
ECONOMICS 
DISCUSSION 
PAPERS 
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Abstract: The age-period-cohort model for mixed frequency data is analyzed. Mixed
frequencies arise when the age and period scales have different frequencies. The implied
cohort sequence then skips certain values. This is accounted for by reference to the
coin problem in number theory. Further, the standard age-period-cohort identification
problem is extended by modulo congruences for age-cohort and for period-cohort com-
binations. An invariant parametrization is found. Using that, standard methods for
inference and forecasting apply. The analysis is illustrated with mesothelioma data.
Keywords: Age-period-cohort model, Canonical parametrization, Identification, Mixed-
frequency data, Unequal intervals.

1 Introduction

Cohort data often have mixed frequencies, where outcomes are recorded by age and
period at different frequencies. For instance, five-year age groups could be combined
with one-year or three-year periods. Such groupings, or unequal intervals, influence the
identification problem for age-period-cohort models as well as the sequence of possible
cohort indices. Both problems are addressed. First, using features of the coin problem
in number theory, the sequence of possible cohort indices is characterized. Second, the
identification problem for mixed frequency data is described. Taken together, these
findings allow a reparametrization of the age-period-cohort predictor in terms of freely
varying identified parameters that are invariant to the identification problem. With
this, it is possible to apply standard generalized linear models for inference and to
match degrees of freedom with the dimension of the design matrix.

Mixed frequency data are common. The empirical illustration in this paper uses data
on UK mesothelioma mortality which are published using five-year age groups and a one-
year period. Holford (2006) considered lung cancer mortality among Californian women
with five-year age and three-year period groups. Dinas & Stoker (2014) considered US
presidential voting participation with ten-year age and four-year period groups. Riebler
& Held (2010) considered data on chronic obstructive pulmonary disease in England
and Wales with five-year age and one-year period groups.

There is a considerable literature on age-period-cohort models for regular data where
age and period have the same units or frequency. As a starting point, these models have
predictors written as linear combinations of age, period and cohort effects and an in-
tercept. Such predictors are over-parametrized in that the time effects have four levels
and three linear slopes, but only one level and two linear slopes can be identified. This
means that the time effects can be changed by an arbitrary four-dimensional transfor-
mation involving three levels and a linear slope without changing the overall predictor
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(Carstensen, 2007). Functions of the time effects that are not changed by such trans-
formations are said to be invariant to the transformations.

The approaches to the identification problem are of three types. First, a popular
approach is to introduce identifying but non-invariant constraints on the time effects
(Yang & Land, 2013; Fu, 2018). Second, to apply the first approach for initial estima-
tion and then focus on ‘estimable’, invariant parameters (Holford, 1983, 2006). Third,
to reparametrize the model in terms of freely varying, invariant parameters (Kuang
et al., 2008b). This reparametrization combines the unidentified, non-invariant levels
and linear trends into an identified, invariant linear plane while the non-linear effects of
the identification problem are captured through identified, invariant double-differences.
This allows standard statistical methods to be used for estimation and inference without
regard to the identification problem. The third approach is followed here. For reviews,
see Smith & Wakefield (2016), Fannon & Nielsen (2019).

There is a much smaller literature on mixed frequency age-period-cohort models.
Fienberg & Mason (1979) studied an example where the period unit is twice the age
unit and noted that an additional identification constraint arises relatively to models
for regular data. Holford (1983) revisited the small example and rewrote the age and
cohort indices to have two components, a bi-annual index matching period and a year-
within-two-year-period index. Moreover, the age effect was decomposed into four types
of components, denoted group, linear, parallelism and curvature. Holford (2006) looked
at a more complicated case with five-year age groups and and three-year period groups.
Holford noted that this gives the additional problem that the cohort sequence skips
some values. Gascoigne & Smith (2021) noted that quantities that are invariant for
regular data arrays may not be invariant for mixed frequency arrays. However, as yet,
neither the skipping in the cohort sequence nor the identification problem have been
fully analyzed for mixed frequency data. Both problems are addressed here.

The skipping problem is similar to the coin problem in number theory: suppose
we have two types of coins of different denomination, for instance 5 and 3. Then the
monetary amounts 1, 2, 4 and 7 cannot be obtained. The numbers 1, 2, 4 and 7 match
the gaps observed by Holford (2006). The number of skips and algorithms for finding
their location are discussed. The present analysis builds on Ramı́rez Alfonśın (2005).

The identification problem is characterized. It turns out that relevant transfor-
mations are the traditional linear transformations for regular data along with modulo
congruences for age-cohort and for period-cohort combinations. Thus, in the example of
five-year age groups and three-year period groups we have the usual 4 linear constraints
as well as 5− 1 = 4 binding congruences for period-cohort combinations and 3− 1 = 2
binding congruences for age-cohort combinations. This gives a total of 10 constraints.

The dimensions of the skipping and the transformations determine the degrees of
freedom. The estimable parameters are those combinations of the time effects that
are invariant to the transformations. With this, the age-period-cohort predictor is
reparametrized in terms of freely varying, identified, invariant parameters. This gen-
eralizes the reparametrization of Mart́ınez Miranda et al. (2015) for regular age-period
arrays and builds on the theory of Kuang et al. (2008b).

Other recent developments include Luo & Hodges (2016) who argued that identifica-
tion by constraints should be done cautiously for mixed frequency data. Riebler & Held
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(2010) suggested a Bayesian smoothing procedure, where identification issues are less
obvious (Nielsen & Nielsen, 2014). Fu (2018) suggested the Intend-to-Collapse method.
When period are observed more frequently than age, the cohort is defined by tentatively
collapsing period to the same frequency as age.

The mixed frequency problem is superficially related to the overlapping cohort prob-
lem. This is the problem that a person, who is age 10 at some point during the year
2015 could have been born in 2004 or in 2005. In its detail, that problem appears to be
distinct from the present discussion (Osmond & Gardner, 1989, Carstensen, 2007).

The empirical illustration uses UK mesothelioma mortality. Mesothelioma is a dis-
ease with long latency and typically caused by exposure to asbestos. Only little is known
about the magnitude of the future burden. It is therefore of considerable interest to fore-
cast future case numbers. The publically available data have five year age-groups and
one-year periods. Data at annual frequency can been modelled using a Poisson model
(Mart́ınez Miranda et al., 2015). The grouping of the data appears to introduce some
over-dispersion. Using asymptotic theory of Harnau & Nielsen (2018) it is possible to
conduct inference and derive distribution forecasts. The statistical tests indicate that
an age-cohort model suffices in line with earlier studies of regular data. For illustra-
tion, forecasting from a sub-sample with triennial periods is also considered. Despite
using relatively little data, the mixed-frequency age-cohort model holds up quite well
compared with methods that use annual data.

Outline of the paper: Section 2 shows the mixed-frequency data structure and links
to the coin problem. Section 3 analyzes the age-period-cohort predictor, describes the
over-parametrization and gives an invariant parametrization. Section 4 has the empirical
illustration. Section 5 concludes. Technical derivations are given in an appendix.

2 Data structure and time scales

The data can be an age-period array of rates, counts, or doses and responses. We will
introduce notation for age, period and cohort indices that allows for grouping of age
and period and as a consequence also of cohort.

2.1 The age and period time scales

For mixed-frequency data arrays, we have AG age groups of length G and PH period
groups of length H. The data array is regular when G = H = 1. We will assume that
the largest common divisor of G and H is unity. If we have groups with a common
divisor larger than unity, such as 10 and 4, we can scale by the common divisor of 2.
We will refer to each observation by the highest relevant age and period. We denote the
highest values of age and period by A = AGG and P = PHH. Indexing age backwards
and period forwards, we get the index set

Iage,per :

{
age = A− gG where g = 0, 1, . . . , AG − 1,
per = H + hH where h = 0, 1, . . . , PH − 1.

(1)

Typically, age data are aggregated by age. Aggregation is often due to a small
sample size. Period data are typically either aggregates over a period interval or cross
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age
period real 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89

real per A-age 40 35 30 25 20 15 10 5 0
1985-87 3 43 38 33 28 23 18 13 8 3
1988-90 6 46 41 36 31 26 21 16 11 6
1991-93 9 49 44 39 34 29 24 19 14 9
1994-96 12 52 47 42 37 32 27 22 17 12
1997-99 15 55 50 45 40 35 30 25 20 15
2000-02 18 58 53 48 43 38 33 28 23 18
2003-05 21 61 56 51 46 41 36 31 26 21
2006-08 24 64 59 54 49 44 39 34 29 24
2009-11 27 67 62 57 52 47 42 37 32 27
2012-14 30 70 65 60 55 50 45 40 35 30
2015-17 33 73 68 63 58 53 48 43 38 33
2018-20 36 76 71 66 61 56 51 46 41 36

Table 1: Cohort indices for G = 5 year age groups and H = 3 year period groups.

sections at particular points in time. While this has implications for interpretation of
the adopted indices, it does not change any technical aspects.

Table 1 illustrates the mixed frequency data structure. This is a modified version of
the Holford (2006) example. As indicated in italics, age runs from 45 to 89 in groups of
5, while period runs from 1985 to 2020 in groups of 3. Thus, the index limits are A = 45,
G = 5 and AG = 9 for age and P = 36, H = 3 and PH = 12 for period. Macro-blocks
of dimension GH = 15 years are indicated with dashed lines.

2.2 The cohort indices

Cohorts are defined according to the convention

coh = per + A− age. (2)

With the notation (1), we can write coh = H + gG + hH for g = 0, 1, . . . , AG − 1 and
h = 0, 1, . . . , PH − 1. Thus, the smallest and largest cohort values over Iage,per are H
and C = A+ P −G.

We return to Table 1. Here, the age and period values are shown in italics. The
possible cohort values range from H = 3 to A + P −G = 76. We note that the cohort
values 4, 5, 7, 10 and 69, 72, 74, 75 are skipped. These values are 3 plus 1, 2, 4, 7 and
76 minus 1, 2, 4, 7. The skipping leaves 66 possible cohort values.

The skipping problem is similar to coin problem in number theory. If we have coins
of two denominations, G,H and one of the coins is unity, we can form any positive
monetary amount. But, suppose the coins satisfy G,H ≥ 2 with largest common de-
nominator of unity. Which are the monetary amounts that can be obtained from those
coins? That is, which combinations gG + hH can be formed for non-negative integers
g, h? We will need the following results, see the Appendix for details.

The Frobenius number FG,H = GH − G − H is the largest number that cannot
be represented as a non-negative integer combination. Sylvester pointed out that the
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number of non-representable numbers is SG,H = (G − 1)(H − 1)/2. The set NG,H of
non-representable numbers is described in (32) in the Appendix.

Translating the coin problem into the mixed frequency problem, we see that the set
of possible cohort values is

Icoh = (H, . . . , C)\(H + c, C − c : c ∈ NG,H). (3)

This set includes an unbroken cohort sequence from H +FG,H + 1 to C−FG,H − 1. The
total number of possible cohorts is C − (H − 1)− 2SG,H , which equals A+ P −GH.

When we later identify the cohort parameters, we will look at those cohorts in
the array Iage,per that remain when dropping indices with age A and period H. This
corresponds to dropping the first row and last column in Table 1. The smallest possible
cohort is then H+G+H, while the largest possible cohort is C as before. The Frobenius
and Sylvester numbers are not changed. Thus, this smaller set of cohorts is

I◦coh = (G+ 2H, . . . , C)\(G+ 2H + c, C − c : c ∈ NG,H). (4)

The set I◦coh has C − (2H +G− 1)− 2SG,H = A+ P + 1− (G+ 1)(H + 1) elements.
Table 1 illustrates these results. Here G = 5, H = 3, A = 45, P = 36. The coin

problem gives F5,3 = 7 and S5,3 = 4, while N5,3 = (1, 2, 4, 7). The sets Icoh and I◦coh
have unbroken sequence from 11 to 68 and from 19 to 68, respectively. For instance,

Icoh = (3, 6, 8, 9, 11, . . . , 68, 70, 71, 73, 76). (5)

3 Age-period-cohort predictor

We now consider the mixed frequency age-period-cohort predictor of the form

µage,per = αage + βper + γcoh + δ for age, per ∈ Iage,per. (6)

It is well-known that the model is over-parametrized in the regular case. On the right
hand side of (6), we have AG ages, PG periods, A+ P −GH cohorts and the intercept.
Thus, the dimension of these over-parametrized time effects is

qG,H = AG + PH + A+ P −GH + 1. (7)

3.1 Characterizing the over-parametrization

The over-parametrization of the age-period-cohort equation (6) has two sources. First,
we have the usual constraints from the regular case. Second, Fienberg & Mason (1979),
point to additional constraints with mixed frequencies. We find the full set of constraints.

For regular data arrays, it is known that the time effects on the right hand side of
(6) indicate 4 levels and 3 linear slopes, but only one level and two linear slopes can be
identified. This comes about from the identity (2) linking the age, period and cohort
indices, so that the predictor on the left hand side of (6) is unchanged when making
certain linear transformations of the time effects on the right hand side of (6). This
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can be summarized as an invariance property of the predictor with respect to a four
dimensional transformation of the time effects of the form

µage,per = {αage + a+ d× (A− age)}+ (βper + b+ d× per)
+ (γcoh + c− d× coh) + (δ − a− b− c), (8)

for any values of a, b, c, d (Carstensen, 2007). For the regular case, this characterizes all
possible transformations of the time effects on the right hand side that do not change
the predictor on the left hand side (Kuang et al., 2008b). For the mixed frequency case,
these constraints continue to apply, but this is no longer the full set of constraints.

The additional transformations can be characterized through modulo operations.
Recall that two integers i, j are congruent modulo m, if m divides their difference i− j
and we write i ≡ j mod m. By assumption, H divides per and G divides age and A.
Thus, the relation coh = per + A− age from (2) gives the congruences

coh ≡ per mod G, (9)

coh ≡ A− age mod H. (10)

The first relation divides cohorts and periods intoG classes, thus givingG−1 constraints.
Similarly, the second relation gives H − 1 constraints. The congruences are only non-
constraining when G = H = 1. When cohort and period are congruent, a constant
can be added to the cohort effect and subtracted from the period effect, while leaving
their sum unaffected. This implies unidentified seasonal patterns in the age, period and
cohort effects. The seasonal pattern relates to the micro-effects noted by Holford (2006).
Riebler & Held (2010) have the construction (9) for the case where H = 1.

We summarize the above constraints. That is, in the mixed frequency model, the
predictor is invariant to time effect transformations of the form

µage,per =
{
αage + a+ d× (A− age) +

H−1∑
i=1

ei1(A−age≡i mod H)

}
+
{
βper + b+ d× per +

G−1∑
j=1

fj1(per≡j mod G)

}
+
{
γcoh + c− d× coh−

H−1∑
i=1

ei1(coh≡i mod H) −
G−1∑
j=1

fj1(coh≡j mod G)

}
+ (δ − a− b− c), (11)

for any values of a, b, c, d, e1, . . . , eH−1, f1, . . . , fG−1. As yet, it has not been argued that
this gives a complete description of the over-parametrization.

The dimension of the transformations in (11) is G + H + 2. Subtracting this from
qG,H defined in (7) indicates that the dimension of the parameter space is

pG,H = qG,H −G−H − 2 = AG + PH + A+ P − (G+ 1)(H + 1). (12)

6



3.2 Double differenced time effects

Double differenced time effects have a log-odds-ratio interpretation (Fienberg & Mason,
1979; Mart́ınez Miranda et al., 2015). For regular data arrays such double differences
are invariant to the transformations in (8). It is therefore possible to parametrize the
predictor invariantly in terms of a linear plane combined with double differences of the
time effects (Kuang et al., 2008b; Fannon & Nielsen, 2019). Gascoigne & Smith (2021)
note that the double differences are not in general invariant in the mixed frequency
situation. Using the mixed frequency transformations in (11), it is possible to explain
their observation in more detail and to derive an alternative invariant parametrization.

Period double differences are defined as follows. Let ∆s denote an s-step difference
operator, giving first differences ∆Hβper = βper−βper−H and second differences ∆2

Hβper =
∆Hβper −∆Hβper−H , so that ∆2

Hβper = βper − 2βper−H + βper−2H .
Why is the period double difference ∆2

Hβper only invariant to (11) if G = 1? First,
we note, that the double difference is invariant to the linear transformations in (8) as
for regular data. Second, the double difference is invariant to the micro effect stemming
from the age grouping in (9), if the three time points per, per − H and per − 2H are
congruent modulo G. Since 1 is the largest common divisor of G and H, this can only
happen when G = 1. This matches the observation of Gascoigne & Smith (2021).

In the mixed frequency case, we must form the double difference in another way. We
will be able to identify the following period double differences:

∆GH∆Hβper = βper − βper−H − βper−GH − βper−H−GH .

These double differences reduce to the quantity ∆2
Hβper considered above when G = 1.

We argue for invariance with respect to transformations in (11) as follows. The linear
transformation (8) is eliminated by the double differencing. Now, the micro effect in (9)
is eliminated since we have congruence modulo G of the time points per and per−GH
as well as of per−H and per−GH −H. Alternatively, we can argue by expressing the
double differences in terms of the invariant predictor through

∆GH∆Hβper = µage,per − µage,per−H − µage−GH,per−GH + µage−GH,per−GH−H (13)

for per = H + hH with h = G+ 1, . . . , PH − 1 and arbitrary age.
In a similar fashion, we can identify the age double differences

∆GH∆Gαage = αage − αage−G − αage−GH − αage−G−GH (14)

for age = A− gG with g = 0, 1, . . . AG −H − 2. For the cohorts, we can identify

∆G∆Hγcoh = γcoh − γcoh−G − γcoh−H − γcoh−G−H . (15)

for coh ∈ I◦coh as defined in (4).

3.3 Invariant parametrization of linear planes

In the mixed frequency case, we will need G + H + 1 points to anchor a set of linear
planes. Equivalently, we can choose an overall level and a set of slopes. A convenient
choice of the overall level is

µA,H = αA + βH + γH + δ, . (16)
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The slopes can be chosen as

λg = µA−gG,H − µA,H = ∆gGγH+gG −∆gGαA for g = 1, . . . H, (17)

νh = µA,H+hH − µA,H = ∆hHγH+hH + ∆hHβH+hH for h = 1, . . . G. (18)

The above parameters are invariant functions of the original time effects since they are
functions of the invariant predictor on the left hand side of (11).

We note that it is not possible to separate the slopes in (17), (18) into individual
slopes for age, period and cohort. The cohort slope is unavoidably entangled with the
age slope through (17) and with the period slope through (18). This property mimicks
what is known for regular data arrays. Thus, λg are age-cohort slopes while νh are
period-cohort slopes.

We collect the above identified double differences and plane parameters in the vector

ξ =
(
µA,H ; λ1, . . . , λH ; ν1, . . . , νG; ∆GH∆GαA−gG for g = 0, 1, . . . , AG −H − 2;

∆GH∆HβhH for h = G+ 1, . . . , PH − 1; ∆G∆Hγcoh for coh ∈ I◦coh
)
. (19)

We will represent the predictor as a linear function of this invariant parameter. We will
refer to this invariant parameter as the canonical parameter, borrowing a terminology
from exponential family theory (Sundberg, 2019). It has dimension pG,H matching (12).

3.4 Representation

We can now parametrize the predictor in terms of the invariant canonical parameter. To
write down the representation, we follow Holford (2006) and express the age, period and
cohort time scales through the Euclidean representations g = qgH+rg and h = qhG+rh
for qg, qh ≥ 0 while 0 ≤ rg < H and 0 ≤ rh < G, see (33), (34). Thus,

age = A− qgGH − rgG, per = H + qhGH + rhH. (20)

The implies that the cohort satisfies

coh = H + (qg + qh)GH + rgG+ rhH. (21)

We first present an intermediate result, where, for each value of the Euclidean remain-
ders, the representation corresponds to that of Mart́ınez Miranda et al. (2015). Next,
in Theorem 3.1 below, we show that the predictor can be expressed a linear function
of the canonical parater. For each pair of Euclidean remainders, the intermediate rep-
resentation involves a linear plane and double sums of double differences of the three
age-period-cohort time effects. It is derived in the appendix and has the form

µA−qgGH−rgG,H+qhGH+rhH

= M intercept
rg ,rh

+ qgM
age/coh
rg ,rh

+ qhM
per/coh
rg ,rh

+ Sage
qg ,rg + Sper

qh,rh
+ Scoh

qg+qh,rg ,rh
. (22)

Here, the intercept and slopes can be expressed as follows

M intercept
rg ,rh

= µA−rgG,H+rhH , (23)

Mage/coh
rg ,rh

= µA−GH−rgG,H+rhH − µA−rgG,H+rhH , (24)

Mper/coh
rg ,rh

= µA−rgG,H+GH+rhH − µA−rgG,H+rhH . (25)
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Thus, for each pair of Euclidean remainders, the intercept and slopes are expressed in
terms of three anchoring points. The slopes also satisfy

Mage/coh
rg ,rh

= ∆GH(γH+GH+rgG+rhH − αA−rgG), (26)

Mper/coh
rg ,rh

= ∆GH(γH+GH+rgG+rhH + βH+GH+rhH). (27)

In particular, M
age/coh
rg ,rh involves a combination of first differences of the age and cohort

effects. These first differences are not individually identified. Thus, M
age/coh
rg ,rh should be

interpreted as a combined age-cohort slope. In a similar fashion, M
per/coh
rg ,rh is a period-

cohort slope. The S-terms are sums of double differences

Sage
qg ,rg = 1(qg≥2)

qg−1∑
t=1

tH−1∑
s=0

∆GH∆GαA−(rg+s)G, (28)

Sper
qh,rh

= 1(qh≥2)

qh−1∑
t=1

tG∑
s=1

∆GH∆HβH+(G+rh+s)H , (29)

Scoh
qg+qh,rg ,rh

= 1(qg+gh≥2)

qg+qh−1∑
t=1

tG∑
s=1

H∑
u=1

∆G∆HγH+(rg+u)G+(rh+s)H . (30)

We note that the representation (22) has intercept and slope expressed in terms of
the predictor at particular points as well as double sums of double differences. Thus,
this representation is identified and invariant to the transformations in (11). However,
this representation is not expressed directly in terms of the canonical parameter. At
this point, we can therefore not assess the dimension of the variation of the predictor
and therefore degrees of freedom.

The representation (22) depends on the particular choice of Euclidean remainders.
Each representation has increments on a grid of ‘macro-steps’ that are GH steps apart.
If we set both remainders to, for instance, zero, we get a reference representation corre-
sponding to the ‘macro-categories’ of Holford (2006). For other values of the Euclidean
remainders one could take differences to the reference value to describe micro-steps.

The representation in Mart́ınez Miranda et al. (2015, Theorem 1) for the regular
case arises from (22) with G = H = 1 so that the Euclidean remainders are zero.

We now proceed to represent the predictor in terms of the canonical parameter.

Theorem 3.1. Let µ be the collection of age-period-cohort predictors µage,per of the form
(6) over the mixed frequency array, age, per ∈ Iage,per. Then
(a) ξ is a linear function of µ that is invariant to the transformations in (11);
(b) µ is a linear function of ξ given by (22) combined with (48), (49) and (50);
(c) The parameter ξ is exactly identified in that ξ† 6= ξ‡ implies µ(ξ†) 6= µ(ξ‡).

Theorem 3.1 confirms that the variation of the predictor over the full index set has
the same dimension as the canonical predictor. This dimension is pG,H as given in (12).
Moreover, the set of transformations in (11) restricts the dimension qGH of the time
effects precisely by qGH − pGH constraints resulting in a pGH dimensional variation. We
have that the canonical parameter is on the one hand invariant to these transformations
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and on the other hand in a one-one relation with the predictor. Thus, the canonical
parameter is a maximal invariant function of the time effects under the transformations
in (11). This generalizes the findings for regular arrays in Kuang et al. (2008b), see also
Cox & Hinkley (1974, §5.3) for a general reference.

The representation of the predictors in terms of the canonical parameters reveal a
perfect fit property for the two macro blocks formed from the smallest H ages and
largest G periods and from the largest H ages and smallest G periods. This is argued in
the appendix and was pointed out by Riebler & Held (2010) for the case where H = 1.
For general G,H ≥ 2, the cohort values of the perfectly fitted macro blocks are not in
sequence because of the coin problem feature.

3.5 Submodels

In practice, not all of the age-period-cohort components may be needed. This can
be investigated by imposing parameter restrictions. We can formulate the restrictions
in two ways. First, the restrictions can be formulated in terms of the time effects
entering the original formulation of the predictor in (6). The time effects are subject to
the constraints in (11). This must be considered when computing degrees of freedom.
Alternatively, the restrictions can be formulated in terms of the canonical parameters
in (19). As these parameters are freely varying the degrees of freedom count simply
matches the dimension of the restriction.

As an example, consider the age-cohort model µage,per = αage + γcoh + δ. In terms of
the time effect formulation (6), the restriction is βH+hH = 0 for h = 0, 1, . . . , PH − 1. At
first glance this points to a PH-dimensional restriction. However, the time effects are
not individually identified due to the G + 1 constraints shown in (11). The restriction
is therefore equivalent to a restriction on the identified, freely-varying non-linear effects
∆GH∆HβH+hH = 0 for h = G+1, . . . , PH−1 given in (13). The argument is the same as
applied for regular data, see Holford (1983), Nielsen & Nielsen (2014), Mart́ınez Miranda
et al. (2015), Fannon & Nielsen (2019).

In a similar way, the period-cohort model µage,per = βper+γcoh+δ arises by restricting
∆GH∆GαA−gG = 0 for g = 0, 1, . . . , AG −H − 2. And, the age-period model µage,per =
αage + βper + δ corresponds to restricting ∆G∆Hγcov = 0 for coh ∈ I◦cov, which has
dimension A+ P + 1− (G+ 1)(H + 1).

An age-drift model arises when setting both the period and cohort double differences
to zero, that is ∆GH∆HβH+hH = 0 for h = G + 1, . . . , PH − 1 and ∆G∆Hγcov = 0 for
coh ∈ I◦cov. The dimension of the restriction is then the sum of PH − 1 − G and
A + P + 1 − (G + 1)(H + 1). This does not identify the linear age slope as the linear
planes remain unrestricted. For further discussion, see Clayton & Schifflers (1987).

A pure age model µage,per = αage + δ arises when setting period and cohort time
effects to zero. The age model is a sub-model of the age-drift model where we restrict
the period-cohort slopes through νh = 0 for h = 1, . . . , G. The degrees of freedom
relative to the full age-period-cohort model is then A+ P + PH − (G+ 1)(H + 1).
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4 Analysis of the UK mesothelioma data

Mesothelioma is a cancer that is typically caused by exposure to asbestos fibres. It has
a long latency period and it is rapidly fatal once discovered. The number of male deaths
in Great Britain appear to have peaked in 2016 with 2205 death of all ages and 2117
deaths at age under 90. Forecasting the future burden of mesothelioma deaths remains
of interest from a public health viewpoint and for general insurers.

4.1 The data

The Health and Safety Executive (HSE), Britain’s regulator for workplace health and
safety, provides data on https://www.hse.gov.uk/statistics/tables/#lung, with annual
updates. The publically available data has mixed frequency with age in 5 year groups
while period is annual. The July 2022 data release covers the years 1968–2020. Here,
we consider data for males with age between 25 and 89.

Mesothelioma has a long latency period. This can be seen from the distribution of
responses: (0.3%, 6.4%, 19.4%, 52.7%, 19.3%, 1.9%) for ages (0-39, 40-54, 55-64, 65-79,
80-89, 90+). The average age by period has been gradually increasing with period in
line with improved health regulation and health care. This implies that there are only
few responses for ages below 40 and for the oldest cohorts.

Previous studies had access to regular data with a one-year frequency for both age
and period (Isakson et al., 2021, Mammen et al., 2021, Mart́ınez Miranda et al., 2015,
2016). Here, the publically available mixed-frequency data is used.

The HSE publishes distribution forecasts by year until 2050. The most recent fore-
casts use data until 2017. These forecasts use a multinomial dose-response model where
the doses are based on an epidemiological model for exposure (Peto et al., 1995; Hodg-
son et al., 2005; Tan et al., 2010). The latter paper presents distribution forecasts using
a Bayesian implementation. Here we use a response-only model as this removes the
uncertainty around epidemiological modelling of doses and suffices for forecasting.

4.2 Analysis with annual period

We consider data with five year age groups, G = 5, and annual period, H = 1.
The baseline model is a Poisson model with an age-period-cohort predictor, but no

measure for exposure. Inference and distribution forecasts can then be based on a multi-
nomial sampling scheme obtained by conditioning on the total number of deaths and
an asymptotic distribution theory arising for large expected values of the total number
of deaths (Mart́ınez Miranda et al., 2015). This approach appears to be successful for
modelling UK mesothelioma when annual data are available.

The aggregation appears to give a slight over-dispersion. Thus, we use methods for
inference and distribution forecasting for an over-dispersed Poisson model as developed
in Harnau & Nielsen (2018). The counts of cases, Yage,per, are assumed independent
over age and period with non-negative, infinitely divisible distributions with finite third
moment. Examples of such distributions include Poisson, compound Poisson, negative
binomial, log normal, gamma and generalized gamma convolutions. The log expectation
log E(Yage,per) = µage,per is assumed to have age-period-cohort structure, while variance

11



and expectation are proportional so that Var(Yage,per)/E(Yage,per) = σ2 > 0. The Poisson
model has σ2 = 1. For the asymptotic argument, we assume τ =

∑
age,per E(Yage,per) is

large while E(Yage,per)/τ is fixed and the skewness of Yage,per vanishes.

model deviance df dev/df F vs. apc df vs. apc pF
apc 725.08 517 1.40
ap 11009.69 624 17.64 68.53 107 0.000
ac 801.30 564 1.42 1.16 47 0.228
pc 9994.26 528 18.93 600.83 11 0.000

Table 2: Deviance analysis of mesothelioma data with annual period.

Table 2 reports a deviance analysis. We consider the full age-period-cohort (apc)
model and sub-models (ap, ac, pc), where one of the three effects is dropped. There are
AG = 13 age groups and P = PH = 53 periods, giving n = 689 observations. In light of
(12), the APC model has 172 parameters and thus 517 degrees of freedom.

We allow over-dispersion because the deviance for the apc model is large relative
to a χ2

517 distribution. The deviance divided by the degrees of freedom is an estimate
of the over-dispersion. The sub-models can be tested through an F-statistic of the
form Fap = {(devap − devapc)/(dfap − dfapc)}/{devapc/(n− dfapc)}, which are asymptot-
ically Fdfap−dfapc,n−dfapc distributed (Harnau & Nielsen, 2018). We see that reduction to
the age-cohort specification cannot be rejected while the age-period and period-cohort
models are rejected. This conclusion is in line with previous studies using regular data
(Mart́ınez Miranda et al., 2015, 2016).

Figure 1 shows detrended time effects. Detrending has been done with three objec-
tives in mind: to emphasize non-linearity, to ensure invertibility of the covariance of the
estimators and to disentangle the plots. With fewer constraints, such as only imposing
slope constraints on one of the plots, the three plots become linked inextricably and
should be considered jointly (Carstensen, 2007). Thus, more constraints are used here
(Nielsen, 2015; Fannon & Nielsen, 2019).

Figure 1(a) shows the detrended age effect. The transformation (11) with H = 1
shows that the age effect has an arbitrary level and linear slope. Thus, the age effect has
two constraints in that it starts and ends in zero, so as to emphasize the non-linearity.
The first observation at age 29 is for the interval 25-29. The age effect is nearly the same
for the two lower age groups and then it takes a clear concave pattern. This is common
for epidemiological studies. The dashed lines indicate twice the point-wise standard
errors. This is zero at points where constraints are imposed. The age effects are larger
than their standard errors supporting the rejection that the non-linear age effect is zero.

Figure 1(b) shows the detrended period effect. The effect has an arbitrary level,
linear slope and G − 1 = 4 micro levels according to (11). The macro trend, shown
with bullets at GH = 15 year intervals is detrended to start and end in zero. The micro
levels starting 3, 6, 9, 12 are demeaned to start on the line between the first two macro
estimates as indicated with crosses. The periods effects are smaller than two standard
errors supporting that the setting the non-linear period effect to zero cannot be rejected.

Figure 1(c) shows the detrended cohort macro effect. The detrending is done so that
third estimates from the beginning and from the end are set to zero. Thus, the standard
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Figure 1: Detrended time effects for annual period data.

errors are zero in those points. The reason for this is that the extreme cohort values
are associated with the top right and bottom left macro block of the data matrix as
illustrated in Table 1. Those macro blocks are only repeated once in the data and are
therefore subject to small sample issues. These issues are worsened by very low and
some volatile responses. Indeed, it is seen that the standard errors become very large
for the youngest cohorts. If the detrending had been done by setting the extremes to
zero this volatility would dominate the figure. The cohort macro effect follows a concave
pattern. This is consistent with asbestos being increasingly used for early cohorts and
then less used as health legislation was brought in.

Figure 1(d) shows the demeaned cohort micro effect. Four micro effects arise by
looking at time points shifted by r = 1, 2, 3, 4 years relative to those for the macro
effects. The micro effects are found by taking difference between the representations at
times qG + r and at times qG + 0. These micro effects are then demeaned to start in
zero. We see that the micro effects is relatively small throughout. This indicates that
cohort effect on an annual scale would be fairly smooth with only a modest seasonality
as in Holford (2006). By focusing on the macro effects, smoothing is avoided. For a
smoothing approach, see Gascoigne & Smith (2021). Again the standard errors indicate
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model deviance df dev/df F vs. apc df vs. apc pF
apc 116.77 66 1.77
ap 3615.16 144 25.11 25.35 78 0.000
ac 129.83 77 1.69 0.67 11 0.760
pc 2120.57 72 29.45 188.76 6 0.000

Table 3: Deviance analysis of mesothelioma data with triennial period.

volatility for the recent cohorts with sparse responses.

4.3 Analysis with triennial period

To explore the more complicated situation where both frequencies are larger than one,
we set H = 3 and consider the mesotheolioma data for the periods 2020, 2017, 2014,
etc. We then have G = 5 and H = 3. The low number of responses for those aged below
40 generates some instability when analyzing the data with triennial period. Thus,
we drop the the three lower age groups. Thus, there are AG = 10 age groups and
PH = 17 periods, giving n = 170 observations. In light of (12), the APC model has 104
parameters and thus 66 degrees of freedom.

Table 3 reports a deviance analysis for the mesothelioma data. The over-dispersion
is now stronger. As before, the age-cohort specification cannot be rejected.

Figure 2 is set up as before. With G = 5 and H = 3, the macro steps are now
GH = 15, marked with bullets in panels (a,b). We identify H − 1 = 2 micro levels for
age and, as before, G − 1 = 4 micro levels for period. These are marked with crosses
in panels (a,b). For the cohort, each combination of rgG + rhH generates as different
trend. The value for rg = rh = 0 is taken as the macro effect in (c), whereas demeaned
differences are shown for the remaining 14 combinations in (d).

In panels (a,b) the detrended age and cohort macro effects have significant, concave
shapes. In panel (b) the detrended period effect has an insignificant, concave shape.
The concavity can also be discerned from Figure 2(b). In panel (d) the demeaned micro
effects are drifting downwards as r = rgG + rhH increases. This is to be expected as
the difference to the references macro effect of r = 0 is expected to be larger for larger
values of r. For some larger values of r, the micro effect is significant for the more recent
cohort values, which is consistent with sparse, volatile responses.

Overall, the impression for the triennial data is similar although noisier than for the
annual period data. However, data had to be trimmed as estimates and standard errors
are more influenced by sparse, volatile responses. This could be due to the relatively
more parameters in the triennial model.

4.4 Forecasting the UK mesothelioma burden

We proceed with forecasting the UK mesothelioma burden using the age-cohort models.
The periods were found not to be significant and, indeed, when forecasting, parsimonious
models are often preferable. This is in line with earlier studies (Mart́ınez Miranda et al.,
2015, 2016). We will focus on forecasting those cohorts that are observed in the sample.

14



50 60 70 80 90

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

(a) Detrended age effect

1970 1980 1990 2000 2010 2020

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

(b) Detrended period effect

1880 1900 1920 1940 1960

−
3

−
2

−
1

0

(c) Detrended cohort macro effect

1880 1900 1920 1940 1960

−
6

−
4

−
2

0
2

(d) Demeaned cohort micro effects

r = 3

r = 5

r = 6

r = 8

r = 9

r = 10

r = 11

r = 12

r = 13

r = 14

r = 16

r = 17

r = 19

r = 22

Figure 2: Detrended time effects for triennial period data.

With an age-cohort model, parameters need not be extrapolated. This contrasts with
an age-period-cohort model where the period parameters would have to be extrapolated.

Forecasts are done using four different age-cohort models. All models have 10 age
groups covering ages 40-89 and period starting in 1982. By truncating the data for
the lower age groups and lower periods observations with low counts are avoided. The
counts for ages 40-89 cover 98-99% of counts for those of age less than 90. The four
variations of the models are that period ends in either 2017 or 2020 and the period
frequency H is either one or three.

The forecasts are done 15 periods ahead for the ages 55-89. This is to include only
in-sample cohorts when working with the triennial data. For that situation Table 4
indicates how the macro blocks of cohorts are replicated in the cohort period. The
macro blocks have dimension GH = 15.

Point forecasts are constructed by rolling the representation in (22) forward in time
with period parameters set to zero. As such they are functions of the canonical parameter
and therefore invariant to the transformations in (11), see Kuang et al. (2008a). Intercept
corrections are used (Mart́ınez Miranda et al., 2015). Distribution forecasts for the over-
dispersed Poisson model can be added following Harnau & Nielsen (2018).
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age
40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89

period 45 40 35 30 25 20 15 10 5 0
2002 33 78 73 68 63 58 53 48 43 38 33
2005 36 81 76 71 66 61 56 51 46 41 36
2008 39 84 79 74 69 64 59 54 49 44 39
2011 42 87 82 77 72 67 62 57 52 47 42
2014 45 90 85 80 75 70 65 60 55 50 45
2017 48 93 88 83 78 73 68 63 58 53 48
2020 51 96 91 86 81 76 71 66 61 56 51
2023 54 84 79 74 69 64 59 54
2026 57 87 82 77 72 67 62 57
2029 60 90 85 80 75 70 65 60
2032 63 93 88 83 78 73 68 63
2035 63 96 91 86 81 76 71 66
2038 63 84 79 74 69

Table 4: Cohort indices for G = 5 year age groups and H = 3 year period groups.

AC-2020 AC-2017 HSE-2017
H = 1 H = 3 H = 1 H = 3

2021 1918
[1808,2027]

1914
[1806,2022]

1943
[1829,2073]

2022 1881
[1774,1989]

1877
[1771,1984]

1885
[1767,2022]

2023 1811
[1706,1917]

1836
[1617,2055]

1872
[1753,1992]

1865
[1669,2061]

1822
[1700,1965]

2024 1739
[1636,1842]

1787
[1787,1902]

1753
[1629,1902]

2025 1771
[1668,1875]

1804
[1671,1919]

1678
[1551,1832]

2026 1720
[1607,1833]

1641
[1440,1842]

1721
[1688,1833]

1665
[1485,1844]

1599
[1470,1758]

Table 5: Forecasts with 90% confidence bands.

Table 5 shows the four age-cohort forecasts. The fifth forecast is produced by the
Health and Safety Executive (HSE) using annual age-period data until 2017. The fore-
casts are accompanied by 90% forecast standard errors.

Figure 3 shows the same forecasts taken up to 2032. The figure shows all five types
of point forecasts. The two age-cohort forecasts using data until 2020 are accompanied
by 90% forecast standard errors shown as shaded regions. The age-cohort forecasts
broadly follow the same trajectory. The annual period, 2017 forecast tracks the first
three out-of-sample observations quite well. The triennial, 2017 forecast is a bit off for
2020. This is possibly because it uses very little information from the period after the
peak in 2016. Figure 3 indicates that the triennial forecast has must wider forecasts
standard errors than the annual forecast. The annual forecasts are somewhat volatile.
The triennial forecast appears smoother, but this is an artefact of having only three
out-of-sample forecasts in the figure and they happen to lie more or less on a line.
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Figure 3: Forecasts of annual numbers of mesothelioma deaths.

The HSE forecast is based on the Hodgson et al. (2005), which uses a dose-response
age-cohort model, where doses are constructed from epidemiological knowledge with
respect to time since exposure, age at exposure and lung clearance. Tan et al. (2010)
embedded this in a Bayesian set-up to achieve distribution forecasts. This forecast is
more smooth than the age-cohort forecasts as it uses annual age and period data. It
uses observations for all ages less than 90 and should perhaps be scaled down by 1-2%
to be fully comparable with the age-cohort forecasts. It is interesting to note that the
Bayesian forecast bands are wider than the annual-period age-cohort bands and nearly
as wide at the triennial-period age-cohort bands despite using far more data.

Overall, the forecasts follow broadly the same trajectory. There is a tendency that
case numbers come down more steeply with the HSE forecast than the age-cohort fore-
cats. It is remarkable that the forecasts using five-year age groups and three-year period
groups gives forecasts that are very similar to the other forecasts, even though it uses far
fewer observations. For evaluation of historical forecasts by the HSE and the age-cohort
method see Mart́ınez-Miranda et al. (2016).

5 Conclusion

The age-period-cohort model for mixed frequency data was analyzed. The skipping in
the cohort is linked to the coin problem in number theory. The identification problem
was fully described. The linear relation coh = per + A − age gives the usual problem
of identifying levels and linear trends in an age-period-model remains. In addition,
frequency related congruences between cohort and period and between cohort and age
give additional problems of identifying ‘micro’ levels. A parametrization that is invariant
to both identification problems was suggested. With that parametrization, standard
statistical methods can be used.

The method was applied to counts of mesothelioma deaths with five-year age groups
and one or three-year period groups. Inferences and forecasts are similar to those ob-
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tained from annual, regular data in earlier studies. The grouping of the data appears
to give some over-dispersion. The age-period-cohort model reduces to an age-cohort
model, which is convenient for forecasting. The grouping does not give seem to give
particular biases when forecasting, but grouping does increase forecast variance.

The identification problem implies that standard double differences of the time effects
are in general not identified. For instance, if the data have 5-year age groups and annual
periods groups, then the five-year difference of the annual difference of the period effect is
identified, whereas the annual double difference of the period effect is not. If a Bayesian
approach is adopted it may not be a good idea to put priors on the latter (Smith &
Wakefield, 2016; Gascoigne & Smith, 2021). With the present analysis a more informed
Bayesian analysis can be done if so desired.

A The Coin problem and technical details

The coin problem Suppose there are coins of two denominations, G,H ≥ 2 with
largest common denominator of unity. Which combinations gG+hH can be formed for
non-negative integers g, h?

The Frobenius number FG,H = GH − G − H is the largest number that cannot
be expressed as a non-negative integer combination of G,H (Ramı́rez Alfonśın, 2005,
Theorem 2.1.1). The number of positive numbers that cannot be expressed as a non-
negative integer combination of G,H is SG,H = (G − 1)(H − 1)/2, as pointed out by
Sylvester in 1882 (Ramı́rez Alfonśın, 2005, Theorem 5.1.1).

The set of non-representable numbers is the complement of the representable num-
bers not exceeding the Frobenius number. Those representable numbers can be ex-
pressed as a triangular array with non-repeated, non-ordered elements. If bxc denotes
the floor of a real x, that is the largest integer not exceeding x, we get

RG,H =
(
gG+ hH : 0 ≤ g ≤

⌊FG,H − 1

G

⌋
, 0 ≤ h ≤

⌊FG,H − 1− gG
H

⌋)
. (31)

Details are given below. Recently, Binner (2021) has given an alternative representation.
The set of non-representable numbers is then

NG,H = (0, 1, 2, . . . , FG,H)\RG,H . (32)

Thus, the Frobenius number is the largest number in NG,H , while the Sylvester result
gives the number of elements in NG,H . If G = 1 or H = 1 then NG,H is the empty set.

As an illustration, let G = 5 and H = 3. The largest skipped number is the Frobenius
number F5,3 = 7. The number of skipped values is S5,3 = 4. The set of representable
numbers less than F5,3 is R5,3 = (0, 3, 6, 5). Thus, the set of non-representable numbers
is N5,3 = (1, 2, 4, 7).

Next, how many ways can a monetary amount m = gG+hH be represented? Given
g, h ≥ 0 we apply Euclidean division to get

g = qgH + rg where qg = bg/Hc so that 0 ≤ qg and 0 ≤ rg < H, (33)

h = qhG+ rh where qh = bh/Gc so that 0 ≤ qh and 0 ≤ rh < G. (34)
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Insert these representations into m = gG+ hH to get

m = (qgH + rg)G+ (qhG+ rh)H = (qg + qh)GH + rgG+ rhH. (35)

Here, the remainders 0 ≤ rg < H and 0 ≤ rh < G and the total number q = qg + qh
of GH macro-coins are unique. The q macro-coins can be decomposed in q + 1 ways in
terms of G and H coins, corresponding to the macro-blocks in Table 1 that are repeated
along diagonals from top left to bottom right. The top right block has elements of the
form rgG+ rhH. Details are given below.

Algorithm for representing a representable number m in terms of coins. From (35),
we know that there is a unique representation

m = qGH + rgG+ rhH. (36)

We will have that either 0 ≤ rgG + rhH < GH or GH < rgG + rhH < 2GH. We first
check the former case. Euclidean division gives m = q̃GH + r̃ with q̃ = bm/(GH)c and
r̃ = m− q̃GH. We then check if r̃ ∈ SG,H where

SG,H = (gG+ hH : 0 ≤ g < H, 0 ≤ h < G) (37)

by running through all options. If r̃ ∈ SG,H , we get r̃ = rgG + rhH and q = q̃. If
r̃ 6∈ SG,H then we must have r̃ + GH ∈ SG,H . Running through all options, we get
r̃ +GH = rgG+ rhH and q = q̃ − 1. Details are given below.

Derivation of the set of representable numbers in (31). We argue that the
representable numbers x = iG+jH satisfying 0 ≤ x < GH can be expressed as a unique
combination of i, j so that 0 ≤ i < H and 0 ≤ j < G. First, note that neither of i = H
and j = G is possible, since then x ≥ GH. Second, suppose (i′, j′) 6= (i, j) exists so that
x = i′G+ j′H. Subtracting the two representations of x we get (i− i′)G+(j− j′)H = 0.
Since G divides 0 but not H, then G must divide j− j′. When 0 ≤ j, j′ < G this is only
possible if j = j′. Divide by H to conclude i = i′.

Next, we consider the set of representable numbers RG,H less than the Frobenius
number FG,H = GH − G − H. For j = 0, we must have 0 ≤ iG ≤ FG,H − 1 or
0 ≤ i ≤ b(FG,H − 1)/Gc. For any such i we must have j ≥ 0 and iG + jH ≤ FG,H − 1,
so that 0 ≤ j ≤ b(FG,H − 1− iG)/Hc. The mentioned i, j combinations constitute the
set RG,H in (31). By the above argument, the elements in RG,H are non-repeated as
the i, j pairs are unique.

Uniqueness of the representation (35). Equation (35) is derived from the repre-
sentations (33) and (34). In those representations, rgG and rhH are unique. As rgG
cannot be represented in H coins and rhH cannot be represented in G coins, then rg
and rh are unique in (35). However, the amount GH can be represented as G coins with
value H or as H coins with value G. Thus, we can decompose (qg + qh)GH in qg + qh +1
different ways in terms of G and H coins.

Derivation of the representation (36). For a general representable number m, the
representation m = qGH + rgG + rhH in (35) applies with unique q ≥ 0, 0 ≤ rg < H
and 0 ≤ rh < G. We will either have 0 ≤ rgG+rhH < GH or GH < rgG+rhH < 2GH,
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while rgG + rhH = GH is infeasible given the constraints to rg, rh (Ramı́rez Alfonśın,
2005, Remark 5.1.2). We can find the values of q ,rg, rh as follows. Euclidian division
gives m = q̃GH + r̃, where q̃ = bm/(GH)c and r̃ = m − q̃GH satisfying 0 ≤ r̃ < GH.
We check if r̃ ∈ SG,H , see (37), which gives a representation r̃ = rgG + rhH and q = q̃.
If r̃ 6∈ SG,H , then we must have that r̃+GH ∈ SG,H and we run through the options in
SG,H to find a representation r̃ +GH = rgG+ rhH so that q = q̃ − 1.

Derivation of the intermediate representation in (22). We modify the argument
of Mart́ınez Miranda et al. (2015, §A.1). We write, with q = qg + qh,

µA−qgGH−rgG,H+qhGH+rhH = αA−qgGH−rgG + βH+qhGH+rhH + γH+qGH+rgG+rhH + δ. (38)

We analyze the first three terms in turn and then combine.
For the period effect, let H∗ = H + rhH. Use telescoping sums to get βH∗+qhGH =

βH∗ +
∑qh−1

t=0 ∆GHβH∗+GH+tGH for levels with qh ≥ 1 whereas ∆GHβH∗+GH+tGH =

∆GHβH∗+GH +
∑tG

s=1 ∆GH∆HβH∗+GH+sH for differences with t ≥ 1. Combine to get

βH∗+qhGH = βH∗ + qh∆GHβH∗+GH + 1(qh≥2)

qh−1∑
t=1

tG∑
s=1

∆GH∆HβH∗+GH+sH . (39)

For the age effect, let A∗ = A − rgG. Apply backward telescoping sums to get
αA∗−qgGH = αA∗ −

∑qg−1
t=0 ∆GHαA∗−tGH for levels with qg ≥ 1 and ∆GHαA∗−tGH =

∆GHαA∗ −
∑tH−1

s=0 ∆GH∆GαA∗−sG for differences with t ≥ 1. Combine to get

αA∗−qgGH = αA∗ − qg∆GHαA∗ + 1(qg≥2)

qg−1∑
t=1

tH−1∑
s=0

∆GH∆GαA∗−sG. (40)

For the cohort effect, let H† = H + rgG + rhH. Proceed as for the period effect

in (39) to get γH†+qGH = γH† + q∆GHγH†+GH + 1(q≥2)
∑q−1

t=1

∑tG
s=1 ∆GH∆HγH†+GH+sH .

Write ∆GH∆HγH†+GH+sH =
∑H

u=1 ∆G∆HγH†+uG+sH . Combine to get

γH†+qGH = γH† + q∆GHγH†+GH + 1(q≥2)

q−1∑
t=1

tG∑
s=1

H∑
u=1

∆G∆HγH†+uG+sH . (41)

Note that in the triple sum, the summands have indices in I◦coh.
Collecting the intercepts in (39), (40), (41) gives

M intercept
rg ,rh

= αA∗ + βH∗ + γH† + δ = µA−rgG,H+rhH . (42)

Collecting the slopes in (39), (40), (41) noting that q = qg + gh gives

Mage/coh
rg ,rh

= ∆GHγH†+GH −∆GHαA∗

= µA−GH−rgG,H+rhH − µA−rgG,H+rhH , (43)

Mper/coh
rg ,rh

= ∆GHγH†+GH + ∆GHβH∗+GHµA−rgG,H+rhH

= µA−rgG,H+GH+rhH − µA−rgG,H+rhH . (44)
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Thus, inserting all the above derivations into (38), we get the expression (22).

Perfect fit property. The macro block for the G smallest ages and H largest periods
has unique cohort values. Thus, the design matrix X can be organized as

X =

(
X11 0
X21 X22

)
, (45)

where X has AGPH rows, the last GH rows X2 = (X21, X22) correspond to the obser-
vations in the macro block and X22 is an invertible GH-dimensional matrix. Let

L =

(
IAGPH−GH 0
−X−122 X21 IGH

)
, (46)

which has full rank. Then XL is block-diagonal with diagonal blocks X11 and X22. This
reveals the perfect fit property for the last GH observations.

The macro block for the G largest ages and H smallest periods is given by M intercept
rg ,rh

in (42). We can organize the design matrix to be of the form (45), but now with
X11 = M intercept

rg ,rh
. We need to show that the lower part X2 = (X21, X22) has a column

rank deficiency of GH so that we can post multiply X2 with a lower triangular (2× 2)
block matrix L so that X2L = (0, X̃22). Consider the representation (22), noting that
for the rows in X2 then qg + qh ≥ 1. For each value of rg, rh, we demonstrate a linear
dependence between the coefficient in four columns of X2. The intercept M intercept

g,h and

the slopes M
age/coh
g,h and M

per/coh
g,h have coefficients 1, qg and qh for g = rg and h = rh

and a zero coefficient for g 6= rg with 0 ≤ g < H and h 6= rh with 0 ≤ h < G. Further,
reorganize the cohort double sum in (30) as

Scoh
qg+qh,rg ,rh

= 1(qg+gh≥2)

qg+qh−1∑
t=1

t∑
v=1

∆GH∆GHγH+(v+1)GH+rgG+rhH . (47)

Choosing v = 1, we get that ∆GH∆GHγH+2GH+gG+hH has coefficient qg + qh − 1 for
g = rg and h = rh and a zero coefficient otherwise. The coefficients 1, qg, qh, qg + qh− 1
multiplied by 1, −1, −1, 1 add up to zero.

Proof of Theorem 3.1.
(a) In §3.2, 3.3 it was argued that ξ is a function of µ that is invariant to (11).
(b) We express µ as a linear function of ξ. Rewrite the intercept in (42) as

M intercept
rg ,rh

= µA−rgG,H+rhH = αA−rgG + βH+rhH + γH+rgG+rhH + δ

=
{
αA − 1(rg>0)∆rgGαA

}
+
{
βH + 1(rh>0)∆rhHβH+rhH

}
+
{
γH + 1(rg>0)∆rgGγH+rgG + 1(rh>0)∆rhHγH+rhH

+ 1(rg>0)1(rh>0)∆rgG∆rhHγH+rgG+rhH

}
+ δ

Collecting terms, noting that µA,H = αA + βH + γH + δ, while λrg = ∆rgG(γH+rgG−αA)
and νrh = ∆rhH(γH+rhH + βH+rhH), see (16), (17), (18), we get

M intercept
rg ,rh

= µA,H + 1(rg>0)λrg + 1(rh>0)νrg + 1(rg>0)1(rh>0)∆rgG∆rhHγH+rgG+rhH . (48)
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For slopes, note that q = qg + qh, so that the cohort slope can be associated in parts
with the period and and in part with the age slopes. Combine the period slopes as

Mper/coh
rg ,rh

= ∆GHγH+GH+rgG+rhH + ∆GHβH+GH+rhH

= ∆GH

(
γH+GH+rhH + βH+GH+rhH

)
+ 1(rg>0)∆GH∆rgGγH+GH+rgG+rhH

Add and subtract νG = ∆GH(βH+GH + γH+GH) to get

Mper/coh
rg ,rh

= νG + 1(rg>0)∆GH∆rgGγH+GH+rgG+rhH

+ 1(rh>0)∆GH∆rhH

(
γH+GH+rhH + βH+GH+rhH

)
. (49)

The age-cohort slopes combine similarly using λH = ∆GH(γH+GH − αA) to get

Mage/coh
rg ,rh

= ∆GHγH+GH+rgG+rhH −∆GHαA−rgG

= ∆GH

(
γH+GH+rgG − αA−rgG

)
+ 1(rh>0)∆GH∆rhHγH+GH+rgG+rhH

= λH + 1(rh>0)∆GH∆rhHγH+GH+rgG+rhH

+ 1(rg>0)∆GH∆rgG

(
γH+GH+rgG + αA

)
. (50)

The expressions for intercept and slopes in (48), (49) and (50) are expressed in terms
of ∆rgG, ∆rhH and ∆GH differences. Such differences can be rewritten as sums of ∆G

and ∆H differences. For instance, in (48), we can write

∆rgG∆rhHγH+rgG+rhH =

rgG∑
s=1

rhH∑
t=1

∆G∆HγH+sG+tH , (51)

which is a linear transformation of G,H double differences of γH+sG+tH . Since s, t ≥ 1,
these double differences have index in I◦coh and thus form a part of ξ in (19).

(c) We show that ξ is exactly identified along the lines of Kuang et al. (2008b). We
iterate over the coordinates of ξ listed in (19).

First, consider the top-right macro block where A − age = gG for 0 ≤ g < G
and per = H + hH for 0 ≤ h < H. This has GH coordinates of µ defined from
(48) through µA−rgG,H+rhH = M intercept

rg ,rh
with rg = g and rh = h. Now, M intercept

rg ,rh

is a bijective linear function of the GH-vector µA,H , λrg , νrh ,∆rgG∆rhHγH+rgG+rhH for
0 < g = rg < G and 0 < h = rh < H. By appealing to (51), we can identify
combinations ∆G∆HγH+rgG+rhH for 0 < g = rg < G and 0 < h = rh < H. Thus, the
vector µA,H , λrg , νrh ,∆G∆HγH+rgG+rhH is identified.

Second, consider the two macro blocks where qg + qh = 1. Given that M intercept
rg ,rh

is dealt with above, we can focus on the slopes. Here, νG can be identified from
M

per/coh
0,0 in (49), while λH can be identified from M

age/coh
0,0 in (50). From (49), we

get that M
per/coh
rg ,rh − M

per/coh
0,rh

= ∆GH∆rgGγH+GH+rgG+rhH for qg = 1, qh = 0 and

rg > 0. Similarly, (50) gives M
age/coh
rg ,rh − M

age/coh
rg ,0 = ∆GH∆rhHγH+GH+rgG+rhH for

qg = 0, qh = 1 and rh > 0. By appealing to (51), we can identify combinations
∆G∆HγH+GH+rgG+rhH for 0 < g = rg < G and 0 < h = rh < H. Now, (49) with qg = 1,

qh = rg = 0 gives M
per/coh
0,rh

−Mper/coh
0,rh−1 = ∆GH∆H(γH+GH+H + βH+GH+H) for rh = 1 and

M
per/coh
0,rh

−Mper/coh
0,rh−1 = ∆GH∆H∆rhH(γH+GH+rhH + βH+GH+rhH) for rh > 1. This allows
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identification of ∆GH∆HβH+GH+rhH for 0 < rh < H. Similarly, using (50) and M
age/coh
rg ,rh

we can identify ∆GH∆GαH+GH+rgG for 0 < rg < G.
Continue in a similar fashion by increasing q = qg + qh by one step and use the

associated macro blocks to identify the next set of parameters.
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