submits a strictly positive bid, iff vA < v̂A for given vB,

and he submits a zero bid iff vA ≥ v̂A for given vB, and
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(ii) in the second auction, the flexible bidder bids always submits a strictly positive bid.

Intuitively, if the expected additional gain from winning the second auction after the first auction

is won already, is too small relative to vA, then it is not worth bidding in the first auction to begin

with. Instead, a higher expected gain can be achieved by forgoing the bid in the first auction,

and making an optimal standard first-price auction bid in the subsequent auction. The proof

proceeds by backwards-induction. After having won the first auction, bidder F occurs a sunk cost

of wA. To determine her bid in the second auction, she updates her value for good B and makes a

correspondingly optimal bid. Again, the incremental gain from winning good B is vB − vA, but has

to be adjusted for optimal shading due to the first-price rule. Now consider the sequential auction

where good B is sold prior to good A.

Proposition 6. In the sequential first-price auction, where good B is sold prior to good A, there

exists a unique equilibrium, in which

(i) in the first auction, the flexible bidder always submits a strictly positive bid, and

(ii) in the second auction, the flexible bidder bids always submits a strictly positive bid after losing

the first auction, and a zero bid after winning the first auction.

Naturally, after winning the higher value good in the first auction, there is nothing to be gained

from participating in the second auction. If the first auction is lost, the flexible bidder can bid again

in the second auction. The difference in expected payoff between the case where she wins or loses

the first auction determines her true value.

Simultaneous auctions.

Suppose now the auctioneer sells good A and good B in two separate auctions which take place

simultaneously. Bidder F can participate either in both auctions or bid only in either the A-auction

or the B-auction. Participating in both auctions comes with the risk of potentially winning in both

auction, and having to pay for a good that brings no additional value. In reality, this exposure may

prevent the flexible bidder from bidding optimally. Her maximisation problem is

max
wA,wB

ΠF
Sim2|vA,vB (wA, wB) = G(wA) (1−G(wB)) vA +G(wB)vB −

∫ wA

0
a dG(a)−

∫ wB

0
bdG(b)

s.t. 0 ≤ wK ≤ vK , K = A,B

Proposition 7. In the simultaneous second-price auction, there exists an equilibrium, in which the

flexible bidder makes a strictly positive bid (wA
∗, wB

∗), characterised by equations (26) and (27) (in

the appendix).

In the appendix, we show that the two equations fully characterise the global optimum of

bidder F’s profit maximisation problem. This global optimum is always interior, i.e. despite the

risk of having to pay for both goods, the flexible bidder participates in both auctions, if she bids
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optimally. This result also holds under first-price payments. Proceeding similarly, we write bidder

F’s maximisation problem as

max
wA,wB

ΠF
Sim1|vA,vB (wA, wB) = G(wA) (1−G(wB)) vA −G(wA)wA +G(wB) (vB − wB)

s.t. 0 ≤ wK ≤ vK , K = A,B

Proposition 8. In the simultaneous first-price auction, there exists an equilibrium, in which the

flexible bidder makes a strictly positive bid (wA
∗, wB

∗), characterised by equations (34) and (35) (in

the appendix).

In addition to the standard trade-off in a single good first-price auction, increasing the prob-

ability to win the respective other good decreases the expected payoff on the first good, because

of the looming possibility to have to overpay for the higher-value good. Through the equilibrium

characterisation we also obtain the following result, which will be useful for numerical analysis.

Proposition 9. In the simultaneous auction (first-price or second-price), if G(x) is convex ∀x ∈
[0, v], or if G(x) is concave ∀x ∈ [0, v], the equilibrium is unique.

2.2 Example with uniform distributions of a and b

We illustrate some further properties of the equilibria described above in an example where

a and b are uniformly distributed on [0, 1]. Equilibrium bids follow from the characterisation in

the general case, given in the proof of the corresponding proposition. For the first-price PMA, we

additionally establish a uniqueness result.

Product-Mix auctions. In the standard PMA, the flexible bidder bids truthfully as discussed

above. Under the first-price rule, the equilibrium is characterised by the following equations:

−3

2
wA
∗2 + wA

∗ (−2 + 3wB
∗ + vA − vB) + vA(1− wB∗) = 0 (4)

3

2
wA
∗2 + vB − 2wB

∗ − vAwA∗ = 0 (5)

Proposition 10. In the first-price PMA, when a and b are uniformly distributed on [0, 1] there

exists a unique equilibrium.

Uniqueness is established by noticing that equations (4) and (5) describe a third-degree poly-

nomial (function of wA). Analysing its roots and limit behaviour, the intermediate value theorem

guarantees that exactly one of these roots is between 0 and 1. The two equations above allow us to

perform simple comparative statics. The implicit function theorem yields results for ∂wA
∂vA

, ∂wA∂vB
, ∂wB∂vA

,

and ∂wB
∂vB

(see appendix). We can evaluate the derivatives at (vA, vB, wA
∗, wB

∗), and obtain, e.g.,
∂wA
∂vA

(0, 0, 0, 0) = 1
2 , ∂wA

∂vB
(0, 0, 0, 0) = ∂wB

∂vA
(0, 0, 0, 0) = 0, and ∂wB

∂vB
(0, 0, 0, 0) = 1

2 . We also have
∂wA
∂vA

(0, 1, 0, 0.5) = 1
3 , ∂wA

∂vB
(0, 1, 0, 0.5) = ∂wB

∂vA
(0, 1, 0, 0.5) = 0, and ∂wB

∂vB
(0, 1, 0, 0.5) = 1

2 .
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We plot the solution of equation (4) and (5) in Figure 2(a) and 2(b), which illustrate the deriva-

tives stated above. It is evident that bidder F’s equilibrium bids are effectively competing with one

another. For given vK (vJ), bidder F’s bid wK
∗ is weakly decreasing (weakly increasing) in vJ (vK),

K 6= J = A,B, and this can be shown by numerically evaluating the partial derivatives of wA
∗ and

wB
∗.

(a) wA
∗(vA, vB) (b) wB

∗(vA, vB)

Figure 2: Equilibrium bids for first-price PMA with uniform a and b

Sequential auctions. In the sequential auction, we obtain closed form equilibrium characterisa-

tions for uniformly distributed a and b. Bidder F always makes a strictly positive bid in the first

auction, given by wA
∗ = 1

2vA
2 + vA(1 − vB). Second-stage bids are given by wB

∗ = vB − vA and

wB
∗ = vB. If good B is sold prior to good A, we have the first-stage bid wB

∗ = vB − vA
2

2 , and

second-stage bids wA
∗ = 0 and wA

∗ = vA.

For the sequential first-price auction where good A is sold prior to good B, first note the

second-stage bids wB
∗ = 1

2(vB − vA) and wB
∗ = vB

2 . Then, we determine v̂A = 2vB − 4, which

is always negative. So bidder F makes a strictly positive bid in the first auction, given by wA
∗ =

1
4

(
vA

2

2 + vA(2− vB)
)

. When good B is sold prior to good A, bidder F bids wB
∗ = 1

2

(
vB − vA

2

4

)
in the first auction, and wA

∗ = vA
2 and wA

∗ = 0 in the second auction.

Both in the first-price and second-price auction, comparative statics are of equilibrium bids are

obvious; intuitively, they are analogous to those in the first-price PMA. For given vK (vJ), equilib-

rium bids wK
∗ are weakly decreasing (weakly increasing) in vJ (vK), K 6= J = A,B.

Simultaneous auctions. In the simultaneous auction when a and b are uniformly distributed on

[0, 1] we also obtain closed form solutions. Under the second-price rule we have wA
∗ = vA(1−vB)

1−vA2

and wB
∗ = vB−vA2

1−vA2 . In the simultaneous first-price auction, bidder F bids wA
∗ = vA(2−vB)

4−vA2 and

wB
∗ = 2vB−vA2

4−vA2 . Comparative statics are analogous to the sequential and Product-Mix auctions

(details are in appendix B).
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3 General model

There are M indivisible goods sold in an auction, one unit of each good. M + 1 types of bidders

compete for the goods. There is one flexible bidder F (“she”) who values one unit of good j at vj ,

j ∈ J := {1, ...,M}, but at most one unit in total. We assume vM ≥ vM−1 ≥ ... ≥ v1 > 0. Let

v = (v1, ..., vM ), let qj ∈ {0, 1} denote the quantity of good j allocated to the flexible bidder at

price pj , and let q and p denote the corresponding M -vectors. Furthermore, let jmax denote the

good with the highest index she is allocated, i.e. jmax := max{j ∈ J : qj = 1}. 〈x, y〉 denotes the

dot product of two vectors x and y. The flexible bidder’s utility is then

uF (p,q) = vjmax − 〈p,q〉

There is a group Gj of nj ≥ 2 inflexible bidders, each of which is interested only in good j; there

are M groups in total. Each such group can be seen as a competitive fringe for a specific good. It

is without loss of generality to assume that nj = n ∀j: the size of each competitive fringe does not

matter. Bidders of group Gj value one unit of good j ∈ J at xj ≥ 0. Letting q denote the vector

of quantities allocated, we have

uj(p,q) = xjqj − 〈p,q〉

All M goods are identical to the auctioneer at a zero reserve price. Each bidder knows their value

privately, but the distribution of the inflexible bidders’ values is common knowledge. The inflexible

bidders also know that they have at least one competitor with an identical value. All xj are random

variables drawn from an absolutely continuous probability distribution G with probability density

function g and support [0, v], where v ∈ R∪{∞}. Assumption 1 still holds. For most of our results,

we assume vM ≤ v. The description of the auction formats is easily extended to the case with M

goods.

Product-Mix auctions. We define (i) the bidding language, (ii) the allocation rule, and (iii) the

payment rule.

(i) The bidding language allows single and paired bids.17 The flexible bidder submits a bid

w = (wj)j=1,...,M to state demand for 1 unit of good 1 or good 2 or . . . or good M , but not more

than one in total, at prices of up to wj for good j, respectively. The inflexible bidders of group Gj

submit a single bid each for good j.

(ii) The auctioneer is given a bid list w, (y1, 0, ..., 0), ..., (0, ..., yM ). In the standard PMA, he

then determines the efficient allocation given the reported values, i.e. the flexible bidder obtains

17Paired bids are an instance of XOR bids (see, e.g., Sandholm (2002)) where each component specifies the quantity
and price of exactly one good. Let p denote the auction prices. A paired bid w = (wj)j=1,...,M expresses the following
preference: if bk − pk > bj − pj for all j 6= k, then the bidder would like to receive up to one unit of good k. If the
inequality sign is replaced by an equality for some good j, the bidder is indifferent between receiving good k and j,
assuming indivisibility of goods.
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good k if and only if wk − yk > wj − yj for all j 6= k, and wk − yk ≥ 0.18 In the first-price PMA,

the same allocation rule applies. Together with the pricing rule, this is equivalent to choosing the

revenue-maximising allocation, as in the menu auction by Bernheim and Whinston (1986).

(iii) In the standard PMA, the auctioneer determines the lowest competitive equilibrium prices.

In our model, prices will always be set by the inflexible bidders’ bids yj , j ∈ J .19 In the first-price

PMA, each winning bidder pays their bid price for the unit won.

Simultaneous auctions. Bidders can participate in any number of M simultaneous single-unit

auctions. In particular, a bidder could choose to bid only in one auction, or in all of them. The

auction price is set by the highest losing bid, respectively, under the second-price rule. A winner

pays her bid under the first-price rule.

Sequential auctions. M single-unit auctions for one of the goods, respectively, are held sequen-

tially. Bidders can participate in any number of the M auctions. After each auction, the auctioneer

announces the winning allocation and the clearing price. Bidders then choose their bid in the sub-

sequent auction. Payment rules are as in the simultaneous auction. There are M ! ways of ordering

the sale. We are only interested in two orderings: the case where the goods are ordered according

to the flexible bidder’s values from lowest to highest, and reverse.

Remark: Again, the standard PMA (second-price rule) is equivalent to the VCG mechanism

(see section 2).

3.1 Equilibrium bidding

As in the case with two goods, we make use of the following preliminary lemma. The proof from

the two good case trivially extends to this model, and again, the flexible bidder never chooses a

weakly dominated strategy, i.e. bids not more than her value on any good.

Lemma 3. In the auction formats introduced above, at least two inflexible bidders in each group

bid their true values in any equilibrium.

Product-Mix auctions. Again, it is without loss of generality to assume that the flexible bidder

makes one flat paired bid. Denote this bid w = (w1, ..., wM ). In the same way, each bidder of group

Gj makes a single bid (0, ...0, xj , 0, ...0), j ∈ J . Then, the efficient allocation is such that bidder

F wins good k if and only if wk ≥ xk and wk − xk = maxj∈J wj − xj .20 Given the equilibrium

behaviour of all inflexible bidders, it is easy to argue the flexible bidder’s optimal strategy, which

straightforwardly extends the two-good model.

Proposition 11. In the PMA with the second-price rule, there exists an equilibrium in which the

flexible bidder bids truthfully. If vM ≥ v, there exists a continuum of equilibria in which wM ≥ v

and wj = max{wM + vj − vM , 0} ∀j ∈ J , j 6= M .

18Ties are broken in favour of higher value goods in case of indifference between the components of the paired bid,
and in favour of the flexible bidder between her and the inflexible bidders; but this is not important for our analysis.

19In general, prices are determined in a linear programme. A detailed description of the price setting concept would
go beyond the scope of our study and can be found in Baldwin and Klemperer (2019).

20The events wj = xj , wk = xk, and wj + xk = wk + xj for k 6= j ∈ J occur with zero probability.
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The flexible bidder’s payoff function is not straightforward to construct with M goods. We skip

this step and discuss the first-price PMA instead. The payoff function in the first-price PMA can

easily be translated to the standard PMA.

In the first-price PMA, by straightforward extension of the two-good case, it is without loss of

generality to assume that she makes a flat paired bid w = (w1, ..., wM ). The inflexible bidders bid

their value in equilibrium. Let Pk(w) denote the probability of bidder F winning good k. She wins

good k if and only if wk ≥ xk and wk − xk = maxj∈J wj − xj . So the probability of winning good

k is given by

Pk(w) = Prob(wk ≥ xk and wk − xk = max
j∈J

wj − xj) (6)

As a first step, we write bidder F’s expected payoff function simply as

ΠF
P1|v(w) =

M∑
k=1

Pk(w) [vk − wk] (7)

To find a closed form expression for Pk(w), we first attempt to find some structure in the flexible

bidder’s equilibrium bids. Given her values vM ≥ vM−1 ≥ ... ≥ v1 > 0, we can show that wk′ > wk

for k′ < k cannot be part of an equilibrium, because switching the bid prices between good k and

k′ would guarantee a strictly higher profit.

Lemma 4. In equilibrium, the flexible bidder’s bids must be such that wM ≥ wM−1 ≥ ... ≥ w1.

Using Lemma 4 and the fact that all inflexible bidders bid truthfully, we can now write down an

expression for Pk(w). Let k denote the good that the flexible bidder wins. Let {l1, l2, ..., lP } =: F ⊆
J denote any possible subset of goods (including the empty set), which the flexible bidder obviously

loses to the inflexible bidders, that is good l ∈ F ⇔ wl < xl. Let σ denote the permutations of

goods that the flexible bidder does not obviously lose to the inflexible bidders, i.e.

σ =

(
j1 j2 ... jM−P−1

σ(j1) σ(j2) ... σ(jM−P−1)

)

where {j1, ...., jM−P−1} = J \ F . A permutation σ may be interpreted as follows: given a real-

isation x and a bid w, the order of σ corresponds to the “order of efficiency” among the goods

the flexible bidder does not obviously lose to the inflexible bidders. That is, the permutation σ is

such that wσ(j1)−xσ(j1) ≥ wσ(j2)−xσ(j2) ≥ ... ≥ wσ(jM−P−1)−xσ(jM−P−1). We also define σ(j0) := k.

Further, let xσ(j) denote the upper bound of the integral corresponding to integration over xσ(j),

and let xσ(j) denote the lower bound of the integral corresponding to integration over xσ(j).
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Then, we have

Pk(w) =
∑

F⊆J\{k}

∑
σ(j):

j∈J\{F∪{k}}

∫ v

wl1

...

∫ v

wlP∫ wσ(jM−P−1)

max{xσ(jM−P−2)
−xσ(jM−P−2)

+xσ(jM−P−1)
,0}

∫ wσ(jM−P−2)
−wσ(jM−P−1)

+xσ(jM−P−1)

max{xσ(jM−P−3)
−xσ(jM−P−3)

+xσ(jM−P−2)
,0}
...

∫ wσ(j1)−wσ(j2)+xσ(j2)

max{xσ(j0)−xσ(j0)+xσ(j1),0}

∫ wσ(j0)−wσ(j1)+xσ(j1)

0

dG(xσ(j0)) dG(xσ(j1)) ... dG(xσ(jM−P−2)) dG(xσ(jM−P−1)) dG(xlP ) ... dG(xl1)

(8)

We are adding
∑M−1

l=0

(
M−1
l

)
(M − 1− l)! integral terms.

Using equations (7) and the expression for Pk, bidder F’s maximisation problem is

max
w

ΠF
P1|v(w) s.t. 0 ≤ w ≤ v, and (7) and (8) hold

The choice set CM := [0, v1] × ... × [0, vM ] is an M -dimensional parallelepiped. We show that the

function ΠF (w) cannot attain its maximum on the boundary of CM . This immediately implies that

the global optimum must be interior and coincide with a stationary point. Hence, the first-order

conditions fully characterise the solution to bidder F’s optimal bidding problem.

Proposition 12. In the first-price PMA, there exists an equilibrium, in which the flexible bidder

makes a strictly positive bid (wk
∗)k=1,...,M , which is implicitly defined by the first-order condition

∇ΠF
P1|v(w∗) = 0.

The intuition behind this proposition is similar to the two-good case: the decrease in probability

of winning a more favourable good is of a different (lower) order than the increase in probability of

winning some good in events where otherwise the bidder would have won nothing. For small bids,

the order effect outweighs that a higher value could be potentially achieved from winning more

favourable goods, i.e. it is better to win more often overall, but potentially a lower-value good.

Simultaneous auctions. In a model with M simultaneous second-price auctions, we show that

the flexible bidder always bids a strictly positive bid in each of the M auctions. Note that Gerding

et al. (2008) have developed a similar result, when the goods are all identical to the flexible bidder.21

However, we are interested in a model of differentiated goods, i.e. we maintain different values for

different goods for the flexible bidder. Of course, dominated strategies we will never played, so

bidder F’s reduced choice set is again CM := [0, v1]× ...× [0, vM ]. Because each inflexible bidder of

21For certain distributions of the inflexible bidders’ values, they provide additional results on equilibrium charac-
terisation.
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group Gk bids their value xk in equilibrium, the flexible bidder’s expected payoff function is

ΠF
Sim2|v(w) =

M∑
k=1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−
∫ wk

0
xg(x) dx

]

and she solves the maximisation problem

max
w

ΠF (w) s.t. 0 ≤ w ≤ v

The first-order condition for wj of the corresponding unconstrained problem is

wj = −
j−1∑
k=1

vkG(wk)

M∏
l=k+1,l 6=j

(1−G(wl)) + vj

M∏
l=j+1

(1−G(wl)) (9)

Proposition 13. In the simultaneous second-price auctions, there exists an equilibrium, in which

the flexible bidder makes a strictly positive bid (wk
∗)k=1,...,M , which is implicitly defined by the

first-order condition ∇ΠF
Sim2|v(w∗) = 0.

Example 1. Note that symmetric values of the flexible bidder do not necessarily imply symmetric

bids in equilibrium. To demonstrate this, let M = 2 and v1 = v2 = v < 1. We assume a probability

distribution with support [0, 1] and a uniform spike around x ∈ [0, 1], where x < v. Let h := 1−ε+2ε2

2ε

and ε < x. Formally, the probability density function is

g(t) =


ε if t < x− ε
h if t ∈ [x− ε, x+ ε)

ε if t ≥ x+ ε

Now let ε = 0.1 (hence h = 4.6), v = 0.7, and x = 0.5. In the appendix, we show that the global

maximum is at (wA
∗, wB

∗) ≈ (0.02, 0.70). Depending on how much probability mass concentrates

around the spike, we may also obtain a symmetric equilibrium. For example, let ε = 0.4 (hence

h = 1.15), v = 0.7, and x = 0.5. The global maximum here is (wA
∗, wB

∗) ≈ (0.42, 0.42).

Our results under the second-price rule also hold under first-price payments. Although obvious

that truthful bidding cannot be optimal in any one auction, it is not clear that the flexible bidder

still makes a strictly positive bid in each auction. The flexible bidder’s expected payoff function is

ΠF
Sim1|v(w) =

M∑
k=1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−G(wk)wk

]

with the first-order conditions

wj = −
j−1∑
k=1

vkG(wk)

M∏
l=k+1,l 6=j

(1−G(wl)) + vj

M∏
l=j+1

(1−G(wl))−
G(wj)

g(wj)
(10)
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In addition to the standard trade-off between payment and probability of winning in a single good

first-price auction, increasing the probability to win one good decreases the expected payoff on any

higher-value good.

Proposition 14. In the simultaneous first-price auctions, there exists an equilibrium, in which the

flexible bidder makes a strictly positive bid (wk
∗)k=1,...,M , which is implicitly defined by the first-order

condition ∇ΠF
Sim1|v(w∗) = 0.

Sequential auctions. When M auctions are held sequentially, the history of past auction outcomes

at each stage is relevant for bidder F’s bidding decision. There are M ! different orders in which

the goods can be sold. We focus on the two most natural orders, which are of course ordering the

goods by value from high to low, and from low to high. Let us assume first that goods are sold

in the order 1, 2, ...,M . In each auction, the flexible bidder knows which past auctions she has

won, and at what price. Prices paid in the past are sunk costs, however, and do not matter in the

backwards-induction. It only matters to the bidder by how much she could potentially improve her

current payoff. Denote by Hj the history known in the auction of good j+ 1, i.e. auction outcomes

of auctions 1, ..., j. Let vmaxj−1 denote the value of the highest-value object bidder F obtained in the

history Hj−1.

Proposition 15. In the sequential second-price auction, in which goods 1, ...,M are sold ordered

from the lowest-value to the highest-value good, there exists an equilibrium, in which the flexible

bidder’s bid in the auction for good j is characterised by equation (45).

When the order of sale is reversed, i.e. goods are sold in the order M, ..., 1, bidder F’s strategy

simplifies. She submits a strictly positive bid in each auction until she wins for the first time;

thereafter she submits zero bids in all subsequent auctions. Details can be found in the appendix.

A similar result as above can be obtained for M sequential first-price auctions.

Proposition 16. In the sequential first-price auction, in which goods 1, ...,M are sold ordered from

the lowest-value to the highest-value good, there exists an equilibrium, in which the flexible bidder’s

bid in the auction for good j is characterised by equation (46).

The case with the reverse sales order is again similar to the second-price auction and omitted.

3.2 Identical values

Equilibrium bidding can be illustrated further if we consider identical values for the flexible

bidder, i.e. vj = v ∀j ∈ J . In the Product-Mix auction and in the simultaneous auctions, we

restrict our analysis to symmetric equilibria.22 In sequential auctions, equilibria are inherently

asymmetric. We characterise equilibrium bidding, the flexible bidder’s payoff function and the

auctioneer’s revenue for first-price auctions in appendix C.7. Revenue in second-price auctions is

22Symmetric equilibria may not exist for more extreme distributions of the inflexible bidders’ values; see example
1.
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identical for all auction formats, because auction prices are always given by the inflexible bidders’

bids. We use the equilibrium characterisation in the example below.

Example 2. More insightful are some numerical computations for different numbers of goods M .

In this example, let the flexible bidder’s value v = 0.9 and let the inflexible bidders’ values be

uniformly distributed on [0, 1]. The flexible bidder’s equilibrium bids and profits are shown in

figures 3 - 6. Note that each dot of the sequential auction, corresponding to M goods, represents

the equilibrium bid in the first of M auctions. Because the equilibrium is subgame-perfect, the bids

up to good M also depict the sequence of equilibrium bids when M goods are sold. Under second-

Figure 3: Equilibrium bids in second-price auctions Figure 4: Bidder surplus in second-price auctions

Figure 5: Equilibrium bids in first-price auctions Figure 6: Bidder surplus in first-price auctions

price payments, as the number of goods increases, the flexible bidder increasingly shades her bids

in the first of the sequential auctions. As evident from figure 3, with 20 goods, the optimal bid in

the first of 20 sequential auctions is even lower than her optimal bid in 20 simultaneous auctions.23

23We are assuming symmetric equilibria in simultaneous auctions. Asymmetric equilibria may exist for distributions
of the inflexible bidders’ values with more concentrated probability mass than in this uniform example.
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This translates directly into the flexible bidder’s payoffs: differences between the sequential and the

simultaneous auction are increasing in the number of goods. In both auction formats, the flexible

bidder is more likely to win at least one of the goods with more goods for sale. However, in the

sequential auction, she can better avoid the risk of winning more than one good. Interestingly, the

differences in payoffs between the PMA and the sequential auction are first increasing and then

decreasing slightly in the number of goods.

Under first-price payments, the effects observed in the flexible bidder’s optimal bidding are

similar to those under second-price payments. The optimal bids in the sequential and simultaneous

auction move closer together as the sequential auction offers a higher probability to win exactly one

good. The optimal bids in the first-price PMA compared to sequential and simultaneous auctions

are moving further apart: the more goods are for sale, the less bid shading is necessary in the

PMA relative to the other formats. The flexible bidder increasingly benefits from stronger bid

shading in the sequential auction as the number of goods increases, comparatively to the PMA. The

simultaneous auction does worse in terms of payoffs as more goods are sold: the risk of winning more

than one good paired with the first-price disadvantage outweighs the benefit of a higher probability

of winning at least one good.

Note that for approximately M ≥ 10, the differences in payoffs stagnate for all auction formats.

This suggests some kind of saturation in how much the flexible bidder can exploit the benefits of a

specific auction format, as the number of goods for sale grows larger.

4 Numerical results

In this section, we derive and compute results on bidder surplus, revenue, and efficiency for the

two-good model. First, we focus on the example where a and b are uniformly distributed on [0, 1],

and we provide a detailed discussion. Then, we also present results for different distributions of a

and b, varying the strength of the competitive fringes (symmetrically). Many of our results turn

out to be robust to changes in the prior on a and b. Bidder surplus is denoted ΠF
Y , revenue RY ,

and efficiency/welfare WY , where Y is substituted by the abbreviation for the respective auction

format introduced in section 2.

4.1 Uniform distributions of a and b

First, we compare the bidder surplus, revenue, and efficiency given bidder F’s values vA and

vB (we call these “interim” outcomes). We restrict our attention to (vA, vB) ∈ [0, 1]2. For the

comparison with sequential auctions, we introduce a straightforward metric which combines the

respective outcomes from the sequential format with good A sold first, and the format with good B

sold first: ΠF
Seq2|vA,vB = 1

2ΠF
SeqA2|vA,vB + 1

2ΠF
SeqB2|vA,vB , and analogously for the first-price sequential

auction.24

24This metric is due to the fact that sometimes we may not know which of two differentiated objects will be higher
value for the buyer, e.g. a red car or a blue car, because it may depend more on taste than an objective difference
in quality. Being unaware of the true ordering in value, we simply assume that each ordering happens with equal
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For most auction formats, a closed form solution can be derived when a and b are uniform

on [0, 1] (closed form solutions are stated in the appendix). The first-price PMA is an exception

because the equilibrium bids are characterised implicitly, and comparisons with this auction are

done numerically (implemented in Matlab; to compare closed form solutions we used Mathematica).

Interim bidder surplus. First we note the obvious: inflexible bidders make zero surplus in

equilibrium in all auction types. Thus, the flexible bidder’s equilibrium surplus equals overall

bidder surplus. We state our results for 0 < vA < vB < 1. When vA = 0, vB = 1, or vA = vB

(or a combination of these conditions), the flexible bidder may be indifferent between some of the

auction types.25 We find that

ΠF
P2|vA,vB > ΠF

Seq2|vA,vB > ΠF
Sim2|vA,vB and ΠF

Seq1|vA,vB > ΠF
P1|vA,vB > ΠF

Sim1|vA,vB

The magnitude of the flexible bidder’s preference for one auction format relative to another is

illustrated in figure 7. We plot the relative deviation of her equilibrium payoff in the PMA from

her payoff in the sequential and simultaneous format under the corresponding payment rule as a

contour plot, i.e. the 2D-projection of given levels of relative deviations as a function of vA and vB.

For example, the left-most line in Figure 7(a) describes all combinations of vA and vB for which the

standard PMA results in a 1% higher payoff for the flexible bidder than the sequential second-price

auction. The contour lines are mirrored at the 45-degree line because equilibria are symmetric for

valuations vA ≥ vB.

Interim revenue. We state our results for 0 < vA < vB ≤ 1. When vA = 0, or vA = vB (or a

combination of these conditions), revenue may be identical for some of the auction types.26

Under the second-price rule, prices are always determined by the inflexible bidders’ bids. We have

RY |vA,vB = Ea,b [a+ b | vA, vB] = 1 and RP1|vA,vB > RSeq1|vA,vB > RSim1|vA,vB

with Y ∈ {P2, Sim2, Seq2}. We illustrate the magnitude of the relative difference in revenues

between one auction format and another in figure 8.

Interim efficiency. To compare efficiency between the auction formats, we compute welfare as the

sum of the flexible bidder’s payoff and revenue (closed form solutions are listed in the appendix). We

state our results for 0 < vA < vB < 1, and by composition of the previous comparisons, indifference

may hold for vA = 0 or vA = vB. We find that

WP2|vA,vB >WSeq2|vA,vB >WSim2|vA,vB and WP1|vA,vB >WSim1|vA,vB

The relation between (P1) and (Seq1) is ambiguous, depending on the values of vA and vB. The

possibility.
25When vA = vB , the sales order in sequential auctions is obviously irrelevant. When vB = 1, the sales order in

the sequential second-price auction is irrelevant. When vA = 0, all auction types under the same pricing rule are
strategically equivalent.

26Again, when vA = vB , the sales order in sequential auctions is irrelevant. When vA = 0, all auction types under
the same pricing rule are strategically equivalent, hence revenue is also the same.
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Figure 7: The flexible bidder’s interim payoffs: “P2 vs. Seq2” shows the relative gain of mechanism
P2 over mechanism Seq2, i.e. (ΠF

P2|vA,vB −ΠF
Seq2|vA,vB )/ΠF

Seq2|vA,vB ), etc.
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Figure 8: Interim revenue: “P1 vs. Seq1” shows the relative gain of mechanism P1 over mechanism
Seq1, i.e. (RP1|vA,vB −RSeq1|vA,vB )/RSeq1|vA,vB ), etc.
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magnitudes of deviations are illustrated in figure 9.
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Figure 9: Interim efficiency: “P2 vs. Seq2” shows the relative gain of mechanism P2 over mechanism
Seq2, i.e. (WP2|vA,vB −WSeq2|vA,vB )/WSeq2|vA,vB ), etc.

Ex-ante outcomes. We also derive average outcomes across all possible realisations of vA and

vB, and we call these “ex-ante outcomes”. Table 1 shows the ex-ante bidder surplus, revenue, and

efficiency rounded to 3 decimals. Note these are absolute values. They are computed assuming

each value pair (vA, vB) ∈ R2|0 < vA < 1, vA < vB < 1 occurring with equal probability.27

Differences are very small; so in order to get a full and meaningful comparison, we distinguish

the two sequential auction types in this table. The ordering of interim outcomes largely translates

Table 1: Ex-ante bidder surplus, revenue, and efficiency

M = (P2) (SeqA2) (SeqB2) (Sim2) (P1) (SeqA1) (SeqB1) (Sim1)

ΠL
M 0.283 0.272 0.275 0.258 0.149 0.149 0.151 0.142

RM 1.000 1.000 1.000 1.000 1.069 1.067 1.068 1.062
WM 1.283 1.272 1.275 1.258 1.218 1.215 1.219 1.204

into ex-ante outcomes, despite the disaggregation of the two sequential auctions. Under the second-

27If vA and vB were truly continuous, they would be drawn from a uniform distribution on {R2|0 < vA < 1, vA <
vB < 1} with density function g(vA, vB) = 2. We compute the average for approx. 2M value pairs on the above
domain.
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price rule, the ordering Product-Mix, Sequential, Simultaneous holds, with the sequential auction

with the higher-value good sold first performing better than the other sequential format. Under

the first-price rule, the sequential format with the lower-value good sold first performs identical to

Product-Mix in bidder surplus and revenue, but falls back in efficiency. In contrast, the sequential

format with the higher-value good sold first outperforms the Product-Mix auction in bidder surplus

and efficiency, but not in revenue. The first-price PMA yields the highest revenues across all auction

formats, and, naturally, the standard PMA achieves the highest efficiency overall.

4.2 Discussion

In Table 2 we present several examples of equilibrium bids and interim outcomes for specific

valuations vA and vB, which are helpful for understanding the intuition behind equilibrium out-

comes. Note that the multi-column of the sequential auction formats displays the second-stage bid

conditional on winning or losing the first stage, when applicable. Relating to payment rules and

auction formats, we give some intuition for bidding behaviour and outcomes with the help of figures

7, 8, and 9.

First-price and second-price rule. First, we note a significant difference between first-price

and second-price formats. The structure of our model means that first-price auctions are unusually

bad for the flexible bidder because her competitors also bid truthfully under the first-price rule.

This effect is even more pronounced when her values are small. To see this, consider the sale of a

single unit. The flexible bidder always bids half of her value in a first-price auction,28 whether her

valuation is 0.1 or 1. In a second-price auction, she always bids truthfully. Now consider the sale

of 2 units, one of each good. Then, in the standard PMA, she still bids truthfully for any values.

In the first-price auction (e.g. the sequential), with small values, the flexible bidder simply repeats

her strategy (approximately) from the single good case and bids (approximately) half her valuation,

because the likelihood of winning one unit (or both units) is negligible. With high values, things

are less bad for her: because she needs to win only one unit, she can still significantly shade her

bids. This implies that, comparing payment rules, the difference in payoffs is large especially for

small valuations.

Bidder surplus. Because of the structural difference between pricing rules, our focus is on com-

paring different auction formats under the same pricing rule. The fact that winning two units is

unlikely with low valuations also has a straightforward implication for those comparisons. There is

little difference between the flexible bidder’s payoffs in different second-price or first-price auction

formats for small valuations, and similarly for strongly asymmetric valuations, because the flexible

bidder focuses her bidding mainly on the high value good.29

Sequential auctions. An important aspect in sequential auctions is the “scope for gambling” for

the good sold in the first auction, i.e. bidding for it at a very low price with a low probability of

success. The second auction offers the possibility to rebid in case of losing the first auction, or even

28Bidding half of her value maximises her expected payoff given the trade-off between maximising the probability
of winning and minimising her payment.

29See figure 7(a)-(c), (e),(f).
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to improve on one’s payoff when the lower value good was sold first (i.e. the flexible bidder can

make up for a “too low” bid in the first auction). Three related effects are worth noting.

(i) “Commitment effect.” The “scope for gambling” is higher in second-price auctions than in first-

price auctions, because paying her own bid diminishes the opportunity to make up for losing the

first auction. In other words, under the first-price rule the flexible bidder is more nervous about

entering the second auction. Hence it is optimal for her to commit more to her first-stage bid, that

is to shade her bid less relative to her value.30

(ii) “Reversed bid effect.” Another effect can be observed in the sequential auction where the higher

value good is sold first: the ratio of bid price to value is always higher in the second auction. When

both values are high, the flexible bidder may even choose to make a higher bid for the low value

good than for the high value good.

(iii) “Preferred gamble.” Keeping the pricing rule fixed, the sequential format is better for the

flexible bidder when the higher value good is sold first, compared to when the lower value good is

sold first. In the former case, she has a higher chance of winning her preferred good at a cheap price

compared to the latter case, because “gambling” in the first auction may strike her a good bargain.

The sequential first-price auction does, on average, better for the flexible bidder than the first-

price PMA. For low valuations the differences are negligible, and similarly for strongly asymmetric

valuations: bidding behaviour from a single-unit sale is (approximately) replicated, and the “scope

for gambling” is very low. This results in the contour lines in figure 7 (d). If values are high,

in the sequential auction where the high value good is sold first, we have the “reverse bid effect”.

Reversing her bid order relative to her values is, intuitively, a bad bidding strategy in a simultaneous

or Product-Mix format. In the sequential decision, however, this reverse bid ordering can make the

flexible bidder better off ex-ante.31,32 Note that the “commitment” effect is beneficial to the flexible

bidder. Under the first-price rule, the sequential auction with the higher-value good sold first is, on

average, indeed better for her. Stronger “gambling” behaviour (although optimal ex-ante) makes

her worse off comparatively.

Simultaneous auctions. Under the second-price rule, it is also true that the flexible bidder’s payoff is

always weakly higher in the PMA than in the simultaneous auction. Any action the flexible bidder

takes in the simultaneous auction is also available to her in the PMA (two separate bid instead of

one paired bid would allowed), yet she chooses to bid differently and must therefore be better off.

This holds for general distributions of a and b.

Under the first-price rule, our numerical results show that with uniform distributions, on average,

30This is illustrated for example in Table 2 for values vA = 0.5 and vB = 1: comparing the equilibrium bids between
(SeqA2) and (SeqA1), wA

∗
SeqA2 = 0.125 and wA

∗
SeqA1 = 0.156, the commitment effect in the first auction is obvious.

31See Table 2 for vA = 0.9 and vB = 1: wA
∗
SeqB1 = 0.450 and wB

∗
SeqB1 = 0.399, and payoffs are larger in the

sequential auction than the first-price PMA.
32The relationship between the first-price PMA and the sequential auction with the lower value good sold first is

ambiguous, in line with the flexible bidder’s “preferred gamble” described above. For sufficiently dissimilar valuations
the flexible bidder slightly prefers the first-price PMA, because the incentive to “gamble” for the higher value good
introduces a loss in expectations compared to the flexibility between goods that the PMA offers. When values are
similar and sufficiently high, however, the disadvantage from bidding for the lower value good first becomes less
significant, and the flexible bidder can better utilise her market power from the information update.
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the flexible bidder is better off in the PMA compared to the simultaneous auction (see section 4.1).

Generally, however, there may be states where the flexible bidder is better off in the simultaneous

auction.33,34

Revenue. Our model will naturally tend to generate higher prices for first-price than second-price

payment rules. To see this, consider again the single unit case. Assume the flexible bidder has

value v and competes against a number of inflexible bidders who always bid their value, which is

uniform on [0, 1]. Then, in the first-price auction the flexible bidder bids v
2 , and in the second-

price auction she bids her value v. The auctioneer’s revenue is higher under the first-price rule:

RFP =
∫ v/2

0
v
2 dx+

∫ 1
v/2 x dx = 1

2 + v2

8 > 1
2 =

∫ 1
0 x dx = RSP . In the two-good case, the same effect

- the inflexible bidders bid the same under the first-price and the second-price rule - means that

first-price auctions outperform second-price auctions in terms of revenue. Intuitively, and obvious

from the single-unit case, this effect is stronger for high valuations of the flexible bidder.

Due to the “commitment effect” in sequential first-price auctions described above, the flexible

bidder’s bid prices in the first-price PMA and sequential first-price auctions differ only slightly.

Committing to a higher bid in the first auction is beneficial for the flexible bidder, whereas the

“gambling” behaviour (although optimal ex-ante) makes her worse off comparatively. Obviously,

this “gambling” is not only bad for the flexible bidder but also for the auctioneer: when values are

high, the PMA’s advantage becomes slightly more pronounced. The relationship between revenues

in the sequential and the simultaneous auction is similar to “P1 vs. Sim” as described below (figure

8 (c)).

It is intuitive that prices in the first-price PMA are always higher than in the simultaneous

first-price auction because expected losses from winning both goods are anticipated through higher

bid shading. As explained above, differences for low and strongly asymmetric values of the flexible

bidder are negligible, whereas high and more similar values correspond to higher anticipated losses

and hence more extreme differences between the two auction formats (illustrated in figure 8(d)).

The difference in bid shading between the first-price PMA and the simultaneous first-price auction

is greater on the low value good, and thus the minimum of the two values predominantly determines

the magnitude of the deviation in revenue (“Leontief-like” contour lines).35

Efficiency. It is clear that the standard PMA is efficient when each bidder’s total demand does

not exceed one unit. All other auction formats we consider do not achieve full efficiency due to the

exposure to win more than one unit, or the first-price payment rule. Keeping the auction format

fixed, the welfare increment in second-price auctions relative to first-price auctions, gained from a

33Such states must be such that she wins good A in the PMA because the distance between her bid and the inflexible
bidders’ bid is smaller on good A, but wins both goods in the simultaneous auction, and is still better off despite having
to pay for both goods. For such scenario to arise, it would have to be true that vA − w∗P1

A < vB − w∗Sim1
B − w∗Sim1

A .
Due to the complexity of the first-order conditions, we cannot show this to be true or false for general G. Note that
under second-price payments this condition becomes vA−a < vB − b−a, which contradicts the flexible bidder having
won good A in the PMA.

34Under the second-price rule, the inflexible bidders do not respond to the flexible bidder’s behaviour. Under the
first-price rule, if the inflexible bidders do not behave competitively among themselves, their behaviour has to take
into account the flexible bidder’s optimal shading, and vice versa. In this case, it is still true that the flexible bidder’s
strategy space expands in the PMA, but her bidding would have to account for the inflexible bidders’ shading too.

35See for example Table 2 for vA = 0.5, vB = 1.
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more efficient allocation to the flexible bidder, outweighs the welfare loss in terms of revenue due

to her exercising some market power. Thus, second-price payments lead to higher welfare in each

auction format considered.36

Due to the invariance of revenues in second-price formats in our model, differences in efficiency

between those auction formats are entirely determined by the flexible bidder’s profits. This naturally

implies that figures 9(a) - (c) are just a reshaped version of the deviations in payoffs.37 Comparing

auction formats within the first-price rule, variations in the flexible bidder’s payoffs are slightly

stronger (most of the time), but revenues are much higher in absolute magnitudes. Hence, the

relative difference in efficiency between auction formats is similar to the difference in revenues,

when comparing simultaneous auctions to Product-Mix and sequential auctions. Comparing PMA

and sequential auctions, the opposing effects of bidder surplus and revenue nearly cancel each other

out.

4.3 Varying the competitive fringes

In this section, we vary the strength of the competitive fringes the flexible bidder is competing

against. Again, we consider the model with two goods A and B for sale, and two competitive

fringes. Each variation considered is identical for the two fringes. We present the analysis for first-

price auctions only (but may extend this to second-price auctions in the future). In the previous

section, we discussed the case where a and b are uniformly distributed on [0, 1]. Here, we examine

distributions with probability density functions gk(x) = kxk−1 and g̃k(x) = k(1− x)k−1, for k ∈ N,

and support [0, 1]. The corresponding distribution functions areGk(x) = xk and G̃k(x) = 1−(1−x)k.

Notice that these distributions have a straightforward interpretation in terms of increased or

decreased competition. gk corresponds to k independent groups, where each group is composed of

at least two identical bidders in perfect competition. All k groups are interested in the same good.

Values across groups are drawn independently from a uniform distribution on [0, 1]. The flexible

bidder faces the maximum of k values, i.e. increased competition, represented by gk. Similarly, g̃k

also corresponds to k independent groups, where each group is composed of at least two identical

bidders in perfect competition. Again, values across groups are drawn independently from a uniform

distribution on [0, 1]; however, the group with the lowest value among the k groups will be selected

as the competition the flexible bidder faces.38 The distributions are depicted in figure 10.

In each of the tables 3 - 5 in appendix 4.3, we compare two auction formats. We choose

two different metrics: (i) the relative difference with (approximate) maximum absolute value on

[0, vA] × [0, vB], denoted “max diff”, and (ii) the relative difference of average outcomes across

36A trivial observation from table 2 is that absolute differences between the flexible bidder’s payoffs under the
first-price and the second-price rule are higher than absolute differences between revenues under the first-price and
the second-price rule.

37Because we use relative deviations, the magnitudes of deviations in profits and revenues do not simply add up
to magnitudes in efficiency deviations.

38One interpretation might be, that there are exactly two bidders in each group, and 2k− 1 units of one respective
good are for sale, i.e. decreased competition. Important here is the modelling: the flexible bidder competes only
against the weakest of k groups.
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Figure 10: Probability density functions on [0, 1]

[0, vA] × [0, vB], denoted “avg diff”. For example, in the second line in table 3 we read that, for

the uniform distribution, efficiency in the PMA is maximally 6.5% higher than in the simultaneous

auction, at values (vA, vB) = (1, 1) of the flexible bidder. In line 9, we read that, on average, for

the uniform distribution, efficiency in the PMA is 1.2% higher than in the simultaneous auction.

We calculated outcomes for 1326 values pairs (vA, vB) ∈ {(x, y)|0 ≤ x, y ≤ 1, x ≤ y}.39 In each

comparison of auction formats, for each outcome dimension and for every distribution of a and b,

the value pair with the maximum absolute value relative difference is selected among those pairs,

and the average across those pairs is computed.40

In table 3, we compare the first-price PMA with the first-price simultaneous auction. Note

that maximum differences in efficiency and revenue decrease as competition for the flexible bidder

increases, but the maximum difference in bidder surplus increases first slightly, and then rather

dramatically from 15.5% to 43.4%. Average values change in the same direction, but not with the

same magnitude. In fact, differences in the average are nearly invariant to increased or decreased

competition for efficiency and revenue. The difference in averages rises from 4.3% to 7.2% for bidder

surplus, but by far not as much as the maximum difference. With high values and against strong

competition, the flexible bidder has an incentive to bid much higher in the simultaneous auction;

therefore, the exposure to win two units instead of one is much more pronounced compared to the

PMA.

Comparing the first-price PMA with the first-price sequential auction with good A sold first

in table 4, we find virtually no difference in efficiency and revenue, for maximum differences and

differences in average. The flexible bidder does between 1.4% and 2.3% worse in the PMA, but

this is also largely invariant to the strength of her competition. Differences in average bidder

surplus disappear entirely. In table 5, we compare differences in outcomes between the first-price

PMA and the first-price sequential auction with good B sold first. Varying the flexible bidder’s

39For distributions of a and b other than the uniform distribution, we cannot obtain closed form solutions. Moreover,
we only know for simultaneous and sequential auctions that the equilibrium is unique. In the first-price PMA, multiple
equilibria, and multiple stationary points may exists. Our propositions guarantee interior equilibria; therefore, we
simply search among all stationary points.

40We chose approx. 2M value pairs for calculating averages for the uniform distribution in section 4.1. With
different distributions, the model is computationally much more demanding; therefore we need to dispense with much
fewer value pairs. However, varying the number of pairs convinced us to achieve more than sufficient accuracy with
1326 pairs.
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competition does not impact the differences by much. Simply comparing absolute values across

different distributions, we naturally find that efficiency and revenue are improving significantly,

whereas bidder surplus drops by a factor of 10 going from low to high competition (see tables 6-8).

To summarise, varying the degree of competition impacts the differences between simultaneous

and PMA/sequential auctions. Maximum differences in efficiency and revenue decrease as compe-

tition increases. The maximum difference in bidder surplus increases with increasing competition.

Average difference do not respond as much to varying competition, and comparisons between other

auction formats are also largely invariant to the degree of competition.

5 Conclusion

This paper compares equilibrium bidding in Product-Mix, sequential, and simultaneous auctions.

Considering first-price and second-price payment rules, we characterise unique equilibria in most

auction formats under some regularity assumptions on value distributions. For the example of

uniform distributions, equilibria are unique in all auction formats. Our results are derived for a

model of indivisible goods, but all results go through for the divisible good case.

For a broad class of value distributions and for any number of goods, we demonstrate that the

flexible bidder faces an exposure problem in simultaneous auctions. Because it is ex-ante optimal

to participate in every auction with a strictly positive bid, she runs the risk of winning both goods,

when she can use only one (assuming no possibility for resale). Our papers compares alternative

formats that alleviate this exposure problem. Our answer is inconclusive: the Product-Mix and the

sequential auction perform similarly in terms of efficiency, revenue, and bidder surplus; but subtle

differences can be observed.

For uniform value distributions, the performance comparisons depend on the variation in the

flexible bidder’s values. Relative differences across auction formats, keeping the payment rule fixed,

are most extreme for high values of the flexible bidder. The reason is that for small values the

flexible bidder’s probability of winning one (or both) goods is very small; her optimal strategy

is to approximately repeat her optimal bid from the single-unit case twice. Averaging over the

flexible bidder’s values, we find that the first-price PMA performs best compared to other first-

price auctions, in terms of revenue and efficiency. The flexible bidder, on the other hand, prefers the

sequential format (on average) to the first-price PMA. Among second-price auctions, the sequential

auction with the higher-value good sold first is the runner-up to the standard PMA, from the flexible

bidder’s and an efficiency perspective.

For first-price mechanisms, we vary the inflexible bidders’ distribution to evaluate the robustness

of our findings. We also obtain comparative statics with respect to the competition the flexible

bidder is faced with. We select distributions that may be interpreted as varying the strength

of the two competitive fringes. Differences between the first-price Product-Mix and first-price

sequential formats are very subtle, and nearly invariant to changing the strength of competition.

As competition becomes more fierce, the flexible bidder does increasingly worse in the simultaneous
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auction compared to an auction format eliminating the exposure to win both goods. In contrast,

differences in efficiency and revenue between the PMA and the simultaneous auction become less

pronounced with increased competition.

We plan to generate further insights into bidding behaviour in the three considered auction

formats through a series of lab experiments. Beyond that, it remains an open problem to characterise

equilibrium bidding under the first-price rule if inflexible bidders did not have identical competitors,

or if two or more flexible bidders participated.
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Appendix

A Proofs for the 2-good case

Proof of Lemma 1. The proof hinges on the fact that there are (at least) two bidders bidding

for good A only and two bidders bidding for good B only, as these two bidder engage in a Bertrand-

type competition (the argument here is made for the case of n = 2, but is analoguous for n > 2).41

First, it is obvious that no equilibrium bid made by any bidder can be higher than their valuation

under discriminatory pricing. It is also easy to see that in any equilibrium two bidders of group Gk

have to bid the same amount. We call those bidders 1k and 2k. If their bid wins, the unit of good

k is randomly allocated among them with equal probability. Suppose they make different bids in

equilibrium, say 1k bids higher than 2k. Then, in the case where 2k wins, bidder 1k could improve

his payoff by bidding at least as much as bidder 1k. In the case where 2k loses, 1k’s payoff would

remain unchanged by this deviation, i.e. bidder 2k could deviate to improve his expected payoff.

Now suppose that the two bidders with an identical valuation vk ∈ {a, b} bid sk < vk. Then, again,

1k for example could profitably deviate by bidding sk + ε ≤ vk. He would win the unit of good k

always, not only half of the time, at an ε-higher price in the cases where sk is a winning bid, which

is a strict payoff improvement. In the cases where sk isn’t winning, his payoff would either remain

zero (if sk + ε remains a losing bid or is winning at sk + ε = vk) or increase strictly (if sk + ε < vk

becomes a winning bid). It follows that sk = vk is the only possible candidate for a BNE. �

A.1 Product-Mix auctions

Proof of Proposition 1. The flexible bidder’s preference for her ex-post allocation coincides

with the efficient allocation: she wants to win good A if and only if

vA > a and (11)

vA − a > vB − b (12)

and good B if and only if

vB > b and (13)

vB − b > vA − a. (14)

�

41Note that we are looking for pure strategy Bayes-Nash equilibria only.
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We also establish bidder F’s expected payoff function. We have

ΠF
P2|vA,vB (wA, wB) = P (F wins A) E[vA − a | F wins A]

+ P (F wins B) E[vB − b | F wins B]

+

∫ wA

0

∫ v

wB−wA+a
vA − adG(b) dG(a)

=

∫ wA

0

∫ wB−wA+a

0
vB − bdG(b) dG(a) +

∫ v

wA

∫ wB

0
vB − bdG(b) dG(a)

Proof of Lemma 2. First, note that because a and b are iid distributed, we have PA(wB, wA) =

PB(wA, wB). Now suppose wA > wB. Then we can easily show that bidding w̃A = wB and w̃B = wA

is a profitable deviation:

ΠF (w̃A, w̃B) =PA(w̃A, w̃B) [vA − w̃A] + PB(w̃A, w̃B) [vB − w̃B]

=PA(wB, wA) [vA − wB] + PB(wB, wA) [vB − wA]

=PA(wA, wB) [vB − wA] + PB(wA, wB) [vA − wB]

>PA(wA, wB) [vA − wA] + PB(wA, wB) [vB − wB]

The last inequality holds because PA(wA, wB) > PB(wA, wB) for wA > wB. �

Proof of Proposition 2. Putting together equations (1), (2), and (3), we obtain

ΠF
P1|vA,vB (wA, wB) =

[∫ wA

0

∫ v

wB−wA+a
dG(b) dG(a)

]
(vA − wA)

+

[∫ wA

0

∫ wB−wA+a

0
dG(b) dG(a) +

∫ v

wA

∫ wB

0
dG(b) dG(a)

]
(vB − wB)

The first-order conditions write

∂ΠF
P1|vA,vB
∂wA

= (vA − wA)

[
g(wA) (1−G(wB)) +

∫ wA

0
g(wB − wA + a) dG(a)

]
− (vB − wB)

∫ wA

0
g(wB − wA + a) dG(a)−

∫ wA

0

∫ v

wB−wA+a
dG(b) dG(a) = 0

(15)

and

∂ΠF
P1|vA,vB
∂wB

= (vB − wB)

[
g(wB) (1−G(wA)) +

∫ wA

0
g(wB − wA + a) dG(a)

]
− (vA − wA)

∫ wA

0
g(wB − wA + a) dG(a)

−
[
G(wB) (1−G(wA)) +

∫ wA

0

∫ wB−wA+a

0
dG(b) dG(a)

]
= 0

(16)
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Simplifying yields

(vA − wA∗) g(wA
∗) (1−G(wB

∗))−
∫ wA

∗

0

∫ v

wB∗−wA∗+a
dG(b) dG(a)

+ (vA − wA∗ − (vB − wB∗))
∫ wA

∗

0
g(wB

∗ − wA∗ + a) dG(a) = 0

(17)

[(vB − wB∗) g(wB
∗)−G(wB

∗)] (1−G(wA
∗))−

∫ wA
∗

0

∫ wB
∗−wA∗+a

0
dG(b) dG(a)

+ (vB − wB∗ − (vA − wA∗))
∫ wA

∗

0
g(wB

∗ − wA∗ + a) dG(a) = 0

(18)

Notice the asymmetry in the two first-order condition. This is because wA ≤ wB. Setting wA = 0,

equation (18) reduces to the standard first-order condition we obtain in a single first-price auction

in our setup, but the analogue is not possible with equation (17).

In order to prove that equations (15) and (16) indeed characterise a global optimum, we show

that the maximum cannot be on the boundary of [0, vA]× [0, vB] and therefore must be a stationary

point of ΠF
P1|vA,vB , characterised by the two equations above. First, we exploit symmetry properties

of figure 1 for the case where wA ≥ wB to write bidder F’s payoff function:

ΠF
P1|vA,vB (wA, wB) =

[∫ wB

0

∫ wA−wB+b

0
dG(a) dG(b) +

∫ v

wB

∫ wA

0
dG(a) dG(b)

]
(vA − wA)

+

[∫ wB

0

∫ v

wA−wB+b
dG(a) dG(b)

]
(vB − wB)

Consider the line segment {wA ∈ [0, vA], wB = 0}. Trivially, the local optimum is at (wA
∗, 0), with

wA
∗ = vA − G(wA

∗

g(wA∗)
, i.e. bidder F’s optimal bid in a single first-price auction. However, this cannot

be a global optimum because of Lemma 2. For the line segment {wA = 0, wB ∈ [0, vB]} we obtain

ΠF
P1|vA,vB (0, wB

∗) = G(wB
∗)(vB − wB∗). For the line segment {wA = vA, wB ∈ [0, vB]} we can also

derive a first-order condition characterising a local maximum, denoted by w̃B
∗ (clearly (vA, 0) and

(vA, vB) are not maximal on this line segment). Similarly, we find a local maximum w̃A
∗ on the line

segment {wA ∈ [0, vA], wB = vB}. We show

ΠF
P1|vA,vB (vA − ε, w̃B∗) > ΠF

P1|vA,vB (vA, w̃B
∗) (19)

ΠF
P1|vA,vB (w̃A

∗, vB − ε) > ΠF
P1|vA,vB (w̃A

∗, vB) (20)

ΠF
P1|vA,vB (ε, wB

∗) > ΠF
P1|vA,vB (0, wB

∗) (21)

To show (19), we simply graph the areas describing the probabilities of winning good A and good

B respectively and consider an small change in one of the bids. In figure 11, bidder F receives a

positive payoff only in the lighter area. With an small deviation ε this area remains unchanged

while at the same time a strictly positive payoff is gained in the dark area below the dashed line,

and therefore (19) holds. Figure 12 relates analogously to equation (20) (positive payoff is initially
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made only in the darker area).

Finally, we show equation (21). In figure 13, the ε-deviation causes the probability of winning

good B to decrease (light area shrinks by dark triangle), and the probability of winning good A to

increase (dark triangle plus dark rectangle). The profits made on good A and good B are vA − ε
and vB − w̃B∗, respectively. From the graph, it is easy to see that we can bound the changes in

expected profits on good K, denoted by ∆ΠF
K for K = A,B, as follows:

∆ΠF
A > (vA − ε)P (a < ε)P (b > w̃B

∗)

∆ΠF
B < (vB − w̃B∗)P (a < ε)P (b ∈ [w̃B

∗, w̃B
∗ − ε])

Thus, we have ∆ΠF
A −∆ΠF

B > 0 for ε small. �

b

a
vA

w̃B
∗

0
0

ε

Figure 11: ε-deviation from
(vA, w̃B

∗)

b

a

w̃A
∗

vB

0
0

ε

Figure 12: ε-deviation from
(w̃A

∗, vB)

b

a

w̃B
∗

0
0

ε

Figure 13: ε-deviation from
(0, w̃B

∗)

A.2 Sequential auctions

Proof of Proposition 3. (Good A sold first)

After having won the A-auction, bidder F’s expected payoff function in the B-auction is

Π
F |won A
SeqA2|vA,vB (wB) =P (F wins B) (vB − E[b | F wins B]) + P (F loses B)vA − a

=G(wB)vB −
∫ wB

0
bdG(b) + (1−G(wB))vA − a

The first-order condition yields wB
∗ = vB − vA. The second-order condition −g(wB

∗) < 0

is sufficient for a local maximum, and global optimality can be shown by an ε-deviation from

wB = vB and wB = 0. Bidder F’s conditional expected second stage payoff is Π
F |won A
SeqA2|vA,vB (wB

∗) =∫ vB−vA
0 G(b) db + vA − a. After having lost the A-auction, bidder F bids her true valuation, i.e.

wB
∗ = vB in the B-auction with a conditional expected second stage payoff of Π

F |lost A
SeqA2|vA,vB (wB

∗) =
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∫ vB
0 G(b) db. Now we can analyse the first stage auction (A-auction). Bidder F’s expected payoff is

ΠF
SeqA2|vA,vB (wA) =P (F wins A) E[Π

F |won A
SeqA2|vA,vB (wB

∗) | F wins A]

+P (F loses A) E[Π
F |lost A
SeqA2|vA,vB (wB

∗) | F loses A]

=

∫ wA

0

(∫ vB−vA

0
G(b) db+ vA − a

)
dG(a) +

∫ v

wA

(∫ vB

0
G(b) db

)
dG(a)

=G(wA)

(
vA − wA −

∫ vB

vB−vA
G(b) db

)
+

∫ wA

0
G(a) da+

∫ vB

0
G(b) db

The first-order condition yields wA
∗ = vA −

∫ vB
vB−vA G(b) db. It is not hard to see that the RHS

is always weakly greater than zero, and local second-order conditions and global optimality are

satisfied. Bidder F bids her true first stage valuation for the good, that is the difference in the

expected second stage payoffs conditional on winning or losing in the first auction, respectively, and

not accounting for the sunk cost a. �

Proof of Proposition 4. (Good B is sold first)

After having won the B-auction, the flexible bidder cannot improve on her allocation anymore, so

trivially wA
∗ = 0. After having lost the B-auction, bidder F simply bids her true valuation, i.e.

wA
∗ = vA in the A-auction with a conditional expected second stage payoff of Π

F |lost B
SeqB2|vA,vB (wA

∗) =∫ vA
0 G(a) da. Now we can analyse the first stage auction (B-auction). Bidder F’s payoff is

ΠF
SeqB2|vA,vB (wB) =P (F wins B) E[Π

F |won B
SeqB2|vA,vB (wA

∗) | F wins B]

+P (F loses B) E[Π
F |lost B
SeqB2|vA,vB (wA

∗) | F loses B]

=

∫ wB

0
(vB − b) dG(b) +

∫ v

wB

∫ vA

0
G(a) da dG(b)

=G(wB)

(
vB − wB −

∫ vA

0
G(a) da

)
+

∫ wB

0
G(b) db+

∫ vA

0
G(a) da

The first-order condition yields wB
∗ = vB −

∫ vA
0 G(a) da. The RHS is always weakly greater

than zero, and local second-order condition and global optimality are satisfied. Again, the flexible

bidder bids her true first stage valuation for the good, that is the difference in the expected second

stage payoffs conditional on winning or losing in the first auction, respectively, and not accounting

for the sunk cost b. �

Proof of Proposition 5. (Good A is sold first)

After having won the A-auction, bidder F’s expected payoff function in the B-Auction is

Π
F |won A
SeqA1|vA,vB (wB) =P (F wins B) (vB − wB) + P (F loses B)vA − wA

=G(wB) (vB − wB) + (1−G(wB))vA − wA
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The first-order condition yields wB
∗+ G(wB

∗)
g(wB∗)

= vB − vA, the RHS of which is strictly positive. The

function H(x) := x+ G(x)
g(x) is defined on [0, vB] and continuous, with H(0) = 0 and H(vB) > vB. By

the intermediate value theorem and Assumption 1 (weakly decreasing reverse hazard rate), a solution

0 < wB
∗ < vB must exists, is unique, and is characterised by the first-order condition. Bidder F’s

conditional expected second stage payoff is Π
F |won A
SeqA1|vA,vB (wB

∗) = G(wB
∗)(vB−wB∗−vA)+vA−wA.

After having lost the A-auction, bidder F’s expected payoff function in the B-Auction is

Π
F |lost A
SeqA1|vA,vB (wB) =P (F wins B) (vB − wB)

=G(wB) (vB − wB)

Bidder F’s bid then corresponds to the optimal bid in a single good first-price auction, i.e. wB
∗ =

vB − G(wB
∗)

g(wB
∗) . With the same argument as above, the unique solution must satisfy 0 < wB

∗ < vB.

Her conditional expected second stage payoff of Π
F |lost J
SeqA1|vA,vB (wB

∗) = G(wB
∗)(vB − wB∗). In the

first stage auction (A-auction), bidder F’s payoff is then

ΠF
SeqA1|vA,vB (wA) =P (F wins A) E[Π

F |won A
SeqA1|vA,vB (wB

∗) | F wins A]

+P (F loses A) E[Π
F |lost A
SeqA1|vA,vB (wB

∗) | F loses A]

=G(wA) [G(wB
∗)(vB − wB∗ − vA) + vA − wA]

+(1−G(wA))G(wB
∗)(vB − wB∗)

The first-order condition yields

wA
∗ +

G(wA
∗)

g(wA∗)
= G(wB

∗)(vB − wB∗ − vA) + vA −G(wB
∗)(vB − wB∗) (22)

⇔ wA
∗ +

G(wA
∗)

g(wA∗)
=
G(wB

∗)2

g(wB∗)
− G(wB

∗)2

g(wB∗)
+ vA (23)

H(x) := G(x)2

g(x) is an increasing function because of Assumption 1. From above, it is clear that

wB
∗ < wB

∗, so the RHS of equation 23 is weakly smaller than vA. G̃(x) := x + G(x)
g(x) is defined

on [0, vA], continuous, with G̃(0) = 0 and G̃(vA) > vA. So by the intermediate value theorem

and Assumption 1, the unique solution wA
∗ must satisfy wA

∗ < vA. If the RHS of equation 23 is

negative, however, the FOC does not yield a solution. In that case, the optimum must lie on the

boundary of [0, vA]. In a standard first-price auction, both alternatives, bidding zero and your value

yield zero profit. Here, however, bidding zero is strictly better than bidding your value, because

the first-stage payment may be a sunk cost in case bidder F wins in the second stage. Formally, we

show the following lemma.

Lemma 5. wA
∗ = vA is never optimal as bidder F’s first stage auction bid.
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Proof.

ΠF
SeqA1|vA,vB (vA − ε) =

G(vA − ε) [G(wB
∗)(vB − wB∗ − vA) + ε−G(wB

∗)(vB − wB∗)]

+G(wB
∗)(vB − wB∗)

=G(vA − ε)
[
G(wB

∗)2

g(wB∗)
+ ε− G(wB

∗)2

g(wB∗)

]
+G(wB

∗)(vB − wB∗)

>G(vA)

[
G(wB

∗)2

g(wB∗)
− G(wB

∗)2

g(wB∗)

]
+G(wB

∗)(vB − wB∗)

=G(vA) [G(wB
∗)(vB − wB∗ − vA)−G(wB

∗)(vB − wB∗)]

+G(wB
∗)(vB − wB∗) = ΠF

SeqA1|vA,vB (vA)

for small ε. The inequality holds because wB
∗ > wB

∗ and the reverse hazard rate is weakly

decreasing.

Together with equation (22) it is not hard to see that the following holds: fix vB and let

v̂A := G(wB
∗(v̂A, vB))(vB − wB∗(v̂A, vB)) −G(wB

∗(v̂A, vB))(vB − wB∗(v̂A, vB) − vA). Then for all

vA ≤ v̂A, w∗A = 0 (followed by wB
∗ in the second stage auction). �

Proof of Proposition 6. (Good B sold first)

After having won the B-auction, bidder F’s expected payoff function in the A-Auction is

Π
F |won B
SeqB1|vA,vB (wA) =P (F wins A) (vB − wA) + P (F loses A)vB − wB

=G(wA) (vB − wA) + (1−G(wA))vB − wB

Clearly bidder F cannot improve upon her payoff by bidding again in the A-auction after having

won the B-auction, so wA
∗ = 0. After having lost the B-auction, bidder F’s bid corresponds to the

optimal bid in a single good first-price auction, i.e. wA
∗ = vA− G(wA

∗)
g(wA

∗) . Again, the unique solution

must satisfy 0 < wA
∗ < vA. Her conditional expected second stage payoff of Π

F |lost B
SeqB1|vA,vB (wA

∗) =

G(wA
∗)(vA − wA∗). In the first stage auction (B-auction), bidder F’s payoff is then

ΠF
SeqB1|vA,vB (wB) =P (F wins B) E[Π

F |won B
SeqB1|vB ,vA(wA

∗) | F wins B]

+P (F loses B) E[Π
F |lost B
SeqB1|vB ,vA(wA

∗) | F loses B]

=G(wB) [vB − wB] + (1−G(wB))G(wA
∗)(vA − wA∗)

The first-order condition yields

wB
∗ +

G(wB
∗)

g(wB∗)
= vB −G(wA

∗)(vA − wA∗) (24)
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With the same reasoning as above, a unique solution wB
∗ exists and must satisfy 0 < wB

∗ < vB.

�

A.3 Simultaneous auctions

Proof of Proposition 7. Using simply the probabilities of winning and expected payments, we

can define bidder F’s expected payoff from bidding wA, wB ≥ 0 in the A-auction and B-auction

respectively as

ΠF
Sim2|vA,vB (wA, wB) =P (F wins A, not B) E[vA − a | F wins A]

+P (F wins B, not A) E[vB − b | F wins B]

+P (F wins A and B) E[vB − a− b | F wins A and B]

=G(wA) (1−G(wB)) (vA − E[a | wA])

+G(wB) (1−G(wA)) (vB − E[b | wB])

+G(wA)G(wB) (vB − E[a | wA]− E[b | wB])

with E[x | w] = G(w)−1
∫ w

0 x dG(x) (the expected price conditional having won the good with a

bid of w > 0). The payoff function can be simplified as shown in the main text and any stationary

point of ΠF
Sim2|vA,vB is characterised by

∇ΠF
Sim2|vA,vB (wA, wB) =

(
g(wA) [vA − wA]− g(wA)G(wB)vA

g(wB) [vB − wB]− g(wB)G(wA)vA

)
= 0, (25)

which can be simplified to obtain

wA
∗ = vA(1−G(wB

∗)) (26)

wB
∗ = vB − vAG(wA

∗) (27)

We prove that the necessary conditions are indeed sufficient to characterise the global maximum of

bidder F’s maximisation problem. Instead of a second-order approach, we argue by eliminating other

equilibrium candidates on the boundary of bidder F’s choice set. Note that the objective function

is continuous and the admissible range a compact set. Therefore, the maximum is obtained on

M := [0, vA]× [0, vB]. This can either happen at the boundary or at stationary point of ΠF
Sim2|vA,vB .

Below, we demonstrate that no point on the boundary of M can be optimal, and therefore, the

unique stationary point must coincide with the global maximum. We transform bidder F’s payoff

function once more with integration by parts and obtain

ΠF
Sim2|vA,vB (wA, wB) =G(wA) [vA − wA] +

∫ wA

0
G(a) da

+G(wB) [vB − wB] +

∫ wB

0
G(b) db−G(wA)G(wB)vA
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First, consider the line segment {wA ∈ [0, vA], wB = 0}. Trivially, all points in this set are payoff-

dominated by the point (vA, 0). We obtain ΠF
Sim2|vA,vB (vA, 0) = F(vA). Similarly, for the line

segment {wA = 0, wB ∈ [0, vB]} we obtain ΠF
Sim2|vA,vB (0, vB) = F(vB). Now consider the set

{wA = vA, wB ∈ [0, vB]}. From the first-order condition on wB and
∂2ΠF

Sim2|vA,vB
∂wB2 we find and con-

firm a local maximum at w̃B
∗ = vB − vAG(vA). We have ΠF

Sim2|vA,vB (vA, w̃B
∗) = F(vA) +F(w̃B

∗).

Similarly, in the set {wA ∈ [0, vA], wB = vB}, we find a local maximum at w̃A
∗ = vA − vAG(vB)

with ΠF
Sim2|vA,vB (w̃A

∗, vB) = F(w̃A
∗) +F(vB). Finally, we have to consider the point (vA, vB) with

ΠF
Sim2|vA,vB (vA, vB) = F(vA) + F(vB) − vAG(vA)G(vB). (vA, 0) and (0, vB) are obviously payoff-

dominated.

We proceed to show

ΠF
Sim2|vA,vB (vA − ε, w̃B∗) > ΠF

Sim2|vA,vB (vA, w̃B
∗) (28)

ΠF
Sim2|vA,vB (w̃A

∗, vB − ε) > ΠF
Sim2|vA,vB (w̃A

∗, vB) (29)

ΠF
Sim2|vA,vB (vA − ε, vB) > ΠF

Sim2|vA,vB (vA, vB) (30)

To show (28) to (30) we use linear and quadratic approximations of G(vk) and g(vk) at vk−ε, k = A

or B, respectively. We have

ΠF
Sim2|vA,vB (vA − ε, w̃B∗) =G(vA − ε)ε+

∫ vA−ε

0
G(a) da+

∫ w̃B
∗

0
G(b) db

+G(w̃B
∗)vAG(vA)−G(w̃B

∗)vAG(vA − ε)

=G(vA − ε)ε+

∫ vA−ε

0
G(a) da+

∫ w̃B
∗

0
G(b) db

+G(w̃B
∗)vA

[
G(vA − ε) + g(vA − ε)ε+ o(ε2)−G(vA − ε)

]
>

∫ w̃B
∗

0
G(b) db+

∫ vA−ε

0
G(a) da+G(vA − ε)ε+

ε2

2
g(vA − ε) + o(ε3)

=ΠF
Sim2|vA,vB (vA, w̃B

∗)

(31)

ΠF
Sim2|vA,vB (vA − ε, vB) =G(vA − ε)ε+

∫ vA−ε

0
G(a) da+

∫ vB

0
G(b) db−G(vA − ε)G(vB)vA

>

∫ vB

0
G(b) db+

∫ vA−ε

0
G(a) da+G(vA − ε)ε+

ε2

2
g(vA − ε) + o(ε3)

−vAG(vB)
[
G(vA − ε) + g(vA − ε)ε+ o(ε2)

]
=ΠF

Sim2|vA,vB (vA, vB)

(32)

Showing (29) goes analogous to (31). Equations (31) and (32) hold for small deviations ε, hence,

the global maximum cannot be obtained at the boundary of M. �
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Proof of Proposition 8. The flexible bidder’s expected payoff from bidding wA, wB ≥ 0 in the

A-auction and B-auction is

ΠF
Sim1|vA,vA(wA, wB) = P (F wins A, not B) (vA − wA)

+ P (F wins B, not A) (vB − wB)

+ P (F wins A and B) (vB − wA − wB)

= G(wA) (1−G(wB)) (vA − wA)

+G(wB) (1−G(wA)) (vB − wB)

+G(wA)G(wB) (vB − wA − wB)

The first-order conditions are

∇ΠF
Sim1|vA,vA(wA, wB) =

(
g(wA) [vA − wA −G(wB)vA]−G(wA)

g(wB) [vB − wB −G(wA)vA]−G(wB)

)
= 0, (33)

and can be simplified to

wA
∗ = vA(1−G(wB

∗))− G(wA
∗)

g(wA∗)
(34)

wB
∗ = vB − vAG(wA

∗)− G(wB
∗)

g(wB∗)
(35)

Again, we prove that none of the points on the boundary of bidder F’s choice set M :=

[0, vA] × [0, vB] is optimal, and hence the unique stationary point must coincide with the global

maximum.

Consider the line segment {wA ∈ [0, vA], wB = 0}. The local optimum is at (wA
∗, 0), with wA

∗ =

vA − G(wA
∗)

g(wA∗)
(bidder F’s optimal bid in a single first-price auction) and payoff ΠF

P1|vA,vB (0, wA
∗) =

G(wA
∗)2

g(wA∗)
. Similarly, for the line segment {wA = 0, wB ∈ [0, vB]} we obtain ΠF

P1|vA,vB (0, wB
∗) =

G(wB
∗)2

g(wB∗)
. Hence the first local optimum is dominated by the latter. On the line segment {wA =

vA, wB ∈ [0, vB]} the first-order condition characterises a unique stationary point w̃B
∗. bidder F’s

payoff at this stationary point is ΠF
P1|vA,vB (vA, w̃B

∗) = G(w̃B
∗)2

g(w̃B
∗)

, which is dominated by (0, wB
∗)

because w̃B
∗ < wB

∗. Similarly, we find the stationary point w̃A
∗ on the line segment {wA ∈

[0, vA], wB = vB} also to be dominated by (0, wB
∗). Therefore, we only show

ΠF (ε, wB
∗) > ΠF (0, wB

∗) (36)
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We have

ΠF (ε, wB
∗) =G(wB

∗)(vB − wB∗) +G(ε)(vA(1−G(wB
∗))− ε)

>G(wB
∗)(vB − wB∗) = ΠF (0, wB

∗)
(37)

(37) holds for small deviations ε. Overall, the global maximum cannot be obtained at the boundary

of M. �

Proof of Proposition 9. First we show the result for the second-price rule. Note that if G is

convex or concave and weakly increasing, the flat parts of the function can only occur at the left or

right end of the interval [0, v], and include the endpoints respectively. Thus, the G can be restricted

to a strictly increasing function on a subset of [0, v]. For simplicity we argue only for the case where

G is strictly increasing on [0, v]. The inverse of G is defined on this interval and denoted G−1. We

substitute (26) into (27) and obtain

G−1

(
vB − wB∗

vA

)
= vA(1−G(wB

∗))

Let g(wB
∗) := G−1

(
vB−wB∗

vA

)
and h(wB

∗) := vA(1−G(wB
∗)). g and h are both strictly decreasing

functions and from standard composition rules it follows that whenever G is convex (concave), g

and h are concave (convex). Two single valued convex (concave) functions may intersect at most

twice on a given interval [x, x]. If they intersect twice, the ordering of the functions’ values has to

be the same at x and x. g is defined on G := [vB− vA, vB] and h is defined on H := [0, v]. Trivially,

G ⊂ H. Because g(vB − vA) = v > vA > h(vB − vA) and g(vB) = 0 = h(v) < h(vB), g and h

intersect exactly once on [vB − vA, vB]. Therefore, wB
∗ is uniquely defined, and so is wA

∗ by (26).

Under the first-price rule, the argument is similar. Remember that the reverse hazard rate is

assumed to be weakly decreasing. As before we can restrict G to be a strictly increasing function on

a subset of [0, v] and denote the inverse G−1 We simply define λ(x) := x+ G(x)
g(x) , which is a strictly

increasing function with inverse λ−1. Substituting (34) into (35) we obtain

G−1

(
vB − λ(wB

∗)

vA

)
= λ−1 (vA(1−G(wB

∗))) (38)

Again, define the LHS of (38) as g(wB
∗) and the RHS as h(wB

∗). Further note that λ−1(vB) <

vB < v because λ−1 is below the 45-degree line. Then, by the same argument as before, g and h

intersect exactly once on [λ−1(vB − vA), λ−1(vB)]. The proof the second-price rule contains the full

argument for λ(x) = x. �
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B Example: 2-good case with uniform distributions of a and b

B.1 First-price PMA

Proof of Proposition 10. The flexible bidder’s profit function simplifies to

ΠF
P1|vA,vB (wA, wB) =

− 1

2
wA

3 + wA
2

(
1

2
vA −

1

2
vB +

3

2
wB − 1

)
+ vBwB − wB2 + vAwA(1− wB)

First-order conditions are

−3

2
wA

2 + wA (−2 + 3wB + vA − vB) + vA(1− wB) = 0 (39)

3

2
wA

2 + vB − 2wB − vAwA = 0 (40)

Substituting (40) into (39) yields

9wA
3 − (9vA + 6)wA

2 +
(
2vA

2 + 4vA + 2vB − 8
)
wA − 2vAvB + 4vA = 0 (41)

If an interior solution exists, it must be a stationary point of ΠF
P1|vA,vB (wA, wB), i.e. the optimal

wA must be a root of equation (41). Let p(wA) := αwA
3 + βwA

2 + γwA + δ denote the polynomial

on the left hand side of (41), where

α :=9

β :=− (9vA + 6)

γ :=2vA
2 + 4vA + 2vB − 8

δ :=− 2vAvB + 4vA

Using Mathematica, one can easily verify that the discriminant of p(wA)

∆p = 18αβγδ − 4β3δ + β2γ2 − 4αγ3 − 27α2δ2

is strictly positive for vA, vB < 2, hence p(wA) possesses three distinct real roots. Existence of at

least one real root follows from the argument given below for the existence of an interior solution.

Furthermore, we know that p(wA) → −∞ as wA → −∞ and p(wA) → ∞ as wA → ∞. It is also

easy to check that

p(0) = δ > 0 if vB < 2 and

p(1) =− 5− vA + 2vA
2 + 2vB − 2vAvB < −5 + 2vB < 0 if vB < 2

Thus, by the intermediate value theorem, p(wA) has exactly one real root on (0, 1). Moreover, one

can easily check that p(vA) < 0 for vA < 2, hence the solution is such that wA < vA. From equation
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(40) one can derive wB as a function of wA. Therefore, if wA is uniquely defined, and so is wB.

Global optimality is immediate from Proposition 2. �

Comparative statics. The implicit function theorem applied to the first-order conditions yields

∂wA
∂vA

=
1
2wA(3wA − vA) + wB − wA − 1

1
2(3wA − vA)2 + 3(wB − wA) + vA − vB − 2

∂wA
∂vB

=
1
2(vA − wA)

1
2(3wA − vA)2 + 3(wB − wA) + vA − vB − 2

∂wB
∂vA

=
∂wA
∂vA

3wA − vA
2

− wA
2

∂wB
∂vB

=
∂wA
∂vB

3wA − vA
2

+
1

2

B.2 Simultaneous first-price auction

Comparative statics.

We have ∂wA
∂vA

= (1−vB)(1+vA
2)

(1−vA2)
≥ 0, ∂wA

∂vB
= −vA(1−vA2)

(1−vA2)
< 0, ∂wB

∂vA
= 2vA(vB−1)

(1−vA2)
≤ 0, ∂wB

∂vB
= 1 > 0.

We have ∂wA
∂vA

= (2−vB)(4+vA
2)

(4−vA2)
≥ 0, ∂wA

∂vB
= −vA(4−vA2)

(4−vA2)
< 0, ∂wB

∂vA
= 4vA(vB−2)

(4−vA2)
≤ 0, ∂wB

∂vB
= 2 > 0.

C Proofs for the general model

C.1 Standard PMA

Proof of Proposition 11. The flexible bidder’s preference for her ex-post allocation coincides

with the efficient allocation: she wants to win good j if and only if

vj > xj and (42)

vj − xj = max
k∈J

vk − xk (43)

Suppose a realisation of xk, k = 1, ..,M is such that bidder F wins good j. Then wj − xj >

wk − xk ∀k ∈ J by the allocation rule. Substituting the optimal bids for wj and wk, we obtain

vj−xj > vk−xk ∀k ∈ J , i.e. bidder F prefers to win good j. As bidder F wins for every realisation

precisely what would be best for her to win, no profitable deviation is possible. Note that when

vM − vj ≥ v, bidder F always wants to win good M because the maximal difference in payments is

v. In these cases, it may be optimal to bid wj
∗ = 0 for some j ≤ j̃, j 6= M , if wM

∗ is chosen not too

large. �
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C.2 First-price PMA

Proof of Lemma 4. We note again equation 6, which is key to this lemma, together with the

fact that for any two goods k, l ∈ J , xk and xl are iid distributed.

Pk(w) = Prob(wk > xk and wk − xk = max
j∈J

wj − xj) (44)

Because of the above equation, and because xk and xl are iid, we have

Pk(w1, ..., wl−1, wl, wl+1, ..., wk−1, wk, wk+1, ...wM )

=Pl(w1, ..., wl−1, wk, wl+1, ..., wk−1, wl, wk+1, ...wM )

Now suppose wl > wk for some l < k (so vl ≤ vk). Then we can easily show that bidding w̃l = wk

and w̃k = wl is a profitable deviation. Let w̃ denote the vector (w1, ..., wM ) where wk is substituted

by w̃k and wl is substituted by w̃l. Let w′ denote the vector (w1, ..., wM ) where wk is swapped with

wl.

ΠF (w̃) =
∑
j 6=k,l

Pj(w̃)(vj − wj) + Pk(w̃)(vk − w̃k) + Pl(w̃)(vl − w̃l)

=
∑
j 6=k,l

Pj(w̃)(vj − wj) + Pk(w
′)(vk − wl) + Pl(w

′)(vl − wk)

=
∑
j 6=k,l

Pj(w̃)(vj − wj) + Pk(w)(vl − wk) + Pl(w)(vk − wl)

>
∑
j 6=k,l

Pj(w̃)(vj − wj) + Pk(w)(vk − wk) + Pl(w)(vl − wl)

The last inequality holds because Pl(w) > Pk(w) for wl > wk (this follows immediately from equa-

tion (44). The procedure to find profitable deviations can be applied repeatedly to restore the order

wM ≥ wM−1 ≥ ... ≥ w1. �

Proof of Proposition 12. To prove that bidder F’s maximisation problem possesses indeed

an interior solution, we simply show that the maximum cannot be obtained on the boundary of

[0, v1]× ...× [0, vM ], and therefore must be a stationary point of ΠF
P1|v, characterised by the system

of first-order conditions ∇ΠF
P1|v = 0. Consider the border surfaces of CM . These surfaces are

q-dimensional hyperplanes, with q ∈ {1, ...,M − 1}. They can be described by vectors (w1, ..., wM )

where the jth entry may be substituted by a constant c ∈ {0, vj}, and overall M − q elements of w

are substituted when describing a q-dimensional hyperplane.

It is sufficient to consider (M − 1)-dimensional hyperplanes because k-dimensional border sur-

faces are encompassed in k + 1-dimensional border surfaces. If we do not put restrictions on the

elements of w−j , which are not substituted by a constant, it is also sufficient to consider points on

the hyperplane in which only the jth entry is substituted by a constant c ∈ {0, vj}.
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First, let c = vj . In this is case, it is obvious that an ε-deviation orthogonal to the hyperplane

increases the flexible bidder’s profits, i.e.

ΠF (w1, ..., wj−1, vj − ε, wj+1, ..., wM ) > ΠF (w1, ..., wj−1, vj , wj+1, ..., wM )

The flexible bidder makes zero profit on good j if she wins, so the deviation strictly increases her

profits in those cases where she wins, while at the same time the probability of winning another good

does not decrease. More formally, note that dPk(w)
dwj

< 0 because Pk(w) = Prob(wk > xk and wk −
xk = maxj∈J wj − xj). Then, it is immediate that

ΠF
P1|v(w1, ..., wj−1, vj − ε, wj+1, ..., wM )

=
∑
k 6=j

Pk(w1, ..., wj−1, vj − ε, wj+1, ..., wM ) [vk − wk] + Pj(w1, ..., wj−1, vj − ε, wj+1, ..., wM ) [vj − vj + ε]

>
∑
k 6=j

Pk(w1, ..., wj−1, vj − ε, wj+1, ..., wM ) [vk − wk]

≥ ΠF (w1, ..., wj−1, vj , wj+1, ..., wM )

Second, we consider (M − 1)-dimensional hyperplanes with wj = c = 0. We need to establish that

ΠF (w1, ..., wj−1, ε, wj+1, ..., wM ) > ΠF (w1, ..., wj−1, 0, wj+1, ..., wM )

Let

∆Pk = [Pk(w1, ..., wj−1, ε, wj+1, ..., wM )− Pk(w1, ..., wj−1, 0, wj+1, ..., wM ) and

∆Pj = Pj(w1, ..., wj−1, ε, wj+1, ..., wM )

Then

∆Pk =Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j, wk − xk > ε− xj)

−Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j)

=Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j, wk − xk > ε− xj , ε− xj > 0)

+Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j, wk − xk > ε− xj , ε− xj < 0)

−Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j)

>Prob(wk − xk > ε,wk − xk > wk′ − xk′ ∀k′ 6= j, ε− xj > 0)

+Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j, ε− xj < 0)

−Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j)

=Prob(wk − xk > ε,wk − xk > wk′ − xk′ ∀k′ 6= j, ε− xj > 0)

−Prob(wk − xk > 0, wk − xk > wk′ − xk′ ∀k′ 6= j, ε− xj > 0)

=− Prob(xj < ε)Prob(xk ∈ [wk, wk − ε], wk − xk > wk′ − xk′ ∀k′ 6= j)
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and

∆Pj =Pj(w1, ..., wj−1, ε, wj+1, ..., wM )

>Prob(xj < ε)Prob(x1 > w1)...P rob(xj−1 > wj−1)Prob(xj+1 > wj+1)...P rob(xM > wM )

Using the above, we obtain

ΠF
P1|v(w1, ..., wj−1, ε, wj+1, ..., wM )−ΠF (w1, ..., wj−1, 0, wj+1, ..., wM )

=
∑
k 6=j

Pk(w1, ..., wj−1, ε, wj+1, ..., wM ) [vk − wk] + Pj(w1, ..., wj−1, ε, wj+1, ..., wM ) [vj − ε]

−
∑
k 6=j

Pk(w1, ..., wj−1, 0, wj+1, ..., wM ) [vk − wk]

=
∑
k 6=j

[Pk(w1, ..., wj−1, ε, wj+1, ..., wM )− Pk(w1, ..., wj−1, 0, wj+1, ..., wM )] [vk − wk]

+ Pj(w1, ..., wj−1, ε, wj+1, ..., wM ) [vj − ε]

=
∑
k 6=j

∆Pk [vk − wk] + ∆Pj [vj − ε]

> Prob(xj < ε)

−∑
k 6=j

Prob(xk ∈ [wk, wk − ε], wk − xk > wk′ − xk′ ∀k′ 6= j) [vk − wk]

+ Prob(x1 > w1)...P rob(xj−1 > wj−1)Prob(xj+1 > wj+1)...P rob(xM > wM ) [vj − ε]


The last expression is greater than zero for ε small, and we are done. �

C.3 Simultaneous second-price auction

Proof of Proposition 13. We need to show than on every border surface of the parallelepiped

CM , ΠF is not maximal. We use the notational convention that
∏p
k xk = 1 if k > p. First, we

transform the expected payoff function with integration by parts and obtain

ΠF (w) =
M∑
k=1

[
G(wk)[vk − wk] + vkG(wk)

(
M∏

l=k+1

(1−G(wl))− 1

)
+

∫ wk

0
G(x) dx

]

Now consider the border surfaces of CM . These surfaces are q-dimensional hyperplanes, with q ∈
{1, ...,M − 1}. They can be described by vectors w = (w1, ..., wM ) where the jth entry may

be substituted by a constant c ∈ {0, vj}, and overall M − q elements of w are substituted when

describing a q-dimensional hyperplane. We consider (M−1)-dimensional hyperplanes and substitute

only the jth entry by a constant c ∈ {0, vj}. This is sufficient because we make no restriction on

w−j .

First, let wj = c = 0. To show that the flexible bidder can do better submitting a strictly
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positive bid, we first show the following lemma.

Lemma 6. Let w = (w−j , wj = 0) be the flexible bidder’s bid. Then she can improve her expected

payoff by bidding w′ = (w−j,−(j−1), w
′
j−1 = 0, w′j = wj−1).

Proof. We have

ΠF (w) =

j−2∑
k=1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−
∫

0
wkxg(x) dx

]

+ vj−1G(wj−1)

M∏
l=j

(1−G(wl))−
∫ wj−1

0
xg(x) dx

+
M∑

k=j+1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−
∫

0
wkxg(x) dx

]
and

ΠF (w′) =

j−2∑
k=1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−
∫

0
wkxg(x) dx

]

+ vjG(wj−1)

M∏
l=j+1

(1−G(wl))−
∫ wj−1

0
xg(x) dx

+
M∑

k=j+1

[
vkG(wk)

M∏
l=k+1

(1−G(wl))−
∫

0
wkxg(x) dx

]

Because of the substitution from w to w′ the first lines of ΠF (w) and ΠF (w′) are identical, and

trivially the third lines are identical too. Because wj = 0 and vj ≥ vj−1, the second line of ΠF (w′)

is weakly greater than the second line of ΠF (w).

From the lemma above it follows that every bid (w1, ..., wj−1, 0, wj+1, ..., wM ) can be replaced by

a bid (0, w1, w2, ..., wj−1, wj+1, ..., wM ). Therefore, we only need to show that ΠF (w̃1, w2, ..., wM ) >

ΠF (0, w2, ..., wM ). We simply choose w̃1 = v1
∏M
l=2(1−G(wl)). Then we have

ΠF (0, w2, ..., wM ) =

M∑
k=2

[
G(wk)[vk − wk] + vkG(wk)

M∏
l=k+1

(1−G(wl)) +

∫ wk

0
G(x) dx

]
and

ΠF (w̃1, w2, ..., wM ) =

∫ w̃1

0
G(x) dx+

M∑
k=2

[
G(wk)[vk − wk] + vkG(wk)

M∏
l=k+1

(1−G(wl)) +

∫ wk

0
G(x) dx

]

48



Now consider hyperplanes where c = vj . Then, we have

ΠF (w1, ..., wj−1, vj , wj+1, ..., wM ) =

j−1∑
k=1

G(wk)[vk − wk] + vkG(wk)

(1−G(vj))
M∏

l=k+1,
l 6=j

(1−G(wl))− 1

+

∫ wk

0
G(x) dx


+

M∑
k=j+1

[
G(wk)[vk − wk] + vkG(wk)

(
M∏

l=k+1

(1−G(wl))− 1

)
+

∫ wk

0
G(x) dx

]

+vjG(vj)

 M∏
l=j+1

(1−G(wl))− 1

+

∫ vj

0
G(x) dx

For an ε-deviation orthogonal to the hyperplane we obtain

ΠF (w1, ..., wj−1, vj − ε, wj+1, ..., wM ) =

j−1∑
k=1

G(wk)[vk − wk] + vkG(wk)

(1−G(vj − ε))
M∏

l=k+1,
l 6=j

(1−G(wl))− 1

+

∫ wk

0
G(x) dx


+

M∑
k=j+1

[
G(wk)[vk − wk] + vkG(wk)

(
M∏

l=k+1

(1−G(wl))− 1

)
+

∫ wk

0
G(x) dx

]

+G(vj − ε)ε+ vjG(vj − ε)

 M∏
l=j+1

(1−G(wl))− 1

+

∫ vj−ε

0
G(x) dx

Now define

ψ :=

j−1∑
k=1

vkG(wk)

M∏
l=k+1,
l 6=j

(1−G(wl))

− vj
 M∏
l=j+1

(1−G(wl))− 1

 .

ψ is strictly positive if at least one wk, k ∈ J \ {j} is strictly positive, and we demonstrated

above below that indeed all wj , j ∈ J are strictly positive. Denote the difference in payoffs as

∆ := ΠF (w1, ..., wj−1, vj−ε, wj+1, ..., wM )−ΠF (w1, ..., wj−1, vj , wj+1, ..., wM ). Then we can simplify

∆ to obtain

∆ = ψ (G(vj)−G(vj − ε)) +G(vj − ε)ε+

∫ vj−ε

0
G(x) dx−

∫ vj

0
G(x) dx

A simple linear approximation of G(vj) and a quadratic approximation of
∫ vj

0 G(x) dx (after Taylor)
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around vj − ε yields

∆ = ψ
(
G(vj − ε) + g(vj − ε)ε+ o(ε2)−G(vj − ε)

)
+G(vj − ε)ε+

∫ vj−ε

0
G(x) dx

−
∫ vj−ε

0
G(x) dx−G(vj − ε)ε− g(vj − ε)

ε2

2
− o(ε3),

which is strictly positive as ε→ 0 as long as ψ > 0, i.e. bidding truthfully in any of the M simulta-

neous auction is not optimal if the flexible bidder makes at least one other strictly positive bid for a

another good. The continuous function ΠF must attain its maximum on the compact set CM by the

extreme value theorem. Let CM denote the open set defined by CM := (0, v1) × ... × (0, vM ). The

global maximum must also be a local maximum in an ε-neighbourhood on CM. Since ΠF is also

differentiable everywhere on CM, by Fermat’s theorem, the global maximum must be a stationary

point of ΠF , i.e. it is characterised by the first-order conditions. �

Calculations for example 1. Let M = 2 and v1 = v2 = v < 1. We assume a probability

distribution with support [0, 1] and a uniform spike around x ∈ [0, 1], where x < v. Let h := 1−ε+2ε2

2ε

and ε < x. Formally, the probability density function is

g(t) =


ε if t < x− ε
h if t ∈ [x− ε, x+ ε)

ε if t ≥ x+ ε

and the probability distribution function is

G(t) =


εt if t < x− ε
(ε− h)(x− ε) + ht if t ∈ [x− ε, x+ ε)

1− ε+ εt if t ≥ x+ ε

To find the solution one has to distinguish six different cases. HΠF denotes the hessian of ΠF .

Case 1: wA, wB < x− ε
Solving equations (26) and (27) on this domain gives us w1

A
∗

= w1
B
∗

= v
1+vε , which is a global max-

imum (on this domain) because HΠF,1(w1, w2) is negative definite. We obtain ΠF,1(w1
A
∗
, w1

B
∗
) =

v2ε
1+vε .

Case 2: wA, wB ∈ [x− ε, x+ ε)

Solving equations (26) and (27) on this domain gives us w2
A
∗

= w2
B
∗

= v(1+h(x−ε)−xε+ε2
1+hv , but

HΠF,2(w1, w2) is only negative definite if h < v−1, i.e. if the spike is not too prominent.

Case 3: wA, wB ≥ x+ ε

Solving equations (26) and (27) on this domain gives us w3
A
∗

= w3
B
∗

= vε
1+vε , which, again,

is a global maximum because HΠF,3(w1, w2) is negative definite. We obtain ΠF,3(w3
A
∗
, w3

B
∗
) =
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ε(2ε(2h− 2ε+ 1)− 3)− 1
v2ε+v

+ v + 1
v + 2x(ε− 1).

Case 4: wA < x− ε, wB ∈ [x− ε, x+ ε)

Solving equations (26) and (27) on this domain gives us w4
A
∗

=
v(h(v−x+ε)+xε−ε2−1)

hv2ε−1
and w4

B
∗

=
v(vε(h(x−ε)−xε+ε2+1)−1)

hv2ε−1
, but, again, HΠF,4(w1, w2) is only negative definite if h < (v2ε)−1, i.e. if

the spike is not too prominent.

Case 5: wA < x− ε, wB ≥ x+ ε

Solving equations (26) and (27) on this domain gives us w5
A
∗

= (v−1)vε
v2ε2−1

and w5
B
∗

= v(vε2−1)
v2ε2−1

, which

is a global maximum because HΠF,5(w1, w2) is negative definite. We obtain ΠF,5(w5
A
∗
, w5

B
∗
) =

v2ε(ε2(2ε(2h−2ε+1)−3)+2x(ε−1)ε−1)−2ε(ε(2h−2ε+1)+x)+2v3ε2+2v(ε−1)+2(x+ε)

2v2ε2−2
.

Case 6: wA ∈ [x− ε, x+ ε), wB ≥ x+ ε

Solving equations (26) and (27) on this domain gives us w6
A
∗

=
vε(v(h(x−ε)−xε+ε2+1)−1)

hv2ε−1
and w6

B
∗

=
v(h(vε−x+ε)+xε−ε2−1)

hv2ε−1
, and HΠF,6(w1, w2) is only negative definite if h < (v2ε)−1, i.e. if the spike is

not too prominent. We obtain ΠF,6(wA
∗, wB

∗) =
2hv3ε+2v(−ε2(h+x)+hxε+ε3+ε−1)−ε2(5h+2x+2)+ε(x(2h+x−2)+2)+x(2−hx)+5ε3

2hv2ε−2

−v2ε
(
−4h2ε2+h(−x2ε+2x(ε2−ε+2)+ε(3ε2−2ε+1))+(−xε+ε2+1)

2
)

2hv2ε−2

Now let ε = 0.1 (implying h = 4.6), v = 0.7, and x = 0.5. The six cases give the following

candidates for the optimal bid:

(w1
A
∗
, w1

B
∗
) ≈ (0.65, 0.65), which is not admissible on [0, x − ε]. Case 2 does not fulfil the

sufficient condition for a global maximum; the stationary point is (w2
A
∗
, w2

B
∗
) ≈ (0.464, 0.464) and

yields an expected payoff of 0.120. The boundary point (x− ε, x+ ε) yields a higher payoff of 0.197.

(w3
A
∗
, w3

B
∗
) ≈ (0.065, 0.065) fulfils the second-order conditions, but is not admissible on [x + ε, 1].

(w4
A
∗
, w4

B
∗
) ≈ (−0.380, 0.727), which also fulfils the second-order conditions, but is not admissible

on [0, x− ε)× [x− ε, x+ ε). We obtain (w5
A
∗
, w5

B
∗
) ≈ (0.021, 0.699), which is a global optimum and

yields a payoff of 0.205. (w6
A
∗
, w6

B
∗
) ≈ (−0.087, 2.239) also fulfils the second-order conditions, but

is again not admissible on [x− ε, x+ ε)× [x+ ε, 1].

Clearly, the global maximum is (w5
A
∗
, w5

B
∗
) ≈ (0.021, 0.699). For the general case, one can easily

verify that w5
A
∗ → 0, w5

B
∗ → v, and ΠF,5(w5

A
∗
, w5

B
∗
)→ v − x as ε→ 0.

However, depending on how much probability mass concentrates around the spike, we may also

obtain a symmetric equilibrium. For example, let ε = 0.4 (implying h = 1.15), v = 0.7, and x = 0.5.

The six cases give the following candidates for the optimal bid:

(w1
A
∗
, w1

B
∗
) ≈ (0.547, 0.547), which is not admissible on [0, x − ε]. Case 2 fulfils the sufficient

condition for a global maximum; the stationary point is (w2
A
∗
, w2

B
∗
) ≈ (0.417, 0.417) and yields an

expected payoff of 0.259. (w3
A
∗
, w3

B
∗
) ≈ (0.219, 0.219) fulfils the second-order conditions, but is not

admissible on [x+ ε, 1]. (w4
A
∗
, w4

B
∗
) ≈ (0.244, 0.632), which also fulfils the second-order conditions,
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but is not admissible on [0, x− ε)× [x− ε, x+ ε). We obtain (w5
A
∗
, w5

B
∗
) ≈ (0.091, 0.674), which is a

global optimum and yields a payoff of 0.220. (w6
A
∗
, w6

B
∗
) ≈ (0.089, 0.680) also fulfils the second-order

conditions, but is again not admissible on [x− ε, x+ ε)× [x+ ε, 1].

The global maximum here is (w2
A
∗
, w2

B
∗
) ≈ (0.417, 0.417).

C.4 Simultaneous first-price auction

Proof of Proposition 14. It is obvious that under the first-price rule bidding one’s true value on

any good can never be optimal, because expected profit on that good would always be less than zero.

So we only show that any bid (w1, ..., wj−1, 0, wj+1, ..., wM ) cannot be optimal. With probability

P :=
∏
l=1,l 6=j(1 − G(wl)) bidder F wins nothing in the auctions she participates in. Now simply

choose w̃j = αPvj , with 0 < α < 1. Then we have

ΠF ((w1, ..., wj−1, w̃j , wj+1, ..., wM ) ≥ ΠF ((w1, ..., wj−1, 0, wj+1, ..., wM ) + P (vj − w̃j)− (1− P )w̃j

= ΠF ((w1, ..., wj−1, 0, wj+1, ..., wM ) + P (vj − αPvj)− (1− P )αPvj

= ΠF ((w1, ..., wj−1, 0, wj+1, ..., wM ) + Pvj(1− αP − α(1− P ))

> ΠF ((w1, ..., wj−1, 0, wj+1, ..., wM )

�

C.5 Sequential second-price auction

Proof of Proposition 15. In the last auction for good M , she knows the past history of outcomes

of auctions 1, ...,M − 1. Denote by vmaxM−1 the value of the highest-value object bidder F obtained in

the history HM−1. Then, her payoff in the last auction for good M is

ΠF
M,vmaxM−1

(wM ) = G(wM )vM −
∫ wM

0
x dG(x) + (1−G(wM ))vmaxM−1

She bids wM,vmaxM−1

∗ = vM − vmaxM−1 and obtains ΠF∗
M,vmaxM−1

= vmaxM−1 +
∫ vM−vmaxM−1

0 G(x) dx. In the M − 1-

auction, the flexible bidder takes possible future gains into account. She maximises

ΠF
M−1,vmaxM−2

(wM−1) = G(wM−1)ΠF∗
M,vM−1

−
∫ wM−1

0
x dG(x) + (1−G(wM−1))ΠF∗

M,vmaxM−2

In the auction for good j < M , given history Hj−1, and thus vmaxj−1 , she maximises

ΠF
j,vmaxj−1

(wj) = G(wj)Π
F∗
j+1,vj −

∫ wj

0
x dG(x) + (1−G(wj))Π

F∗
j+1,vmaxj−1

and her optimal bid is given by

wj,vmaxj−1

∗ = max
{

ΠF∗
j+1,vj −ΠF∗

j+1,vmaxj−1
, 0
}

(45)
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We then have ΠF∗
j,vmaxj−1

= ΠF∗
j+1,vmaxj−1

+
∫ max{ΠF∗j+1,vj

−ΠF∗
j+1,vmax

j−1
,0}

0 G(x) dx. Clearly, bidding truthfully

cannot be optimal because of the opportunity to improve one’s payoff in the auction for good j+ 1.

So the maximum must be characterised by the first-order condition given above. �

Equilibrium bidding for sales order M, ..., 1. In the last auction of good 1, the flexible bidder

trivially bids her valuation w1
∗ = v1 and obtains ΠF∗

1 =
∫ v1

0 G(x) dx. In the auction of good j > 1,

the flexible bidder bids wj to maximise her expected stage-payoff

ΠF
j (wj) = G(wj)vj −

∫ wj

0
x dG(x) + (1−G(wj)) ΠF∗

j+1

The first-order condition yields wj
∗ = vj − ΠF

j+1. This is the optimal bid if the flexible bidder

did not win the auction for good j − 1, and she bids w∗j = 0 in all subsequent auctions for good

j if she won good j − 1. The second-order condition guarantees a local maximum at wj
∗ and it

can indeed be verified that this is also a global maximum (neither wj = 0 nor wj = v are optimal

as can be shown by a simple ε-deviation). Simplifying the expected equilibrium profit, we obtain

ΠF∗
j := ΠF

j (wj
∗) = ΠF∗

j+1 +
∫ wj∗

0 G(x) dx.

C.6 Sequential first-price auction

Proof of Proposition 16. In the last auction for good M , she knows the past history of outcomes

of auctions 1, ...,M − 1. Denote by vmaxM−1 the value of the highest-value object bidder F obtained in

the history HM−1. Then, her payoff in the last auction for good M is

ΠF
M,vmaxM−1

(wM ) = G(wM )(vM − wM ) + (1−G(wM ))vmaxM−1

The first-order condition characterises wM,vmaxM−1

∗ = vM − vmaxM−1 −
G(wM )
g(wM ) and obtains ΠF∗

M,vmaxM−1
=

vmaxM−1 +
G(wM,vmax

M−1

∗)2

g(wM,vmax
M−1

∗) . In the M − 1-auction, the flexible bidder takes possible future gains into

account. She maximises

ΠF
M−1,vmaxM−2

(wM−1) = G(wM−1)
(

ΠF∗
M,vM−1

− wM−1

)
+ (1−G(wM−1))ΠF∗

M,vmaxM−2

In the auction for good j < M , given history Hj−1, and thus vmaxj−1 , she maximises

ΠF
j,vmaxj−1

(wj) = G(wj)
(

ΠF∗
j+1,vj − wj

)
+ (1−G(wj))Π

F∗
j+1,vmaxj−1

and her optimal bid is given by

wj,vmaxj−1

∗ = max

{
ΠF∗
j+1,vj −ΠF∗

j+1,vmaxj−1
− G(wj)

g(wj)
, 0

}
(46)
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and we have ΠF∗
j,vmaxj−1

= ΠF∗
j+1,vmaxj−1

+
G(wj,vmax

j−1

∗)2

g(wj,vmax
j−1

∗) . Of course, truthful bidding truthfully cannot be

optimal under the first-price payment rule. So the maximum must be characterised by the first-order

condition. �

C.7 Identical values

Assuming symmetric equilibria, we obtain the following equilibrium characterisations:

w∗P2 = v

w∗P1 = v −

(
1− (1−G(w∗P1))M

)
M
(
1−G(w∗P1)

)M−1
g(w∗P1)

w∗Sim2 = v (1−G(w∗Sim2))M−1

w∗Sim1 = v (1−G(w∗Sim1))M−1 −
G(w∗Sim1)

g(w∗Sim1)

wj,Seq2
∗ = v −ΠF

Seq2,j+1

wj,Seq1
∗ = v −

G(wj,Seq1
∗)

g(wj,Seq1∗)
−ΠF

Seq1,j+1

where ΠF
Seq2,M+1 = ΠF

Seq1,M+1 = 0. Note that if the flexible bidder’s value v = 1 and the inflexible

bidders’ values are uniformly distributed on [0, 1], i.e. G(x) = x v = 1, we find closed form expression

for the equilibrium bid in the first-price PMA; we have w∗P1 = 1− exp

(
log( 1

1+M )
M

)
.

Product-Mix auctions. In the standard PMA, the flexible bidder’s payoff can be written as

ΠF
P2(w) =

(
1− (1−G(w))M

)
v −

∫ w

0
xM (1−G(x))M−1 g(x) dx

The first-order conditions yield w∗ = v, which is of course the dominant strategy.

In the first-price PMA, assuming a symmetric equilibrium wj = w ∀j ∈ J , we have

ΠF
P1(w) =

(
1− (1−G(w))M

)
(v − w)

The first-order conditions yield (v − w∗)M (1−G(w∗))M−1 g(w∗)−
(

1− (1−G(w∗))M
)

= 0.

To state the auctioneer’s revenue, let x(r) denote the r−statistic of the M random variables x,

which are all iid distributed with probability distribution function G.42

Lemma 7. The auctioneer’s revenue in the first-price PMA with identical values in a symmetric

equilibrium is given by

RP1(w) =

∫ w

0
(w − x)M(1−G(x))M−1g(x) dx+M

∫ v

0
x dG(x)

42We denote by x(1) the minimum of the M RVs, and by x(M) the maximum of the M RVs.
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Proof. The probability density function of x(r) is given by M !
(r−1)!(M−r)!g(x)G(x)r−1(1 −G(x))M−r.

Let b(r) denote the r−statistic of the M+1 bids the auctioneer receives. Then her expected revenue,

given a bid w from the flexible bidder, is

RP1(w) =
M∑
r=1

E
[
b(r)
]

=

∫ w

0
wM(1−G(x))M−1g(x) dx+

∫ v

w
xM(1−G(x))M−1g(x) dx+

M∑
r=2

E
[
x(r)

]
=

∫ w

0
wM(1−G(x))M−1g(x) dx+

∫ v

w
xM(1−G(x))M−1g(x) dx+ME [x]− E

[
x(1)

]
=

∫ w

0
(w − x)M(1−G(x))M−1g(x) dx+ME [x]

Simultaneous auctions. Assuming a symmetric equilibrium wj = w ∀j ∈ J , the flexible bidder’s

payoff in the simultaneous second-price auction is

ΠF
Sim2(w) =

(
1− (1−G(w))M

)
v −M

∫ w

0
xg(x) dx

The first-order conditions yield w∗ = v (1−G(w∗))M−1.

In the simultaneous first-price auction, again assuming a symmetric equilibrium wj = w ∀j ∈ J ,

we have

ΠF
Sim1(w) =

(
1− (1−G(w))M

)
v −MG(w)w

The first-order conditions yield w∗ = v (1−G(w∗))M−1 − G(w∗)
g(w∗) .

The auctioneer’s expected revenue is straightforward to compute. Given a bid w from the

flexible bidder, we have

RSim1(w) =ME [max{w, x}]

=M

[∫ w

0
wg(x) dx+

∫ v

w
xg(x) dx

]
=

∫ w

0
(w − x)Mg(x) dx+ME[x]

Sequential auctions. The sequential auctions with identical values can be seen as a special case

of the sales order M, ..., 1. The first-order condition characterises wj
∗ = v−ΠF

j+1, where ΠF
M+1 = 0.

This is the optimal bid if the flexible bidder did not win the auction for good j − 1, and she bids

w∗f = 0 in all subsequent auctions if she won good j − 1.

The sequential first-price auction is solved analogously. The first-order condition yields wj
∗ =

v − G(wj
∗)

g(wj∗)
− ΠF

j+1, where ΠF
M+1 = 0. This is the optimal bid if the flexible bidder did not win the
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auction for good j − 1, and she bids w∗f = 0 in all subsequent auctions if she won good j − 1.

The auctioneer’s revenue is also computed recursively. We have

Rj(wj) = G(wj) [wj + (M − j)E[x]] +

∫ v

wj

xg(x) + (1−G(wj))Rj+1(wj+1)

D Formulas and closed form solutions for flexible bidder’s payoffs,

revenue, and efficiency, 2-good case with uniform distributions

of a and b

The closed form solutions for the various auction types (whenever available) are listed below.

We compare them using the functions Reduce and Simplify in Mathematica and find the ordering

posited in section 4.

ΠF
P2|vA,vB =

1

6
(vA

3 + 3vA
2(1− vB) + 3vB

2)

ΠF
Sim2|vA,vB =

vA
2 − 2vA

2vB + vB
2

2− 2vA2

ΠF
SeqA2|vA,vB =

1

8

(
vA

4 − 4vA
3(vB − 1) + 4vA

2(vB − 1)2 + 4vB
2
)

ΠF
SeqB2|vA,vB =

1

8

(
vA

4 − 4vA
2(vB − 1) + 4vB

2
)

ΠF
Sim1|vA,vB =

vA
2 − vA2vB + vB

2

4− vA2

ΠF
SeqA1|vA,vB =

1

64

(
vA

2(4 + vA)2 − 4vA
2(4 + vA)vB + 4(4 + vA

2)vB
2
)

ΠF
SeqB1|vA,vB =

1

64

(
vA

4 − 8vA
2(vB − 2) + 16vB

2
)

RP1|vA,vB (wA, wB) =

∫ wA

0

∫ 1

wB−wA+a
(wA + b) dG(b) dG(a) +

∫ wA

0

∫ wB−wA+a

0
(wB + a) dG(b) dG(a)

+

∫ 1

wA

∫ wB

0
(wB + a) dG(b) dG(a) +

∫ 1

wA

∫ 1

wB

(a+ b) dG(b) dG(a)

56



RSim1|vA,vB =G(wA) (1−G(wB)) E[wA + b | F wins A]

+G(wB) (1−G(wA)) E[wB + a | F wins B]

+G(wA)G(wB) E[wA + wB | F wins A and B]

+ (1−G(wA)) (1−G(wB)) E[a+ b | F wins nothing]

RSeqJ1|vA,vB =G(wJ
∗)
(
G(wK

∗) E[wJ
∗ + wK

∗ | F wins J and K]

+(1−G(wK
∗)) E[wJ

∗ + k | F wins J, not K]
)

+(1−G(wJ
∗))
(
G(wK

∗) E[j + wK
∗ | F wins K, not J]

+(1−G(wK
∗)) E[j + k | F wins nothing]

)

RP2|vA,vB = RSim2|vA,vB = RSeqA2|vA,vB = RSeqB2|vA,vB = 1

RSim1|vA,vB =
3vA

4 + 4(8 + vB
2) + vA

2(vB
2 − 8vB − 12)

2(vA2 − 4)2

RSeqA1|vA,vB =
1

128
(3vA

4 − 4vA
3(−4 + 3vB) + 16(8 + vB

2) + 4vA
2(4− 8vB + 3vB

2))

RSeqB1|vA,vB =
1

128
(3vA

4 − 16vA
2(−1 + vB) + 16(8 + vB

2))

WP2|vA,vB =
1

6
(vA

3 + 3vA
2(1− vB) + 3(2 + vB

2))

WSim2|vA,vB =
2 + vB

2 − vA2(1 + 2vB)

2− 2vA2

WSeqA2|vA,vB =
1

8

(
vA

4 − 4vA
3(vB − 1) + 4vA

2(vB − 1)2 + 4vB
2 + 8

)
WSeqB2|vA,vB =

1

8

(
vA

4 − 4vA
2(vB − 1) + 4vB

2 + 8
)

WSim1|vA,vB =
vA

4(1 + 2vB)− vA2(vB
2 + 16vB + 4) + 4(8 + 3vB

2)

2(vA2 − 4)2

WSeqA1|vA,vB =
1

128
(5vA

4 − 4vA
3(−8 + 5vB) + 16(8 + 3vB

2) + 4vA
2(12− 16vB + 5vB

2))

WSeqB1|vA,vB =
1

128
(128 + 5vA

4 + 48vB
2 − 16vA

2(−3 + 2vB))

E Tables
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Table 2: Equilibrium bids and interim payoffs (flexible bidder), revenue, and welfare; the multi-
column for the sequential auction displays the second-stage bid conditional on winning or losing the
first stage.

(P2) (Sim2) (SeqA2) (SeqB2) (P1) (Sim1) (SeqA1) (SeqB1)

vA = 0, vB = 0.5

wA
∗/wA

∗ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
wB
∗/wB

∗ 0.500 0.500 0.500 0.500 0.500 0.250 0.250 0.250 0.250 0.250
ΠF
M 0.125 0.125 0.125 0.125 0.063 0.063 0.063 0.063

RM 1.000 1.000 1.000 1.000 1.031 1.031 1.031 1.031
WM 1.125 1.125 1.125 1.125 1.094 1.094 1.094 1.094

vA = 0.5, vB = 0.5

wA
∗/wA

∗ 0.500 0.333 0.375 0.000 0.500 0.232 0.200 0.219 0.000 0.250
wB
∗/wB

∗ 0.500 0.333 0.000 0.500 0.375 0.232 0.200 0.000 0.250 0.219
ΠF
M 0.208 0.167 0.195 0.195 0.110 0.100 0.110 0.110

RM 1.000 1.000 1.000 1.000 1.050 1.040 1.048 1.048
WM 1.208 1.167 1.195 1.195 1.160 1.140 1.159 1.159

vA = 0.5, vB = 1

wA
∗/wA

∗ 0.500 0.000 0.125 0.000 0.500 0.193 0.133 0.156 0.000 0.250
wB
∗/wB

∗ 1.000 1.000 0.500 1.000 0.875 0.480 0.467 0.250 0.500 0.469
ΠF
M 0.521 0.500 0.508 0.508 0.276 0.267 0.274 0.282

RM 1.000 1.000 1.000 1.000 1.126 1.118 1.123 1.126
WM 1.521 1.500 1.508 1.508 1.402 1.384 1.397 1.409

vA = 0.9, vB = 1

wA
∗/wA

∗ 0.900 0.000 0.405 0.000 0.900 0.375 0.282 0.326 0.000 0.450
wB
∗/wB

∗ 1.000 1.000 0.100 1.000 0.595 0.437 0.373 0.050 0.500 0.399
ΠF
M 0.622 0.500 0.582 0.582 0.354 0.313 0.356 0.362

RM 1.000 1.000 1.000 1.000 1.144 1.109 1.138 1.140
WM 1.622 1.500 1.582 1.582 1.498 1.423 1.494 1.502

Table 3: Relative differences for first-price PMA vs. first-price simultaneous auction

pma/sim Efficiency vmaxA vmaxB Revenue vmaxA vmaxB Bidder surplus vmaxA vmaxB

max diff g̃4 0.092 1 1 0.049 0.94 0.94 0.138 0.56 0.56
g̃3 0.092 1 1 0.051 1 1 0.142 0.74 0.74
g̃2 0.087 1 1 0.049 1 1 0.150 1 1

uniform 0.065 1 1 0.038 1 1 0.155 1 1

g2 0.061 1 1 0.035 1 1 0.260 1 1
g3 0.055 1 1 0.031 1 1 0.351 1 1
g4 0.049 1 1 0.027 1 1 0.433 1 1

avg diff g̃4 0.023 0.010 0.043
g̃3 0.023 0.011 0.047
g̃2 0.020 0.010 0.052

uniform 0.012 0.006 0.052

g2 0.007 0.004 0.068
g3 0.004 0.002 0.072
g4 0.002 0.001 0.072
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Table 4: Relative differences for first-price PMA vs. first-price sequential auction, good A first

pma/seqA Efficiency vmaxA vmaxB Revenue vmaxA vmaxB Bidder surplus vmaxA vmaxB

max diff g̃4 0.010 0.5 0.72 0.022 0.92 1 -0.023 1 1
g̃3 0.009 0.56 0.8 0.016 0.88 1 -0.023 1 1
g̃2 0.008 0.62 0.9 0.011 0.86 1 -0.021 1 1

uniform 0.005 0.64 0.94 0.005 0.84 1 -0.015 1 1

g2 0.003 0.7 0.98 0.003 1 1 -0.014 1 1
g3 0.002 0.76 0.98 0.003 1 1 -0.014 1 1
g4 0.001 0.96 0.96 0.002 1 1 -0.014 1 1

avg diff g̃4 0.004 0.007 0.001
g̃3 0.004 0.005 0.002
g̃2 0.003 0.004 0.002

uniform 0.002 0.002 0.003

g2 0.001 0.001 0.002
g3 0.000 0.000 0.001
g4 0.000 0.000 0.000

Table 5: Relative differences for first-price PMA vs. first-price sequential auction, good B first

pma/seqB Efficiency vmaxA vmaxB Revenue vmaxA vmaxB Bidder surplus vmaxA vmaxB

max diff g̃4 -0.019 0.74 1 0.019 1 1 -0.042 0.74 1
g̃3 -0.017 0.72 1 0.014 1 1 -0.040 0.74 1
g̃2 -0.012 0.7 1 0.009 1 1 -0.036 0.72 1

uniform -0.005 0.64 1 0.004 1 1 -0.025 0.7 1

g2 0.001 0.86 0.86 0.003 1 1 -0.017 0.78 1
g3 0.001 0.92 0.92 0.003 0.98 1 -0.014 1 1
g4 0.001 0.94 1 0.002 0.98 1 -0.014 1 1

avg diff g̃4 -0.008 0.003 -0.024
g̃3 -0.007 0.001 -0.023
g̃2 -0.004 0.001 -0.019

uniform -0.001 0.000 -0.013

g2 0.000 0.000 -0.007
g3 0.000 0.000 -0.005
g4 0.000 0.000 -0.003

Table 6: Efficiency

W (P1) (Sim1) (SeqA1) (SeqB1)

g̃4 0.825 0.806 0.821 0.832
g̃3 0.883 0.864 0.880 0.889
g̃2 0.988 0.969 0.985 0.993

g1 1.219 1.205 1.217 1.221

g2 1.449 1.439 1.447 1.449
g3 1.571 1.565 1.571 1.571
g4 1.649 1.645 1.648 1.648

Table 7: Revenue

R (P1) (Sim1) (SeqA1) (SeqB1)

g̃4 0.496 0.491 0.492 0.494
g̃3 0.594 0.588 0.591 0.593
g̃2 0.755 0.747 0.752 0.754

g1 1.069 1.062 1.067 1.069

g2 1.378 1.373 1.377 1.378
g3 1.530 1.527 1.529 1.530
g4 1.621 1.619 1.621 1.621

Table 8: Bidder surplus

ΠF (P1) (Sim1) (SeqA1) (SeqB1)

g̃4 0.329 0.316 0.329 0.337
g̃3 0.289 0.276 0.288 0.296
g̃2 0.234 0.222 0.233 0.238

g1 0.150 0.143 0.150 0.152

g2 0.070 0.066 0.070 0.071
g3 0.041 0.038 0.041 0.041
g4 0.027 0.025 0.027 0.027
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