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Abstract

Power curves of the Conditional Likelihood Ratio (CLR) and related tests for testing

H0:β = β0 in linear models with a single endogenous variable, y = xβ+u, estimated

using potentially weak instrumental variables have been presented for two different

designs. One design keeps the variance matrix of the structural and first-stage

errors, Σ, constant, the other instead keeps the variance matrix of the reduced-form

and first-stage errors, Ω, constant. The values of Σ govern the endogeneity features

of the model. The fixed-Ω design changes these endogeneity features with changing

values of β in a way that makes it less suitable for an analysis of the behaviour of

the tests in low to moderate endogeneity settings, or when β and the correlation

of the structural and first-stage errors, ρuv, have the same sign. At larger values

of |β|, the fixed-Ω design implicitly selects values for Σ where the power of the

CLR test is high. We show that the Likelihood Ratio statistic is identical to the

t0(β̂L)2 statistic as proposed by Mills, Moreira, and Vilela (2014), where β̂L is the

LIML estimator. In fixed-Σ design Monte Carlo simulations, we find that LIML-

and Fuller-based conditional Wald tests and the Fuller-based conditional t20 test

are more powerful than the CLR test when the degree of endogeneity is low to

moderate. The conditional Wald tests are further the most powerful of these tests

when β and ρuv have the same sign. We show that in the fixed-Ω design, setting

β0 = 0 and the diagonal elements of Ω equal to 1 is not without loss of generality,

unlike in the fixed-Σ design.
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1 Introduction

For the linear model with one endogenous explanatory variable,

yi = xiβ + ui, (1)

for i = 1, . . . , n, estimated using instrumental variables, the Conditional Likelihood Ratio

(CLR) test of Moreira (2003) and related tests, like the AR (Anderson and Rubin, 1949),

LM (Kleibergen, 2002, Moreira, 2002), and conditional Wald (CW ) tests are tests for the

hypothesis H0: β = β0. They are robust to weak instruments in the sense that they have

correct size when instruments are weak, with CLR, AR, and LM unbiased, similar tests,

whereas the CW tests are not unbiased.

For the evaluation of the power of these tests, two different designs have been used

in the literature. Let zi be the kz vector of instruments and let the first-stage model be

given by

xi = z′iπ + vi. (2)

Then the fixed-Σ design specification is given by (1) and (2), with the variance matrix of

the structural and first-stage errors, Σ, fixed in the sense that it is not a function of β,

Σ = V ar

(
ui

vi

)
=

[
σ2
u σuv

σuv σ2
v

]
.

The reduced form for yi is given by yi = z′iπβ+ui+βvi = z′iπy+ri (β), with ri (β) = ui+βvi

and so the variance of the reduced-form errors is a function of β in this fixed-Σ design.

The values of Σ govern the endogeneity features of the model.

The fixed-Ω design specifies a constant reduced-form variance matrix Ω. This design

has the same first-stage specification (2), but specifies the linear model for yi as

yi = xiβ + ri − βvi, (3)

as then the reduced form for yi is given by yi = z′iπβ + ri and the reduced-form error

variance is fixed

Ω = V ar

(
ri

vi

)
=

[
σ2
r σrv

σrv σ2
v

]
.

In this case, the structural error is ui (β) = ri−βvi and hence the variance of the structural
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errors is a function of β in this fixed-Ω design, and so here the values of Σ (β) govern the

endogeneity features of the model.

The simulations in Kleibergen (2002), Moreira (2003, 2009), and Stock, Wright, and

Yogo (2002), amongst others, are based on the fixed-Σ design, whereas Andrews, Moreira,

and Stock (2006, 2007), Hillier (2009), Mills, Moreira, and Vilela (2014) and Moreira and

Moreira (2019) are based on the fixed-Ω design. These fixed-Ω design examples all start

with specifying the model of interest as the structural and first-stage equations as in (1)

and (2), but then subsequently fix Ω, without explicitly specifying the model of interest

as in (3). An argument used for fixing Ω is that it can be consistently estimated and

hence treated as known, see e.g. the discussion in Andrews, Marmer, and Yu (2019).

Poskitt and Skeels (2008) discuss these two designs and show that simulation results

can differ substantially between them, but do not provide an explanation for these dif-

ferences. Davidson and MacKinnon (2008) highlight that a design with Ω fixed changes

Σ when changing the value of β and conclude that Ω is “not a sensible quantity to keep

fixed” (Davidson and MacKinnon 2008, p 455). Andrews, Marmer, and Yu (2019) propose

a design where the value of β is fixed, but the value of β0 in H0: β = β0 is varied instead,

arguing that this keeps Ω fixed. Their motivation for this design is its direct link to the

formation of confidence intervals based on inverting test statistics. As we show in Section

3.1, this design where β is kept fixed but β0 is varied is essentially the same as the fixed-Σ

design. This follows as, ceteris paribus, for δ ∈ R, the test statistics for H0: β = β∗ − δ
when β = β∗ in the Andrews et al. (2019) design are identical to the test statistics for

H0: β = β∗ when β = β∗ + δ in the fixed-Σ design.

The main contribution of our paper is that we examine in detail the relationship

between power analyses conducted using the fixed-Σ and fixed-Ω designs. The standard

fixed-Σ design power curve varies the value of β but keeps the structural endogeneity

features constant, in particular the degree of endogeneity ρuv = σuv
σuσv

. This is not the case

for the fixed-Ω design, where σ2
v is kept fixed, but σ2

u (β) and ρuv (β) change with the value

of β in the DGP in a very specific way, as shown in Figure 2 in Section 4. In particular,

for the usual setting of σ2
r = σ2

v = 1, the structural correlations ρuv (β) are predominantly

negative for positive values of β and vice versa. Further, ρuv (β) approaches 1 for large

negative values of β, and −1 for large positive values of β, with accompanied levels of the

variance σ2
u (β) such that the power of the AR and CLR tests approaches 1, even with
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very weak instruments.

Therefore, significant parts of the fixed-Ω power curve implicitly consider variance

and endogeneity structures that favour the AR and CLR tests. As we further discuss in

Section 4 and also highlight in Figure 5 in Section 5, only a very small part of a fixed-Ω

power curve relates to settings of low to moderate endogeneity, or settings where β and ρuv

have the same sign. The fixed-Σ design therefore is better suited to evaluate the power of

the tests for these cases. Low endogeneity settings seem important, as e.g. Chernozhukov

and Hansen (2008) report a median estimated value of ρuv = 0.3 for a survey of applied

instrumental variables papers.

Our paper makes a number of further contributions. We first document in Section

2, which introduces the model and test statistics, a standalone finding that the AR test

statistic is identical to a Hausman (1978) type test statistic comparing the LIML estimator

of π under the null, H0: β = β0, to the OLS estimator of π. We then show that the LR

test statistic is identical to the t0(β̂L)2 ≡ W0(β̂L) statistic proposed by Mills et al. (2014).

The only difference between the W0(β̂L) statistic and the standard LIML-based Wald

statistic is the estimator for σ2
u in the denominator of the test. For W0(β̂L) this variance

is estimated under the null. From this equivalence result it follows that a conditional

CW0

(
β̂Full

)
test, where β̂Full is a Fuller (1977) estimator, and which is not an unbiased

test, is a direct alternative to the LIML-based CLR test.

In Section 3, we follow the analysis of Andrews et al. (2006) and evaluate the non-

centrality parameters of the weak-instrument limiting noncentral Wishart distribution of

the maximal invariant. We find that for the fixed-Σ design the noncentrality parameters

depend on the values of β and β0 only through the difference δ = β − β0, and hence one

can set β0 = 0 without loss of generality (wlog) when evaluating power. We also find that

one can set σ2
u = σ2

v = 1 wlog for evaluating power in the fixed-Σ design. In contrast,

these findings do not hold for the fixed-Ω design, contradicting the statements in foot-

notes 7 and 8 in Andrews et al. (2006), i.e. one cannot set β0 = 0 wlog.1 One also cannot

set the diagonal elements of Ω equal to 1 wlog, unless β0 is set equal to 0. The latter

combination is standard practice in the literature, but the special nature of the fixed-Ω,

β0 = 0 case is highlighted by our finding for the AR test in Section 3.2, where we find

that the limiting weak-instrument power of the AR test is identical to the local-to-zero

1Footnote 8 in Andrews et al. (2006) refers to setting β0 = 0 wlog, but in the structural equation (1),
not equation (3), and hence applies to the fixed-Σ design.
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power of the standard OLS-based Wald test for testing H0: πy = 0 in the reduced form

specification yi = z′iπy + ri, which hence does not depend on σrv and σ2
v .

Through an analysis of the fixed-Σ design weak-instrument noncentrality parameters

we can highlight the behaviour of the tests when |ρuv| → 1. Section 3.1.1 shows that

the LR test, using the critical value of the strong-instruments χ2
1 limiting distribution, is

not size distorted when |ρuv| → 1, see also Andrews et al. (2019), and has a maximum

size distortion at ρuv = 0. Section 3.1.2 then shows that for each value of β there is a

value of σ2
u, such that the power of the AR and CLR tests approaches 1 when β < β0

and ρuv → 1, or β > β0 and ρuv → −1. We show in Section 4 and illustrate in Figure

3 that the fixed-Ω design maps onto those particular combinations of β, ρuv and σ2
u for

large values of |β|, confirming that significant parts of the fixed-Ω power curve implicitly

considers parameter configurations with high power of the AR and CLR tests. From the

noncentrality parameters, we can show in Section 3.1.3 that the fixed-Σ power curve of

the CLR test is asymmetric around β0 as a function of β − β0.

As discussed above, conclusions based on fixed-Ω designs about which test has superior

power may be based on only very partial information. We illustrate this in Section 5 by

comparing the behaviours of the LIML- and Fuller-based conditional Wald (CW ) tests

and the CW0-Fuller test to that of the CLR (= CW0-Liml) test in fixed-Σ design Monte

Carlo simulations for different degrees of endogeneity ρuv. As far as we are aware these

tests have only been compared in the fixed-Ω design (see Andrews et al., 2007; Mills et al.,

2014), where the CLR test was found to dominate for most values of β. In contrast, we

find in the fixed-Σ design that, for low to moderate degrees of endogeneity, the conditional

Wald tests are more powerful than the CLR test. Even for medium to high values of ρuv

the CW0-Fuller test is well behaved, with higher power than the CLR test for part of the

parameter space. Also, of these tests, the CW tests have the most power when β and

ρuv have the same sign, including for the highest value of ρuv = 0.75 considered in the

simulations. In a fixed-Ω analysis, these findings are easy to miss, as only a small segment

of the power curve encapsulates low to moderate degrees of endogeneity or situations where

ρuv and β have the same sign.

Our main focus is on the CLR test. As the LR test statistic is based on the AR test

statistic, we introduce and discuss issues related to the CLR and AR tests in the next

sections, but refrain from a general discussion of the LM test.
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2 Model and Tests

We start with the standard structural and first-stage linear model specifications for a

sample {yi, xi, z′i}
n
i=1, given by

yi = xiβ + ui (4)

xi = z′iπ + vi,

where zi is the kz vector of instrumental variables. The instruments satisfy E (ziui) = 0.

Standard assumptions on the data, see e.g. Assumption M in Stock and Yogo (2005),

needed for limiting normal distributions and consistent estimation of variance matrices

are assumed to hold. The explanatory variable xi is endogenous as E (xiui) = E (uivi) 6= 0.

Other exogenous explanatory variables, including the constant, have been partialled out.

The errors are assumed to be conditionally homoskedastic, with

Σ = V ar

((
ui

vi

)
|zi

)
=

[
σ2
u σuv

σuv σ2
v

]
, (5)

and correlation ρuv = σuv
σuσv

.

The reduced form for yi is given by

yi = z′iπβ + ui + viβ (6)

= z′iπy + ri(β),

with ri (β) = ui + viβ, and the reduced-form error variance of (ri (β) vi)
′ is given by

Ω (β) =

[
σ2
u + 2βσuv + β2σ2

v σuv + βσ2
v

σuv + βσ2
v σ2

v

]
. (7)

Let y and x be the n-vectors (yi) and (xi) and Z the n × kz matrix of instruments.

The standard 2SLS estimator for β is given by

β̂2sls =
x′PZy

x′PZx
,

where PZ = Z (Z ′Z)−1 Z ′. The 2SLS estimator is based on the OLS estimator for π, given

by π̂ = (Z ′Z)−1 Z ′x. Let x̂ = Zπ̂, then β̂2sls = x̂′y/ (x̂′x) = x̂′y/ (x̂′x̂).
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Dropping notationally the dependence of Ω on β for ease of exposition, an estimator

for

Ω =

[
ω11 ω12

ω12 ω22

]

is Ω̂ = W ′MZW/n, where W = [y x] and MZ = In − PZ . The LIML estimator for β is

then given by

β̂L =
x′PZy − nκ̂ω̂12

x′PZx− nκ̂ω̂22

,

where κ̂ is the minimum eigenvalue,

κ̂ = min eval
((
n−1W ′PZW

)
Ω̂−1

)
. (8)

Let aL = (β̂L 1)′. The definition of the LIML estimator for π as used in Moreira (2003)

is given by

π̂L = (Z ′Z)
−1
Z ′W Ω̂−1aL

(
a′LΩ̂−1aL

)−1

. (9)

Let x̂L = Zπ̂L, then β̂L = x̂′Ly/ (x̂′Lx) = x̂′Ly/ (x̂′Lx̂L), see Windmeijer (2018) for the latter

equality.

Consider testing the null H0:β = β0 against the two-sided alternative H1:β 6= β0. The

distributional properties of the AR and LR tests as described below are exact under fixed

instruments, known Ω and normally distributed errors. Instrument strength is determined

by the concentration parameter λn/σ
2
v , where λn = π′Z ′Zπ. The limiting distributions of

the tests under the null are the same when relaxing these assumptions and using Ω̂ as an

estimator for Ω, see Moreira (2003) and Kleibergen (2002). Weak instrument asymptotics

imply π = πn = c/
√
n, where c is a vector of constants, with instrument strength then

determined by λ/σ2
v , with λ = plim (π′nZ

′Zπn) = c′Azzc, where Azz = plim (Z ′Z/n).

Let u0 = y − xβ0. The Anderson-Rubin test statistic is given by

AR =
u′0PZu0

σ̂2
0

, (10)

where σ̂2
0 = b′0Ω̂b0 = u′0MZu0/n, with b0 = (1 − β0)′. AR has a limiting χ2

kz
distribution

under the null, independent of the strength of the instruments. The AR test is a test for

overidentifying restrictions in model (4), imposing the null.

Let π̂L0 be the LIML estimator of π under the null, given by
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π̂L0 = (Z ′Z)
−1
Z ′W Ω̂−1a0/

(
a′0Ω̂−1a0

)
,

with a0 = (β0 1)′. As π̂L0 is a consistent and efficient estimator of π under the null,

H0: β = β0, but inconsistent under the alternative, H1: β 6= β0, whereas π̂ is consistent in

both cases, we can use the Hausman (1978) specification test principle to construct the

test statistic

Hπ = (π̂ − π̂L0)′ (V âr (π̂)− V âr (π̂L0))−1 (π̂ − π̂L0) . (11)

Under the null, Hπ has a limiting χ2
kz

distribution. An interesting, and standalone, obser-

vation is that the Hπ statistic is identical to the AR statistic, as stated in the following

proposition.

Proposition 1. Let the Anderson-Rubin test statistic AR be as defined in (10) and let

the Hausman test statistic Hπ be defined as in (11). Then Hπ = AR.

Proof. See Appendix A.1

The Likelihood Ratio test we consider here is the test denoted LR1 in Moreira (2003),

which is a criterion difference test. This LR statistic is given by

LR =
u′0PZu0

σ̂2
0

− û′LPZ ûL
σ̂2
L

(12)

= AR−B
(
β̂L

)
,

where σ̂2
L = û′LMZ ûL/n = b′LΩ̂bL, with ûL = y − xβ̂L and bL = (1 − β̂L)′, and where

B
(
β̂L

)
is the Basmann (1960) test for overidentifying restrictions in model (4), with

B
(
β̂L

)
= nκ̂. Under standard strong instrument asymptotics, LR has a limiting χ2

1

distribution. However, under weak instruments, its distribution is not invariant with

respect to the value of πn = c/
√
n, unlike AR. As Moreira (2003) showed, the asymptotic

conditional distribution of LR under the null, conditional on the value of the π̂L0-based

Wald test statistic for testing H0: π = 0,

τ0 = π̂′L0 (V âr (π̂L0))−1 π̂L0 =
a′0Ω̂−1W ′PZW Ω̂−1a0

a′0Ω̂−1a0

, (13)
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is given by

f (LR|τ0) =
1

2

(
ξ1 + ξkz−1 − τ0 +

√
(ξ1 + ξkz−1 + τ0)2 − 4ξkz−1τ0

)
,

where ξ1 and ξk−1 are independent χ2
1 and χ2

kz−1 distributed random variables. Conditional

critical values for the LR test can then be simulated, or the conditional p-values calculated

by numerical integration (Moreira, 2003; Mikusheva and Poi, 2006; Andrews et al., 2007;

Hillier, 2009), resulting in correct size for this conditional LR (CLR) test, also when

instruments are weak or uninformative. In the following we refer to the LR test when

using critical values from the strong-instruments limiting χ2
1 distribution, and the CLR

test when using the conditional on τ0 critical values.

Conditional tests with correct size under the null in weakly identified models can also

be obtained for standard Wald tests, for example based on 2SLS, LIML, Fuller and bias-

corrected 2SLS estimators, see Andrews, Moreira, and Stock (2007) and Mills, Moreira,

and Vilela (2014). Mills et al. (2014) provide the details for obtaining the distributions

of these test statistics conditional on τ0, and they also considered one-sided conditional

t-tests. A LIML-based test considered by Mills et al. (2014) is given by

W0

(
β̂L

)
= t0(β̂L)2 =

(
β̂L − β0

)2

(x′PZx− nκ̂ω̂22)

σ̂2
0

. (14)

The difference with the standard LIML-based Wald test is the use of the restricted esti-

mator σ̂2
0 instead of the unrestricted σ̂2

L. We find that the W0

(
β̂L

)
statistic is identical

to the LR statistic, as stated in the following proposition.

Proposition 2. Let LR be as defined in (12) and let W0(β̂L) be as defined in (14). Then

W0

(
β̂L

)
= LR.

Proof. See Appendix A.2.

It follows from Proposition 2 and the results in Mills et al. (2014) that the conditional

W0(β̂L) (CW0(β̂L)) and CLR tests are also equivalent. This implies that a conditional

CW0

(
β̂Full

)
test, where β̂Full is a Fuller (1977) estimator of β, and which is not an

unbiased test, is a direct alternative to the LIML-based CLR test, and this will therefore

be one of the tests whose power we evaluate in section 5.
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For the just-identified case, kz = 1, it follows from Proposition 2 that W0

(
β̂IV

)
=

LR = AR, where β̂IV = (z′x)−1 z′y. The equivalence of W0

(
β̂IV

)
and AR was derived by

Feir, Lemieux, and Marmer (2016), see also Lee, McCrary, Moreira, and Porter (2020).

3 Properties of Tests in the Two Designs

In this section, we first show that, in the fixed-Σ design, we can set β0 = 0 without loss

of generality. We also establish that the Andrews et al. (2019) approach of keeping the

value of β fixed, but varying the values of β0 when testing H0: β = β0, is equivalent to

the fixed-Σ design. We then analyse the noncentrality parameters of the fixed-Σ design

weak-instrument noncentral Wishart distribution of the maximal invariant in order to

examine properties of the AR and (C)LR tests that will help us understand the link

between the fixed-Ω and fixed-Σ designs. We show that the power curve of the CLR test

is asymmetric, and establish the conditions in which the weak-instrument power of the

AR and CLR tests goes to 1. Later on in Section 4, we show that the fixed-Ω design tends

to implicitly select those values of Σ where the CLR test reaches a power of 1 as the value

of |β| increases. We end the current section by analysing the noncentrality parameters of

the fixed-Ω design and showing that, unlike in the fixed-Σ case, in the fixed-Ω case we

cannot set β0 = 0 and the diagonal elements of Ω equal to 1 without loss of generality.

3.1 Fixed-Σ design

It is clear from the model specification (4), that for given values of {z′i, ui, vi}
n
i=1 and π, and

hence a given value of λn = π′Z ′Zπ, all distributional properties of the 2SLS estimator

remain unchanged but for the location of the estimator, when β is changed from β = β∗

to β = β∗ + γ. For the first case we have β̂2sls,1 = β∗ + x′PZu
x′PZx

, and for the second case,

β̂2sls,2 = β∗ + γ + x′PZu
x′PZx

= β̂2sls,1 + γ, as the ratio x′PZu
x′PZx

is unaffected. As we show in

Appendix A.3, the same holds for the LIML estimator, leading to the following result.

We focus here on the CLR test, but results here and below hold equivalently for the AR

and conditional Wald tests.

Result 1. Given values {z′i, ui, vi}
n
i=1 and π, and hence given values xi = z′iπ + vi for

i = 1, . . . , n, and λn = π′Z ′Zπ, denote the LR test statistic for testing H0: β = β0 when

β = β∗, and so yi = xiβ∗+ui, by LR (β0)β=β∗
, and τ0 is denoted τ0 (β0)β=β∗

. Then keeping
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everything constant, but only changing the value of β to β = β∗ + γ, with γ ∈ R, and so

only changing the values yi to yγ,i = xi (β∗ + γ) + ui = yi + xiγ, we have the result that,

for testing H0: β = β0 + γ,

LR (β0 + γ)β=β∗+γ
= LR (β0)β=β∗

τ0 (β0 + γ)β=β∗+γ
= τ0 (β0)β=β∗

.

Proof. See Appendix A.3

It follows directly from Result 1 that the power of the CLR test in the fixed-Σ design,

only depends on δ = β − β0, and hence there is no loss of generality in taking β0 = 0

when generating power curves using Monte Carlo simulation methods.

Corollary 1. Let δ∗ ∈ R. Under the conditions of Result 1, it follows that

LR (β∗)β=β∗+δ∗
= LR (β∗ − δ∗)β=β∗

;

τ0 (β∗)β=β∗+δ∗
= τ0 (β∗ − δ∗)β=β∗

.

Proof. Follows directly from Result 1, with γ = δ∗ = β∗ − β0.

It follows from Corollary 1 that the Andrews et al. (2019) approach of keeping the value

of β fixed at β∗, but varying the values of β0 for testing H0:β = β0, results in a power curve

which is the mirror image around β∗ of the standard fixed-Σ power curve when varying

the value of β and testing H0: β = β∗. This follows as the values of {z′i, ui, vi}
n
i=1 and π

are kept constant when varying the value for β0 in the Andrews et al. (2019) approach.

Next, consider the weak instruments limiting distribution results in Andrews et al.

(2006, Lemma 4, p 736). Defining

Ŝ = (Z ′Z)
−1/2

Z ′Wb0

(
b′0Ω̂b0

)−1/2

T̂ = (Z ′Z)
−1/2

Z ′W Ω̂−1a0

(
a′0Ω̂−1a0

)−1/2

,
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then the AR and LR test statistics are given by

AR = Ŝ ′Ŝ

LR =
1

2

(
Ŝ ′Ŝ − T̂ ′T̂ +

√(
Ŝ ′Ŝ − T̂ ′T̂

)2

+ 4
(
Ŝ ′T̂

)2
)
,

and τ0 = T̂ ′T̂ .

Andrews et al. (2006) show that
(
Ŝ, T̂

)
d→ (S, T ), with S ∼ N (cβ,β0µ, Ikz) and T ∼

N (dβ,β0µ, Ikz), where µ = A
1/2
zz c and

cβ,β0 = (β − β0) (b′0Ωb0)
−1/2

,

dβ,β0 = a′Ω−1a0

(
a′0Ω−1a0

)−1/2

= b′Ωb0 (b′0Ωb0)
−1/2 |Ω|−1/2 ,

where a = (β 1)′, b = (1 − β)′, |Ω| is the determinant of Ω, and where here Ω = Ω(β).

The power properties of the tests when n → ∞ are determined by the properties of

the noncentral Wishart distribution of the maximal invariant, given by

Q =

[
S ′S S ′T

T ′S T ′T

]
. (15)

As above, let δ = β − β0, λ = c′Azzc = µ′µ and note that

σ2
0 (β) := b′0Ω (β) b0 = (1 δ)Σ(1 δ)′ = σ2

u + 2σuvδ + σ2
vδ

2.

Then we get for the noncentrality parameters, see Appendix A.4.1 for details,

c2
β,β0

λ =
λδ2

σ2
0 (β)

=
λ/σ2

v(
σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1
, (16)

d2
β,β0

λ =
(λ/σ2

v)
(
σu
δσv

+ ρuv

)2((
σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1

)
(1− ρ2

uv)

, (17)

cβ,β0dβ,β0λ =
(λ/σ2

v)
(
σu
δσv

+ ρuv

)
((

σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1

)√
(1− ρ2

uv)

.
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It follows that in order to investigate the weak-instrument power properties of the tests

for n → ∞, there is no loss of generality in setting σ2
u = σ2

v = 1, because, given Azz,

the distribution of Q under (δ∗, c∗, σ2
u, σ

2
v , ρuv) equals its distribution under (δ, c, 1, 1, ρuv),

where δ = δ∗σv/σu and c = c∗/σv. The results also confirm that the power properties of

the tests in the fixed-Σ design only depend on β and β0 via their difference δ = β − β0.

Notice further that the noncentrality parameters c2
β,β0

λ, d2
β,β0

λ and |cβ,β0dβ,β0λ| are

symmetric in δ and ρuv, in the sense that their values, and hence the asymptotic power

of the tests, are the same for any values {δ, ρuv} and {−δ,−ρuv}.

3.1.1 Size properties of LR test

The noncentrality parameter of the weak-instrument limiting noncentral chi-squared dis-

tribution of τ0 is given by d2
β,β0

λ. Under the null, H0: β = β0, we have that δ = 0, and

so

d2
β0,β0

λ =
λ/σ2

v

1− ρ2
uv

.

Therefore, given values λ > 0 and σ2
v > 0, d2

β0,β0
λ→∞ and hence τ0 →∞, if |ρuv| → 1.

For the CLR test, the critical values depend on the value of τ0. They range from the

critical values of the χ2
1 distribution as τ0 →∞ to the critical values of the χ2

kz
distribution

as τ0 → 0, see Moreira (2003). Whilst the standard 2SLS-based Wald tests have their

largest weak instrument size distortions at |ρuv| = 1, see Stock and Yogo (2005), it follows

that this is not the case for the LR test. For λ > 0, the LR test has no size distortion

when |ρuv| → 1, as then τ0 → ∞ and hence the critical values of the χ2
1 distribution

apply, see also Andrews et al. (2019). The noncentrality parameter d2
β0,β0

λ is minimised

at ρuv = 0, and hence the weak-instrument size distortion of the LR test is maximised at

ρuv = 0, see Figure B.1 in Appendix B for an illustration.

3.1.2 Conditions for the Power of AR and CLR Tests to Approach 1

The noncentrality parameter for the weak-instrument limiting distribution of the AR test

statistic is given by c2
β,β0

λ. Given values σ2
u > 0, σ2

v > 0 and λ > 0, c2
β,β0

λ is maximised

at δ+ = − 1
ρuv

σu
σv

, or, given β0, β+ = β0 − 1
ρuv

σu
σv

. It follows that the power of the AR test

in the fixed-Σ design is asymmetric, with the maximum power to the left of β0 if ρuv > 0

and to the right of β0 if ρuv < 0. The asymmetry of the power of the AR test follows

directly from the asymmetry of the function c2
β,β0

λ as illustrated in Figure 1 below.
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The noncentrality parameter at δ+ is given by

c2
β+,β0

λ =
λ/σ2

v

1− ρ2
uv

.

It follows that c2
β+,β0

λ→∞, and so AR (β0)β=β+ →∞, if |ρuv| → 1, with β+ → β0 − σu
σv

for ρuv → 1, and β+ → β0 + σu
σv

for ρuv → −1. As Davidson and MacKinnon (2015, pp

831-832) show, for λ > 0, nκ̂ = B
(
β̂L

)
d→ χ2

kz−1 when |ρuv| → 1. It therefore follows

that LR (β0)β=β+ = AR (β0)β=β+ −B
(
β̂L

)
→∞ when |ρuv| → 1. Thus the power of the

AR and CLR tests approaches 1 at β = β+ when |ρuv| → 1. Alternatively, and for later

reference, this can be rephrased in the following way. If we standardise σ2
v = 1, then for

each value of β there is a value of σ2
u, namely σ2+

u = (δ+)
2
, such that the power of the AR

and CLR tests approaches 1 when β < β0 and ρuv → 1, or β > β0 and ρuv → −1.

3.1.3 Asymmetry of the Power of the CLR Test

As the distribution of B
(
β̂L

)
= nκ̂ is invariant to the value of β in the fixed-Σ design,

see the proof of Result 1 in Appendix A.3, it follows that the power of the LR test is

asymmetric due to the asymmetry in power of the AR test, and because the LR test uses

the constant critical values of the χ2
1 distribution. As the critical values of the CLR test

depend on the observed value of τ0, it does not immediately follow that the power of the

CLR test is also asymmetric, but we show here that it is.

From the expressions of the noncentrality parameters c2
β,β0

λ and d2
β,β0

λ in (16) and

(17) respectively, it follows that

c2
β,β0

λ+ d2
β,β0

λ =
λ/σ2

v

1− ρ2
uv

. (18)

As this is not a function of δ = β − β0, it implies that the sum of the two noncentrality

parameters is constant, given values λ > 0, σ2
v > 0 and −1 < ρuv < 1. This is illustrated

in the left panel of Figure 1, which graphs the values of c2
β,β0

λ and d2
β,β0

λ as a function of

δ, for λ = 1, σ2
u = σ2

v = 1 and ρuv = 0.5. The symmetry in the values of c2
β,β0

λ and d2
β,β0

λ

is clear, with larger values of c2
β,β0

λ accompanied by smaller values of d2
β,β0

λ and vice

versa, with their sum being constant. A higher value of c2
β,β0

λ leads to a higher expected

value of the AR statistic and hence, ceteris paribus, a higher expected value of the LR

statistic. However, the accompanied lower value of d2
β,β0

λ leads to a lower expected value

13
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Figure 1: Left panel, values of c2
β,β0

λ and d2
β,β0

λ, λ = 1, σ2
u = σ2

v = 1, ρuv = 0.5. Right
panel, asymptotic power of the CLR test, λ = 10, σ2

u = σ2
v = 1, ρuv = 0.5, horizontal

dashed line is power at δ = 6, the vertical dashed line is at δ = −0.8571, see text for
explanation.

of τ0, and hence a larger expected value of the conditional critical value for the CLR test.

We can therefore not directly assess the properties of the power curve of the CLR test

without investigating the distribution of the conditional critical values for different values

of d2
β,β0

λ.

However, we are able to make a statement about the asymmetry of the power of the

CLR test. This is due to the fact that S and T are independently distributed, see Lemma

2 in Andrews et al. (2006). Therefore for a given value of β0, and a value β∗ of β, with

value for c2
β,β0

λ equal to c2
β∗,β0

λ, if there is a value β̃ 6= β∗ of β with c2
β̃,β0

λ = c2
β∗,β0

λ,

then the power of the CLR test for testing H0: β = β0 when β = β∗ is the same as the

power of the test when β = β̃. This follows as, ceteris paribus, the distributions of the

AR test statistics and hence the LR test statistics are the same due to the equal values

of the noncentrality parameters c2
β∗,β0

λ = c2
β̃,β0

λ. But it follows from (18) that then also

d2
β∗,β0

λ = d2
β̃,β0

λ, and hence, ceteris paribus, the distributions of the τ0 statistics are the

same. Because S and T are independently distributed, it follows that the distributions

of the LR statistics and the conditional critical values for the CLR test are the same at

β = β∗ and β = β̃ and hence the rejection probabilities are the same.

From this result, the asymmetry of the power function of the CLR test follows from

the asymmetry of c2
β,β0

λ and d2
β,β0

λ as a function of δ, as displayed in the left panel of

Figure 1. We have c2
β0,β0

λ = 0 and limδ→∞ c
2
β,β0

λ = λ/σ2
v . It is further easily derived that

14



for ρuv > 0, ∂c2
β,β0

λ/∂δ > 0 for δ > 0, and ∂c2
β,β0

λ/∂δ < 0 for −σu/σv
ρuv

< δ < 0. Further

at the value δm = βm − β0 = −σu/σv
2ρuv

we have that c2
βm,β0

λ = λ/σ2
v , and so for any value

δ∗ ∈ (0,∞) there is a unique value δm < δ̃ < 0 with the power of the CLR test at δ̃ the

same as that at δ∗, and for each δ∗,1 > δ∗,2 we have that δ̃1 < δ̃2.2

This is illustrated in the right panel of Figure 1, which shows the weak instruments

asymptotic power of the CLR test from simulations, for 20, 000 replications at values

δ = −6,−5.95, . . . , 6, with λ = 10, σ2
u = σ2

v = 1, ρuv = 0.5, and so δm = −1 here.

The horizontal dashed line is the rejection frequency at δ = δ∗ = 6. We have here that

c2
β∗,β0

λ = cβ̃,β0λ at δ̃ = −0.8571. The vertical dashed line is at δ = −0.8571 and the two

dashed lines cross exactly on the power curve of the CLR test, confirming the results.

3.2 Fixed-Ω Design

We now contrast the results found above for the fixed-Σ design with those for the fixed-Ω

design. We can write the data generating process for the fixed-Ω design as

yi = xiβ + ri − βvi (19)

xi = z′iπ + vi,

as then the reduced form is given by yi = z′iπβ + ri, and Ω is constant for all values of β

and given by

Ω =

[
σ2
r σrv

σrv σ2
v

]
,

and correlation ρΩ := ρrv = σrv
σrσv

.

Changing in this design the value of β from β = β∗ to β = β∗ + γ whilst keeping the

values of {z′i, ri, vi}
n
i=1 and π constant does not lead to a location shift only, but changes

the distributions of the estimators. For example, for the 2SLS estimator, we have for

the first case β̂2sls,1 = β∗ + x′PZ(r−β∗v)
x′PZx

, whereas for the second case, β̂2sls,2 = β∗ + γ +
x′PZ(r−β∗v)−γx′PZv

x′PZx
= β̂2sls,1 + γ

(
1− x′PZv

x′PZx

)
. The same applies to the LIML estimator and

we therefore have in general in this fixed-Ω design that LR (β0 + γ)β=β∗+γ
6= LR (β0)β=β∗

,

everything else constant. Hence, choosing β0 = 0 is now not without loss of generality.

This can further be seen by investigating the noncentrality parameters of the maximal

2The equivalence of power at these points δ∗ and δ̃ clearly also holds for the AR test.
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invariant Q as defined in (15) for the fixed-Ω design. We get in this case, see Appendix

A.4.2 for details,

c2
β,β0

λ =
(λ/σ2

v)(
σr
δσv

)2

− 2β0
δ
ρΩ

(
σr
δσv

)
+
(
β0
δ

)2
,

d2
β,β0

λ =
(λ/σ2

v)
(
σr
δσv
− ρΩ + β0

δ

(
β σv
σr
− 2ρΩ

))2((
σr
δσv

)2

− 2β0
δ
ρΩ

σr
δσv

+
(
β0
δ

)2
)

(1− ρ2
Ω)

,

cβ,β0dβ,β0λ =
(λ/σ2

v)
(
σr
δσv
− ρΩ + β0

δ

(
β σv
σr
− 2ρΩ

))
((

σr
δσv

)2

− 2β0
δ
ρΩ

σr
δσv

+
(
β0
δ

)2
)√

(1− ρ2
Ω)

.

where, as before, δ = β − β0. These noncentrality parameters, and hence the asymptotic

power of the tests under weak instrument asymptotics, depend on the value β0/δ so that

one cannot set β0 = 0 or σ2
r = σ2

v = 1 wlog in this design. The exception is that one can

set σ2
r = σ2

v = 1 wlog when one sets β0 = 0, as then

c2
β,0λ =

β2λ

σ2
r

=
(λ/σ2

v)(
σr
βσv

)2 ,

d2
β,0λ =

(λ/σ2
v)
(
σr
βσv
− ρΩ

)2

(
σr
βσv

)2

(1− ρ2
Ω)

,

cβ,0dβ,0λ =
(λ/σ2

v)
(
σr
βσv
− ρΩ

)
(
σr
βσv

)2√
(1− ρ2

Ω)
.

The case β0 = 0, σ2
r = σ2

v = 1 is often the one considered in the literature, but to reiterate

this is clearly not without loss of generality in the fixed-Ω design, in contrast to the

findings above for the fixed-Σ design.

Notice that when β0 = 0, the noncentrality parameter for the AR test, given by c2
β,0λ,

and hence its asymptotic power, does not depend on ρΩ or σ2
v , only on β, λ and σ2

r . The

reason for this is that the AR test statistic for testing H0: β = 0, is given by

ARβ0=0 =
y′PZy

y′MZy/n
,
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as u0 = y − xβ0 = y. Consider the reduced form

y = Zπy + r, (20)

with the OLS estimator for πy given by π̂y =(Z ′Z)−1 Z ′y. Then the π̂y-based standard

Wald test statistic for testing H0: πy = 0 is given by

Wπy = π̂′y (V âr (π̂y))
−1 π̂y =

y′PZy

y′MZy/n
= ARβ0=0,

using as an estimator for the variance V âr (π̂y) = σ̂2
r (Z ′Z)−1 and σ̂2

r = y′MZy/n.

The fixed-Ω design sets πy = πβ and V ar(ri) = σ2
r . Weak-instrument asymptotics sets

π = πn = c/
√
n, and hence πy = πy,n = cβ/

√
n. Therefore the weak-instrument fixed-Ω

power curve for the AR test as a function of β, testing H0: β = 0, is simply the local-to-

zero power curve of the OLS-based Wald test for testing H0:πy = 0 in the standard linear

model (20). Because σ2
r is constant, the features of the endogenous explanatory variable

x do not enter this specification and hence neither σ2
v nor ρΩ enter the noncentrality

parameter c2
β,0λ.

4 Power of the CLR Test in the Two Designs with

β0 = 0

In the fixed-Ω design (19) the variance matrix of the structural errors varies with β and

Σ (β) is given by

Σ (β) =

[
σ2
r − 2βσrv + β2σ2

v σrv − βσ2
v

σrv − βσ2
v σ2

v

]
, (21)

see also Andrews et al. (2019, p 466). It is common for simulations based on the fixed-Ω

design to set σ2
r = σ2

v = 1, from which it follows that

σ2
u (β) = 1− 2βρΩ + β2, (22)

σuv (β) = ρΩ − β. (23)

For testing H0: β = 0, it follows that under the null, Σ (0) = Ω, and so ρΩ is then an

indicator of the degree of endogeneity in the null model only.
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Figure 2 displays these values of ρuv (β) = σuv (β) /σu (β) and σ2
u (β) as a function

of β for values of ρΩ = 0, 0.5 and 0.95. The latter two values have often been used in

simulations. As is clear from the formulae (22) and (23), and highlighted by Figure 2, for

every value of β the endogeneity and variance properties of the structural model change.

For the correlations ρuv (β) we have that ρuv (β) < ρΩ for β > 0, and ρuv (β) > ρΩ for

β < 0. Further, ρuv (β) > 0 for β < ρΩ and ρuv (β) < 0 for β > ρΩ, approaching 1 and −1

quite rapidly, especially for ρΩ = 0.95.
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Figure 2: Values of ρuv and σ2
u as a function of β when holding Ω =

[
1 ρΩ

ρΩ 1

]
constant.

For any value of ρΩ we have that

σ2
u (β)

β2
→ 1 if |β| → ∞,

ρuv (β)→ 1 if β → −∞,

ρuv (β)→ −1 if β →∞,

which are the values for σ2
u and ρuv where the power of the AR and CLR tests approaches

1, as shown in Section 3.1.2, with here δ = β. Therefore, the fixed-Ω design selects

particular points in the space of the nuisance parameters Σ, selecting those values that

result in the power being equal to one for large values of |β|. This holds for any value

λ > 0, so also for very weak instruments.

We illustrate this in Figure 3, which plots the weak-instrument asymptotic power of

the CLR test for testing H0: β = 0 as a function of ρuv for different values of σ2
u and
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Figure 3: Weak-instrument asymptotic power of CLR test, kz = 5, λ = 1.
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β, normalising σ2
v = 1. The instruments are very weak with λ = 1 and the number of

instruments is kz = 5. Also included are the rejection frequencies of the CLR test for

the fixed-Ω design with σ2
r = σ2

v = 1, for the values of ρΩ = −0.95,−0.5, 0, 0.5, 0.95,

these points indicated by the solid left-triangle, diamond, circle, square and right-triangle

shapes respectively. These graphs confirm our findings as described above. For β = 0, the

CLR test has correct size for all values of ρuv and σ2
u, and ρΩ = ρuv. Then for the values

of β = 1, 2, 3, 4, 5, the power of the test is quite low over a wide range of values of ρuv and

σ2
u, as the value of λ is small, but the power approaches 1 when ρuv approaches −1 and

σ2
u is equal to β2. The path of the fixed-Ω design clearly swings that way for increasing

values of β, with the associated ρuv (β) and σ2
u (β) approaching −1 and β2 respectively.

This is further illustrated in Figure 4, which displays the standard weak-instrument

asymptotic power curves for the fixed-Ω design, with σ2
r = σ2

v = 1 and ρΩ = {0.5, 0.99},
and fixed-Σ design, with σ2

u = σ2
v = 1, and ρuv = {0.5, 0.99}, again for kz = 5 and λ = 1.

It is clear that these two power curves display very different types of information. For

example, with ρuv = 0.5 fixed, the power of the CLR test is low for all values of β. The

power curve for ρuv = 0.99 fixed is highly asymmetric, with low power for positive values

of β, a power of 1 for β = −1, as explained above, and then the power diminishing again

for β < −1. The fixed-Ω power curves are much more symmetric with power approaching

1 for large positive and negative values of β as explained above. The differences in power

for the values of ρΩ = 0.5 and ρΩ = 0.99 are also not as pronounced as those of the fixed-Σ

design.

For an applied researcher that makes an assumption of positive structural correlation

ρuv ex ante and expects a value of β > 0, the above fixed-Σ analysis shows that the power

of the CLR test to reject H0: β = 0 is low when the instruments are very weak, λ = 1,

for all values of β > 0, ρuv > 0 and σ2
u > 0. This information is less readily obtained

from the fixed-Ω design. For the extreme case of setting ρΩ = 0, the power in the fixed-Ω

design is only evaluated for {β > 0, ρuv < 0} and {β < 0, ρuv > 0}, with the asymptotic

power curve then fully symmetric following the results derived above, and hence providing

a very partial set of information. For ρΩ > 0, we have ρuv > 0 for β < ρΩ and so the

fixed-Ω power curve displays the power of the test for β > 0 and ρuv > 0 for the values

0 < β < ρΩ only, with the values of ρuv then between ρΩ and 0, ρΩ > ρuv > 0. So for the

ρΩ = 0.5 case, Figure 4 displays power in the fixed-Ω design for positive β and positive
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Figure 4: Weak-instrument asymptotic power curves of the CLR test for fixed-Ω design,
left panel, and fixed-Σ design, right panel. kz = 5, λ = 1.

ρuv only for β ∈ (0, 0.5).

An argument often made for the fixed-Ω design is that Ω can be consistently estimated,

unlike Σ when instruments are weak, see e.g. the discussion in Andrews et al. (2019, p

465) who state that “. . .because ρΩ can be consistently estimated, and hence, in large

samples can be treated as fixed and known.” However, for the structural model (4) of

interest, we consistently estimate Ω (β) as defined in (7), and hence ρΩ (β), given by

ρΩ (β) =
σuv + βσ2

v

σv
√
σ2
u + 2βσuv + β2σ2

v

.

And, once we have estimates of Ω (β) from the data, we can obtain the p-values of the

test statistics. Clearly, in large samples, we can treat ρΩ (β) as known, but it is not clear

why it should be treated as fixed. For the fixed-Ω model specification (19), ρΩ can be

treated as known and fixed in large samples, but this model has not been posited as the

structural model of interest in the literature, and appears a circular argument. Further,

knowledge about Ω does not in itself guide a researcher to which test is best to use. For

example, we find in the next section that conditional Wald tests have more power than

the CLR test for certain combinations of β and values of the nuisance parameters Σ.

Knowledge of Ω cannot differentiate between these situations, which is therefore akin to

the situation that one cannot estimate Σ in weak-instrument settings.

Further, if a researcher would like to assess power properties of tests or make power

calculations ex ante, i.e. before the data are available, she is very likely to be making
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assumptions about the value of β and ρuv, but not about the value of ρΩ, which appears

harder to interpret.3

5 Power Comparions of LIML- and Fuller-Based CW

and CW0 Tests

Our findings so far suggest that, in the fixed-Ω design, large segments of the power curves

gravitate towards particular values for the parameters in Σ that result in high power of

the CLR test. As a result, fixed-Ω designs may obscure relevant parameter spaces where

the power of the CLR test is weaker, and perhaps lower than that of other tests. We

illustrate this by revisiting comparisons between the CLR test and CW -LIML, CW -Fuller

and CW0-Fuller tests. In fixed-Ω designs, CLR power curves tend to dominate the power

curves of the conditional Wald tests for most values of β. However, there is also a narrow

range of small positive values of β where the conditional Wald tests have higher power.

Because in the fixed-Ω design |ρuv| rises quickly with |β|, this narrow range of values for β

actually encompasses a fairly wide range of values for |ρuv|, covering situations with low

and moderate endogeneity, and a section where β and ρuv have the same sign. We then

show that a fixed-Σ design that allows to control ρuv directly, reveals more clearly that

the CLR test can be outperformed in terms of power by CW and CW -Fuller tests in the

cases of low to moderate endogeneity or where ρuv and β have the same sign.

Moreira (2003) compared the behaviour of the conditional 2SLS-based Wald test to

that of the CLR test in a fixed-Σ design. Andrews et al. (2007) compared the behaviours

of the 2SLS-, LIML- and Fuller(1)-based CW tests to that of the CLR test in the fixed-Ω

design. They find that the CW -Fuller test performs best of the three conditional Wald

tests, but that its performance is, overall, “. . ., very poor relative to the CLR test”, and

that overall “. . .the CW tests perform worse, often much worse, than the CLR test”

(Andrews et al., 2007, p 131). Figure 5 replicates Figure 5, panel (b) in Andrews et al.

(2007) for the CLR/CW0-Liml, CW -Liml and CW -Fuller tests for the fixed-Ω design

with σ2
r = σ2

v = 1, ρΩ = 0.5, kz = 5 and λ = 5. We further include the power curve for

the CW0-Fuller test. The W0-Fuller statistic is equal to W0

(
β̂Full

)
, as per the definition

3But note that each point on a fixed-Σ power curve has its equivalent on a fixed-Ω power curve and
vice versa. For example, for the setting of Figure 4, the fixed-Σ power at β = 4, ρuv = 0.5 in the right
panel is the same as that of the fixed-Ω power at ρΩ = 0.982 and β = 0.873.
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Figure 5: Weak-instrument asymptotic power of tests, fixed-Ω design, ρΩ = 0.5, kz = 5,
λ = 5.

in (14), and where β̂Full is the Fuller(1) estimator of β, see also Mills et al. (2014).

From the result of Proposition 2 it follows that the only difference between the W -Liml

and LR/W0-Liml test statistics is the estimator of the variance σ2
u. For the LR statistic,

this is estimated under the null, and for known Ω, or asymptotically, in the fixed-Ω design,

σ2
0 = b′0Ωb0 = σ2

r = 1 is constant for all values of β, whereas σ2
u (β) = 1 − 2βρΩ + β2,

and so varies with β as depicted in the right panel of Figure 2, with increasing values

of σ2
u(β) with increasing values of |β|. The same observation applies to the difference

between the W -Fuller and W0-Fuller statistics. This is reflected in the power curves in

Figure 5. The CW -Liml and CW -Fuller tests have (much) less power than the CW0-Liml

and CW0-Fuller tests for β < 0, and for β > 1.2, and hence the conclusion of a poor

performance of the CW tests seems justified.

However, upon closer inspection, it is clear that the CW tests, and also the CW0-Fuller

test, are more powerful than the CLR test for values of β between 0 and 1.05. Figure

5 also displays the amount of endogeneity ρuv for each value of β. As discussed above,

ρuv = ρΩ = 0.5 at β = 0, decreases to ρuv = 0 at β = 0.5, and further to ρuv = −0.54 at

β = 1.05. For all negative values of β, ρuv > 0.5, increasing to ρuv = 0.97 at β = −3, and

for all values of β > 1.05, ρuv < −0.54, decreasing to ρuv = −0.97 at β = 3.

These results therefore indicate that the CW tests are more powerful for a range of
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parameter values in low to moderate endogeneity settings. Chernozhukov and Hansen

(2008, p 70) report an estimated median value of ρuv = 0.3 for a survey of instrumental

variables papers, commenting that this “. . .suggests that the degree of correlation be-

tween structural and first-stage errors is quite modest in many cases”. We therefore next

compare the performances of the tests in the fixed-Σ design, where we can control the

level of endogeneity ρuv explicitly and can take a closer look at how the tests perform in

low to moderate endogeneity settings. This design also enables us to better investigate

the behaviour of the tests when ρuv and β have the same sign. The performances of these

tests have not been compared using the fixed-Σ design in the literature before.
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Figure 6: Weak-instrument asymptotic power of tests, fixed-Σ design, kz = 5 and λ = 10,
for different values of ρuv.

Figure 6 shows the power curves for values of ρuv = 0, 0.25, 0.50, 0.75, with σ2
u = σ2

v =

1, testing H0: β = 0. As above, kz = 5, but here the instrument strength is λ = 10.

Appendix C further presents the power curves for λ = 2.5, 5 and 20. We follow here the

24



practice in the literature to report the rejection frequencies of the tests as a function of

β
√
λ. At low levels of endogeneity, ρuv = 0 and ρuv = 0.25, the behaviour of the CW -

Liml and CW -Fuller tests are virtually identical and they are the most powerful across

the range of values of β
√
λ when ρuv = 0. For ρuv = 0.25 they are also most powerful,

but for a small bias of the tests for small negative values of β
√
λ. The bias of the CW

tests increases with increasing values of ρuv. The CW0-Fuller test is less biased than the

CW tests. Its power dominates that of the CLR test at the lower endogeneity levels

ρuv = 0 and ρuv = 0.25. At the higher level of ρuv = 0.5, the power of the CW0-Fuller

test also dominates that of the CLR test except for some negative values of β
√
λ close to

0, and where the difference in power between the two tests is small. At the higher level

of endogeneity, ρuv = 0.75, the CW -tests and the CW0-Fuller have more power than the

CLR test for positive values of β
√
λ, whereas the CLR test dominates at negative values

of β
√
λ.

These results show that the biased CW and CW0-Fuller tests can have more power

than the CLR test in low to moderate endogeneity environments, in which case there is

also only a small to moderate bias in these tests. This seems an important observation,

as this is a situation that may well be encountered in practice as documented by Cher-

nozhukov and Hansen (2008). Also, for all values of β > 0 and the values of ρuv > 0

considered here, the CW tests are the most powerful. Therefore, for a researcher who

believes both β and ρuv to be both positive, or both negative, these tests are good options

in order to detect an effect.

6 Conclusions

We have compared and contrasted the performances of the Conditional Likelihood Ratio

and related tests in the fixed-Σ and fixed-Ω designs. Due to the changing endogeneity

properties as a function of β in the fixed-Ω design, this design is less suited to show the

differences in the properties of the tests in low to moderate endogeneity environments and

where the structural correlation ρuv and β have the same sign, when testing H0: β = 0.

These characteristics can be controlled directly in the fixed-Σ design, and it is shown

more clearly that the LIML- and Fuller-based conditional Wald tests have more power

than the CLR test in these circumstances when analysed using the fixed-Σ design. We
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have also shown that for the the fixed-Ω design, setting β0 = 0 in H0: β = β0 or the

diagonal elements of Ω equal to 1 is not without loss of generality. For the fixed-Σ design,

one can set β0 = 0 and the diagonal elements of Σ equal to 1 without loss of generality,

making the power curves in the latter design more generally applicable.

Acknowledgements

We thank Marcelo Moreira, Yanos Zylberberg, two anonymous referees and an associate

editor for very helpful comments and suggestions.

References

Anderson, T. W. and H. Rubin (1949): “Estimation of the Parameters of a Single

Equation in a Complete System of Stochastic Equations,” The Annals of Mathematical

Statistics, 20, 46–63.

Andrews, D. W. K., V. Marmer, and Z. Yu (2019): “On Optimal Inference in the

Linear IV Model,” Quantitative Economics, 10, 457–485.

Andrews, D. W. K., M. J. Moreira, and J. H. Stock (2006): “Optimal Two-

Sided Invariant Similar Tests for Instrumental Variables Regression,” Econometrica,

74, 715–752.

——— (2007): “Performance of Conditional Wald Tests in IV Regression With Weak

Instruments,” Journal of Econometrics, 139, 116–132.

Basmann, R. L. (1960): “On Finite Sample Distributions of Generalized Classical Linear

Identifiability Test Statistics,” Journal of the American Statistical Association, 55, 650–

659.

Bowden, R. J. and D. A. Turkington (1984): Instrumental Variables, Cambridge

University Press.

Chernozhukov, V. and C. Hansen (2008): “The Reduced Form: A Simple Approach

to Inference With Weak Instruments,” Economics Letters, 100, 68–71.

Davidson, R. and J. G. MacKinnon (2008): “Bootstrap Inference in a Linear Equa-

tion Estimated by Instrumental Variables,” Econometrics Journal, 11, 443–477.

26



——— (2015): “Bootstrap Tests for Overidentification in Linear Regression Models,”

Econometrics, 3, 825–863.

Feir, D., T. Lemieux, and V. Marmer (2016): “Weak Identification in Fuzzy Regres-

sion Discontinuity Designs,” Journal of Business & Economic Statistics, 34, 185–196.

Fuller, W. A. (1977): “Some Properties of a Modification of the Limited Information

Estimator,” Econometrica, 45, 939.

Hausman, J. A. (1978): “Specification Tests in Econometrics,” Econometrica, 46, 1251.

——— (1983): “Specification and Estimation of Simultaneous Equation Models,” in

Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator, Elsevier, vol. I,

391–448.

Hillier, G. (2009): “Exact Properties of the Conditional Likelihood Ratio Test in an

IV Regression Model,” Econometric Theory, 25, 915–957.

Kleibergen, F. (2002): “Pivotal Statistics for Testing Structural Parameters in Instru-

mental Variables Regression,” Econometrica, 70, 1781–1803.

Lee, D. S., J. McCrary, M. J. Moreira, and J. Porter (2020): “Which t for

IV?” Mimeo, Princeton University.

Mikusheva, A. and B. P. Poi (2006): “Tests and Confidence Sets with Correct Size

when Instruments are Potentially Weak,” The Stata Journal, 6, 335–347.

Mills, B., M. J. Moreira, and L. P. Vilela (2014): “Tests Based on t-Statistics

for IV Regression with Weak Instruments,” Journal of Econometrics, 182, 351–363.

Moreira, H. and M. J. Moreira (2019): “Optimal Two-Sided Tests for Instrumen-

tal Variables Regression with Heteroskedastic and Autocorrelated Errors,” Journal of

Econometrics, 213, 398–433.

Moreira, M. J. (2002): “Tests with Correct Size in the Simultaneous Equations Model,”

Ph.D. thesis, UC Berkeley.

——— (2003): “A Conditional Likelihood Ratio Test for Structural Models,” Economet-

rica, 71, 1027–1048.

27



——— (2009): “Tests with Correct Size when Instruments can be Arbitrarily Weak,”

Journal of Econometrics, 152, 131–140.

Poskitt, D. and C. Skeels (2008): “Conceptual Frameworks and Experimental Design

in Simultaneous Equations,” Economics Letters, 100, 138–142.

Stock, J. H., J. H. Wright, and M. Yogo (2002): “A Survey of Weak Instruments

and Weak Identification in Generalized Method of Moments,” Journal of Business &

Economic Statistics, 20, 518–529.

Stock, J. H. and M. Yogo (2005): “Testing for Weak Instruments in Linear IV

Regression,” in Identification and Inference for Econometric Models, ed. by D. W. K.

Andrews and J. H. Stock, Cambridge University Press, 80–108.

Windmeijer, F. (2018): “Testing Over- and Underidentification in Linear Models, with

Applications to Dynamic Panel Data and Asset-Pricing Models,” Discussion Paper

18/696, Dept. of Economics, University of Bristol.

28



Appendix

A Proofs

A.1 Proof of Proposition 1

Alternative expressions for π̂L are,

π̂L = (Z ′MûLZ)
−1
Z ′MûLx (A.1)

= π̂ −
(Z ′Z)−1 Z ′ûL

(
ω̂12 − β̂Lω̂22

)
σ̂2
L

, (A.2)

where ûL = y−xβ̂L and σ̂2
L = û′LMZ ûL/n = b′LΩ̂bL, with bL = (1 −β̂L)′. Expression (A.1)

is the standard expression as given in e.g. Bowden and Turkington (1984, p 108), from

which (A.2) can be derived, see also Hausman (1983, p 424). The result of Proposition 1

follows as π̂L0 can alternatively be expressed as

π̂L0 = π̂ − (Z ′Z)−1 Z ′u0 (ω̂12 − β0ω̂22)

σ̂2
0

,

following (A.2), linking the definitions of Moreira (2003) and Kleibergen (2002). Further,

V âr (π̂)− V âr (π̂L0) =

(
ω̂22 −

(
a′0Ω̂−1a0

)−1
)

(Z ′Z)
−1
,

and a′0Ω̂−1a0 = σ̂2
0/
∣∣∣Ω̂∣∣∣. It follows that ω̂22 −

(
a′0Ω̂−1a0

)−1

= (ω̂12 − β0ω̂22)2 /σ̂2
0 and so

Hπ = AR.

A.2 Proof of Proposition 2

It follows from (A.2) that

û′LPZx = û′LZπ̂ = û′LZπ̂L +
û′LPZ ûL
σ̂2
L

(
ω̂12 − β̂Lω̂22

)
= B

(
β̂L

)(
ω̂12 − β̂Lω̂22

)
,

as û′LZπ̂L = û′Lx̂L = 0.
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As u0 = ûL + x
(
β̂L − β0

)
, it follows that

u′0PZu0

σ̂2
0

=
û′LPZ ûL + 2û′LPZx

(
β̂L − β0

)
+
(
β̂L − β0

)2

x′PZx

σ̂2
0

=
û′LPZ ûL
σ̂2

0

+
2B
(
β̂L

)(
β̂L − β0

)
σ̂2

0

(
ω̂12 − β̂Lω̂22

)
+

(
β̂L − β0

)2

x′PZx

σ̂2
0

.

Further

û′LPZ ûL
σ̂2

0

− û′LPZ ûL
σ̂2
L

=
û′LPZ ûL
σ̂2
Lσ̂

2
0

(
σ̂2
L − σ̂2

0

)
=

B
(
β̂L

)
σ̂2

0

((
β̂2
L − β2

0

)
ω̂22 − 2

(
β̂L − β0

)
ω̂12

)
.

As (
β̂2
L − β2

0

)
ω̂22 = −

(
β̂L − β0

)2

ω̂22 + 2β̂L

(
β̂L − β0

)
ω̂22,

and B
(
β̂L

)
= nκ̂, it follows that

u′0PZu0

σ̂2
0

− û′LPZ ûL
σ̂2
L

=

(
β̂L − β0

)2 (
x′PZx−B

(
β̂L

)
ω̂22

)
σ̂2

0

=

(
β̂L − β0

)2

(x′PZx− nκ̂ω̂22)

σ̂2
0

= W0

(
β̂L

)
.

A.3 Proof of Result 1

Consider the model specification with β = β∗,

y = xβ∗ + u (A.3)

x = Zπ + v.
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Then the LIML estimator is given by

β̂L = (x′ (In − (κ̂+ 1)MZ)x)
−1
x′ (In − (κ̂+ 1)MZ) y

= β∗ + (x′ (In − (κ̂+ 1)MZ)x)
−1
x′ (In − (κ̂+ 1)MZ)u.

For testing H0: β = β0, we have that u0 = y − xβ0, and ûL = y − xβ̂L.

Next, consider a change in the parameter value only, β = β∗ + γ, ceteris paribus

yγ = x (β∗ + γ) + u (A.4)

x = Zπ + v.

It follows that for testing H0: β = β0 + γ, we have that

u0,γ = yγ − x (β0 + γ) = u0.

Let W = [y x] and Wγ = [yγ x]. Let Ω̂γ = W ′
γMZWγ/n and

κ̂γ = min eval

((
n−1W ′

γPZWγ

) (
Ω̂γ

)−1
)
.

Then the LIML estimator in model (A.4) is given by

β̂L,γ = β∗ + γ + (x′ (In − (κ̂γ + 1)MZ)x)
−1
x′ (In − (κ̂γ + 1)MZ)u.

As

Wγ = WΓ; Γ =

[
1 0

γ 1

]
,

it follows that

(
n−1W ′

γPZWγ

) (
Ω̂γ

)−1

=
(
n−1Γ′W ′PZWΓ

) (
n−1Γ′W ′MZWΓ

)−1

= Γ′
(
n−1W ′PZW

)
Ω̂−1 (Γ′)

−1

and so κ̂γ = κ̂ and β̂L,γ = β̂L + γ. It therefore follows that

ûL,γ = yγ − xβ̂L,γ = y − xβ̂L = ûL.
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Denote by AR(β0)β=β∗ and LR(β0)β=β∗ the test statistics for testing H0 : β = β0 when

β = β∗, then it follows, ceteris paribus, that

AR(β0 + γ)β=β∗+γ = AR(β0)β=β∗

LR(β0 + γ)β=β∗+γ = LR(β0)β=β∗

Further, for testing H0: β = β0 when β = β∗, we have

τ0(β0)β=β∗ =
a′0Ω̂−1W ′PZW Ω̂−1a0

a′0Ω̂−1a0

,

where a0 = (β0 1)′. Then for testing H0: β = β0 + γ when β = β∗ + γ, denoting a0,γ =

(β0 + γ 1)′,

τ0(β0 + γ)β=β∗+γ =
a′0,γ

(
Ω̂γ

)−1

W ′
γPZWγ

(
Ω̂γ

)−1

a0,γ

a′0,γ

(
Ω̂γ

)−1

a0,γ

=
a′0,γΓ

−1Ω̂−1W ′PZW Ω̂−1 (Γ′)−1 a0,γ

a′0,γΓ
−1Ω̂−1 (Γ′)−1 a0,γ

= τ0(β0)β=β∗ ,

as

(Γ′)
−1
a0,γ =

[
1 −γ
0 1

](
β0 + γ

1

)
= a0.

It therefore follows that, ceteris paribus, the LR test statistic and its conditional

p-value for testing H0: β = β0 when β = β∗ are identical to the test statistic and its

conditional p-value for testing H0: β = β0 + γ when β = β∗ + γ.
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A.4 Derivation of Noncentrality Parameters

A.4.1 Fixed-Σ Design

As

σ2
0 (β) := b′0Ω (β) b0 =

(
1 −β0

)[ σ2
u + 2βσuv + β2σ2

v σuv + βσ2
v

σuv + βσ2
v σ2

v

](
1

−β0

)
= σ2

u + 2σuvδ + σ2
vδ

2,

with δ = β − β0, it follows that

c2
β,β0

λ =
λδ2

σ2
0 (β)

=
λδ2

σ2
u + 2ρuvσuσvδ + σ2

vδ
2

=
λ/σ2

v(
σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1
.

Further,

b′Ω (β) b0 = (1 − β)

[
σ2
u + 2βσuv + β2σ2

v σuv + βσ2
v

σuv + βσ2
v σ2

v

](
1

−β0

)
= σ2

u + δσuv,

and so

d2
β,β0

λ =
λ (b′Ω (β) b0)2

σ2
0 (β) |Ω (β)|

=
λ (σ2

u + δσuv)
2

(σ2
u + 2σuvδ + σ2

vδ
2)σ2

uσ
2
v (1− ρ2

uv)

=
(λ/σ2

v)
(
σu
δσv

+ ρuv

)2((
σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1

)
(1− ρ2

uv)

.

Finally,

cβ,β0dβ,β0λ =
λδ (σ2

u + δσuv)

σ2
0 (β) |Ω (β)|1/2

=
λδ (σ2

u + δσuv)

(σ2
u + 2σuvδ + σ2

vδ
2)σuσv

√
(1− ρ2

uv)

=
(λ/σ2

v)
(
σu
δσv

+ ρuv

)
((

σu
δσv

)2

+ 2ρuv
σu
δσv

+ 1

)√
(1− ρ2

uv)

.
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A.4.2 Fixed-Ω Design

We now have

σ2
0 := b′0Ωb0 =

(
1 −β0

)[ σ2
r σrv

σrv σ2
v

](
1

−β0

)
= σ2

r − 2β0σrv + β2
0σ

2
v ,

and so, with ρΩ := ρrv = σrv
σrσv

,

c2
β,β0

λ =
λδ2

σ2
0

=
λδ2

σ2
r − 2β0σrv + β2

0σ
2
v

=
λ/σ2

v(
σr
δσv
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B Size Distortion of the LR Test
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Figure B.1: Size properties of LR test using 5% critical value of the χ2
1 distribution, for

different values of ρuv and instrument strength λ. σ2
u = σ2

v = 1, kz = 5.
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C Power Curves of CLR/CW0-Liml, CW -Liml, CW -

Fuller and CW0-Fuller Tests
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Figure C.1: λ = 2.5, kz = 5.
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Figure C.2: λ = 5, kz = 5.
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Figure C.3: λ = 20, kz = 5.
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